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points irréguliers sont les mêmes qu'il s'agisse de l'équation de

Laplace ou de l'équation générale linéaire 1.

Pour terminer je voudrais remarquer que, à l'exception d'un
travail de E. E. Levi fait en 1910, je ne connais point de

nouvelles recherches sur l'équation du type elliptique d'ordre

2p(p > 1) ni sur des systèmes d'équations (évidemment
quelques généralisations faciles sont possibles). Je crois alors

que les futurs efforts devraient aller dans cette direction-là.

LES PROBLÈMES NON LINÉAIRES2

PAR

Jean Leray (Paris).

I. — Généralités concernant les équations
FONCTIONNELLES NON LINÉAIRES.

1. — Un type particulièrement simple d'espaces abstraits: ceux
de M. Banach. — Nous envisageons des problèmes dont l'inconnue
est un point x d'un espace fonctionnel donné, &.

Nous supposons que & est un espace abstrait de Banach: on
peut combiner linéairement ses points; une distance est définie;
la distance ||^|| qui sépare l'origine du point x est nommée norme
de a;; on a, X étant une constante réelle, || Xx|| | x| \\x\\

& sera par exemple l'espace des fonctions continues, l'espace
de Hilbert, l'espace des fonctions hölderiennes d'exposant oc,

l'espace des fonctions dont les dérivées premières sont
hölderiennes et d'exposant a; & pourra être éventuellement un espace
euclidien.

1 Voir par exemple Tautz, Math. Zeitschr. Bd. 39, 1935.
2 Conférence faite le 19 juin 1935 dans le cycle des Conférences internationales des

Sciences mathématiques organisées par l'Université de Genève; série consacrée aux
Equations aux dérivées partielles. Conditions propres à déterminer les solutions.
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En général un tel espace n'est pas compact : un domaine
borné de & ne peut être recouvert à l'aide d'un nombre fini
d'hypersphères de rayon s. Par exemple il est impossible de

trouver un système, constitué par un nombre fini de fonctions
continues, qui présente le caractère suivant: toute fonction
continue, dont la plus grande valeur absolue est inférieure à 1,

est approchée à 1/10 près par un élément au moins de ce système.
Un espace qui n'est pas compact a une topologie relativement
compliquée.

Nous nommerons complètement continue une transformation
continue S» (x) qui transformera tout ensemble borné en ensemble

compact. Des critères très aisés permettent d'affirmer qu'une
transformation fonctionnelle est complètement continue: si &
est l'espace des fonctions continues, 2F (x) est complètement
continue quand elle transforme des fonctions bornées en des

fonctions possédant un même module de continuité; toutes les

transformations fonctionnelles forgées à l'aide d'intégrations
sont complètement continues.

N. B. — Quand & est euclidien, toute transformation continue
est évidemment complètement continue.

2. — La notion de degré topologique dans un espace euclidien;
son application à la discussion dé un système de n équations à n
inconnues.— Soit y 0(x) une transformation continue d'un

espace euclidien & en lui-même; nous supposons <S>(x) définie

sur un domaine D et sur sa frontière D'. Le nombre de fois que
l'image 0(D) de D recouvre un point b varie quand ce point se

déplace; mais comptons un recouvrement comme étant positif
quand il conserve l'orientation de l'espace, comme étant négatif
dans le cas contraire; le nombre algébrique de fois que le point b

est recouvert reste constant, tant que b ne franchit pas l'image
O(D') de la frontière D'; ce nombre algébrique est appelé1
« degré topologique de la transformation O (x) au point b ». Ce

degré topologique reste constant quand on modifie continûment
<D(#), D, h sans que b traverse 0(Dr).

La notion de degré topologique permet de discuter le nombre

i La relation (x) b représente en fait un système de n équations à n inconnues.
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des solutions qu'une équation O (x) b possède à l'intérieur
d'un domaine D. Enonçons par exemple le théorème d'existence

suivant: Si l'on peut réduire continûment la transformation

y $(x) à l'identité, y x, sans que l'image de D' vienne

jamais recouvrir le point à, si b appartient à D, alors l'équation
<D (x) ess b possède au moins une solution. En effet le degré en

b de <£> (x) est celui de l'identité, en vertu de la propriété d'invariance

du degré: c'est + 1; le point b est donc recouvert par
l'image 0(D) de D. C.Q.F.D.

