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LES CONDITIONS AUX LIMITES INTRODUITES

PAR L'HYDRODYNAMIQUE1

PAR

A. Weinstein.

On désigne habituellement par « problème aux limites » tout
problème du type suivant: « Déterminer dans un domaine donné

une solution d'une équation différentielle par certaines conditions
imposées à cette solution sur la frontière du domaine ». Le
problème classique de ce genre est le problème de Dirichlet.

A première vue, plusieurs problèmes posés par l'Hydrodynamique

semblent appartenir à cette catégorie. En réalité, ces

problèmes hydrodynamiques se distinguent nettement des

problèmes aux limites usuels par une difficulté essentielle et
caractéristique : Le domaine d'intégration qui coïncide avec le domaine
du fluide en mouvement, est limité, totalement ou en partie, par
des frontières qui ne sont pas données. Ainsi les conditions aux
limites se trouvent souvent posées sur des limites inconnues elles-
mêmes. Ces « frontières ou surfaces libres » qu'il faut bien distinguer

des frontières données («parois solides» ou «obstacles»),
doivent être elles-mêmes déterminées par l'ensemble des conditions

du problème.
Les problèmes de ce genre sont très nombreux et remontent

en partie à l'époque même de la découverte de l'Analyse
infinitésimale. Nous aurons ici le plaisir d'entendre un exposé tout à

fait compétent sur les figures d'équilibre des planètes, dont se

sont déjà occupées Newton et Mac Laurin. Aussi mon aperçu

i Résumé des conférences faites en décembre 1933 et en juin 1935 dans les Conférences
internationales des Sciences mathématiques organisées par l'Université de G-enève.
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pourra se limiter à quelques problèmes de mouvements permanents

d'un fluide parfait de densité constante ayant lieu dans un
plan (x, y). Il s'agira en majeure partie des problèmes de

Helmholtz concernant les jets et les sillages, mais j'espère
pouvoir aussi dire quelques mots sur le mouvement ondulatoire
dans un canal de profondeur finie ou infinie. Nous allons voir
qu'il existe une différence essentielle entre les deux classes de

problèmes que je viens de nommer. Il va sans dire que je me
tiendrai strictement aux lignes générales du programme de ce

Colloque en ne parlant que des questions d'unicité et d'existence

que nous pose l'Hydrodynamique.
Considérons d'abord les ondes permanentes. Le mouvement a

lieu dans un canal sous l'action de la gravitation. Le fluide est
limité supérieurement par une « ligne
libre » Z, inconnue a priori, qui se

déplace sans changement de forme avec
une vitesse constante C (« vitesse de

onde périodique
— propagation »), les vitesses reelles des

Fig F particules étant très petites par rap¬
port à C. Dans un système d'axes

(x, y) lié à l cette ligne paraît immobile; le mouvement est
alors permanent et la vitesse ne dépend que de x, y. On
étudie les ondes dans l'hypothèse que la ligne l diffère très peu
d'une droite horizontale, c'est-à-dire on se borne à considérer
les mouvements (absolus) voisins du repos. Le problème des ondes

est donc un problème local. La partie donnée de la frontière,
c'est-à-dire le fond du canal, est une droite qui se réduit au point
à l'infini dans le cas de profondeur infinie. La présence de ces

parois données de forme très simple n'apporte pas de complication

notable pour la théorie: le problème des ondes peut être
considéré en principe comme un problème à frontière libre

partout.
Par contre, la forme de la paroi donnée, limitant partiellement

le fluide, joue un rôle prédominant dans les problèmes des sillages
et des jets posés par Helmholtz.

Dans le cas du sillage en présence d'un obstacle donné, le

fluide en mouvement permanent occupe un domaine du plan
(x, y) qui s'étend à l'infini et qui est limité en partie par la paroi
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(arc curviligne) donnée ® et par des lignes libres X non données

qui séparent le liquide en repos du liquide en mouvement (fig. 2).
Une question du même genre est le problème de l'écoulement

d'un jet jaillissant à travers un orifice percé dans un canal à

parois données (fig. 3). Il s'agit dans les deux cas de déterminer
le mouvement en supposant l'absence de forces extérieures. Ces

problèmes sont des problèmes non locaux: la solution cherchée
n'est pas voisine d'une solution connue.

paroi uj

Fig. 2. Fig. 3.

Les inconnues des différents problèmes que nous venons
d'énoncer sont non seulement les composantes u(x, y), v(x, y)
de la vitesse, mais aussi les frontières libres du fluide en mouvement.

