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points irréguliers sont les mêmes qu'il s'agisse de l'équation de

Laplace ou de l'équation générale linéaire 1.

Pour terminer je voudrais remarquer que, à l'exception d'un
travail de E. E. Levi fait en 1910, je ne connais point de

nouvelles recherches sur l'équation du type elliptique d'ordre

2p(p > 1) ni sur des systèmes d'équations (évidemment
quelques généralisations faciles sont possibles). Je crois alors

que les futurs efforts devraient aller dans cette direction-là.

LES PROBLÈMES NON LINÉAIRES2

PAR

Jean Leray (Paris).

I. — Généralités concernant les équations
FONCTIONNELLES NON LINÉAIRES.

1. — Un type particulièrement simple d'espaces abstraits: ceux
de M. Banach. — Nous envisageons des problèmes dont l'inconnue
est un point x d'un espace fonctionnel donné, &.

Nous supposons que & est un espace abstrait de Banach: on
peut combiner linéairement ses points; une distance est définie;
la distance ||^|| qui sépare l'origine du point x est nommée norme
de a;; on a, X étant une constante réelle, || Xx|| | x| \\x\\

& sera par exemple l'espace des fonctions continues, l'espace
de Hilbert, l'espace des fonctions hölderiennes d'exposant oc,

l'espace des fonctions dont les dérivées premières sont
hölderiennes et d'exposant a; & pourra être éventuellement un espace
euclidien.

1 Voir par exemple Tautz, Math. Zeitschr. Bd. 39, 1935.
2 Conférence faite le 19 juin 1935 dans le cycle des Conférences internationales des

Sciences mathématiques organisées par l'Université de Genève; série consacrée aux
Equations aux dérivées partielles. Conditions propres à déterminer les solutions.
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En général un tel espace n'est pas compact : un domaine
borné de & ne peut être recouvert à l'aide d'un nombre fini
d'hypersphères de rayon s. Par exemple il est impossible de

trouver un système, constitué par un nombre fini de fonctions
continues, qui présente le caractère suivant: toute fonction
continue, dont la plus grande valeur absolue est inférieure à 1,

est approchée à 1/10 près par un élément au moins de ce système.
Un espace qui n'est pas compact a une topologie relativement
compliquée.

Nous nommerons complètement continue une transformation
continue S» (x) qui transformera tout ensemble borné en ensemble

compact. Des critères très aisés permettent d'affirmer qu'une
transformation fonctionnelle est complètement continue: si &
est l'espace des fonctions continues, 2F (x) est complètement
continue quand elle transforme des fonctions bornées en des

fonctions possédant un même module de continuité; toutes les

transformations fonctionnelles forgées à l'aide d'intégrations
sont complètement continues.

N. B. — Quand & est euclidien, toute transformation continue
est évidemment complètement continue.

2. — La notion de degré topologique dans un espace euclidien;
son application à la discussion dé un système de n équations à n
inconnues.— Soit y 0(x) une transformation continue d'un

espace euclidien & en lui-même; nous supposons <S>(x) définie

sur un domaine D et sur sa frontière D'. Le nombre de fois que
l'image 0(D) de D recouvre un point b varie quand ce point se

déplace; mais comptons un recouvrement comme étant positif
quand il conserve l'orientation de l'espace, comme étant négatif
dans le cas contraire; le nombre algébrique de fois que le point b

est recouvert reste constant, tant que b ne franchit pas l'image
O(D') de la frontière D'; ce nombre algébrique est appelé1
« degré topologique de la transformation O (x) au point b ». Ce

degré topologique reste constant quand on modifie continûment
<D(#), D, h sans que b traverse 0(Dr).

La notion de degré topologique permet de discuter le nombre

i La relation (x) b représente en fait un système de n équations à n inconnues.
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des solutions qu'une équation O (x) b possède à l'intérieur
d'un domaine D. Enonçons par exemple le théorème d'existence

suivant: Si l'on peut réduire continûment la transformation

y $(x) à l'identité, y x, sans que l'image de D' vienne

jamais recouvrir le point à, si b appartient à D, alors l'équation
<D (x) ess b possède au moins une solution. En effet le degré en

b de <£> (x) est celui de l'identité, en vertu de la propriété d'invariance

du degré: c'est + 1; le point b est donc recouvert par
l'image 0(D) de D. C.Q.F.D.

3. — Impossibilité de définir d'une manière générale le degré
d'une transformation continue opérant dans un espace abstrait. —•

Il est facile de donner des exemples d'équations fonctionnelles

pour lesquelles le théorème d'existence énoncé ci-dessus ne vaut
plus:

Considérons l'espace & des fonctions continues d'une variable 5

qui varie de 0 à 1. Evisageons dans & le domaine fonctionnel D
des fonctions x(s) telles que 0 < x (s) < 1. Soit cp[x] une fonction

continue de x, dont les valeurs sont comprises entre 0 et 1,

et qui vaut 0 et 1 en même temps que x. Nommons <S>(x) la
transformation fonctionnelle qui associe à x(s) la fonction
<p[#(s)]. Soit un paramètre k variant de 0 à 1; la transformation
k<5>(x) + (1 — k)x dépend continûment de k; elle coïncide avec
l'identité pour k 0, avec O pour k 1 ; elle transforme tout
point de la frontière D' de D en point de D'. Les hypothèses
du théorème d'existence sont vérifiées, à cela près que & n'est pas
euclidien. Or l'équation <p[rc(s)] b(s), où b est une fonction
continue comprise entre 0 et 1, n'admet en général aucune solution

continue #.(s), si <p[x] n'est pas croissant.
La notion de degré topologique ne peut donc pas être généralisée

à une transformation quelconque d'un espace abstrait.