3. — Impossibilité de définir d'une manière générale le degré
d'une transformation continue opérant dans un espace abstrait. —•

Il est facile de donner des exemples d'équations fonctionnelles

pour lesquelles le théorème d'existence énoncé ci-dessus ne vaut
plus:

Considérons l'espace & des fonctions continues d'une variable 5

qui varie de 0 à 1. Evisageons dans & le domaine fonctionnel D
des fonctions x(s) telles que 0 < x (s) < 1. Soit cp[x] une fonction

continue de x, dont les valeurs sont comprises entre 0 et 1,

et qui vaut 0 et 1 en même temps que x. Nommons <S>(x) la
transformation fonctionnelle qui associe à x(s) la fonction
<p[#(s)]. Soit un paramètre k variant de 0 à 1; la transformation
k<5>(x) + (1 — k)x dépend continûment de k; elle coïncide avec
l'identité pour k 0, avec O pour k 1 ; elle transforme tout
point de la frontière D' de D en point de D'. Les hypothèses
du théorème d'existence sont vérifiées, à cela près que & n'est pas
euclidien. Or l'équation <p[rc(s)] b(s), où b est une fonction
continue comprise entre 0 et 1, n'admet en général aucune solution

continue #.(s), si <p[x] n'est pas croissant.
La notion de degré topologique ne peut donc pas être généralisée

à une transformation quelconque d'un espace abstrait.

4. — Un type de transformations des espaces de Banach qui
possèdent un degré topologique. — Considérons tout d'abord une
transformation ((dégénérée», c'est-à-dire du type suivant:
y x + êFm(x)f toutes les valeurs prises par LÂm(x) appartenant
à un sous-ensemble linéaire de d?, &m, qui a m dimensions. Cette
transformation dégénérée laisse globalement invariant chaque



142 J. LERAY

hyperplan parallèle à &m. Il est bien naturel de définir son degré
topologique en un point b comme étant son degré quand on la
considère dans l'hyperplan parallèle à &m qui passe par b. On

légitime aisément cette définition en prouvant que ce degré reste
le même quand on substitue à &m un hyperplan à nombre
plus grand de dimensions, qui contient &m. Le degré en un point b

d'une transformation dégénérée, envisagée sur un domaine D>

reste constant quand on modifie continûment è, D et cette
transformation sans que b atteigne l'image de la frontière D'.

Considérons maintenant une transformation qui soit à s près
une transformation dégénérée, quel que soit s; il est légitime de

nommer degré de cette transformation les degrés (égaux à partir
d'un certain rang) de ces transformations dégénérées qui
l'approchent. Les transformations en question sont les transformations

y^x + êFix), où ëF (x) est complètement continue. En effet
l'ensemble des valeurs prises par ëF(x) appartient à m sphères
de rayon s; on peut donc approcher, à s près, ëF{x) par une
transformation ëFm(x) dont toutes les valeurs appartiennent à

l'hyperplan que déterminent les centres de ces sphères.

5. — Propriétés dé un certain type d'équations fonctionnelles. —
Soit à étudier les points d'un domaine D qui satisfont à une
équation du type

x + ëL (x) o

Supposons qu'on sache réduire continûment cette équation à

une équation simple, sans qu'aucune de ses solutions atteigne la
frontière D'; on effectue pratiquement cette réduction en
introduisant un paramètre k{0 ^k ^ 1); l'équation s'écri^

x + S» (x, k) 0 ;

pour k — 1 on a l'équation proposée, pour k 0 on a une équation

simple. Le degré topologique au point y 0 de la transformation

y x + ëF (x) est alors égal à celui de la transformation

y x + # (x, 0); on le connaît. S'il diffère de zéro l'équation
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proposée possède au moins une solution. C'est le cas, par exemple,
si S» (#, 0) 0 et si D contient le point y 0.

On peut compléter ce théorème d'existence: la solution dont
l'existence est assurée peut être rattachée à la solution x 0,

k 0 par un continu de solutions de l'équation x + êF(x, k) 0.

Envisageons d'autre part la transformation y — x + & (x)

au voisinage des points où m^êF(x) 0; l'étude locale de

cette transformation en ces points se fait à l'aide de l'équation
aux variations de l'équation proposée; dans certains cas on

arrive à démontrer que tous les recouvrements du point y — 0

sont positifs; si en outre le degré de la transformation x + &(x)
au point 0 est + 1, un seul recouvrement est possible; on peut
ainsi, dans ces circonstances favorables, établir que la solution de

l'équation proposée est unique.

