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130 J. SCHAUDER

Cette évaluation diffère de la précédente seulement par le fait que,
maintenant, la constante C dépend de m. On peut d'ailleurs trouver
aisément la forme exacte de la fonction C (m).

III.

Passons maintenant à l'équation générale

L(")-2 •••>*»> (12)

i,k= 1
1 R

Nous supposons | aik [ < m, les constantes de Holder des aik
< M, le déterminant des aik 1 et nous considérons d'abord la
solution de (12) à Y intérieur1 du domaine borné G, le second membre /
étant Hölderien (||/||f<G0). Nous supposons en plus qu'une
limitation de u est connue dans tout le domaine G et que u ainsi

que ses dérivées secondes satisfont à la condition de Holder à

l'intérieur de G (mais pas nécessairement sur la frontière S).
Cherchons une limitation de DjW, D2u et des constantes de Holder

pour D2u à l'intérieur de G. Soulignons, que nous ne sommes pas
en train de construire une solution; la solution u de (12) est donnée,
ses dérivées sont régulières et notre but est d'établir quelques
inégalités. Notre procédé est le suivant: Soit P un point intérieur
à G, rf(P) sa distance de la frontière du domaine G et X un nombre

(arbitraire) de l'intervalle <01 >: 0 < X < 1. Construisons un
cube W(P, X) à n dimensions, de centre P et de côtés parallèles

2
aux axes; la longueur des côtés est égale à —7= Xrf(P). Nous nous

V n

proposons de trouver la borne supérieure de la fonction

p(p)]a+2UHirr^^(p'^

pour X constant. Désignons cette borne, qui d'ailleurs est finie, par
N(X). Soit P0 un point intérieur à G tel que

1131

1 A la fin de ce paragraphe nous donnerons une évaluation analogue sur la frontière
et dans son voisinage.
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En écrivant l'équation (12) sous la forme

I «„(P.) sSr S [«.«IP.) - «.« PI] äSk + /
i,k=i 1 k i,k=1 1 k

(14)

nous pouvons appliquer les résultats obtenus plus haut pour
l'équation à coefficients constants à

L°u Y (15)

où

Y_S[.»(PJ-aa(P|]5i£.+,. U6)

Nous ne reproduirons pas ici tout le calcul (qui, d'ailleurs, ne
dépasse pas l'étendue d'une page et demie x) ; le résultat en est

)|w(Po,^ ^ v(m iyr\ Il „ ||W(Po,A) *\« Max \u\ j

M||«,2 - KKM) j iHki * X (^(Po)J +
X2 +aj-d(po)j2+ a

+

(17)

K dépend de M, c'est-à-dire de la constante de Holder des coefficients

aik; on peut trouver facilement la forme exacte de cette
dépendance. D étant le diamètre du domaine G, définissons X0 par
la relation

K(m,M)x;D« !; (18)

l'inégalité précédente devient alors

Ij u ^ 1 11

K ||w(p0'K) + K (OT, M) + (19)II II«, 2 2 11 II«,2
X0

' (P0)]

En transportant j || ujjrW 1P°' '' dans le premier membre de

l'inégalité (19) et en la multipliant ensuite par (P0)]2+<\ nous obtenons

Il uIR • [d(P»)P+"' - Ki('w' M) [Il / II! + Max I « |] (20)

d'où nous tirons, en vertu de (13), une limitation pour N (X).

i Voir mes publications indiquées plus haut et particulièrement la Math. Zeitschrift.
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Ce raisonnement reste valable pour l'équation plus générale

n

2à^u „ 7
d w

a*d^d7h+ i^ + cu
i,k= 1 1 k 3

Passons maintenant à la limitation dans le voisinage de la frontière.

Il faut alors ajouter à nos hypothèses la supposition suivante:
Dans un voisinage U d'une portion H de la frontière1 les dérivées

secondes de u satisfont à la condition2 de Holder ; ||&j|y 2 < oo

9 étant les valeurs aux limites, nous prouvons, par un procédé tout
à fait semblable au précédent, une limitation pour || w: 11 ^ 2

dans

chaque domaine U' intérieur à U. Il suffit de transformer H en

un hyperplan H' et d'appliquer les limitations précédentes 3.

IV.

Nous démontrerons maintenant qu'on peut déduire les théorèmes

d'existence des limitations précédentes. Commençons par l'équation

l(m) s f (22)

i,k 1
1 k

et par des valeurs aux limites ayant des dérivées secondes Hölde-
riennes (problème de Dirichlet).

Envisageons l'ensemble d'équations du type elliptique dépendant
d'un paramètre X

s aiké~ir~~<23>

ox-o^

et telles que l'on ait af^ <$ik (symbole de Kronecker), mais

=sss aik. Pour X 0 nous obtenons alors l'équation de Poisson

A u^ f

1 Voir note 1, p. 129.
2 C'est-à-dire les dérivées secondes satisfont à la condition de Holder dans l'ensemble

envisagé.
3 Voir l'inégalité (8).
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