Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 35 (1936)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Buchbesprechung: Léon Brillouin. — Notions élémentaires de Mathématiques pour les

Sciences expérimentales (Collection P.C.B.). — Un volume in-8° de viii-252 pages et 177 figures. Prix: broché, 30 francs; relié, 40 francs.

Masson & Cie, Paris, 1935.

Autor: Buhl, A.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

de ses généralisations. Le prépotentiel correspond à une attraction proportionnelle à une puissance quelconque de la distance; Green et Cayley l'ont déjà traité de manière supérieurement élégante. Toutes les équations aux dérivées partielles ainsi obtenues se scindent, par le choix de coordonnées convenables, en équations différentielles jouant un rôle célèbre dans l'Analyse classique. C'est l'équation hypergéométrique de Gauss avec une foule de cas particuliers, c'est l'emploi des coordonnées elliptiques, des systèmes orthogonaux de quadriques, des fonctions toroïdales, toutes choses ayant illustré les noms de Lamé, Greenhill, Mathieu, Thomson et Tait, Weber, Mehler, Fourier, C. Neumann.

Plus récemment, le sujet avoisine l'équation de Schrödinger et illustre la Mécanique ondulatoire bien que les représentations soient ici au delà de la géométrie. Mais Gauss, avec ses considérations hypergéométriques, n'avait-il pas déjà comme une vague intuition de cet au delà?

A propos du potentiel dans l'hyperespace, il faut signaler l'équation de Laplace à cinq variables, d'où découle l'une des équations de la Mécanique ondulatoire, puis celle à quatre variables récemment mentionnée dans L'Enseignement mathématique à propos des travaux de M. Fueter et des Conférences de Genève. Plus anciennement tout ceci fut l'objet de travaux étendus dus à Paul Appell et à M. Kampé de Fériet. Là naquirent les fonctions hypergéométriques de deux variables et les généralisations des polynômes d'Hermite. L'analyse de quadriques ci-dessus mentionnée fut aussi considérablement étendue.

Faut-il rappeler l'équation aux dérivées partielles du troisième ordre qui porte le nom de M. Pierre Humbert. Outre les travaux étendus dus à son auteur, elle en a engendré d'autres, comme la Thèse de M. Jacques Devisme, avec lesquels on peut aller vers les espaces de Finsler-Cartan (voir *Annales de la Faculté des Sciences de Toulouse*, 3^{me} série, t. XXV, 1933). Ces considérations de Géométrie générale, comme l'agéométrie du monde corpusculaire, continuent dignement l'hypergéométrie de Gauss.

A. Buhl (Toulouse).

Léon Brillouin. — Notions élémentaires de Mathématiques pour les Sciences expérimentales (Collection P. C. B.). — Un volume in-8° de viii-252 pages et 177 figures. Prix: broché, 30 francs; relié, 40 francs. Masson & Cie, Paris, 1935.

Ce petit volume s'accorde merveilleusement avec des préoccupations indiquées d'autre part, notamment à propos des *Actualités scientifiques*. Nombreux sont les exposés de Biologie mathématique. M. Léon Brillouin s'est proposé d'écrire des mathématiques pour les biologistes, ce qui était indiqué non seulement au point de vue purement scientifique, mais aussi au point de vue pédagogique par la transformation du P.C.N. en P.C.B., c'est-à-dire en Certificat d'études physiques, chimiques et biologiques.

Ce livre, présenté avec beaucoup d'élégance, s'adresse uniquement au bon sens. De nombreux graphiques invitent à constituer la notion de fonction. La géographie des altitudes donne les fonctions de deux variables et les dérivées partielles sur les surfaces sont étudiées, grâce à de jolis croquis, comme les dérivées ordinaires sur les courbes. Il y a des exemples d'équations différentielles simples tirées des décompositions radioactives, ce qui peut paraître assez inattendu puisque la radioactivité est surtout le domaine

de la discontinuité. Mais, à y regarder d'un peu plus près, on se retrouve aisément dans des cas de variations exponentielles analogues à celles des lois biologiques malthusiennes. D'ailleurs, la fonction exponentielle joue bien forcément un rôle essentiel. Elle s'accompagne des logarithmes et de la règle à calcul si bien photographiée qu'on pourrait en étudier le maniement rien que sur l'image. La trigonométrie n'est aussi qu'une succession d'images. Quant aux choses d'apparence plus élevée mais rendues étonnamment intuitives, citons les réactions de la cinétique chimique, les dissociations, la loi d'action de masses, la cinétique biologique, la symbiose et le parasitisme. Combien est belle la science élémentaire lorsqu'elle est exposée par un grand savant.

A. Buhl (Toulouse).

Maurice Janet. — Equations intégrales et Applications à la Physique mathématique. Cours de l'Université de Caen. — Un cahier in-4°, en dactylographie, de 128 pages. Prix: 25 francs. Centre de Documentation universitaire, Tournier et Constans, 5, place de la Sorbonne, Paris, 1936.

Il s'agit d'un Cours d'Analyse supérieure fait en vue du Certificat d'Etudes correspondant. C'est une étude de l'espace de Hilbert, étude qui peut servir d'introduction à la Mécanique ondulatoire mais qui est restée en contact avec la théorie des équations intégrales première manière, c'est-à-dire surtout à la manière de Fredholm. Elle comprend également des développements relatifs à la fonction de Green, aux équations adjointes, aux fonctions fondamentales, toutes choses considérées antérieurement aux équations intégrales proprement dites, qui en ont préparé le règne et qui, ici, forment encore le plus naturel des terrains d'accès. Remarques intéressantes sur les cas où la fonction de Green est symétrique.

Les systèmes linéaires constituent également une ouverture vers la notion de tenseur. Ils pourraient aussi bien conduire aux groupes de Lie ou aux espaces de Riemann mais l'aboutissement hilbertien, moins élémentaire, ne devait pas être perdu de vue.

L'orthogonalisation et la normalisation sont traitées comme dans le cas des séries trigonométriques. Les ensembles fonctionnels et leurs fonctions limites ont pour première image les ensembles ponctuels et leurs points d'accumulation.

Et les considérations à la Hilbert naissent précisément des conditions d'intégrabilité dans l'espace fonctionnel, conditions qui, quoique plus complexes, correspondent aux possibilités d'existence des aires, des volumes, des arcs, ... dans l'espace géométrique ponctuel. Les propriétés différentielles qui, dans le domaine élémentaire du Calcul infinitésimal, peuvent servir à construire des courbes, des surfaces, ne se poursuivent pas toujours dans les domaines intégraux, surtout fonctionnels; même en partant des équations aux dérivées partielles de la Physique mathématique, on est fatalement conduit, en général, à des formes du Calcul intégral où le thème différentiel n'existe plus que providentiellement. Le monde des intégrales, des sommations de tous genres, des systèmes $\boldsymbol{y}_i = a_{ik} \, x_k$ et de leurs généralisations s'accorde avec l'idée de mesure dans un mode qui dépasse de beaucoup, en généralité, la mesure entendue dans le sens de proportion ou de rapport. Telles sont les idées grandioses que M. Maurice Janet a su rappeler, de façon fort originale, en les mettant à la portée des élèves de nos Facultés. A. Buhl (Toulouse).