L'équation de continuité ux -f vy 0 permet de substituer à u
et v une seule inconnue, la fonction de courant ^ définie par les
relations

— ft <jjy u (1)

Dans le cas d'un mouvement irrotationnel, on aura en outre un
potentiel de vitesse 9 défini par les équations

9* u > Çy V (2)

La fonction / 9 + ^ (potentiel complexe) sera alors une
fonction analytique de la variable complexe z x + iy. Nous
poserons f (z) ses vv — u iv. Les fonctions 9 et ^ satisfont à
1 équation de Laplace: A9 — 0; 0. (Dans le cas rotationnel,

où 9 n existe pas, ij; satisfait à l'équation de Lagrange:
Ai]; fonction arbitraire de 1];.)
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Sur la frontière la vitesse est partout tangentielle : ce fait

s'exprime par la relation dx: dy u: v, c'est-à-dire par l'équation

d<\> 0 (3)

La frontière du fluide se compose généralement de plusieurs
lignes sans points communs. D'après (3), prend sur chacune
de ces lignes une valeur constante. Ces constantes sont inconnues
sauf l'une d'elles qui peut être arbitrairement égalée à zéro.

L'équation de la conservation de l'énergie nous donne une
condition en plus sur les lignes libres. On aura

1 _ 0. const, pour les problèmes de Helmholtz
— [u2 + c2 -f p =5 4
2 const, -f- gy pour les ondes

La pression p (#, y) sur ces lignes est égale à la pression
constante à l'extérieur du fluide. On obtient, par conséquent, en
choisissant convenablement l'unité du temps la condition non
linéaire suivante sur les lignes libres:

2 2 i 1 (problèmes de Helmholtz)
x y 2 gy + const, (problème des ondes)

Changement de variables. Les conditions ^ — à des constantes

permettent de substituer par un changement de variables un
domaine connu au domaine inconnu primitif.

Prenons dans le cas irrotationnel 9 et ^ comme variables
indépendantes et w, v comme inconnues. Cette transformation
est légitime sous l'hypothèse que le déterminant fonctionnel

fl +4 4 + KI /' (z) I2

ne s'annule pas.
Nous aurons: 1° dans le cas du jet et des ondes irrotationnelles

dans un canal à profondeur finie, comme image du champ du
mouvement, une bande dans le plan

segment o) f0 segment x /: Q < ^ < const., dont la largeur n'est

pas donnée; 2° dans le cas d'un sillage
B on aura un plan / entaillé le long de

axe réel l'axe des 9 positifs. Remarquons que

Fig 4< l'image des points de détachement de&
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lignes libres est inconnue ; 3° enfin, dans le cas des ondes dans

un canal de profondeur infinie, on aura pour domaine-image

un demi-plan /.
La correspondance entre les plans z et f est une représentation

conforme. On prévoit donc toute l'importance de la théorie des

fonctions analytiques pour nos problèmes. Sans vouloir sous-

estimer le rôle de cette théorie, je voudrais attirer votre attention
sur une transformation non-conforme qui permet également
d'introduire un domaine connu. Il suffit pour cela de prendre x
et comme variables indépendantes et de considérer y y(x, <];)

comme nouvelle inconnue. (On suppose, bien entendu, y ^ 0).
Cet artifice a été récemment utilisé avec succès par M. Friedrichs
dans le cas du jet (1. c., p. 117), et, indépendamment, par
Mme Dubreil-Jacotin1 dans le problème des ondes rotationnelles.

Il me parait utile de signaler ces transformations non-
conformes aux hydrodynamiciens qui pourraient avoir de

l'intérêt à rechercher des artifices analogues dans des problèmes
à trois dimensions.

Les transformations indiquées plus haut permettent de ramener
le problème des ondes à un problème non linéaire « aux limites »

aux frontières données. En effet, en considérant, pour fixer les

idées, le cas d'un canal de profondeur finie, on aura sur le bord
supérieur de la bande 0 < ^ < const, la condition (5) écrite
dans les nouvelles variables. Sur le fond 0) la condition aux
limites sera particulièrement simple, puisqu'il suffira d'écrire
que la vitesse y est horizontale (v — 0) partout. Ainsi le problème
des ondes se réduit en principe à un problème aux limites non-
linéaire dans un domaine donné. Il est nécessaire toutefois de

signaler une difficulté tout à fait spéciale de cette question:
Le domaine de la bande n'est pas un domaine borné. Cette difficulté
ne se présente pas d'ailleurs dans la théorie des ondes périodiques 2,

qui est, pour cette raison, plus développée que la théorie de l'onde
solitaire 3.

1 M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes périodiques
d'ampleur finie. Journal de Mathématiques, 1934.

2 T. Leyi-Ciyita, Détermination rigoureuse des ondes permanentes d'ampleur finie.
Math. Ann., t. 93, 1925, p. 264. — D. J. Struick, Détermination rigoureuse des ondes
irrotationnelles permanentes dans un canal à profondeur finie. Math. Ann., t. 98 1927,
p. 595.

3 A. Weinstein, Sur la vitesse de propagation de l'onde solitaire. Rend. d. R. Acc. d.
Lincei, 1926.
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Considérons maintenant l'effet d'un changement de variables

pour les problèmes de Helmholtz. Il est important de se rendre
compte que ce changement ne ramène pas ces questions à des

problèmes usuels aux limites. En effet, examinons par exemple
plus en détail le problème du jet symétrique. Il suffira de considérer

la partie supérieure du mouvement. Son image sera dans le

plan / cp + ity une bande limitée par les droites ^ — 0,

la constante [i n'étant pas donnée. Signalons que [jltc désigne le
débit (inconnu) du jet.

