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LES CONDITIONS AUX LIMITES INTRODUITES
PAR I’HYDRODYNAMIQUE !

PAR

A. WEINSTEIN.

- On désigne habituellement par « probleme aux limites » tout
probléme du type suivant: « Déterminer dans un domaine donné
une solution d’une équation différentielle par certaines conditions
imposées & cette solution sur la frontiéere du domaine ». Le pro-
bléme classique de ce genre est le probleme de Dirichlet.

A premiére vue, plusieurs probléemes posés par I’'Hydrodyna-
mique semblent appartenir & cette catégorie. En réalité, ces
problémes hydrodynamiques se distinguent nettement des pro-
bléemes aux limites usuels par une difficulté essentielle et carac-
téristique: Le domaine d’intégration qui coincide avec le domaine
du fluide en mouvement, est limité, totalement ou en partie, par
des frontiéres qui ne sont pas données. Ainsi les conditions aux
limites se trouvent souvent posées sur des limites inconnues elles-
mémes. Ces « frontiéres ou surfaces libres » qu’il faut bien distin-
guer des frontiéres données («parois solides» ou «obstacles »),
doivent étre elles-mémes déterminées par I’ensemble des condi-
tions du probléme.

Les problemes de ce genre sont trés nombreux et remontent
en partie & 'époque méme de la découverte de I’Analyse infini-
tésimale. Nous aurons ici le plaisir d’entendre un exposé tout a
fait compétent sur les figures d’équilibre des planétes, dont se
sont déja occupées Newton et Mac Laurin. Aussi mon apercu

1 Résumé des conférences faites en décembre 1933 et en juin 1935 dans les Conférences
internationales des Sciences mathématiques organisées par 1’Université de Genéve.
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pourra se limiter & quelques problémes de mouvements perma-
nents d’un fluide parfait de densité constante ayant lieu dans un
plan (z,y). Il s’agira en majeure partie des problemes de
Helmholtz concernant les jets et les sillages, mais j’espére
pouvoir aussl dire quelques mots sur le mouvement ondulatoire
dans un canal de profondeur finie ou infinie. Nous allons voir
qu’il existe une différence essentielle entre les deux classes de
problémes que je viens de nommer. Il va sans dire que je me
tiendrai strictement aux lignes générales du programme de ce
Colloque en ne parlant que des questions d’unicité et d’existence
que nous pose I’Hydrodynamique.

Considérons d’abord les ondes permanentes. L.e mouvement a
lieu dans un canal sous P'action de la gravitation. Le fluide est

limité supérieurement par une «ligne
! —> G libre » [, inconnue a priort, qui se dé-
~——" ~_-— place sans changement de forme avec
une vitesse constante C («vitesse de
propagation »), les vitesses réelles des
Fig. 1. particules étant tres petites par rap-
port a C. Dans un systeme d’axes
(z, y) lié & [ cette ligne parait immobile; le mouvement est
alors permanent et la vitesse ne dépend que de z, y. On
étudie les ondes dans ’hypotheése que la ligne I différe trés peu
d’une droite horizontale, c’est-a-dire on se borne a considérer
les mouvements (absolus) voisins du repos. Le probléme des ondes
est donc un probléme local. La partie donnée de la frontiére,
c¢’est-a-dire le fond du canal, est une droite qui se réduit au point
a l'infini dans le cas de profondeur infinie. La présence de ces
parois données de forme trés simple n’apporte pas de complica-
tion notable pour la théorie: le probléme des ondes peut étre
considéré en principe comme un probléme a frontiére libre
partout.

Par contre, la forme de la parot donnée, limitant partiellement
le fluide, Joue un role prédominant dans les problemes des sillages
et des jets posés par Helmholtz.

Dans le cas du sillage en présence d’un obstacle donné, le
fluide en mouvement permanent occupe un domaine du plan
(z, y) qui s’étend & l'infini et qui est limité en partie par la paroi

onde périodique
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(arc curviligne) donnée @ et par des lignes libres A non données
qui séparent le liquide en repos du liquide en mouvement (fig. 2).

