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points irréguliers sont les mémes qu’il s’agisse de I’équation de

Laplace ou de I’équation générale linéaire ™.

Pour terminer je voudrais remarquer que, & 'exception d’un
travail de E. E. Levi fait en 1910, je ne connais point de nou-
velles recherches sur 1’équation du type elliptique d’ordre
2p(p > 1) ni sur des systémes d’équations (évidemment
quelques généralisations faciles sont possibles). Je crois alors
que les futurs efforts devraient aller dans cette direction-la.

LES PROBLEMES NON LINEAIRES:?

PAR

Jean LerAY (Paris).

I. — GENERALITES CONCERNANT LES EQUATIONS
FONCTIONNELLES NON LINEAIRES.

1. — Un type particuliérement simple d’espaces abstraits: ceux
de M.BaNacH.— Nous envisageons des problémes dont 'inconnue
est un point z d’un espace fonctionnel donné, &.

Nous supposons que & est un espace abstrait de Banach: on
peut combiner linéairement ses points; une distance est définie;
la distance ||z || qui sépare 'origine du point z est nommée norme
de x; on a, A étant une constante réelle, || Az || = |7 ||z .

& sera par exemple 'espace des fonctions continues, I'espace
de Hilbert, ’espace des fonctions holderiennes d’exposant «,
Iespace des fonctions dont les dérivées premiéres sont holde-

riennes et d’exposant «; & pourra étre éventuellement un espace
euclidien.

1 Voir par exemple Taurz, Math. Zeitschr. Bd. 39, 1935.

2 Conférence faite le 19 juin 1935 dans le cycle des Conjférences internationales des
Sciences mathématiques organisées par I’Université de Genéve; série consacrée aux
Equations aux dérivées partielles. Conditions propres ¢ déterminer les solutions.
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En général un tel espace n’est pas compact: un domaine
borné de & ne peut étre recouvert & 'aide d’un nombre fini
d’hypersphéres de rayon e. Par exemple il est impossible de
trouver un systéeme, constitué par un nombre fini de fonctions
continues, qui présente le caractére suivant: toute fonction
continue, dont la plus grande valeur absolue est inférieure a 1,
est approchée & 1/,, pres par un élément au moins de ce systéme.
Un espace qui n’est pas compact a une topologie relativement
compliquée.

Nous nommerons complétement continue une transformation
continue & (z) qui transformera tout ensemble borné en ensemble
compact. Des critéres trés aisés permettent d’affirmer qu’une
transformation fonctionnelle est complétement continue: si &
est I’espace des fonctions continues, & (xr) est complétement
continue quand elle transforme des fonctions bornées en des
fonctions possédant un méme module de continuité; toutes les
transformations fonctionnelles forgées & 1’aide d’intégrations
sont completement continues.

N. B. — Quand & est euclidien, toute transformation continue
est évidemment completement continue.

2. — La notion de degré topologique dans un espace euclidien ;
son application a la discussion d’un systéme de n équations ¢ n
inconnues. — Soit y = ®(x) une transformation continue d’un
espace euclidien & en lui-méme; nous supposons @ (x) définie
sur un domaine D et sur sa frontiére D’. Le nombre de fois que
Iimage ® (D) de D recouvre un point b varie quand ce point se
déplace; mais comptons un recouvrement comme étant positif
quand il conserve I'orientation de I’espace, comme étant négatif
dans le cas contraire; le nombre algébrique de fois que le point b
est recouvert reste constant, tant que b ne franchit pas I'image
®(D’) de la frontiere D’; ce nombre algébrique est appelé?!
« degré topologique de la transformation @ (z) au point b». Ce
degré topologique reste constant quand on modifie contintiiment
® (z), D, b sans que b traverse @ (D’).