Le problème fondamental ou problème de Helmholtz1 qui se pose

pour la fonction z (/) peut être énoncé dans le cas du jet comme
il suit:

Transformer conformément la bande 0 < ^ < [ij du plan f
en un domaine D du plan z x + iy de sorte que soient réalisées
les conditions suivantes: D doit être limité par l'axe des x, par une
ligne (paroi ®) donnée, joignant le point z — oo à un point
zo — iyo et Par une ligne libre non donnée X qui se détache de z0.

En chacun des points de cette ligne la transformation cherchée

doit conserver les longueurs (c'est-à-dire que l'on doit avoir
| dzjdf | — 1 sur X).

Une dilatation convenablement choisie permet d'introduire,

au lieu de la bande 0 < < [x~, la bande B: 0 < <. j (fig. 4).

On aura alors (en conservant les notations) sur le segment X du

plan /, au lieu de la condition isométrique | dz/df | 1, la condition

quasi-isométrique | dz/df j fi, : la transformation cherchée

multiplie les longueurs par une constante positive [jl inconnue.
Le problème ainsi posé par la théorie de Helmholtz se distingue
nettement du célèbre problème de représentation conforme
énoncé par Riemann, qui ne traite que la représentation d'un
domaine donné sur un domaine donné.

Bien des années avant que ne fut- abordée la question de

l'unicité et de l'existence des solutions des problèmes posés par
la théorie de Helmholtz, M. Levi-Civita a donné la solution

i Signalons que Helmholtz, Kirchhoff, ainsi que plusieurs autres savants, se sont limités
depuis 1868 jusqu'au début du XXe siècle à des exemples très particuliers. Encore en
1907, M. Levi-Civita signalait le fait que le problème fondamental dépassait les moyens
de l'Analyse de cette époque.
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(très perfectionnée par M. Villat1) du problème suivant:
Déterminer dans la bande B la famille des fonctions z (f) qui
satisfont sur le segment X à la condition quasi-isométrique
| dz/df | — (ji.

Aucune condition n'est imposée dans ce problème aux valeurs
de z (/) sur le segment © du plan /. M. Levi-Civita substitue donc

au problème de Helmholtz le problème de la recherche de Y

intégrale générale fournissant la solution indéfinie (on indéterminée)2.
Posons

dzjdf 1 /w iieUo ; (co 0 + it) (6)

La fonction oo sera réelle sur le segment X. Or toutes les fonctions

cù(f) réelles sur X peuvent être explicitement exprimées
sous forme de séries de certaines fonctions élémentaires gn(f)

CO

connues: on aura, d'après M. Levi-Civita, oo(f) ^cnSn(f) ou
î

les coefficients cn sont arbitraires. On peut aussi écrire la fonction

o>(/) sous forme d'intégrale indiquée par M. Villat et
généralisant celle de Poisson. Cette intégrale dépend des valeurs
arbitraires de 0 sur le segment w du plan /. Chacune de ces

fonctions co détermine une fonction correspondante z(f)
satisfaisant à la condition quasi-isométrique sur X. En effet, la formule
(6) nous donne par une quadrature l'intégrale générale cherchée

La paroi correspondante au segment w dépend du choix de la
fonction arbitraire a> et ne peut être donnée a priori. L'importance

de l'intégrale générale est évidente: La solution d'un
problème de Helmholtz, si elle existe, correspondra à un certain
choix de la fonction cù(f). De plus, l'intégrale générale permet
de prévoir toutes les singularités qui pourraient survenir.

Nous allons maintenant revenir sur le problème fondamental

1 T. Levi-Civita, Scie e legge di resistenza. Rend. d. Circolo Mat, di Palermo, t. 23,
1907. — H. Villat, Sur la résistance des fluides. Ann. de l'Ec. Normale, 1911, p. 203.

2 M. D. Riabouchinsky a proposé pour cette question le nom de «problème mixte
direct ». Une nouvelle solution, basée sur une formule de M. Signorini, en a été donnée
par M. B. Demtchenko, Problèmes mixtes harmoniques, Paris, Gauthier-Villars, 1933.
Le problème de Helmholtz pourrait être désigné comme « problème mixte inverse »!

mais cette dénomination a été déjà employée, l. c., pour un problème qui ne diffère pasessentiellement du « problème direct ».

L'Enseignement mathém., 35me année, 1936. 8
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énoncé plus haut et aborder la question de l'unicité de la solution.
On s'aperçoit immédiatement que les méthodes classiques de la
théorie de la représentation conforme, par exemple le lemme de

Schwarz, ne donnent aucun résultat. Aussi la question de l'unicité
sera même plus ardue que le théorème d'existence. Posons
d'abord le problème de Y unicité infinitésimale 1: Démontrer qu'il
n'existe pas de solution infiniment voisine d'une solution donnée,
c'est-à-dire de solution correspondante à la même paroi donnée,
mais différente infiniment peu par la forme de la ligne libre.