Une question du méme genre est le probléeme de I’écoulement
d’un jet jaillissant & travers un orifice percé dans un canal o
parois données (fig. 3). Il s’agit dans les deux cas de déterminer
le mouvement en supposant ’absence de forces extérieures. Ces
problemes sont des problémes non locaux: la solution cherchée
n’est pas voisine d’une solution connue.

.- paror 'CS

ligne libre \

Fig. 2. Fig. 3.

Les inconnues des différents problémes que nous venons
d’énoncer sont non seulement les composantes u(z, y), ¢(z, y)
de la vitesse, mais aussi les frontiéres libres du fluide en mouve-
ment. :

L’équation de continuité u, + ¢, = 0 permet de substituer a u
et ¢ une seule inconnue, la fonction de courant | définie par les
relations

g =—v, (lJy:u. (1)

Dans le cas d'un mouvement irrotationnel, on aura en outre un
potentiel de vitesse ¢ défini par les équations

P = U, Py = ¢, : (2)

La fonction f = @ - iy (potentiel complexe) sera alors une
fonction analytique de la variable complexe z — x4 1y. Nous
poserons f'(z) = w = u — iv. Les fonctions @ et ¢ satisfont &
équation de Laplace: Ap = 0; Ay = 0. (Dans le cas rotation-
nel, ou ¢ n’existe pas, ¢ satisfait a 'équation de Lagrange:
A = fonction arbitraire de {.)
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Sur la frontiére la vitesse est partout tangentielle: ce fait
s’exprime par la relation dz: dy = u: ¢, ¢’est-a-dire par 1'équa-
tion

dy = 0 (3)

La frontiére du fluide se compose généralement de plusieurs
lignes sans points communs. D’aprés (3), ¢ prend sur chacune
de ces lignes une valeur constante. Ces constantes sont inconnues
sauf 'une d’elles qui peut étre arbitrairement égalée a zéro.

L’équation de la conservation de 1’énergie nous donne une
condition en plus sur les lignes libres. On aura

o p o i b e ot

La pression p(z, y) sur ces lignes est égale & la pression cons-
tante a l'extérieur du fluide. On obtient, par conséquent, en
choisissant convenablement I'unité du temps la condition non
linéaire suivante sur les lignes libres:

s (= 1 (problémes de Helmholtz)

Y (= 2gy + const. (probleme des ondes) (5)

Changement de variables. Les conditions ¢ = a des constantes
permettent de substituer par un changement de variables un
domaine connu au domaine inconnu primitif.

Prenons dans le cas irrotationnel ¢ et ¢ comme variables
indépendantes et u, ¢ comme inconnues. Cette transformation
est légitime sous ’hypothese que le déterminant fonctionnel

o + @y = Yo+ ¥, = |f(a) 2

ne s’annule pas.
Nous aurons: 1° dans le cas du jet et des ondes irrotationnelles
dans un canal & profondeur finie, comme image du champ du
mouvement, une bande dans le plan
segment @ f, segment & f: () < { < const., dont la largeur n’est
. pas donnée; 20 dans le cas d’un sillage
B on aura un plan f entaillé le long de
axe réel l’axe des ¢ positifs. Remarquons que
Fig. 4. I'image des points de détachement des
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lignes libres est inconnue; 3° enfin, dans le cas des ondes dans
un canal de profondeur infinie, on aura pour domaine-image
un demi-plan f. 7

La correspondance entre les plans z et f est une représentation
conforme. On prévoit donc toute Pimportance de la théorie des
fonctions analytiques pour nos problemes. Sans vouloir sous-
estimer le role de cette théorie, je voudrais attirer votre attention
sur une transformation non-conforme qui permet également
d’introduire un domaine connu. Il suffit pour cela de prendre
et { comme variables indépendantes et de considérer y = y(zx, §)
comme nouvelle inconnue. (On suppose, bien entendu, ¢, 7= 0).
Cet artifice a été récemment utilisé avec succés par M. FrRIEDRICHS
dans le cas du jet (I. ¢., p. 117), et, indépendamment, par
Mme DusreiL-JAcoriN! dans le probléme des ondes rotation-
nelles. Il me parait utile de signaler ces transformations non-
conformes aux hydrodynamiciens qui pourraient avoir de
Pintérét a rechercher des artifices analogues dans des problémes
a trois dimensions.

