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points irréguliers sont les mémes qu’il s’agisse de I’équation de

Laplace ou de I’équation générale linéaire ™.

Pour terminer je voudrais remarquer que, & 'exception d’un
travail de E. E. Levi fait en 1910, je ne connais point de nou-
velles recherches sur 1’équation du type elliptique d’ordre
2p(p > 1) ni sur des systémes d’équations (évidemment
quelques généralisations faciles sont possibles). Je crois alors
que les futurs efforts devraient aller dans cette direction-la.

LES PROBLEMES NON LINEAIRES:?

PAR

Jean LerAY (Paris).

I. — GENERALITES CONCERNANT LES EQUATIONS
FONCTIONNELLES NON LINEAIRES.

1. — Un type particuliérement simple d’espaces abstraits: ceux
de M.BaNacH.— Nous envisageons des problémes dont 'inconnue
est un point z d’un espace fonctionnel donné, &.

Nous supposons que & est un espace abstrait de Banach: on
peut combiner linéairement ses points; une distance est définie;
la distance ||z || qui sépare 'origine du point z est nommée norme
de x; on a, A étant une constante réelle, || Az || = |7 ||z .

& sera par exemple 'espace des fonctions continues, I'espace
de Hilbert, ’espace des fonctions holderiennes d’exposant «,
Iespace des fonctions dont les dérivées premiéres sont holde-

riennes et d’exposant «; & pourra étre éventuellement un espace
euclidien.

1 Voir par exemple Taurz, Math. Zeitschr. Bd. 39, 1935.

2 Conférence faite le 19 juin 1935 dans le cycle des Conjférences internationales des
Sciences mathématiques organisées par I’Université de Genéve; série consacrée aux
Equations aux dérivées partielles. Conditions propres ¢ déterminer les solutions.
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En général un tel espace n’est pas compact: un domaine
borné de & ne peut étre recouvert & 'aide d’un nombre fini
d’hypersphéres de rayon e. Par exemple il est impossible de
trouver un systéeme, constitué par un nombre fini de fonctions
continues, qui présente le caractére suivant: toute fonction
continue, dont la plus grande valeur absolue est inférieure a 1,
est approchée & 1/,, pres par un élément au moins de ce systéme.
Un espace qui n’est pas compact a une topologie relativement
compliquée.

Nous nommerons complétement continue une transformation
continue & (z) qui transformera tout ensemble borné en ensemble
compact. Des critéres trés aisés permettent d’affirmer qu’une
transformation fonctionnelle est complétement continue: si &
est I’espace des fonctions continues, & (xr) est complétement
continue quand elle transforme des fonctions bornées en des
fonctions possédant un méme module de continuité; toutes les
transformations fonctionnelles forgées & 1’aide d’intégrations
sont completement continues.

N. B. — Quand & est euclidien, toute transformation continue
est évidemment completement continue.

2. — La notion de degré topologique dans un espace euclidien ;
son application a la discussion d’un systéme de n équations ¢ n
inconnues. — Soit y = ®(x) une transformation continue d’un
espace euclidien & en lui-méme; nous supposons @ (x) définie
sur un domaine D et sur sa frontiére D’. Le nombre de fois que
Iimage ® (D) de D recouvre un point b varie quand ce point se
déplace; mais comptons un recouvrement comme étant positif
quand il conserve I'orientation de I’espace, comme étant négatif
dans le cas contraire; le nombre algébrique de fois que le point b
est recouvert reste constant, tant que b ne franchit pas I'image
®(D’) de la frontiere D’; ce nombre algébrique est appelé?!
« degré topologique de la transformation @ (z) au point b». Ce
degré topologique reste constant quand on modifie contintiiment
® (z), D, b sans que b traverse @ (D’).

La notion de degré topologique permet de discuter le nombre

1 La relation @ (x) = b représente en fait un systéme de n équations a n inconnues.
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des solutions qu'une équation ® (z) = b posséde a I'intérieur
d’un domaine D. Enoncons par exemple le théoréme d’existence
suivant: Si 'on peut réduire contintiment la transformation
y = ®(x) a lidentité, y = z, sans que I'image de D’ vienne
jamais recouvrir le point b, si b appartient a D, alors I’équation
® (x) = b posséde au moins une solution. En effet le degré en
b de @ (z) est celui de I’identité, en vertu de la propriété d’inva-
riance du degré: c¢’est + 1; le point b est donc recouvert par
Pimage ® (D) de D. C.Q.F.D.

3. — Impossibilité de définir d’une maniére générale le degré
d’une transformation continue opérant dans un espace abstrait. —
Il est facile de donner des exemples d’équations fonctionnelles
pour lesquelles le théoréme d’existence énoncé ci-dessus ne vaut
plus:

Considérons I'espace & des fonctions continues d’une variable s
qui varie de 0 & 1. Evisageons dans & le domaine fonectionnel D
des fonctions z(s) telles que 0 <z (s) < 1. Soit ¢[z] une fone-
tion continue de x, dont les valeurs sont comprises entre 0 et 1,
et qui vaut O et 1 en méme temps que z. Nommons @ (z) la
transformation fonctionnelle qui associe a z(s) la fonction
@[z (s)]. Soit un parametre £ variant de 0 & 1; la transformation
EO(x) + (1 — k)x dépend contintiment de k; elle coincide avec
I'identité pour £ = 0, avec @ pour k£ = 1; elle transforme tout
point de la frontiere D’ de D en point de D’. Les hypothéses
du théoreme d’existence sont vérifiées, a cela prés que & n’est pas
euclidien. Or ’équation ¢[x(s)] = b(s), ou b est une fonction
continue comprise entre 0 et 1, n’admet en général aucune solu-

~tion continue x(s), si @[x] n’est pas croissant.

