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144 J. LERAY

II. — Equations aux dérivées partielles du second ordre
ET DU TYPE ELLIPTIQUE.

7. — Application de la théorie des équations fonctionnelles au
problème de Dirichlet non linéaire. — Nous allons étudier le

problème de Dirichlet que voici: définir dans un domaine à deux
dimensions A une solution d'une équation du type elliptique

,/ dz dz ö2 2 ö2 2 d2 z\ ^fix, y, 2, —, —, —z, —„ 0 1

\ dx dy dx2 dxdy à y2/

ms:
qui prenne sur la frontière A' de A des valeurs données.

Nous simplifierons notablement notre exposé en supposant que
l'équation est quasi-linéaire, c'est-à-dire du type

A (x,y, z, —, —) ^4 + 2B (•••) + C —, D (2)
\ dx dy) dx2 dx dy dy2

Ce que nous dirons au cours de ce paragraphe, concernant l'équation

(2) s'adapte à l'équation (1), au prix de quelques complications.

Nous supposons que A, B, C, D sont des fonctions continues
et dérivables de leurs arguments, et que

A • G B (•••)2 > 0

quelles que soient les valeurs des arguments.
Etant donnée une fonction quelconque z{x,y), envisageons

la fonction Z(x, y) qui prend sur A' les valeurs données et qui
vérifie dans A l'équation

\( ö-3\ °2Z
- ou t \

ö2Z
i r i \

ô2Z n i \ /Q\Abc, y zt — > — — + 2B -—— + G —- D 3
\ dy/dx2 dxdy dy2

Z est une fonctionnelle de 2, êP(z). Le problème de Dirichlet
envisagé équivaut à l'équation fonctionnelle 2 êP(z).

Pour préciser la nature de la fonctionnelle (z) les théorèmes
les plus fins de la théorie des équations linéaires du type elliptique
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vont nous être indispensables. Nous allons supposer que z appartient

à l'espace des fonctions dont les dérivées premières sont

hölderiennes ; le théorème de M. Schauder, qui fut l'objet de la
conférence précédente, enseigne que Z appartient à l'espace des

fonctions dont la dérivée seconde est hölderienne; Z est une
fonction plus régulière que z; ceci entraîne que £P(z) est une
transformation complètement continue. La théorie des équations
fonctionnelles exposée ci-dessus s'applique donc:

Introduisons dans l'équation (2) un paramètre k qui varie
de 0 à 1 : pour k 1 nous avons le problème posé; pour k 0

nous avons, par exemple, le problème de Dirichlet posé pour
l'équation de Laplace.

Si l'on peut trouver une condition de Holder que vérifient les

dérivées premières de toutes les solutions de l'équation ou, plus
-simplement, si l'on parvient à majorer en valeur absolue les

dérivées secondes de ces solutions, alors le problème envisagé
possède une solution au moins.

Résoudre le problème de Dirichlet, posé pour une équation du
second ordre et du type elliptique, c'est donc majorer sa solution,
ses dérivées premières et ses dérivées secondes; c'est les majorer
avec le maximum de précision et d'élégance.

8. Résolution de Véquation quasi-linéaire sans second
membre. — On connaît un cas important où cette majoration
de l'inconnue est possible: le problème de Dirichlet relatif à un
domaine convexe À, quand l'équation est l'équation quasi-
linéaire sans second membre

A (x y £ — 5
2-5 -f 2B f G — 0 (4)

\ &x by) öx2 bxby
1

'by2 * '

(AG — B2 > 0)

Tous les points de la surface inconnue z(x, y) sont
hyperboliques; cette surface ne peut contenir aucun contour fermé
plan ; chacun de ses plans tangents la coupe suivant deux courbes
(au moins), qui aboutissent au contour donné, par lequel la
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146 J. LERAY
surface est limitée. Ces plans rencontrent donc ce contour en

quatre points au moins. Puisque ce contour a une projection
convexe À' et puisqu'on le suppose régulier, la plus grande pente
des plans qui le rencontrent en quatre points a une borne

supérieure finie. Cette borne limite supérieurement + (^y) '