Les transformations indiquées plus haut permettent de ramener
le probléme des ondes & un probléme non linéaire « aux limites »
aux frontiéres données. En effet, en considérant, pour fixer les
idées, le cas d’un canal de profondeur finie, on aura sur le bord
supérieur de la bande 0 = { < const. la condition (5) écrite
dans les nouvelles variables. Sur le fond (¢ == 0) la condition aux
limites sera particulierement simple, puisqu’il suffira d’écrire
que la vitesse y est horizontale (¢ == 0) partout. Ainsi le probléme
des ondes se réduit en principe & un probléme aux limites non-
linéaire dans un domaine donné. Il est nécessaire toutefois de
signaler une difficulté tout & fait spéciale de cette question:
Le domaine de la bande n’est pas un domaine borné. Cette difficulté
ne se présente pas d’ailleurs dans la théorie des ondes périodiques 2,

qui est, pour cette raison, plus développée que la théorie de l'onde
solitaire 3.

1 M.-L. DUBREIL-JACOTIN, Sur la détermination rigoureuse des ondes périodiques
d’ampleur finie. Journal de Mathématiques, 1934.

2 T. LEvi-CiviTA, Détermination rigoureuse des ondes permanentes d’ampleur finie.
Math. Ann., t. 93, 1925, p. 264. — D. J. STrUICK, Détermination rigoureuse des ondes
irrotationnelles permanentes dans un canal a profondeur finie. Math. Ann., t. 98, 1927,
p. 595.

3 A. WEINSTEIN, Sur la vitesse de propagation ‘de I’onde solitaire. Rend. d. R. Acc. d.
Lincei, 1926.
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Considérons maintenant ’effet d’un changement de variables
pour les problémes de Helmholtz. Il est important de se rendre
compte que ce changement ne ramene pas ces questions & des
problemes usuels aux limites. En effet, examinons par exemple
plus en détail le probleme du jet symétrique. 1l suffira de considé-
rer la partie supérieure du mouvement. Son image sera dans le

plan f = ¢ + iy une bande limitée par les droites ¢ =0, ¢ = p,g .
la constante w n’étant pas donnée. Signalons que pr désigne le
débit (inconnu) du jet.

Le probléme fondamental ou probléme de Helmholtz* qui se pose
pour la fonction z (f) peut étre énoncé dans le cas du jet comme
1l suit:

Transformer conformément la bande 0 < ¢ < g—g du plan f

en un domaine D du plan z = x + 1y de sorte que soient réalisées
les conditions suivantes: D doit étre limité par I'axe des x, par une
ligne (parov @) donnée, joignant le point z = — oo @ un point
z, == 1y, et par une ligne libre non donnée h qui se détuche de z,.
En chacun des points de cette ligne la transformation cherchée
doit conserver les longueurs (c’est-a-dire que 1’on doit avoir
| dz/df | = 1 sur ).

Une dilatation convenablement choisie permet d’introduire,

au lieu de la bande 0 = ¢ < p.%, la bande B: 0 < 4 < T (fig. 4).

On aura alors (en conservant les notations) sur le segment A du
plan f, au lieu de la condition isométrique | dz/df| = 1, la condi-
tion quasi-isométrique | dz/df | = p.: la transformation cherchée
multiplie les longueurs par une constante positive . inconnue.
Le probléme ainsi posé par la théorie de Helmholtz se distingue
nettement du célébre probléeme de représentation conforme
énoncé par Riemann, qui ne traite que la représentation d’un
domaine donné sur un domaine donné.

