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2° que ces sous-groupes soient échangeables entre eux;
3° qu'aucun d'eux n'admette un sous-groupe invariant d'ordre

plus petit.

Si l'une des séries ne contient qu'un élément, il lui correspond
un sous-groupe invariant abélien clos. Si l'une des séries contient
plusieurs éléments, il lui correspond un sous-groupe invariant
simple, c'est-à-dire n'admettant aucun sous-groupe invariant
continu. Nous arrivons ainsi à la conclusion suivante [14, 16]:

Tout groupe clos est abélien ou infinitésimalement isomorphe
au produit direct d'un ou plusieurs groupes simples et éventuellement

d'un groupe abélien. Cela veut dire, dans le second cas,

que le produit direct en question est un groupe de recouvrement
du groupe donné.

IV. — Les groupes simples clos.

Nous sommes ainsi conduits naturellement à l'étude des

groupes simples clos. Le groupe adjoint F d'un tel groupe G ne

peut laisser invariante qu'une seule forme quadratique définie
(à un facteur constant près), sans quoi il laisserait invariante au
moins une variété linéaire réelle, qui correspondrait à un sous-

groupe invariant continu. Il en résulte que la forme
quadratique 9(e) d'un groupe simple clos est définie; on voit du reste
facilement qu'elle est négative. La réciproque est fondamentale:
tout groupe dont la forme 9 (e) est définie est clos.

Remarquons en passant ce fait qu'une propriété du groupe
infinitésimal entraîne ici une propriété topologique du groupe
global. Il n'en est pas toujours ainsi; deux groupes abéliens de

même ordre, caractérisés par les mêmes constantes de structure,
toutes nulles, peuvent être l'un clos, l'autre ouvert.

Il nous faut ici rappeler, avant de donner la démonstration,
un théorème classique [2] d'après lequel tout groupe dont la
forme 9 (e) est de discriminant non nul est semi-simple, c'est-à-
dire est simple ou est infinitésimalement le produit direct de

plusieurs groupes simples. Il suffit donc de démontrer la
réciproque énoncée pour les groupes simples.

La démonstration se fait en deux temps: on démontre d'abord
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que le groupe adjoint linéaire T est clos; on démontre ensuite

que le groupe donné lui-même G est clos.

Le groupe V est du même ordre que G. Les coefficients de ses

substitutions linéaires sont bornés, le groupe T étant orthogonal;
mais cela ne suffit pas pour affirmer que T est clos. Passons par
l'intermédiaire du groupe V de toutes les automorphies, internes
et externes, du groupe infinitésimal: c'est un groupe algébrique
en ce sens que les coefficients de ses substitutions linéaires sont
caractérisés par les relations algébriques qui expriment l'invariance

des relations de structure; étant algébrique et borné,
le groupe T' est clos. Par suite P, qui est la partie connexe de Ff

contenant la substitution identique, est aussi clos [16].
Le théorème en vue sera prouvé si G recouvre P un nombre

fini de fois, ou encore si le groupe simplement connexe de

recouvrement de T recouvre P un nombre fini de fois. C'est M. H. Weyl
[4] qui a démontré le premier cette dernière propriété : il avait du
reste en vue, plutôt qu'une propriété topologique de certains

groupes, un moyen de démontrer par voie transcendante la
complète réductibilité des représentations linéaires des groupes
semi-simples, réductibilité qu'on n'était pas arrivé à prouver
par voie algébrique.

Essayons de donner une idée de la démonstration [10, 11].
Le groupe adjoint clos T admet une infinité de sous-groupes
abéliens maximums, tous homologues entre eux et d'ordre Z,

rang du groupe donné. Une transformation infinitésimale générique

de T est homologue à un nombre fini de transformations
infinitésimales d'un quelconque y de ces sous-groupes abéliens,
qu'on peut supposer engendré par Xx, X2, Xz; on peut
supposer que pour la transformation eL Xi de y, la forme 9 (e)
est réduite à — [(c1)2 + + (e*)2]. Représentons la transformation

elXi de y, dans l'espace euclidien à l dimensions, par le
vecteur d'origine 0 et de composantes e1. Il existe dans cet espace
un angle Z-èdre II de sommet 0 tel que toute transformation
infinitésimale générique de T soit homologue à une transformation
et une seule intérieure à II. Mais il y a des transformations
infinitésimales singulières, caractérisées par la propriété que
l'équation de Killing admette plus de Z racines nulles au lieu du
nombre normal Z: il y en a alors au moins Z -f 2, ces racines étant
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deux à deux opposées. Ces transformations singulières sont
homologues aux transformations portées sur les faces de II.
Elles dépendent seulement de r — 3 paramètres homogènes.
Ajoutons que si l'on prend les symétriques de II par rapport à

ses différentes faces et ainsi de suite, on obtient une décomposition
régulière de l'espace autour du point origine 0.