La notion de degré topologique permet de discuter le nombre

1 La relation @ (x) = b représente en fait un systéme de n équations a n inconnues.
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des solutions qu'une équation ® (z) = b posséde a I'intérieur
d’un domaine D. Enoncons par exemple le théoréme d’existence
suivant: Si 'on peut réduire contintiment la transformation
y = ®(x) a lidentité, y = z, sans que I'image de D’ vienne
jamais recouvrir le point b, si b appartient a D, alors I’équation
® (x) = b posséde au moins une solution. En effet le degré en
b de @ (z) est celui de I’identité, en vertu de la propriété d’inva-
riance du degré: c¢’est + 1; le point b est donc recouvert par
Pimage ® (D) de D. C.Q.F.D.

3. — Impossibilité de définir d’une maniére générale le degré
d’une transformation continue opérant dans un espace abstrait. —
Il est facile de donner des exemples d’équations fonctionnelles
pour lesquelles le théoréme d’existence énoncé ci-dessus ne vaut
plus:

Considérons I'espace & des fonctions continues d’une variable s
qui varie de 0 & 1. Evisageons dans & le domaine fonectionnel D
des fonctions z(s) telles que 0 <z (s) < 1. Soit ¢[z] une fone-
tion continue de x, dont les valeurs sont comprises entre 0 et 1,
et qui vaut O et 1 en méme temps que z. Nommons @ (z) la
transformation fonctionnelle qui associe a z(s) la fonction
@[z (s)]. Soit un parametre £ variant de 0 & 1; la transformation
EO(x) + (1 — k)x dépend contintiment de k; elle coincide avec
I'identité pour £ = 0, avec @ pour k£ = 1; elle transforme tout
point de la frontiere D’ de D en point de D’. Les hypothéses
du théoreme d’existence sont vérifiées, a cela prés que & n’est pas
euclidien. Or ’équation ¢[x(s)] = b(s), ou b est une fonction
continue comprise entre 0 et 1, n’admet en général aucune solu-

~tion continue x(s), si @[x] n’est pas croissant.

La notion de degré topologique ne peut donc pas étre généra-
lisée & une transformation quelconque d’un espace abstrait.

4. — Un type de transformations des espaces de Banach qui
possédent un degré topologique. — Considérons tout d’abord une
transformation «dégénérée», c’est-a-dire du type suivant:
Yy =2+ F,(x), toutes les valeurs prises par ,, () appartenant
& un sous-ensemble linéaire de &, &, , qui a m dimensions. Cette
transformation dégénérée laisse globalement invariant chaque
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hyperplan parallele & &,,. Il est bien naturel de définir son degré
topologique en un point b comme étant son degré quand on la
considére dans I’hyperplan paralléle a &, qui passe par b. On
légitime aisément cette définition en prouvant que ce degré reste
le méme quand on substitue & &, un hyperplan &, & nombre
plus grand de dimensions, qui contient &,,. Le degré en un point b
d’une transformation dégénérée, envisagée sur un domaine D,
reste constant quand on modifie contintiiment b, D et cette trans-
formation sans que b atteigne I'image de la frontiére D’.
Considérons maintenant une transformation qui soit a e pres
une transformation dégénérée, quel que soit ¢; il est légitime de
nommer degré de cette transformation les degrés (égaux a partir
d’un certain rang) de ces transformations dégénérées qui I'ap-
prochent. Les transformations en question sont les transformations
y =2z + F(x), ou F(x) est complétement continue. En effet
I’ensemble des valeurs prises par & (x) appartient & m spheéres
de rayon e; on peut donc approcher, a ¢ pres, & (z) par une
transformation &  (x) dont toutes les valeurs appartiennent a
I’hyperplan que déterminent les centres de ces spheéres.

5. — Propriétés d’un certain type d’équations fonctionnelles. —
Soit & étudier les points d’un domaine D qui satisfont a une
équation du type

z+ Fx) = 0.