Bien des années avant que ne fut abordée la question de
I’unicité et de ’existence des solutions des problémes posés par
la théorie de Helmholtz, M. Levi-Civita a donné la solution

1 Signalons que Helmholtz, Kirchhoflf, ainsi que plusieurs autres savants, se sont limités
depuis 1868 jusqu’au début du X Xe giécle & des exemples trés particuliers. Encore en
1907, M. Levi-Civita signalait le fait que le probléme fondamental dépassait les moyens
de I’Analyse de cette époque.
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(trés perfectionnée par M. Virrar?!) du probléme suivant:
Déterminer dans la bande B la famille des fonctions z (f) qui
satisfont sur le segment A & la condition quasi-isométrique
| dz/df | = .

Aucune condition n’est imposée dans ce probleme aux valeurs
de z(f) sur le segment @ du plan f. M. Levi-Civita substitue donc
au probléme de Helmholtz le probléme de la recherche de 'inté-
grale générale fournissant la solution indéfinie (ou indéterminée)?2.

Posons

dzldf = 1w = y.ei“’ = pe Tt . (@ = 0 + i7) (6)

La fonction o sera réelle sur le segment A. Or toutes les fone-
tions w(f) réelles sur A peuvent étre explicitement exprimées
sous forme de séries de certaines fonctions élémentaires g, (f)

connues: on aura, d’aprés M. Levi-Civita, o(f) = >\c,g,(f) ou
1

les coefficients ¢, sont arbitraires. On peut aussi écrire la fone-
tion o (f) sous forme d’intégrale indiquée par M. Villat et géné-
ralisant celle de Poisson. Cette intégrale dépend des valeurs
arbitraires de 6 sur le segment @ du plan f. Chacune de ces
fonctions » détermine une fonction correspondante z(f) satis-
faisant a la condition quasi-isométrique sur A. En effet, la formule
(6) nous donne par une quadrature 'intégrale générale cherchée

]:dz ]: df f .
z—z(,:'/:ﬁdf_——!/;v—):@fe‘w(f)df. (7)
fo o fo

La paro1 correspondante au segment @ dépend du choix de la
fonction arbitraire « et ne peut étre donnée a priori. 1’ impor-
tance de I'intégrale générale est évidente: La solution d’un
probléme de Helmholtz, si elle existe, correspondra a un certain
choix de la fonction w(f). De plus, I'intégrale générale permet
de prévoir toutes les singularités qui pourraient survenir.

Nous allons maintenant revenir sur le probléeme fondamental

1 T. LEVI-C1vITA, Scie e legge di resistenza. Rend. d. Circolo Mat, di Palermo, t. 23,
1907. — H. ViLraT, Sur la résistance des fluides. Ann. de I’Ec. Normale, 1911, p. 203.
2 M. D. RIABOUCHINSKY a Proposé pour cette question le nom de « probléme mixte
direct ». Une nouvelle solution, basée sur une formule de M. Signorini, en a été donnée
par M. B. DEMTCHENKO, Problémes mixtes harmonigues, Paris, Gauthier-Villars, 1933.
Le probléme de Helmholtz pourrait &tre désigné comme «probléme mixte inverse »,

mais cette dénomination a été déja employée, I. c., pour un probléme qui ne diftére pas
essentiellement du « probléme direct ».

L’Enseignement mathém., 35=¢ année, 1936.
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énoncé plus haut et aborder la question de I'unicité de la solution.
On s’apercoit immédiatement que les méthodes classiques de la
théorie de la représentation conforme, par exemple le lemme de
Schwarz, ne donnent aucun résultat. Aussi la question de I'unicité
sera meme plus ardue que le théoreme d’existence. Posons
d’abord le probléme de I'unicité infinitésimale * : Démontrer qu’il
n’existe pas de solution infiniment voisine d’une solution donnée,
c¢’est-a-dire de solution correspondante & la méme paroil donnée,
mais différente infiniment peu par la forme de la ligne libre.