Passons aux transformations finies de F; elles admettent
des multiplicateurs de module 1, dont l sont égaux à 1, les

autres étant deux à deux inverses. Toute transformation finie
générique T (avec exactement l multiplicateurs égaux à 1)

peut être engendrée par une transformation infinitésimale
générique ayant une homologue à l'intérieur de F; T peut être

représentée par un point déterminé intérieur e II, les différentes
transformations finies engendrées par une même transformation
infinitésimale étant représentées par les points d'une demi-droite
issue de 0. Si l'on suit cette demi-droite à partir de 0, il arrive
un moment où on trouve une transformation finie singulière:
le lieu des points ainsi obtenus est une portion d'hyperplan qui
délimite, avec les faces de II, un simplexe S; toute transformation
finie non singulière de F a pour image un point ou un nombre

fini de points intérieurs à S. Du reste si l'on prend les symétriques
de S par rapport à ses l + 1 faces et qu'on procède de même pour
les nouveaux simplexes obtenus et ainsi de suite, on obtient un

pavage régulier de l'espace, toute transformation finie non
singulière de F ayant toujours le même nombre fini d'images à

l'intérieur de chacun des simplexes obtenus.
Ce nombre fini est égal au nombre des sommets de S qui

représentent la substitution identique de F. Nous allons voir que
c^est aussi le nombre de fois que T est recouvert par son groupe
simplement connexe de recouvrement.

11 sera commode d'employer un langage géométrique. La forme
définie positive — <p(e) permet d'introduire dans l'espace de F

une métrique riemannienne invariante par F, qui se trouve être
ainsi le plus grand groupe des déplacements de son espace, rendu
riemannien. Les sous-groupes à un paramètre de F sont
représentés par des géodésiques issues du point unité i; nous dirons

qu'un arc de géodésique d'origine i est régulier si le sous-groupe
correspondant est engendré par une transformation infinité-
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simale non singulière et s'il n'y a aucun élément singulier sur
cet arc. En suivant une géodésique non singulière à partir de i,

on arrivera à un premier point singulier, qui n'est autre que le

premier point focal de i sur la géodésique. Tous ces points focaux

engendrent une variété à r — 3 dimensions, celle qui a pour
image dans l'espace euclidien de y la face de 2 opposée au sommet

0. Si nous considérons maintenant dans l'espace de F
/\

un arc ab ne contenant aucun point singulier et si nous nous
donnons Vun des arcs réguliers de géodésique joignant i à a,

on pourra suivre par continuité, de a en ô, cet arc régulier. Tous
les arcs réguliers ainsi obtenus seront représentés à l'intérieur de

2 par des segments de droites partant de 0 et aboutissant aux
différents points de l'image de l'arc ab. Supposons l'arc ab fermé,
partant de a et y revenant, sans contenir aucun point singulier.
Si nous nous donnons l'arc régulier de géodésique joignant i à a
et si nous le suivons par continuité, ou bien nous retrouverons
le même arc en revenant au point de départ, ou bien nous en
trouverons un autre. Dans le premier cas le cycle considéré est

homotope à zéro; il suffit pour s'en convaincre d'effectuer
une homothétie de centre i et de rapport k variant de 1 à 0,
chaque point du contour se déplaçant sur l'arc régulier de

géodésique qui le joint à i. Mais, dans le second cas, le cycle
n'est pas homotope à zéro, car s'il l'était on pourrait opérer la
réduction sans que le cycle rencontre jamais la variété à r — 3

dimensions des points singuliers; les arcs réguliers de géodésique
joignant i aux points du contour varieraient d'une manière
continue et l'arc régulier final joignant 0 à a serait toujours le
même, c'est-à-dire différent de l'arc régulier initial joignant les
mêmes points, ce qui est absurde. En particulier un cycle
partant de i et y revenant aura pour image dans le simplexe S
un chemin partant de 0 et aboutissant à un des sommets de 2
qui représentent la substitution identique; le cycle est homotope
à zéro ou non suivant que ce sommet est confondu ou non avec 0.
On voit bien nettement ainsi qu'il y a autant de classes de cycles
non homotopes entre eux qu'il y a dans 2 de sommets représentant

la substitution identique. C'est ce que nous voulions
démontrer.