Soit f(z) la solution supposée donnée, f(z) une solution infiniment

voisine. Formons la variation S/ f(z) — f(z). Le
théorème de l'unicité infinitésimale affirme que S/ s'annule identiquement.

La variation 8/ vient d'être définie dans le domaine D de la
solution supposée connue. A ce domaine correspond d'une
manière biunivoque et conforme la bande B du plan /. On peut
donc considérer 8/ comme fonction de /. Nous obtiendrons
d'après la définition de la variation 8/ une expression générale
de cette fonction en faisant varier, dans la formule (7), / pour
une valeur fixe de z. On obtient ainsi l'équation

8/
0 ~TT\ ~ ~Y df

w (/) J w2
/o

c'est-à-dire

*1 »]—, ^df-(8>
fo

En dérivant cette dernière équation 2 par rapport à / on obtient
la relation fondamentale entre 8/ et 8 log w :

d (8f) d log w ~^ /nN

dfif;8 log w • O)

1 A. Weinstein, Sur l'unicité des mouvements glissants. G. R., 1923, p. 493. — Sur
les jets liquides à parois données. Rend.d. R. Acc. d. Lincei, 1926, p. 119.

2 On pourrait envisager aussi une variation infinitésimale des parois. Dans ce cas on
aurait au lieu de (8) l'équation

w df _ i$yQ | (8')
ffo

(où Syo désigne la variation du point de détachement), mais la relation fondamentale (9)
ne changerait pas de forme.
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Cette formule qui n'est qu'une identité à l'intérieur de la
bande B, nous donne, en vertu de la condition quasi-isométrique,
une condition aux limites pour la variation S/ 89 + sur X.

La partie réelle de (9) se réduit sur le segment X à la condition
linéaire

_ Slogix (10)
an a 9

La variation inconnue de la constante quasi-isométrique p,

y figure explicitement au second membre. On a d'ailleurs
d 6 d 0

j- — \ic où c désigne la courbure de la ligne libre de

la solution supposée donnée.

Il est important de remarquer que, jusqu'à présent, nous ne
nous sommes pas servi de l'hypothèse que la solution infiniment
voisine correspond aux mêmes parois que la solution donnée.
La condition (10) est indépendante de cette hypothèse.
L'influence de l'invariance des parois sur une variation éventuelle
des lignes libres nous est pour le moment profondément cachée.
En raison de cette difficulté caractéristique du problème nous
ne possédons sur X d'autre condition que celle qui est donnée par
(10). Cette équation est une condition intrinsèque aux limites;
elle a lieu indépendamment des conditions imposées sur les
autres parties de la frontière.

Ces dernières conditions sont très faciles à établir. En prenant
un point z fixe sur la paroi donnée on aura / 9 -f iy,
/ + i7^, c'est-à-dire

H 0 (11)

La même condition sera évidemment valable sur l'axe réel,
qui joue le rôle d'une paroi.

A ces conditions s'ajoute la condition de détachement

d($i>)
-T— - 0 pour / f0 (12)

qui est restée longtemps cachée, bien qu'elle dérive de l'identité
fondamentale. La condition (12) exprime le fait que la ligne
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libre variée se détache du même point z0 que la ligne supposée
donnée.

Notre but est de démontrer que l'ensemble de ces conditions
aux limites (10), (11) et (12) a pour conséquence l'équation

8f EE 0 (Problème de Vunicité infinitésimale, ou Problème I)

Ce but n'a pu être atteint que par un détour: Faisons l'hypothèse

que la variation inconnue §p est égale à zéro. On obtient
alors un nouveau Problème II qui est plus simple que le
Problème I, mais dont le caractère est artificiel. En effet, en posant
a priori §p 0, on se limite à la considération d'une classe

particulière de solutions infiniment voisines de la solution
donnée. Ce sont les solutions, auxquelles correspondent non
seulement les mêmes parois, mais aussi la même constante quasi-
isométrique p.. Cette restriction est tout à fait arbitraire, car p
n'est pas donné. L'étude du Problème II (d'unicité infinitésimale
au sens restreint) sera justifiée uniquement par son utilité pour
la résolution du Problème I.

Désignons, pour abréger l'écriture, la variation pS^ dans le

Problème II par ß. La fonction harmonique ß satisfait dans la
bande B aux conditions aux limites qui s'obtiennent en posant
Sp 0 dans les conditions du Problème I. On aura

Le Problème II consiste à démontrer que ß est identiquement
nul. La fonction c cm c(<p) y désigne comme précédemment la
courbure de la ligne libre de la solution dont nous avons admis
l'existence. En général c ne sera pas une fonction explicitement
connue, mais l'intégrale générale du problème nous donne des

renseignements précieux sur l'allure de la ligne libre correspondant

à une paroi donnée. Ainsi on sait, par exemple (Théorème
de M. Boggio), que cette ligne sera convexe si la paroi est

concave. Ces renseignements permettent de formuler les résultats

sur l'unicité en n'utilisant strictement que les données du

problème.