Soit f(z) la solution supposée donnée, f(z) une solution infini-

ment voisine. Formons la variation 3f = f(z) — f(z). Le théo-
réme de l'unicité infinitésimale affirme que 8f s’annule identique-
ment.

La variation df vient d’étre définie dans le domaine D de la
solution supposée connue. A ce domaine correspond d’une
maniére biunivoque et conforme la bande B du plan f. On peut
donc considérer 8f comme fonction de f. Nous. obtiendrons
d’apres la définition de la variation &f une expression générale
de cette fonction en faisant varier, dans la formule (7), f pour
une valeur fixe de z. On obtient ainsi I’équation

i
_ Of 3w
0= /w a
¢’est-a-dire
{ o log w
Sf:w/—wg—df. (8)
fo

En dérivant cette derniére équation 2 par rapport a f on obtient
la relation fondamentale entre 3f et & log w:

a(3f) dlogw.,

1 A. WEINSTEIN, Sur 'unicité des mouvements glissants. C. R., 1923, p. 493. — Sur
les jets liquides & parois données. Rend.d. R. Acc. d. Lincei, 1926, p. 119.
2 On pourrait envisager aussi une variation infinitésimale des parois. Dans ce cas on

aurait au lieu de (8) I’équation

( 7/
if = w fil—ofwdf — i3y (8"
fo

(o 8yg désigne la variation du point de détachement), mais la relation fondamentale (9)
ne changerait pas de forme.
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Cette formule qui n’est qu'une identité & I'intérieur de la
bande B, nous donne, en vertu de la condition quasi-isométrique,
une condition aux limites pour la variation 8f = 8¢ + 3¢ sur .
La partie réelle de (9) se réduit sur le segment A & la condition
lingaire

d;8n¢)~%3¢:—810gu (dn = d{) . (10)

La variation inconnue de la constante quasi-isométrique

y figure explicitement au second membre. On a d’ailleurs

%g = ;LI—C;—S—I = pc ou ¢ désigne la courbure de la ligne libre de

la solution supposée donnée.

Il est important de remarquer que, jusqu’a présent, nous ne
nous sommes pas servi de I’hypotheése que la solution infiniment
voisine correspond aux mémes parois que la solution donnée.
La condition (10) est indépendante de cette hypothese. L’in-
fluence de l'invariance des parois sur une variation éventuelle
des lignes libres nous est pour le moment profondément cachée.
En raison de cette difficulté caractéristique du probléme nous
ne possédons sur 2 d’autre condition que celle qui est donnée par
(10). Cette équation est une condition intrinséque aux limites;
elle a lieu indépendamment des conditions imposées sur les
autres parties de la frontiére.

Ces derniéres conditions sont trés faciles & établir. En prenant

un point z fixe sur la paroi donnée on aura [ = ¢ - i%,
f= ¢+ 1T ¢est-a-dire
S¢ = 0 . (11)

La méme condition sera évidemment valable sur Paxe réel,
qui joue le rdle d’une paroi.
A ces conditions s’ajoute la condition de détachement

’

~—d£fcp¢) = 0 pour f = f, (12)

qui est restée longtemps cachée, bien qu’elle dérive de I'identité
fondamentale. La condition (12) exprime le fait que la ligne
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libre variée se détache du méme point z, que la ligne supposée
donnée.

Notre but est de démontrer que I’ensemble de ces conditions
aux limites (10), (11) et (12) a pour conséquence I’équation

8f = 0 (Probléme de Uunicité infinitésimale, ou Probléme I) .

