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132 J. SCHAUDER

Ce raisonnement reste valable pour l'équation plus générale

n

2à^u „ 7
d w

a*d^d7h+ i^ + cu
i,k= 1 1 k 3

Passons maintenant à la limitation dans le voisinage de la frontière.

Il faut alors ajouter à nos hypothèses la supposition suivante:
Dans un voisinage U d'une portion H de la frontière1 les dérivées

secondes de u satisfont à la condition2 de Holder ; ||&j|y 2 < oo

9 étant les valeurs aux limites, nous prouvons, par un procédé tout
à fait semblable au précédent, une limitation pour || w: 11 ^ 2

dans

chaque domaine U' intérieur à U. Il suffit de transformer H en

un hyperplan H' et d'appliquer les limitations précédentes 3.

IV.

Nous démontrerons maintenant qu'on peut déduire les théorèmes

d'existence des limitations précédentes. Commençons par l'équation

l(m) s f (22)

i,k 1
1 k

et par des valeurs aux limites ayant des dérivées secondes Hölde-
riennes (problème de Dirichlet).

Envisageons l'ensemble d'équations du type elliptique dépendant
d'un paramètre X

s aiké~ir~~<23>

ox-o^

et telles que l'on ait af^ <$ik (symbole de Kronecker), mais

=sss aik. Pour X 0 nous obtenons alors l'équation de Poisson

A u^ f

1 Voir note 1, p. 129.
2 C'est-à-dire les dérivées secondes satisfont à la condition de Holder dans l'ensemble

envisagé.
3 Voir l'inégalité (8).
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et pour X 1 l'équation donnée (22). On voit tout de suite que
tous les coefficients aG) satisfont à la même condition de Holder,
c'est-à-dire que leurs normes hölderiennes toutes ensembles sont
bornées. Pour X 0 notre équation est résoluble et en plus &(0)

(c'est-à-dire sa solution pour X 0) satisfait ainsi que ses dérivées

premières et secondes à la condition de Holder: ||w(0)||f 2< 00.
La méthode des approximations successives (employée pour ce

problème déjà par M. Korn) démontre aisément l'existence de la
solution pour X voisin de 0 et il résulte de la démonstration que

|j^i|f2<oo. D'ailleurs cette démonstration devient vraiment
banale si l'on se sert des notations de la théorie des opérations
fonctionnelles. L'équation étant résoluble pour X0 nous pouvons
de même établir l'existence des solutions tÉk) pour un X voisin
de X0 en restant toujours dans la classe de fonctions dont les dérivées
secondes satisfont à la condition de Holder. La limitation uniforme
||^(A)||f 2 < C reste valable pour toutes les solutions &G); on
en déduit la résolubilité de (23) pour X 1, c'est-à-dire celle
de (22). En plus u{i) u appartient à la classe envisagée, ce qui
veut dire que ses dérivées secondes satisfont dans G + S à une
condition de Holder. J'attire votre attention sur la façon extrêmement

simple par laquelle notre procédé fournit l'allure de la fonction

u. La transition aux valeurs aux limites continues seulement
est maintenant immédiate; on applique les limitations précédentes
valables pour les domaines fermés G contenus1 dans G.

V.

Notre procédé est également simple dans le cas de l'équation
plus générale

K (u) Ya^- -— + Yb-~ f- eu / (24)Lft o xi o xk

i C'est la conséquence des limitations fondamentales du paragraphe précédent; il
ll'G
||a, 2' q

s'agit d'une évaluation qui permet de majorer \\u I G
seulement par Max |u| dans

chaque domaine fermé G- situé à l'intérieur de G.
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