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130 J. SCHAUDER

- Cette évaluation differe de la précédente seulement par le fait que,
maintenant, la constante C dépend de m. On peut d’ailleurs trouver
aisément la forme exacte de la fonction C(m).

I11.

Passons maintenant & I’équation générale

22u

n
= 2 aik(xl,xz,‘ ves y Dyl bx-bxk:f' (12)
i, k=1 ¢

Nous supposons | a;, | < m, les constantes de Holder des ay,
<M, le déterminant des a;, = 1 et nous considérons d’abord la
solution de (12) & 'intérieur! du domaine borné G, le second membre f
étant Holderien (Hf % < ). Nous supposons en plus qu’une
limitation de u est connue dans tout le domaine G et que u ainsi
que ses dérivées secondes satisfont & la condition de Holder a
I'intérieur de G (mais pas nécessairement sur la frontiére S).
Cherchons une limitation de D,u, D,u et des constantes de Holder
pour Dyu & l'intérieur de G. Soulignons, que nous ne sommes pas
en train de construire une solution; la solution u de (12) est donnée,
ses dérivées sont réguliéres et notre but est d’établir quelques
inégalités. Notre procédé est le suivant: Soit P un point intérieur
a G, d(P) sa distance de la frontiére du domaine G et A un nombre
(arbitraire) de Pintervalle < 01 >: 0 < A < 1. Construisons un
cube W(P, ) & n dimensions, de centre P et de cotés paralleles

aux axes; la longueur des cotés est égale a —\F M (P). Nous nous

proposons de trouver la borne supérieure de la fonction

[

pour A constant. Désignons cette borne, qui d’ailleurs est finie, par
N(2). Soit P, un point intérieur & G tel que
N ()

[5)

hd

WP,

@y

(P, 2)

[d(Py)]?+* R (13)

1, 2

1 A la fin de ce paragraphe nous donnerons une évaluation analogue sur la fronfiére
et dans son voisinage.
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En écrivant ’équation (12) sous la forme
n

Lou = > ay (P
i,h=1

02y

bxibxh

0%u
bxibxh

+ 1.
(14)

[aih (Po) — Qin (P)]
1

e

1

nous pouvons appliquer les résultats obtenus plus haut pour
Iéquation & coefficients constants &

Loy = ¥, (15)
ou

¥ = 2 [ay,(P)) — ¢y (P)] -+ 1. (16)

Nous ne reproduirons pas ici tout le calcul (qui, d’ailleurs, ne
dépasse pas I’étendue d’une page et demie ); le résultat en est

Max |u
)\Q—I-o. [d (PO):|2+11.

“ uHZ(QP"’)‘) = K(m, M) S “ u

(

W (Po, ) S (d (PO))(/ o+

u, T

{
s
)

K dépend de M, c’est-a-dire de la constante de Holder des coeffi-
cients a;; on peut trouver facilement la forme exacte de cette
dépendance. D étant le diametre du domaine G, définissons A, par

la relation
1

K(m, M)aD* = 59 (18)
I'inégalité précédente devient alors
WP, - 1 W (Pg, «) Max | u |
” “ !f/st T2 H u‘\ﬂ-;g T K(m’ M) 7\3+m[d(P0)]2+m + o (19)

1 A : :
En transportant 3 H u HZV(QP"") dans le premier membre de 1'iné-

galité (19) et en la multipliant ensuite par |d (PO)]2+"', nous obtenons

&

d’ott nous tirons, en vertu de (13), une limitation pour N(2).

ZVQ(PO,‘A) . [d(PO)]2+a = K, (m, M) [Hf“? + ng | u]] ,  (20)

1 Voir mes publications indiquées plus haut et particuliérement la Math. Zeitschrift.
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Ce raisonnement reste valable pour I’équation plus générale

02y ou

13

&

i, k=1

Passons maintenant a la limitation dans le voisinage de la fron-
tiere. 11 faut alors ajouter a nos hypothéses la supposition suivante:

Dans un voisinage U d’une portion H de la frontiere ! les dérivées
secondes de u satisfont & la condition? de Hoélder ; Hu”U2 < 0.
@ étant les valeurs aux limites, nous prouvons, par un procédé tout
& fait semblable au précédent, une limitation pour H u HUQ dans
chaque domaine U’ intérieur a U. Il suffit de transformer H en
un hyperplan H’ et d’appliquer les limitations précédentes 3.

IV.

Nous démontrerons maintenant qu’on peut déduire les théorémes
d’existence des limitations précédentes. Commencons par 1’équation

L(u) = S 99
i, h=

et par des valeurs aux limites ayant des dérivées secondes Holde-
riennes (probléme de Dirichlet).

Envisageons ’ensemble d’équations du type elliptique dépendant
d’'un parametre A

oo2y™
(.") pr
Z gy, 0z, 0, f (23)

(0
ik
a, . Pour A = 0 nous obtenons alors ’équation de Poisson

et telles que l'on ait a ) — 8, (symbole de Kronecker), mais

(1) _
aik T

AulD = f

1 Voir note 1, p. 129.

2 (est-a-dire les dérivées secondes satisfont 4 la condition de Holder dans I’ensemble
envisagé.

3 Voir I’inégalité (8).
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