Supposons qu’on sache réduire continiment cette équation a
une équation simple, sans qu’aucune de ses solutions atteigne la
frontiere D’; on effectue pratiquement cette réduction en intro-
duisant un parameétre k(0 =< k =< 1); I’équation s’écriy

x+ Fx, k) =0 ;

pour k£ = 1 on a I’équation proposée, pour £ = 0 on a une équa-
tion simple. Le degré topologique au point y = 0 de la transfor-
mation y = x + J (x) est alors égal a celui de la transformation
y = x + J (x, 0); on le connait. S’il differe de zéro I’équation
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proposée posséde au moins une solution. C’est le cas, par exemple,
si F (x,0) = 0 et si D contient le point y = 0.

On peut compléter ce théoréme d’existence: la solution dont
Pexistence est assurée peut étre rattachée a la solution z = 0,
k = 0 par un continu de solutions de ’équation x + & (z, k) = 0.

Envisageons d’autre part la transformation y = z + & ()
au voisinage des points ou z + F(x) = 0; I’étude locale de
cette transformation en ces points se fait a I’aide de I’équation
aux variations de 1’équation proposée; dans certains cas on
arrive a démontrer que tous les recouvrements du point y = 0
sont positifs; si en outre le degré de la transformation z + F(z)
au point 0 est + 1, un seul recouvrement est possible; on peut
ainsi, dans ces circonstances favorables, établir que la solution de
I’équation proposée est unigue.

6. — Conclusion. — Quand D est une trés grande sphére notre
théoréme d’existence revét la forme suivante: Pour pouvoir
affirmer que 1’équation z 4 & (x) = O est résoluble, il suffit de
démontrer qu’elle ne présente pas de solution arbitrairement
grande quand on la réduit contintiment & une équation telle que
xz = 0. Démontrer qu'une équation fonctionnelle a des solutions
revient donc & résoudre le probléme suivant: assigner des majo-
rantes aux solutions qu’elle possede éventuellement. Il serait
d’ailleurs inimaginable qu’on puisse résoudre une équation par
un procédé qui ne fournisse pas de renseignement sur 'ordre de

grandeur des inconnues. Pour nous, résoudre une équation, c’est

majorer les inconnues et préciser leur allure le plus possible; ce
n’est pas en construire, par des développements compliqués, une
solution dont I’emplol pratique sera presque toujours impossible.

On peut se permettre de considérer ce théoreme d’existence
comme étant une généralisation au cas non linéaire de ’al-
ternative de Fredholm: soit une équation de Fredholm
r+ L@ =b (ou L£(x) = [K(s, s)x(s)ds" est compléte-
ment continue); cette équation posséde stirement une solution,
sauf s1 I’équation = 4+ £(x) = 0 en posséde une; or ce cas est
Justement celui ou I’équation proposée admettrait des solutions
arbitrairement grandes. ' |
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Il. — EQUATIONS AUX DERIVEES PARTIELLES DU SECOND ORDRE
ET DU TYPE ELLIPTIQUE.

7. — Application de la théorie des équations fonctionnelles au
probléme de Dirichlet non linéaire. — Nous allons étudier le
probléme de Dirichlet que voici: définir dans un domaine a deux
dimensions A une solution d’une équation du type elliptique

— 0 (1)

(2 0z 0z 0%z 02z 02z
Z pr— ————; PR g o sy i
. 3 y’ ] bx, by, bxz) bxoy, Oyz

, {0232\ , [0%z e 0%2
(5 (522)  (530) = *(5793) = ©)
qui prenne sur la frontiére A’ de A des valeurs données.

Nous simplifierons notablement notre exposé en supposant que
Iéquation est quasi-linéaire, ¢’est-a-dire du type

i 0z 03\02z 02z 02z
Alx, vy, z,

Ce que nous dirons au cours de ce paragraphe, concernant I’équa-
tion (2) s’adapte a I’équation (1), au prix de quelques complica-
tions.

Nous supposons que A, B, C, D sont des fonctions continues

et dérivables de leurs arguments, et que
Al Cl) —B()2>0

quelles que solent les valeurs des arguments.