6. — Conclusion. — Quand D est une très grande sphère notre
théorème d'existence revêt la forme suivante: Pour pouvoir
affirmer que l'équation x + êt*(x)'= 0 est résoluble, il suffit de

démontrer qu'elle ne présente pas de solution arbitrairement
grande quand on la réduit continûment à une équation telle que
x 0. Démontrer qu'une équation fonctionnelle a des solutions
revient donc à résoudre le problème suivant: assigner des

majorantes aux solutions qu'elle possède éventuellement. Il serait
d'ailleurs inimaginable qu'on puisse résoudre une équation par
un procédé qui ne fournisse pas de renseignement sur l'ordre de

grandeur des inconnues. Pour nous, résoudre une équation, c'est
majorer les inconnues et préciser leur allure le plus possible; ce
n'est pas en construire, par des développements compliqués, une
solution dont l'emploi pratique sera presque toujours impossible.

On peut se permettre de considérer ce théorème d'existence
comme étant une généralisation au cas non linéaire de
l'alternative de Fredholm: soit une équation de Fredholm
x ~P £{x) — b (où £{x) /K(s, s')x(s')ds' est complètement

continue); cette équation possède sûrement une solution,
sauf si l'équation x + £{x) 0 en possède une ; or ce cas est
justement celui où l'équation proposée admettrait des solutions
arbitrairement grandes.
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II. — Equations aux dérivées partielles du second ordre
ET DU TYPE ELLIPTIQUE.

7. — Application de la théorie des équations fonctionnelles au
problème de Dirichlet non linéaire. — Nous allons étudier le

problème de Dirichlet que voici: définir dans un domaine à deux
dimensions A une solution d'une équation du type elliptique

,/ dz dz ö2 2 ö2 2 d2 z\ ^fix, y, 2, —, —, —z, —„ 0 1

\ dx dy dx2 dxdy à y2/

ms:
qui prenne sur la frontière A' de A des valeurs données.

Nous simplifierons notablement notre exposé en supposant que
l'équation est quasi-linéaire, c'est-à-dire du type

A (x,y, z, —, —) ^4 + 2B (•••) + C —, D (2)
\ dx dy) dx2 dx dy dy2

Ce que nous dirons au cours de ce paragraphe, concernant l'équation

(2) s'adapte à l'équation (1), au prix de quelques complications.

Nous supposons que A, B, C, D sont des fonctions continues
et dérivables de leurs arguments, et que

A • G B (•••)2 > 0

quelles que soient les valeurs des arguments.
Etant donnée une fonction quelconque z{x,y), envisageons

la fonction Z(x, y) qui prend sur A' les valeurs données et qui
vérifie dans A l'équation

\( ö-3\ °2Z
- ou t \

ö2Z
i r i \

ô2Z n i \ /Q\Abc, y zt — > — — + 2B -—— + G —- D 3
\ dy/dx2 dxdy dy2

Z est une fonctionnelle de 2, êP(z). Le problème de Dirichlet
envisagé équivaut à l'équation fonctionnelle 2 êP(z).

Pour préciser la nature de la fonctionnelle (z) les théorèmes
les plus fins de la théorie des équations linéaires du type elliptique
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vont nous être indispensables. Nous allons supposer que z appartient

à l'espace des fonctions dont les dérivées premières sont

hölderiennes ; le théorème de M. Schauder, qui fut l'objet de la
conférence précédente, enseigne que Z appartient à l'espace des

fonctions dont la dérivée seconde est hölderienne; Z est une
fonction plus régulière que z; ceci entraîne que £P(z) est une
transformation complètement continue. La théorie des équations
fonctionnelles exposée ci-dessus s'applique donc:

Introduisons dans l'équation (2) un paramètre k qui varie
de 0 à 1 : pour k 1 nous avons le problème posé; pour k 0

nous avons, par exemple, le problème de Dirichlet posé pour
l'équation de Laplace.

Si l'on peut trouver une condition de Holder que vérifient les

dérivées premières de toutes les solutions de l'équation ou, plus
-simplement, si l'on parvient à majorer en valeur absolue les

dérivées secondes de ces solutions, alors le problème envisagé
possède une solution au moins.

Résoudre le problème de Dirichlet, posé pour une équation du
second ordre et du type elliptique, c'est donc majorer sa solution,
ses dérivées premières et ses dérivées secondes; c'est les majorer
avec le maximum de précision et d'élégance.