Ajoutons un théorème important. Considérons le groupe G
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simplement connexe de recouvrement de T. Toute transformation
finie non singulière de G a pour image un point et un seul intérieur
à S. Par suite toute variété fermée qui ne contient aucun élément
singulier a pour image une variété fermée intérieure à (2).
Chaque point de la variété donnée peut donc être joint au point
unité par un arc régulier de géodésique et un seul; par suite cette
variété est homotope à zéro. On a donc le théorème suivant:

Théorème. Dans Vespace d^un groupe simple clos simplement
connexe, toute variété fermée qui ne contient aucun élément singulier
est homotope à zéro.

En particulier, la variété des éléments singuliers étant à

r — 3 dimensions, toute variété fermée à deux dimensions peut
être déformée de manière à ne plus contenir d'éléments singuliers,
d'où le nouveau théorème:

Théorème. Dans Vespace d^un groupe simple clos simplement
connexe, toute variété fermée à deux dimensions est homotope à

zéro.

Les théorèmes précédents entraînent évidemment le suivant:

Théorème. Les deux premiers nombres de Betti déun groupe
simple clos, simplement connexe ou non, sont nuls.

Tous ces théorèmes s'étendent aux groupes semi-simples
clos, c'est-à-dire aux groupes dont la forme 9(e) est définie;
tous ces groupes ont leurs deux premiers nombres de Betti nuls.

Il n'en est évidemment pas de même pour les groupes clos dont
la forme 9 (e) n'est que semi-défmie.

Revenons aux groupes simples. Le groupe de Poincaré du

groupe adjoint T d'un groupe simple clos est isomorphe au groupe
des déplacements, accompagnés ou non de symétries, qui, dans

l'espace euclidien du sous-groupe abélien y, laissent invariant le

simplexe S et amènent successivement en coïncidence le

sommet 0 avec les autres sommets homologues. Il y a, comme on

sait, quatre grandes classes de groupes simples clos, chaque
classe ayant un représentant linéaire bien connu, à savoir:

A. Le groupe linéaire unimodulaire d'une forme d'Hermite
définie positive à l + 1 variables;



LA TOPOLOGIE DES GROUPES 187

B. Le groupe orthogonal réel à 21 + 1 variables;
G. Le groupe linéaire complexe de la forme d'Hermite

x^xx + -f xu~xn et de la forme quadratique extérieure

[%1x2] + [x3xA] + + [xn__ ixn].
D. Le groupe orthogonal réel à 21 ^ 6 variables;

Le groupe de Poincaré du groupe adjoint est cyclique d'ordre

l + 1 (classe A), cyclique d'ordre 2 (classes B et C), cyclique
d'ordre 4 (classe D, l impair), non cyclique d'ordre 4 (classe D,

l pair). Le groupe linéaire unitaire unimodulaire est simplement

connexe, mais le groupe orthogonal ne l'est pas, étant
recouvert deux fois par son groupe simplement connexe de

recouvrement.
M. H. Weyl a montré a priori, par des considérations tirées

de la théorie des équations intégrales, que tout groupe clos admet

une infinité de représentations linéaires fidèles, c'est-à-dire telles

qu'à deux éléments distincts du groupe correspondent deux
substitutions linéaires distinctes.

V. — Les groupes simples ouverts.

J'ai beaucoup insisté sur les groupes clos. Comme nous allons
le voir, ils contiennent la clef de presque toutes les propriétés
topologiques des groupes de Lie ouverts. On a en effet le théorème

général suivant:

Théorème. L'espace d'un groupe de Lie simplement connexe
ouvert est le produit topologique d'un espace euclidien et
éventuellement d'un ou de plusieurs espaces de groupes simples clos.

Nous allons commencer par démontrer ce théorème pour les

groupes semi-simples ouverts. Il résultera du théorème suivant:

L'espace du groupe adjoint T d'un groupe simple ouvert G
est le produit topologique de l'espace d'un groupe linéaire clos et
d'un espace euclidien.

Il suffit pour passer de ce théorème au précédent de remarquer
que le groupe simplement connexe de recouvrement d'un groupe
linéaire clos est le produit direct d'un ou plusieurs groupes clos
simplement connexes et, éventuellement, d'un groupe abélien
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