ß — 0 sur le segment ® et sur l'axe réel

J c ß sur le segment X

(13)

(14)
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La condition (13) paraît à première vue être identique à celle

que Fourier a étudié dans la Théorie de la Chaleur. En réalité
elle s'en distingue nettement par le signe de la fonction c: ce

signe, qui est toujours négatif dans le cas de la Théorie de la

Chaleur, est, par contre, toujours positif dans le cas le plus

important de la théorie des jets, celui des jets à parois concaves

vers le courant.
En tenant compte des conditions aux limites on obtient par la

formule de Green pour ß l'équation

//KH)'+(H)'{<>>*-i'5'
B X

Le premier membre de cette équation serait dans le cas de

Fourier la somme de deux quantités positives. On aurait donc
immédiatement ß 0. Or, dans notre cas ce premier membre
est la différence de deux grandeurs positives, de sorte que l'équation

(15) ne semble nous donner aucun renseignement sur ß.

On a réussi quand même à utiliser l'équation (15) pour démontrer

que ß s'annule identiquement pour certaines classes de parois.
Depuis la première démonstration de ce théorème en 1923 1

MM. Hamel 2, Weyl 3 et Friedrichs 4 ont successivement
donné des démonstrations sous des hypothèses de plus en plus
générales. Le but de ces démonstrations est de prouver que le
premier membre de (15) pris en lui-même, est toujours positif,
sauf pour ß 0. En 1933, M. Friedrichs a réussi à mettre ce fait
en évidence en transformant le premier membre de (15) en une
somme de deux carrés. La transformation de M. Friedrichs est
valable dans tous les cas où se trouve vérifiée la condition
suivante: il existe une fonction harmonique U qui ne s'annule
jamais dans le domaine D et qui satisfait sur X à la condition
intrinsèque (14) du Problème II: dXJjdn cXJ. En admettant

1 A.Weinstein, 1. c., 114. — Ein hydrodynamischer Unitätssatz. Math. Zeitschrift,
t. 19, 1924, p. 265.

2 G. Hamel, Über einen hydrodynamischen Unitätssatz des Herrn Weinstein. Résumés
des Conférences du Deuxième Congrès international de Mécanique appliquée, Zürich, 1926,
p. 76. — Ein hydrodynamischer Unitätssatz. C. R. du Deuxième Congrès international de
Mécanique appliquée, Zurich, 1927.

3 H. Weyl, Strahlbildung, nach der Kontinuitätsmethode behandelt. Göttinger
Nachrichten, 1927, p. 227.

4 K. Friedrichs, Ueber ein Minimumproblem für Potentialströmmungen mit
freiem Rande. Math. Ann., t. 109, 1933, p. 60.



118 A. WEINSTEIN
l'existence d'une telle fonction on aura en posant dans (15)
ß — Utj (principe de variation multiplicative de Jacobi) l'équation

qui donne immédiatement l'équation ß 0.

Examinons maintenant la question de l'existence de la fonction
U de M. Friedrichs. On vérifie immédiatement, par différentia-
tion h que les composantes de la vitesse u eT cos 6 et v eT sin 0

satisfont à la condition (14) sur X. Il suffit donc de s'assurer
qu'une composante quelconque de la vitesse U — au + bv

(a2 -f- b2 1, a et b étant constants) ne s'annule pas dans D,
pour en déduire l'équation ß 0. Par conséquent le procédé de
M. Friedrichs démontre l'unicité infinitésimale au sens restreint
pour une classe très vaste de parois, en particulier pour toutes
les parois concaves, pour lesquelles la variation totale de la
direction de la tangente (« courbure totale de la paroi ») n'est

pas supérieure à n.
Considérons dorénavant uniquement des parois pour lesquelles le

Problème 'auxiliaire II est supposé résolu, c'est-à-dire pour
lesquelles le théorème d'unicité infinitésimale au sens restreint est

supposé démontré. (Nous ne nous préoccupons pas de la question
encore non tranchée de savoir quelles sont toutes les parois pour
lesquelles ce théorème est vrai). La condition de détachement (12)

permet alors de démontrer pour les mêmes parois V unicité
infinitésimale (Problème I) sans aucune restriction arbitraire. Cette
réduction du Problème I au Problème II a été longtemps une
difficulté principale de la théorie. Le temps me manque pour
donner des détails de cette réduction qui a été effectuée d'abord

pour des parois concaves 2. La démonstration donnée dans ce cas

peut être interprétée de la manière suivante: Si une variation
quelconque de la paroi donnée conserve la direction de cette
paroi au (nouveau) point de détachement z0 + 8z0 i(y0 -f- Sz/0),

le signe de la variation Sjx sera égal au signe de la variation Sy0

1 Cette simple démonstration des équations du/dn eu et dvjdn cv m'a été
communiquée par M. C.-Jacob.

2 A. Weinstein, Sur le théorème d'existence des jets liquides. Rend. d. R. Acc. d.
Lincei, 1927, p. 157.

(16)
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du point de détachement. (C'est-à-dire que le débit augmente

avec l'orifice). Par conséquent l'invariance de la paroi implique

l'égalité S[jl 0 et on retrouve ainsi pour le Problème I les

conditions aux limites du Problème II. Récemment, M. Leray
a étendu ces résultats aux parois non concaves en introduisant
dans le Problème I au lieu de l'inconnue 8d> la fonction

ß* sj, ^ log a. On a pour ß* les conditions aux

limites suivantes qui se déduisent de (10), (11) et (12):

cß* sur le segment X (10')
an

ß* 0 sur le segment W (11')

ß* —• S log [i sur l'axe réel (11")

— o 0 au point de détachement /0 (12')
a 9 a<\)

Les conditions (12') nous montrent l'existence d'une ligne
ß* 0, différente du segment ©, passant par le point de détachement.

