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132 J. SCHAUDER

Ce raisonnement reste valable pour I’équation plus générale
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Passons maintenant a la limitation dans le voisinage de la fron-
tiere. 11 faut alors ajouter a nos hypothéses la supposition suivante:

Dans un voisinage U d’une portion H de la frontiere ! les dérivées
secondes de u satisfont & la condition? de Hoélder ; Hu”U2 < 0.
@ étant les valeurs aux limites, nous prouvons, par un procédé tout
& fait semblable au précédent, une limitation pour H u HUQ dans
chaque domaine U’ intérieur a U. Il suffit de transformer H en
un hyperplan H’ et d’appliquer les limitations précédentes 3.

IV.

Nous démontrerons maintenant qu’on peut déduire les théorémes
d’existence des limitations précédentes. Commencons par 1’équation

L(u) = S 99
i, h=

et par des valeurs aux limites ayant des dérivées secondes Holde-
riennes (probléme de Dirichlet).

Envisageons ’ensemble d’équations du type elliptique dépendant
d’'un parametre A
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a, . Pour A = 0 nous obtenons alors ’équation de Poisson

et telles que l'on ait a ) — 8, (symbole de Kronecker), mais

(1) _
aik T

AulD = f

1 Voir note 1, p. 129.

2 (est-a-dire les dérivées secondes satisfont 4 la condition de Holder dans I’ensemble
envisagé.

3 Voir I’inégalité (8).
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et pour A = 1 1'équation donnée (22). On voit tout de suite que
tous les coefficients agj‘) satisfont & la méme condition de Holder,
¢’est-a-dire que leurs normes holderiennes toutes ensembles sont
bornées. Pour % = 0 notre équation est résoluble et en plus u®
(c’est-a-dire sa solution pour A = 0) satisfait ainsi que ses dérivées
premiéres et secondes & la condition de Holder: “ ' HGQ < 0.
La méthode des approximations successives (employée pour ce
probléme déja par M. Korn) démontre aisément ’existence de la
solution pour A voisin de O et il résulte de la démonstration que
(7‘)i'?2< oo. D’ailleurs cette démonstration devient vraiment
banale si I'on se sert des notations de la théorie des opérations
fonctionnelles. L’équation étant résoluble pour A, nous pouvons
de méme établir 'existence des solutions u™ pour un A voisin
de A, en restant toujours dans la classe de fonctions dont les dérivées
secondes satisfont & la condition de Hélder. La limitation uniforme
="
en déduit la résolubilité de (23) pour A =1, c’est-a-dire celle
de (22). En plus u') = u appartient & la classe envisagée, ce qui
veut dire que ses dérivées secondes satisfont dans G 4+ S a une
condition de Holder. J’attire votre attention sur la facon extréme-
ment simple par laquelle notre procédé fournit ’allure de la fone-
tion u. La transition aux valeurs aux limites continues seulement
est maintenant immeédiate; on applique les limitations précédentes
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, < C reste valable pour toutes les solutions u®™; on

valables pour les domaines fermés G contenus * dans G.

V.

Notre procédé est également simple dans le cas de I’équation
plus générale
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K(u) = Zaihb__—xibxh —I—ijé—x—j

+ cu = f. (2%&)

1 C’est la conséquence des limitations fondamentales du paragraphe précédent; il

s’agit d’une évaluation qui permet de majorer 9
@y

u

seulement par Max |u| dans
G

chaque domaine fermé G situé 3 Vintérieur de G.
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