La notion de degré topologique ne peut donc pas étre généra-
lisée & une transformation quelconque d’un espace abstrait.

4. — Un type de transformations des espaces de Banach qui
possédent un degré topologique. — Considérons tout d’abord une
transformation «dégénérée», c’est-a-dire du type suivant:
Yy =2+ F,(x), toutes les valeurs prises par ,, () appartenant
& un sous-ensemble linéaire de &, &, , qui a m dimensions. Cette
transformation dégénérée laisse globalement invariant chaque
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hyperplan parallele & &,,. Il est bien naturel de définir son degré
topologique en un point b comme étant son degré quand on la
considére dans I’hyperplan paralléle a &, qui passe par b. On
légitime aisément cette définition en prouvant que ce degré reste
le méme quand on substitue & &, un hyperplan &, & nombre
plus grand de dimensions, qui contient &,,. Le degré en un point b
d’une transformation dégénérée, envisagée sur un domaine D,
reste constant quand on modifie contintiiment b, D et cette trans-
formation sans que b atteigne I'image de la frontiére D’.
Considérons maintenant une transformation qui soit a e pres
une transformation dégénérée, quel que soit ¢; il est légitime de
nommer degré de cette transformation les degrés (égaux a partir
d’un certain rang) de ces transformations dégénérées qui I'ap-
prochent. Les transformations en question sont les transformations
y =2z + F(x), ou F(x) est complétement continue. En effet
I’ensemble des valeurs prises par & (x) appartient & m spheéres
de rayon e; on peut donc approcher, a ¢ pres, & (z) par une
transformation &  (x) dont toutes les valeurs appartiennent a
I’hyperplan que déterminent les centres de ces spheéres.

5. — Propriétés d’un certain type d’équations fonctionnelles. —
Soit & étudier les points d’un domaine D qui satisfont a une
équation du type

z+ Fx) = 0.

Supposons qu’on sache réduire continiment cette équation a
une équation simple, sans qu’aucune de ses solutions atteigne la
frontiere D’; on effectue pratiquement cette réduction en intro-
duisant un parameétre k(0 =< k =< 1); I’équation s’écriy

x+ Fx, k) =0 ;

pour k£ = 1 on a I’équation proposée, pour £ = 0 on a une équa-
tion simple. Le degré topologique au point y = 0 de la transfor-
mation y = x + J (x) est alors égal a celui de la transformation
y = x + J (x, 0); on le connait. S’il differe de zéro I’équation
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proposée posséde au moins une solution. C’est le cas, par exemple,
si F (x,0) = 0 et si D contient le point y = 0.

On peut compléter ce théoréme d’existence: la solution dont
Pexistence est assurée peut étre rattachée a la solution z = 0,
k = 0 par un continu de solutions de ’équation x + & (z, k) = 0.

Envisageons d’autre part la transformation y = z + & ()
au voisinage des points ou z + F(x) = 0; I’étude locale de
cette transformation en ces points se fait a I’aide de I’équation
aux variations de 1’équation proposée; dans certains cas on
arrive a démontrer que tous les recouvrements du point y = 0
sont positifs; si en outre le degré de la transformation z + F(z)
au point 0 est + 1, un seul recouvrement est possible; on peut
ainsi, dans ces circonstances favorables, établir que la solution de
I’équation proposée est unigue.

6. — Conclusion. — Quand D est une trés grande sphére notre
théoréme d’existence revét la forme suivante: Pour pouvoir
affirmer que 1’équation z 4 & (x) = O est résoluble, il suffit de
démontrer qu’elle ne présente pas de solution arbitrairement
grande quand on la réduit contintiment & une équation telle que
xz = 0. Démontrer qu'une équation fonctionnelle a des solutions
revient donc & résoudre le probléme suivant: assigner des majo-
rantes aux solutions qu’elle possede éventuellement. Il serait
d’ailleurs inimaginable qu’on puisse résoudre une équation par
un procédé qui ne fournisse pas de renseignement sur 'ordre de

grandeur des inconnues. Pour nous, résoudre une équation, c’est

majorer les inconnues et préciser leur allure le plus possible; ce
n’est pas en construire, par des développements compliqués, une
solution dont I’emplol pratique sera presque toujours impossible.

On peut se permettre de considérer ce théoreme d’existence
comme étant une généralisation au cas non linéaire de ’al-
ternative de Fredholm: soit une équation de Fredholm
r+ L@ =b (ou L£(x) = [K(s, s)x(s)ds" est compléte-
ment continue); cette équation posséde stirement une solution,
sauf s1 I’équation = 4+ £(x) = 0 en posséde une; or ce cas est
Justement celui ou I’équation proposée admettrait des solutions
arbitrairement grandes. ' |
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