4. — Un type de transformations des espaces de Banach qui
possèdent un degré topologique. — Considérons tout d'abord une
transformation ((dégénérée», c'est-à-dire du type suivant:
y x + êFm(x)f toutes les valeurs prises par LÂm(x) appartenant
à un sous-ensemble linéaire de d?, &m, qui a m dimensions. Cette
transformation dégénérée laisse globalement invariant chaque
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hyperplan parallèle à &m. Il est bien naturel de définir son degré
topologique en un point b comme étant son degré quand on la
considère dans l'hyperplan parallèle à &m qui passe par b. On

légitime aisément cette définition en prouvant que ce degré reste
le même quand on substitue à &m un hyperplan à nombre
plus grand de dimensions, qui contient &m. Le degré en un point b

d'une transformation dégénérée, envisagée sur un domaine D>

reste constant quand on modifie continûment è, D et cette
transformation sans que b atteigne l'image de la frontière D'.

Considérons maintenant une transformation qui soit à s près
une transformation dégénérée, quel que soit s; il est légitime de

nommer degré de cette transformation les degrés (égaux à partir
d'un certain rang) de ces transformations dégénérées qui
l'approchent. Les transformations en question sont les transformations

y^x + êFix), où ëF (x) est complètement continue. En effet
l'ensemble des valeurs prises par ëF(x) appartient à m sphères
de rayon s; on peut donc approcher, à s près, ëF{x) par une
transformation ëFm(x) dont toutes les valeurs appartiennent à

l'hyperplan que déterminent les centres de ces sphères.

5. — Propriétés dé un certain type d'équations fonctionnelles. —
Soit à étudier les points d'un domaine D qui satisfont à une
équation du type

x + ëL (x) o

Supposons qu'on sache réduire continûment cette équation à

une équation simple, sans qu'aucune de ses solutions atteigne la
frontière D'; on effectue pratiquement cette réduction en
introduisant un paramètre k{0 ^k ^ 1); l'équation s'écri^

x + S» (x, k) 0 ;

pour k — 1 on a l'équation proposée, pour k 0 on a une équation

simple. Le degré topologique au point y 0 de la transformation

y x + ëF (x) est alors égal à celui de la transformation

y x + # (x, 0); on le connaît. S'il diffère de zéro l'équation
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proposée possède au moins une solution. C'est le cas, par exemple,
si S» (#, 0) 0 et si D contient le point y 0.

On peut compléter ce théorème d'existence: la solution dont
l'existence est assurée peut être rattachée à la solution x 0,

k 0 par un continu de solutions de l'équation x + êF(x, k) 0.

Envisageons d'autre part la transformation y — x + & (x)

au voisinage des points où m^êF(x) 0; l'étude locale de

cette transformation en ces points se fait à l'aide de l'équation
aux variations de l'équation proposée; dans certains cas on

arrive à démontrer que tous les recouvrements du point y — 0

sont positifs; si en outre le degré de la transformation x + &(x)
au point 0 est + 1, un seul recouvrement est possible; on peut
ainsi, dans ces circonstances favorables, établir que la solution de

l'équation proposée est unique.

6. — Conclusion. — Quand D est une très grande sphère notre
théorème d'existence revêt la forme suivante: Pour pouvoir
affirmer que l'équation x + êt*(x)'= 0 est résoluble, il suffit de

démontrer qu'elle ne présente pas de solution arbitrairement
grande quand on la réduit continûment à une équation telle que
x 0. Démontrer qu'une équation fonctionnelle a des solutions
revient donc à résoudre le problème suivant: assigner des

majorantes aux solutions qu'elle possède éventuellement. Il serait
d'ailleurs inimaginable qu'on puisse résoudre une équation par
un procédé qui ne fournisse pas de renseignement sur l'ordre de

grandeur des inconnues. Pour nous, résoudre une équation, c'est
majorer les inconnues et préciser leur allure le plus possible; ce
n'est pas en construire, par des développements compliqués, une
solution dont l'emploi pratique sera presque toujours impossible.

On peut se permettre de considérer ce théorème d'existence
comme étant une généralisation au cas non linéaire de
l'alternative de Fredholm: soit une équation de Fredholm
x ~P £{x) — b (où £{x) /K(s, s')x(s')ds' est complètement

continue); cette équation possède sûrement une solution,
sauf si l'équation x + £{x) 0 en possède une ; or ce cas est
justement celui où l'équation proposée admettrait des solutions
arbitrairement grandes.
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