T ' ' 1 • r Ö.2>Ö,3
Voici donc maiores z. —, —J ' öx' by

Malheureusement la majoration des dérivées secondes est à

l'heure actuelle extrêmement compliquée. On étudie d'abord une
certaine fonction w, quadratique par rapport à ces dérivées
secondes et dont l'expression est loin d'être simple. Supposons

que m atteigne son maximum en un point intérieur à A; on a en

ce point dw 0, d2w ^ 0; ces relations, combinées avec les

limitations de z, — ~, avec l'équation (4) et avec les diverses

dérivées des deux premiers ordres de cette équation (4),
permettent, grâce à un choix très adroit de w, de majorer le maximum

de cette quantité. Majorer les dérivées secondes revient
donc à les majorer le long du contour. De nouveaux changements
d'inconnue très habiles ramènent ce problème à celui que nous
avons traité ci-dessus: majorer la plus grande pente d'une surface
dont le contour est donné et dont tous les points sont
hyperboliques.

Remarquons que parmi les équations du type (4) se trouve
celle des surfaces minima:

1 I^Yl 02z 2^Z^Z 02/3
_L fl _L (bZ)2] 02z

0vW J 5.® 07/ Ö£C 02/
L \0 2cj J dî/2

9. — Conclusion. — M. S. Bernstein a traité divers autres
cas spéciaux: celui des surfaces dont la courbure moyenne est

constante, dont la courbure totale est constante,
M. H. Weyl a amorcé celui de la surface convexe dont le dsz

est donné. Je ne les exposerai pas.
L'exemple du problème de Plateau montre bien que les

problèmes de Dirichlet qu'envisage M. S. Bernstein ont pour
inconnue non pas une fonction z(x, y), mais une surface qui
n'est pas en général représentée par une fonction de ce type. La



LES PROBLÈMES NON LINÉAIRES 147

Physique mathématique fournit d'innombrables systèmes
différentiels ou de Pfaff dont il est vraisemblablement aisé de prouver
l'équivalence avec une équation fonctionnelle du type x Â*(x) :

les intégrer, c'est savoir majorer leurs solutions; or nous ne

disposons à l'heure actuelle d'aucune méthode générale qui puisse

diriger nos calculs. Forger une telle méthode, tel est le problème
fondamental qui se pose. Nous possédons quelques inégalités
diverses; je veux en citer une, particulièrement élégante, due à

M. T. Carleman (Math. Zeitschrift, 1921, t. 9, p. 154-160),
Radô et Beckenbach (Trans, of the Amer. Math. Society, t. 35,

1933): Si S est l'aire d'une surface (inconnue) dont tous les

points sont hyperboliques et qui passe par un contour (donné) de
L2

longueur L, alors S < — Sans doute la théorie des fonctions

analytiques, qui est si riche en inégalités, nous sera-t-elle un
exemple très utile: le livre que M. Radô a consacré au problème
de Plateau (On the Problem of Plateau, Ergebnisse der Mathematik

und ihrer Grenzgebiete, Springer, Berlin, 1933) montre avec
quel bonheur les idées de cette théorie ont déjà été appliquées à

l'étude des surfaces minima.

III. — Les équations de Navier.

10. — Régimes permanents. — Les mouvements des liquides
visqueux sont régis par les équations de Navier, qui constituent
un système non linéaire du second ordre; les variables indépendantes,

qui s'imposent, sont les coordonnées d'espace et de

temps: l'inconnue est la vitesse; c'est un vecteur de divergence
nulle.

Etudions d'abord un régime permanent; le problème qui se

pose est un problème de Dirichlet dans un cas analogue au type
elliptique. M. Odqvist l'a ramené à un système d'équations
intégrales; celles-ci constituent une équation fonctionnelle du
type x &*(x). La première quantité que l'on majore est une
grandeur physique: l'énergie dissipée par unité de temps. On
parvient à la limiter en utilisant deux expressions qu'elle revêt:
la première est une intégrale de volume qui exprime l'intensité
du frottement visqueux interne; la deuxième est une intégrale
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