8. Résolution de Véquation quasi-linéaire sans second
membre. — On connaît un cas important où cette majoration
de l'inconnue est possible: le problème de Dirichlet relatif à un
domaine convexe À, quand l'équation est l'équation quasi-
linéaire sans second membre

A (x y £ — 5
2-5 -f 2B f G — 0 (4)

\ &x by) öx2 bxby
1

'by2 * '

(AG — B2 > 0)

Tous les points de la surface inconnue z(x, y) sont
hyperboliques; cette surface ne peut contenir aucun contour fermé
plan ; chacun de ses plans tangents la coupe suivant deux courbes
(au moins), qui aboutissent au contour donné, par lequel la

L'Enseignement mathém., 35me année, 1936. 10
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surface est limitée. Ces plans rencontrent donc ce contour en

quatre points au moins. Puisque ce contour a une projection
convexe À' et puisqu'on le suppose régulier, la plus grande pente
des plans qui le rencontrent en quatre points a une borne

supérieure finie. Cette borne limite supérieurement + (^y) '

T ' ' 1 • r Ö.2>Ö,3
Voici donc maiores z. —, —J ' öx' by

Malheureusement la majoration des dérivées secondes est à

l'heure actuelle extrêmement compliquée. On étudie d'abord une
certaine fonction w, quadratique par rapport à ces dérivées
secondes et dont l'expression est loin d'être simple. Supposons

que m atteigne son maximum en un point intérieur à A; on a en

ce point dw 0, d2w ^ 0; ces relations, combinées avec les

limitations de z, — ~, avec l'équation (4) et avec les diverses

dérivées des deux premiers ordres de cette équation (4),
permettent, grâce à un choix très adroit de w, de majorer le maximum

de cette quantité. Majorer les dérivées secondes revient
donc à les majorer le long du contour. De nouveaux changements
d'inconnue très habiles ramènent ce problème à celui que nous
avons traité ci-dessus: majorer la plus grande pente d'une surface
dont le contour est donné et dont tous les points sont
hyperboliques.

Remarquons que parmi les équations du type (4) se trouve
celle des surfaces minima:

1 I^Yl 02z 2^Z^Z 02/3
_L fl _L (bZ)2] 02z

0vW J 5.® 07/ Ö£C 02/
L \0 2cj J dî/2

9. — Conclusion. — M. S. Bernstein a traité divers autres
cas spéciaux: celui des surfaces dont la courbure moyenne est

constante, dont la courbure totale est constante,
M. H. Weyl a amorcé celui de la surface convexe dont le dsz

est donné. Je ne les exposerai pas.
L'exemple du problème de Plateau montre bien que les

problèmes de Dirichlet qu'envisage M. S. Bernstein ont pour
inconnue non pas une fonction z(x, y), mais une surface qui
n'est pas en général représentée par une fonction de ce type. La
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Physique mathématique fournit d'innombrables systèmes
différentiels ou de Pfaff dont il est vraisemblablement aisé de prouver
l'équivalence avec une équation fonctionnelle du type x Â*(x) :

les intégrer, c'est savoir majorer leurs solutions; or nous ne

disposons à l'heure actuelle d'aucune méthode générale qui puisse

diriger nos calculs. Forger une telle méthode, tel est le problème
fondamental qui se pose. Nous possédons quelques inégalités
diverses; je veux en citer une, particulièrement élégante, due à

M. T. Carleman (Math. Zeitschrift, 1921, t. 9, p. 154-160),
Radô et Beckenbach (Trans, of the Amer. Math. Society, t. 35,

1933): Si S est l'aire d'une surface (inconnue) dont tous les

points sont hyperboliques et qui passe par un contour (donné) de
L2

longueur L, alors S < — Sans doute la théorie des fonctions

analytiques, qui est si riche en inégalités, nous sera-t-elle un
exemple très utile: le livre que M. Radô a consacré au problème
de Plateau (On the Problem of Plateau, Ergebnisse der Mathematik

und ihrer Grenzgebiete, Springer, Berlin, 1933) montre avec
quel bonheur les idées de cette théorie ont déjà été appliquées à

l'étude des surfaces minima.

III. — Les équations de Navier.

10. — Régimes permanents. — Les mouvements des liquides
visqueux sont régis par les équations de Navier, qui constituent
un système non linéaire du second ordre; les variables indépendantes,

qui s'imposent, sont les coordonnées d'espace et de

temps: l'inconnue est la vitesse; c'est un vecteur de divergence
nulle.