Trois cas pourraient alors se présenter: cette ligne pourrait
rencontrer soit soit l'axe réel, soit X. Dans le premier cas on
trouverait immédiatement ß* 0. Dans le second cas on aurait
Sp, — 0 et, par conséquent, ß* satisferait aux conditions du
Problème II, ce qui donnerait de nouveau ß* 0. Enfin, dans
le troisième cas, la fonction ß* satisferait aux conditions aux
limites du Problème II sur les frontières d'un certain domaine

partiel B* de B et on arriverait à la même conclusion: ß* 0.

Il va sans dire que le Problème II pour le domaine B* ne peut
plus être interprété comme un problème d'unicité infinitésimale.

Je me suis jusqu'à présent limité à un aperçu du problème de

l'unicité infinitésimale. J'aborde maintenant la question de
1 ''existence des solutions des problèmes posés par la théorie de
Helmholtz. Pour des raisons qui apparaîtront bientôt, cette
question doit être traitée avant le problème de l'unicité absolue
(unicité dans le sens usuel de ce mot) 1.

i Signalons que M. Friedrichs (1. c., 117) a démontré l'unicité absolue au sens restreint,
c'est-à-dire en supposant fixe. La solution supposée donnée fournit dans ce cas le

minimum absolu de l'intégrale j J-f- + i)dxdy, car la seconde variation de cette
D

expression est égale à la moitié du premier membre de l'équation (16) ou (15).
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Les théorèmes d'existence ont été démontrés par des procédés

de continuité. Nous avons vu que la recherche d'une solution

pour des parois données se ramène en principe à la recherche
d'une fonction inconnue oo (/) appartenant à la classe des
fonctions étudiées dans la théorie de l'intégrale générale. Les fonctions

de cette classe dépendent en général d'une infinité de

paramètres, Ces paramètres sont les coefficients arbitraires des séries
de M. Levi-Civita ou bien les coefficients de Fourier de la fonction
arbitraire qui intervient dans l'intégrale de M. Villat. Le
problème de l'existence est donc équivalent à la détermination de

ces paramètres.
Considérons d'abord le cas d'une paroi polygonale donnée.

Désignons ses sommets par z0 iy0, %, z2, zn(zk xk + iyk).
M. Cisotti a démontré en 1908 1

que la fonction oo ne dépend
dans ce cas que d'un nombre fini de paramètres al5 a2, <*271+1

en nombre égal à celui des coordonnées des sommets. L'ensemble
des valeurs que peuvent prendre ces paramètres peut être

représenté par les points d'un certain domaine d'un
espace à 2n ~r 1 dimensions. Les coordonnées des sommets:

y0, xt% yXl xn1 yn sont des fonctions explicitement données du

point (*1, a27 •••? a2n+i • Le théorème cfexistence affirme qu'il
existe un ou plusieurs points (a) correspondants à des valeurs
des (xkJ yk) données.

Ce théorème a été démontré par la méthode de continuité
classique 2. Le temps me manque pour donner un aperçu de cette

méthode, employée pour la première fois, en 1874, dans un
problème de représentation conforme, par le mathématicien bernois

Schläfli. Il nous suffit pour les applications de savoir qu'elle
fournit l'énoncé de conditions suffisantes pour assurer l'existence
des solutions d'un nombre fini d'équations transcendantes, telles

que

xk xk(*i> a2> -• » a2n+l>
(h 1, 2, n)

Vk "= 2/fc(ai> a2> ••• 7 a2n+l)

Vo Vo (ai » a2> ••• 1 a2n+l)

1 U. Cisotti, Vene fluenti. Rend. d. Cire. Mat. d. Palermo, t. 25, 1908, p. 145.
2 A. Weinstein, 1. c., p. 118.
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où le nombre des équations est égal au nombre des paramètres.
La démonstration par continuité se réduit dans notre cas,

comme dans toutes les applications, à établir les théorèmes

suivants :

1. Le déterminant fonctionnel

*(Vo, xi> 2/n -» xn ' yj
ö(a1? oc2 a2n+1)

est toujours différent de zéro. Ce théorème est vrai ici puisqu'il
exprime le théorème de l'unicité infinitésimale.