Etant donnée une fonction quelconque z(z, y), envisageons
la fonction Z(z, y) qui prend sur A’ les valeurs données et qui
vérifie dans A 1’équation

2 2 2
02z 0z)0_§+2 027 OZ:D(...). (3)

A(x, Yy, %z, D_.x, CE oz B()OxOy C()(—)-gz
Z est une fonctionnelle de z, F(z). Le probléeme de Dirichlet
envisagé équivaut a I’équation fonctionnelle z = & (z).

Pour préciser la nature de la fonctionnelle & (z) les théorémes
les plus fins de la théorie des équations linéaires du type elliptique
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vont nous étre indispensables. Nous allons supposer que z appar-
tient a4 lespace des fonctions dont les dérivées premiéres sont
holderiennes; le théoréme de M. Schauder, qui fut 'objet de la
conférence précédente, enseigne que Z appartient & I'espace des
fonetions dont la dérivée seconde est holderienne; Z est une
fonction plus réguliére que z; ceci entraine que & (z) est une
transformation complétement continue. La théorie des équations
fonctionnelles exposée ci-dessus s’applique done:

Introduisons dans ’équation (2) un paramétre k& qui varie
de 0 & 1: pour k = 1 nous avons le probléme posé; pour £ = 0
nous avons, par exemple, le probléme de Dirichlet posé pour

I’équation de Laplace.
o thg

0 a2 A~

Si Pon peut trouver une condition de Holder que vérifient les
dérivées premieres de toutes les solutions de I’équation ou, plus
simplement, si 'on parvient & majorer en valeur absolue les
dérivées secondes de ces solutions, alors le probleme envisagé
possede une solution au moins.

Résoudre le probleme de Dirichlet, posé pour une équation du
second ordre et du type elliptique, ¢’est donc majorer sa solution,
ses dérivées premieres et ses dérivées secondes; c’est les majorer
avec le maximum de précision et d’élégance.

8. — Résolution de Uéquation quasi-linéaire sans second
membre. — On connait un cas important ou cette majoration
de I'imconnue est possible: le probléme de Dirichlet relatif & un
domaine convexe A, quand léquation est I’équation quasi-
linéaire sans second membre

W 02z 02\ t2z 02z 02z .
A <x, Yy, 3, S O—?;)E—x—z + 2B{(...) I G ()55—2 = 0 (4)
(AC— B2 > 0) .

Tous les points de la surface inconnue z(z, y) sont hyper-
boliques; cette surface ne peut contenir aucun contour fermé
plan; chacun de ses plans tangents la coupe suivant deux courbes
(au moins), qui aboutissent au contour donné, par lequel la

L’Enseignement mathém., 35me année, 1936. 10
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surface est limitée. Ces plans rencontrent donc ce contour en
quatre points au moins. Puisque ce contour a une projection
convexe A’ et puisqu’on le suppose régulier, la plus grande pente
des plans qui le rencontrent en quatre points a une borne supé-

B zxz

) . .o . /o2z\2
rieure finie. Cette borne limite supérieurement v <~z> + <@/

ox

.. . 0z 03
Voici done majorés z, —, —.
ox’ 0y

Malheureusement la majoration des dérivées secondes est a
’heure actuelle extrémement compliquée. On étudie d’abord une
certaine fonction w, quadratique par rapport & ces dérivées
secondes et dont I'expression est loin d’étre simple. Supposons
que w atteigne son maximum en un point intérieur & A; on a en
ce point dw = 0, d?w = 0; ces relations, combinées avec les
Yox? oy
dérivées des deux premiers ordres de cette équation (4), per-
mettent, grace & un choix trés adroit de w, de majorer le maxi-
mum de cette quantité. Majorer les dérivées secondes revient
done a les majorer le long du contour. De nouveaux changements
d’inconnue trés habiles ramenent ce probléme & celui que nous
avons traité ci-dessus: majorer la plus grande pente d’une surface
dont le contour est donné et dont tous les points sont hyper-
boliques.