Etudions d'abord un régime permanent; le problème qui se

pose est un problème de Dirichlet dans un cas analogue au type
elliptique. M. Odqvist l'a ramené à un système d'équations
intégrales; celles-ci constituent une équation fonctionnelle du
type x &*(x). La première quantité que l'on majore est une
grandeur physique: l'énergie dissipée par unité de temps. On
parvient à la limiter en utilisant deux expressions qu'elle revêt:
la première est une intégrale de volume qui exprime l'intensité
du frottement visqueux interne; la deuxième est une intégrale
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de surface qui mesure la quantité d'énergie fournie au système.
La majoration de l'énergie dissipée effectuée, on majore aisément
les diverses inconnues, et ceci résout le problème.

11. — Mouvements nan permanents ; solutions turbulentes. —
Etudions maintenant le mouvement qui correspond à un champ
de vitesses initiales donné; le problème est d'un type analogue
au type parabolique ; simplifions la question en admettant que le

liquide emplit tout l'espace. L'énergie cinétique décroît; la
quantité d'énergie dissipée est au plus égale à l'énergie cinétique
initiale; ces deux inégalités, qui résultent des équations de Navier,
constituent deux premières majorations fondamentales.

Si le mouvement est plan, c'est-à-dire si l'on réduit à deux le

nombre de dimensions de l'espace, on peut parvenir à combiner
ces inégalités avec les équations de Navier de manière à obtenir
une série d'inégalités de plus en plus précises; il en résulte
l'existence d'une solution régulière définie de l'instant initial
t 0 à t— + oo.

Mais il en va bien autrement dans l'espace à trois dimensions.
Les inégalités énergétiques ne semblent pas entraîner que le

maximum de la vitesse reste borné, que le mouvement reste

régulier; on doute qu'il soit possible d'établir un théorème
d'existence global, c'est-à-dire concernant l'intervalle 0^£<4-qq.
Cependant il est bien vraisemblable qu'on peut régulariser
le mouvement en se contentant de renforcer les termes de

viscosité quand des irrégularités tendent à se former ; les équations

de Navier, très peu modifiées, possèdent une solution
définie de l'instant initial à t =* ~r °c. Pour examiner
comment se comporte cette solution régulière, quand la modi-
Pcation apportée aux équations de Navier tend vers 0, il est
nécessaire d'utiliser la théorie des fonctions mesurables: Le

champ des vitesses tend vers une ou plusieurs limites, définies

par des fonctions de carrés sommables, qu'on sait seulement être
mesurables; ces fonctions possèdent des dérivées premières en

un sens généralisé; elles vérifient les relations intégro-difïéren-
tielles de M. Oseen. Ces relations intégro-difîérentielles équivalent
en pratique aux équations de Navier; mais elles ont l'avantage
sur ces dernières de ne pas contenir celles des dérivées des
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inconnues qui n'ont pas de raison physique d'exister ; il se

trouve que ce sont les dérivées dont on ne réussit pas à établir
l'existence.

Nommons un tel champ de vitesses: « solution turbulente des

équations de Navier ». Une solution turbulente a la structure
suivante: il existe sur l'axe des temps une série d'intervalles
de régularité, durant lesquels cette solution constitue une solution

régulière des équations de Navier, indéfiniment dérivable;
l'ensemble complémentaire de l'axe des temps, qui constitue
l'ensemble des irrégularités, est de mesure nulle; à ces époques

d'irrégularités le champ des vitesses vérifie seulement une
condition de continuité très large.

La théorie des équations aux dérivées partielles semble ainsi
être appelée à devenir un champ d'applications de la théorie des

jonctions réelles.
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précaution essentielle de substituer à la notion de transformation continue
quelconque celle de transformation du type x -f fïï (.t) (où |F(x) est complètement

continue).
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Schauder, Studia mathematica, Invarianz des Gebietes in Funktionalräumen,

t. 1, 1929 (p. 123-139).
Math. Annalen, t. 106, 1932 (p. 661-721).

La notion de degré topologique est due à

Brouwer, Math. Annalen, t. 71, 1912 (p. 97-106).
Mais cet auteur considère des transformations opérant sur des variétés

fermées à n dimensions; l'emploi que, dans notre travail commun,
M. Schauder et moi avons fait de cette notion, suppose essentiellement
que la transformation envisagée est définie sur l'ensemble de fermeture
d'un ensemble ouvert.