2. Existence des limitations a priori. On peut affirmer a priori
que les paramètres inconnus o^, oc2, oc2n+1 restent entre
certaines limites données, si l'on se donne les limites pour les valeurs
de (xk, yk). Ce fait peut être déduit, pour toutes les parois à

courbure totale non supérieure à 7t, des formules explicites de

M. Cisotti, qui donnent les (xk1 yk) en fonctions des ocfe.

La méthode de continuité permet de déduire de 1. et 2. que
notre problème du jet à paroi polygonale admet au moins mie
solution. Il est aisé à prévoir que cette solution sera unique dans
le cas banal où tous les sommets z0, zl7 zn se trouvent sur la
même droite parallèle à l'axe réel (paroi rectiligne). Ce dernier
fait s'ajoutant aux résultats précédents permet de déduire
V unicité absolue de la solution pour une paroi polygonale
quelconque 1. En effet on peut démontrer par un raisonnement
classique que l'existence de deux solutions différentes pour une
même paroi donnée aurait pour conséquence l'existence d'un
point de ramification des solutions. Or, ce fait serait en contradiction

avec le théorème de l'unicité infinitésimale.
En résumé Vexistence et Vunicité de la solution est établie pour

le problème du jet symétrique à paroi polygonale donnée, de courbure

totale inférieure à tc.

Inexistence des solutions correspondantes aux parois curvilignes
a pu être établi par un passage à la limite 2, en approchant la

1 J. Leray et A. Weinstein, Sur un problème de représentation conforme posé par
la théorie de Helmholtz. C. R., 1934, p. 429. -

2 A. Weinstein, Zur Theorie der Flüssigkeitsstrahlen. Math. Zeitsch., t. 31, 1929,
p. 424.
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paroi donnée par des parois polygonales. Toutefois, ce procédé ne
fournit pas l'unicité absolue de la solution.

Les problèmes posés par la théorie de Helmholtz, en particulier
le problème du sillage en présence d'un obstacle curviligne, ont
été récemment l'objet d'une étude directe, qui fait intervenir la
théorie récente de la résolution des équations fonctionnelles non
linéaires. La différence entre cette nouvelle méthode et la
précédente est peut-être plus apparente que réelle. En effet, la
résolution de ces équations se fait elle-même en raisonnant par
continuité dans un domaine fonctionnel. Les théorèmes dans le

domaine fonctionnel s'obtiennent par un passage à limite
préalable à partir des théorèmes relatifs à l'espace à un nombre
fini de dimensions.

Je me permets de donner quelques indications très sommaires

sur ce développement tout à fait récent de la théorie. Nous

avons vu à plusieurs reprises que la résolution d'un problème
quelconque de Helmholtz revient à la détermination de la
fonction 00 (/) Ö -}- if introduite par M. Levi-Civita. La
partie réelle 0 de cette fonction donne la direction de la vitesse.
Considérons un obstacle curviligne donné. Sa courbure dd/ds sera

une fonction c (0) donnée de la direction 0 de la tangente à

l'obstacle. On aura donc sur le segment a* du plan / l'équation
dQjds c(0), c'est-à-dire

d 6 dQ ds /A. ds _rt,,
T~ ~ T~ T~ c 6b- • 17
dq> ds dtp d 9

On peut exprimer ds/d<p par les fonctions (inconnues) 0 et t.
ds

Par conséquent on aura une relation de la forme j- A(0, t, 9)

où h est une fonction donnée. L'équation (17) peut être écrite
alors de la façon suivante

~« A(6, T, Ç)c(6) (18)

Cette équation, indiquée en 1907 par M. Levi-Civita, lie sur a>

les parties réelle et imaginaire de la fonction co correspondante à

un obstacle donné. M. Villat a proposé en 1912 d'éliminer 0
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en se servant de la formule de Green-Dini. En 1931, M. Quarleri 1

a proposé d'éliminer, toujours en se servant de la même formule,
la fonction t et de ramener ainsi l'étude du problème à la
résolution d'une équation intégrale non linéaire. Malheureusement

son procédé a donné lieu à des objections et il a fallu y apporter
plusieurs modifications essentielles.

Je me permets d'écrire les équations finales auxquelles se

ramène le problème du sillage dans le cas le plus simple2:
l'obstacle donné sera un arc de cercle de rayon unité. On aura
dans ce cas c(0) 1.

Il est plus commode d'introduire dans (18) au lieu de / une
nouvelle variable indépendante Ç en représentant conformément
le plan / (entaillé le long de l'axe des cp positifs) sur un demi-cercle
de rayon 1 dans le plan Ç peia. Dans cette correspondance
l'obstacle aura pour image la demi-circonférence | Ç | 1

(Transformation de M. Levi-Civita). On aura sur cette demi-
circonférence la condition suivante déduite de l'équation (18)

où g (g) désigne une fonction explicitement connue et où pi joue
le rôle de la constante quasi-isométrique. La formule classique
de Green-Dini permet de transformer cette condition en une
équation intégrale non linéaire. Sous sa forme définitive cette
équation peut s'écrire comme il suit

L'inconnue t(g) est liée d'une façon élémentaire à la fonction

t. Le « noyau » N de cette équation est positif. Le problème
consiste à résoudre cette équation et à montrer qu'on peut

1 A. Quarleri, Sulla teoria délia scia nei liquidi perfetti. Caso del cilindro rotondo.
Rend. d. R. Acc. d. Lincei, 1931, p. 332. Une autre tentative de résoudre les problèmes
de Helmholtz a été faite par M. C. Schmieden (Ingenieur-Archiv, 1932, p. 368, 1934,
p. 373), mais son raisonnement contient des erreurs.