Remarquons que parmi les équations du type (4) se trouve
celle des surfaces minima:

dz\2] 023 020z 0%z r 02z\2] 02z
AV 2 2227 1+ (2Z2) =2 =
[1 + (E)y) } d? 0x 0y dx 0y T [ + <bx> ] oy? 0

limitations de z , avec I'équation (4) et avec les diverses

9. — Conclusion. — M. S. BERNSTEIN a traité divers autres
cas spéciaux: celui des surfaces dont la courbure moyenne est
constante, dont la courbure totale est constante, ...

M. H. WeYL a amorcé celui de la surface convexe dont le ds?
est donné. Je ne les exposeral pas.

L’exemple du probleme de Plateau montre bien que les pro-
blémes de Dirichlet qu’envisage M. S. Bernstein ont pour
inconnue non pas une fonction z(x, y), mais une surface qui
n’est pas en général représentée par une fonction de ce type. La
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Physique mathématique fournit d’innombrables systemes diffé-
rentiels ou de Pfaff dont il est vraisemblablement aisé de prouver
Péquivalence avec une équation fonctionnelle du type z = T (x):
les intégrer, c¢’est savoir majorer leurs solutions; or nous ne
disposons a I’heure actuelle d’aucune méthode générale qui puisse
diriger nos calculs. Forger une telle méthode, tel est le probléme
fondamental qui se pose. Nous possédons quelques inégalités
diverses; je veux en citer une, particulierement élégante, due &
M. T. CarLEMAN (Math. Zeitschrift, 1921, t. 9, p. 154-160),
RaApo et BEckeENBACH (Trans. of the Amer. Math. Society, t. 35,
1933): Si S est I'aire d’une surface (inconnue) dont tous les

points sont hyperboliques et qui passe par un contour (donné) de -
2

longueur L, alors 5 < —. Sans doute la théorie des fonctions

analytiques, qui est si riche en inégalités, nous sera-t-elle un
exemple tres utile: le livre que M. Rado a consacré au probléeme
de Plateau (On the Problem of Plateau, Ergebnisse der Mathe-
“matik und ihrer Grenzgebiete, Springer, Berlin, 1933) montre avec
quel bonheur les idées de cette théorie ont déja été appliquées a
Pétude des surfaces minima.

I1I. — LEs EQuATiONS DE NAVIER.

10. — Régumes permanents. — lLes mouvements des liquides
visqueux sont régis par les équations de Navier, qui constituent
un systéme non linéaire du second ordre; les variables indépen-
dantes, qul s’imposent, sont les coordonnées d’espace et de
temps: 'inconnue est la vitesse; ¢’est un vecteur de divergence
nulle. |

Etudions d’abord un régime permanent; le probléme qui se
pose est un probléme de Dirichlet dans un cas analogue au type
elliptique. M. Odqvist I’a ramené & un systéme d’équations
intégrales; celles-ci constituent une équation fonctionnelle du
“type x = J(x). La premiére quantité que ’on majore est une
grandeur physique: 1’énergie dissipée pa}"unité de temps. On
parvient & la limiter en utilisant deux expressions qu’elle revét:
la premiére est une intégrale de volume qui exprime I'intensité
du frottement visqueux interne; la deuxiéme est une intégrale
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de surface qui mesure la quantité d’énergie fournie au systéme.
La majoration de I’énergie dissipée effectuée, on majore aisément
les diverses inconnues, et ceci résout le probléme.

11. — Mouvements non permanents; solutions turbulentes. —
Etudions maintenant le mouvement qui correspond & un champ
de vitesses initiales donné; le probléme est d’un type analogue
au type parabolique; simplifions la question en admettant que le
liquide emplit tout I’espace. L’énergie cinétique décroit; la
quantité d’énergie dissipée est au plus égale a I’énergie cinétique
initiale; ces deux inégalités, qui résultent des équations de Navier,
constituent deux premiéres majorations fondamentales.

S1 le mouvement est plan, c’est-a-dire si 'on réduit & deux le
nombre de dimensions de ’espace, on peut parvenir & combiner
ces inégalités avec les équations de Navier de maniére a obtenir
une série d’inégalités de plus en plus précises; il en résulte
I’existence d’une solution réguliére définie de l’instant initial
t=0at= -+ oo.