Chapitre II.
Les travaux fondamentaux et classiques sur les problèmes de Dirichlet

non linéaires sont ceux de

E. Picard, voir par exemple ses «Leçons sur quelques problèmes aux
limites de la théorie des équations différentielles », rédigées par
M. Brelot, Cahiers scientifiques cle M. Julia, Gauthier-Villars, 1930.

S. Bernstein, Math. Annalen, t. 69, 1910, p. 82-136. — Annales de
VEcole normale, t. 27, 1910 (p. 233-256); t. 29, 1912, (p. 431-485).

M. Giraud a publié ces dernières années dans les Annales de VEcole
normale, dans les Comptes rendus de VAcadémie et dans les autres
périodiques français, de nombreux et importants mémoires qui prolongent les
recherches de MM. Picard et Bernstein.

MM. Picard, Bernstein et Giraud obtiennent leurs théorèmes d'existence

par la méthode des approximations successives.
M. Schauder, en s'appuyant sur des théorèmes de Topologie généralisés

aux espaces abstraits, a établi des résultats que ne peut atteindre la méthode
des approximations successives:

Schauder, Math. Zeitschrift, t. 26, 1927. — Studia mathematica, t. 1,
1929. — Math. Annalen, t. 106, 1932 (p. 661-721). — Comptes rendus
de VAcadémie, t. 199, 26 déc. 1934.

L'affirmation du § 7, «résoudre le problème de Dirichlet, c'est savoir
majorer l'inconnue », se trouve dans le travail déjà cité:

Leray-Schauder, Annales de VEcole normale, t. 51, 1934 (chap. IV
et V).

Cette affirmation, qui s'appuie sur notre théorie des équations
fonctionnelles, est une simplification notable des théorèmes dont M. S.Bernstein
déduit ses théorèmes d'existence: cet auteur est conduit par ses méthodes
à se restreindre aux cas où l'unicité de la solution est assurée; il fait des

hypothèses superflues; par exemple, quand il résout l'équation quasi-
linéaire sans second membre (4), il se trouve contraint à se limiter au cas

où A, B, C dépendent de x, y, ~ et sont indépendants de &

Les majorations du § 8 se trouvent en principe dans les pages 119-124
du travail déjà cité:

S. Bernstein, Math. Annalen, t. 69, 1910.
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La majoration de la plus grande pente du plan tangent a été reprise par:

T. Radô, Acta litt. ac scient., Szeged, t. 4, 1924-1936.

Yon Neumann, Abhandlungen des math. Seminares, Hambourg, t. 8,

1931.

M. Schauder a repris la majoration des dérivées secondes en mettant bien

-en évidence que les six pages citées constituent la partie essentielle de la

résolution de l'équation quasi-linéaire sans second membre:

Schauder, Math. Zeitschrift, t. 37, 1933, p. 623-634.

Voir, d'autre part, concernant les majorations des solutions d'équations
du second ordre et du type elliptique:

H. Lewa', Trans, of the American Math. Society, t. 37, 1935.

Chapitre III.
Leray, Thèse, Journal de Mathématiques, t. 12, 1933, p. 1-82. — Acta

mathematica, t. 63, p. 193-248 (1934). — Journal de Mathématiques,
t. 13, 1934, p. 331-418. — Comptes rendus de VAcadémie, t. 194, 30 mai
1932, p. 1893.

Ces quatre articles utilisent les travaux antérieurs de MM. Oseen et
Odqvist :

Oseen, Hydrodynamik, Leipzig, 1927. — Acta mathematica, t. 34, 1911.

Odqvist, Math. Zeitschrift, t. 32, 1930.

CHRONIQUE

Le Jubilé de M. Jacques Hadamard.

La cérémonie du Jubilé scientifique de M. Jacques Hadamard,
Membre de l'Institut, a eu lieu au Collège de France, le mardi 7 janvier

1936, sous la présidence de M. Mario Roustan, Ministre de

l'Education nationale et de M. Fabry, Ministre de la Guerre, devant
une nombreuse assistance composée d'anciens élèves, d'amis, de

collègues et de savants français et étrangers.
Des discours furent prononcés en éloge du grand savant par

MM. Bédier, Administrateur du Collège de France, Lebesgue,
Professeur au Collège de France, le Général Hachette, commandant
l'Ecole Polytechnique, MM. Guillet, Directeur de l'Ecole centrale
des Arts et Manufactures, Emile Picard, Secrétaire perpétuel de
l'Académie des Sciences, Vessiot, au nom de l'Association des
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