2 A. Weinstein, Sur les sillages provoqués par des arcs circulaires. Rend. d. R. Acc.
d. Lincei, 1933, p. 83, — Sur les points de détachement des lignes de glissement C R
1933, p. 324.

' ' *'

2

(20)
0
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disposer du paramètre (x de manière à avoir dans le plan z un
arc donné du cercle de rayon 11. Les premiers résultats concrets
obtenus par cette nouvelle voie étaient les suivants: Le théorème
d'existence a été démontré pour des arcs inférieurs à 40°. Quelque
temps après, M. Leray a repris la question du sillage non seulement

pour les arcs de cercle, mais pour des obstacles curvilignes
quelconques. M. Leray a démontré que les équations du problème
(par exemple l'équation (20)) appartiennent à la classe d'équations

fonctionnelles étudiées par lui-même en collaboration avec
M. Schauder 2. Leur méthode, qui est précisément une sorte
de méthode de continuité dans le domaine fonctionnel, résout
la question de l'existence indépendamment de la question de

Vunicité des solutions. Je dois me borner à citer une partie des

résultats de M. Leray 3:

Le théorème d'existence dans la théorie des sillages est établi pour
toute courbe-obstade, dont les points ont toujours des ordonnées

différentes, sauf si le segment qui les joint appartient à la courbe.

Pour étudier l'unicité (infinitésimale et absolue) il faut former
les « équations aux variations » des équations fonctionnelles. Il
est aisé à prévoir qu'on retrouve par cette voie des problèmes
d'unicité du genre étudié plus haut. M. Leray démontre l'unicité
absolue des sillages symétriques correspondant à des obstacles

symétriques ainsi que l'unicité du sillage correspondant à un
obstacle disymétrique convexe, tous ces obstacles appartenant,
bien entendu, à la classe définie plus haut.

Dans le cas particulier du cercle, le théorème d'existence et
l'unicité de la solution ont été démontrés par M. Leray pour un arc
quelconque: la grandeur de l'arc-obstacle est une fonction croissante

de fx. M. Jacob a récemment retrouvé cette propriété de

monotonie de l'arc-obstacle par une voie élémentaire 4. Signalons

1 M. J. Sekerj-Zenkowitch, à l'attention duquel ont échappé les travaux cités dans
la note précédente, a repris récemment (C. R. de l'Académie des Sciences de l'URSS, 1934,
p. 373; 1935, p. 151) l'étude des problèmes de Helmholtz. Toutefois cet auteur omet
de traiter la question essentielle de la détermination de <*.

2 J. Leray et J. Schauder, Topologie et équations fonctionnelles. Annales de l'Ec.
Normale, 1934, p. 45.

3 J. Leray, Les problèmes de représentation conforme de Helmholtz; théorie des
sillages et des proues. C. R., 1934, p. 1282 — C. R., 1935, p. 2007. — Comm. Math.
Helvetici, Vol. 8, 1935/36, p. 149 et p. 250. — J. Kravtchenko, C. R., 1936, p, 276,

4 C. Jacor, Thèse, Paris, 1935 (Mathematica, 1935).
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enfin que l'existence des solutions de l'équation (20) pour le cas

du cercle se déduit, indépendamment des méthodes de

continuité, du « Fixpunktsatz » de M. Schauder 1.

Le cas du cercle nous montre qu'il est possible de lever parfois
les restrictions imposées aux parois et aux obstacles. Les
problèmes qui se posent ainsi paraissent dignes d'attirer l'attention
des chercheurs.

J'arrive à la fin de mon bref aperçu. A mon grand regret, le

manque de temps ne m'a pas permis d'insister davantage ni sur
des travaux aujourd'hui classiques 2, ni sur des recherches tout
à fait récentes. J'ai dû restreindre ma tâche à l'énoncé de quelques
problèmes d'une théorie qui a commencé par des résultats
modestes, mais qui, grâce aux travaux de plusieurs mathématiciens,
opère aujourd'hui dans un champ très vaste.

1 J. Schauder, Studia Mathematica, t. 2, 1930, p. 170. On peut utiliser aussi des
théorèmes de M. A. Hammerstein, Nichtlineare Integralgleichungen, Acta Math. 1930,
p. 122. Signalons enfin que M. S. Brodetsky avait dès 1922 donné d'excellentes solutions
-approchées du problème, l'obstacle étant circulaire ou elliptique. Voir p. ex. C. R. du
Deuxième Congrès international de Mécan. appliquée. Zurich, 1927.

2 Voir, par exemple, les Traités suivants: H. Villat, Aperçus théoriques sur la résistance

des fluides (Coll. Scientia, Paris, 1920). — U. Cisotti, Idromeccanica piana (Milano,
1921).
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