Mais 1l en va bien autrement dans I’espace & trois dimensions.
Les 1négalités énergétiques ne semblent pas entrainer que le
maximum de la vitesse reste borné, que le mouvement reste
régulier; on doute qu’il soit possible d’établir un théoreme
d’existence global, ¢’est-a-dire concernant 'intervalle 0 = ¢ <+ oo.
Cependant 1l est bien vraisemblable qu’on peut régulariser
le mouvement en se contentant de renforcer les termes de
viscosité quand des irrégularités tendent a se former; les équa-
tions de Navier, trés peu modifiées, possédent une solution
définie de Vinstant initial & ¢t = 4+ . Pour examiner com-
ment se comporte cette solution réguliére, quand la modi-
fication apportée aux équations de Navier tend vers 0, il est
nécessaire d’utiliser la théorie des fonctions mesurables: Le
champ des vitesses tend vers une ou plusieurs limites, définies
par des fonctions de carrés sommables, qu’on sait seulement étre
mesurables; ces fonctions possedent des dérivées premieres en
un sens généralisé; elles vérifient les relations intégro-différen-
tielles de M. Oseen. Ces relations intégro-différentielles équivalent
en pratique aux équations de Navier; mais elles ont I'avantage
sur ces derniéres de ne pas contenir celles des dérivées des
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inconnues qui n’ont pas de raison physique d’exister; il se
trouve que ce sont les dérivées dont on ne réussit pas a établir
'existence. :

Nommons un tel champ de vitesses: « solution turbulente des
équations de Navier». Une solution turbulente a la structure
suivante: il existe sur 'axe des temps une série d’intervalles
de régularité, durant lesquels cette solution constitue une solution
réguliere des équations de Navier, indéfiniment dérivable;
’ensemble complémentaire de l'axe des temps, qui constitue
Pensemble des irrégularités, est de mesure nulle; & ces époques
d’irrégularités le champ des vitesses vérifie seulement une
condition de continuité tres large.

La théorie des équations aux dérivées partielles semble ainsi
étre appelée & devenir un champ d’applications de la théorie des
fonctions réelles.
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pouvait étre ramenée & la majoration de ’inconnue:

Leray, Thése, Journal de Mathématiques, t. 12, 1933, chap. I (p. 1-20).

M. ScuAUDER, le premier, découvrit que des théorémes de Topologie
combinatoire valent encore dans les espaces de Banach, quand on prend la
précaution essentielle de substituer a la notion de transformation continue
quelconque celle de transformation du type z + & (z) (ot & (x) est comple-
tement continue).
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SCHAUDER, Studia mathematica, Invarianz des Gebietes in Funktional-
raumen, t. 1, 1929 (p. 123-139).

Math. Annalen, t. 106, 1932 (p. 661-721).

La notion de degré topologique est due a
Brouwer, Math. Annalen, t. 71, 1912 (p. 97-106).

Mais cet auteur considére des transformations opérant sur des variétés
fermées a n dimensions; 1’emploi que, dans notre travail commun,
M. Schauder et moi avons fait de cette notion, suppose essentiellement

que la transformation envisagée est définie sur I’ensemble de fermeture
d’un ensemble ouvert.

Chaputre 11.

Les travaux fondamentaux et classiques sur les probléemes de Dirichlet
non linéaires sont ceux de

E. Prcarp, voir par exemple ses « Lecons sur quelques problémes aux
limites de la théorie des équations différentielles», rédigées par
M. Brelot, Cahiers scientifiques de M. Julia, Gauthier-Villars, 1930.

S. BERNSTEIN, Math. Annalen, t. 69, 1910, p. 82-136. — Annales de
U'Ecole normale, t. 27, 1910 (p. 233-256); t. 29, 1912, (p. 431-485).

M. Giraup a publié ces dernieres années dans les Annales de I’Ecole
normale, dans les Comptes rendus de I’Académie et dans les autres pério-
diques francais, de nombreux et importants mémoires qui prolongent les
recherches de MM. Picard et Bernstein.

MM. Picarp, BErRNSTEIN et GIRAUD obtiennent leurs théorémes d’exis-
tence par la méthode des approximations successives.

M. ScHAUDER, en s’appuyant sur des théoréemes de Topologie généralisés
aux espaces absiraits, a établi des résultats que ne peut atteindre la méthode
des approximations successives:

SCHAUDER, Math. Zeutschrift, t. 26, 1927. — Studia mathematica, t. 1,
1929. — Math. Annalen, t. 106, 1932 (p. 661-721). — Comptes rendus
de I’Académuie, t. 199, 26 déc. 1934.

L’affirmation du § 7, «résoudre le probléme de Dirichlet, ¢’est savoir
majorer 'inconnue », se trouve dans le travail déja cité:

LERAY-ScHAUDER, Annales de U'Lcole normale, t. 51, 1934 (chap. IV
et V).

Cette affirmation, qui s’appuie sur notre théorie des équations fonc-
tionnelles, est une simplification notable des théorémes dont M. S. Bernstein
déduit ses théorémes d’existence: cet auteur est conduit par ses méthodes
a se restreindre aux cas ou 'unicité de la solution est assurée; il fait des
hypothéses superflues; par exemple, quand il résout I’¢quation quasi-
linéaire sans second membre (4), il se trouve contraint a se limiter au cas

( 0z . ,
ou A, B, C dépendent de =z, vy, %—2, 5y et sont indépendants de z.
¢ L

Les majorations du § 8 se trouvent en principe dans les pages 119-124
du travail déja cité:
S. BErNSTEIN, Math. Annalen, t. 69, 1910.
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La majoration de la plus grande pente du plan tangent a été reprise par:

T. Rap0, Acta litt. ac scient., Szeged, t. &, 1924-1936. ,
Von NEUMANN, Abhandlungen des math. Seminares, Hambourg, t. 8,
1931.

‘M. Schauder a repris la majoration des dérivées secondes en mettant bien
en évidence que les six pages citées constituent la partie essentielle de la
résolution de I’équation quasi-linéaire sans second membre:

ScEAUDER, Math. Zeitschrift, t. 37, 1933, p. 623-634.

Voir, d’autre part, concernant les majorations des solutions d’éguations
du second ordre et du type elliptique:

H. LEwy, Trans. of the American Math. Society, t. 37, 1935.

Chapitre 111.

LerAy, These, Journal de Mathématiques,.t. 12, 1933, p. 1-82. — Acta
mathematica, t. 63, p. 193-248 (1934). — Journal de Mathématiques,
t. 13, 1934, p. 331-418. — Comples rendus de I’ Académie, 1. 19%, 30 mai
1932, p. 1893.

Ces quatre articles utilisent les travaux antérieurs de MM. Oseen et
Odqvist:

OseEN, Hydrodynamik, Leipzig, 1927. — Acta mathematica, t. 3%, 1911.
Opovist, Math. Zeitschrift, t. 32, 1930.

CHRONIQUE

Le Jubilé de M. Jaeques Hadamard.

La cérémonie du Jubilé scientifique de M. Jacques Hadamard,
Membre de I'Institut, a eu lieu au Collége de France, le mardi 7 jan-
vier 1936, sous la présidence de M. Mario RoustanN, Ministre de
I’Education nationale et de M. FABrY, Ministre de la Guerre, devant
une nombreuse assistance composée d’anciens éléves, d’amis, de
collégues et de savants francais et étrangers.

Desg discours furent prononcés en éloge du grand savant par
MM. Bepier, Administratear du Collége de France, LeBusaug,
Professeur au Collége de France, le Général HAcHETTE, commandant
IEcole Polytechnique, MM. GuiLLET, Directeur de I’Ecole centrale
des Arts et Manufactures, Emile PicArp, Secrétaire perpétuel de
PAcadémie des Sciences, VEssior, au nom de I’Association des
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