Ce but n’a pu étre atteint que par un détour: Faisons 'hypo-
these que la variation inconnue du est égale a zéro. On obtient
alors un nouveau Probléme I1 qui est plus simple que le Pro-
bléme I, mais dont le caractére est artificiel. En effet, en posant
a priort Sy = 0, on se limite & la considération d’une classe
particuliere de solutions infiniment voisines de la solution
donnée. Ce sont les solutions, auxquelles correspondent non
seulement les mémes parois, mais aussi la méme constante quasi-
1isométrique p. Cette restriction est tout a fait arbitraire, car w
n’est pas donné. L’étude du Probléme 11 (d’unicité infinitésimale
au sens restreint) sera justifiée uniquement par son utilité pour
la résolution du Probleme. I.

Désignons, pour abréger ’écriture, la variation pd¢ dans le
Probleme II par 3. La fonction harmonique 8 satisfait dans la
bande B aux conditions aux limites qui s’obtiennent en posant
du = 0 dans les conditions du Probléeme I. On aura

B = 0 surle segment @ et sur ’axe réel (13)
g—f = ¢ sur le segment A .. (14)

Le Probléeme II consiste & démontrer que 8 est identiquement
nul. La fonction ¢ == c¢(p) y désigne comme précédemment la
courbure de la ligne libre de la solution dont nous avons admis
Iexistence. En général ¢ ne sera pas une fonction explicitement
connue, mais l'intégrale générale du probléme nous donne des
renseignements précieux sur ’allure de la ligne libre correspon-
dant & une paroi donnée. Ainsi on sait, par exemple (Théoréeme
de M. Boggio), que cette ligne sera convexe si la paroi est
concave. Ces renseignements permettent de formuler les résul-
tats sur 'unicité en n’utilisant strictement que les données du
probléme.
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La condition (13) parait & premiére vue étre identique & celle
que Fourier a étudié dans la Théorie de la Chaleur. En réalité
elle s’en distingue nettement par le signe de la fonction c: ce
signe, qui est toujours négatif dans le cas de la Théorie de la
Chaleur, est, par contre, toujours positif dans le cas le plus
important de la théorie des jets, celui des jets & parois concaves
vers le courant.

En tenant compte des conditions aux limites on obtient par la
formule de Green pour P I’équation |

SV * GO ety = [eprar=o.

Le premier membre de cette équation serait dans le cas de
Fourier la somme de deux quantités positives. On aurait donc
immédiatement B = 0. Or, dans notre cas ce premier membhre
est la différence de deux grandeurs positives, de sorte que I’équa-
tion (15) ne semble nous donner aucun renseignement sur .

On a réussi quand méme & utiliser I’équation (15) pour démon-
trer que B s’annule identiquement pour certaines classes de parois.
Depuis la premiere démonstration de ce théoréme en 19231
MM. Hamer? WeyL? et Friepricas? ont successivement
donné des démonstrations sous des hypothéses de plus en plus
générales. Le but de ces démonstrations est de prouver que le
premier membre de (15) pris en lui-méme, est toujours positif,
sauf pour § = 0. En 1933, M. Friedrichs a réussi & mettre ce fait
en évidence en transformant le premier membre de (15) en une
somme de deux carrés. La transformation de M. Friedrichs est
valable dans tous les cas ol se trouve vérifiée la condition sui-
vante: 1l existe une fonction harmonique U qui ne s’annule
jJamais dans le domaine D et qui satisfait sur A & la condition
intrinseque (14) du Probléme I1: dU/dn = cU. En admettant

1 A. WEINSTEIN, L. ¢, 114. — Ein hydrodynamischer Unitatssatz. Math. Zeitschrift,
t. 19, 1924, p. 265. .

2 G. Hamer, Uber einen hydrodynamischen Unitatssatz des Herrn Weinstein. Résumés
des Conférences du Deuxiéme Congrés international de Mécanique appliquée, Ziirich, 1926,
p. 76. — Ein hydrodynamischer Unitatssatz. C. R. du Deuxiéme Congrés international de
Mécanique appliquée, Zurich, 1927.

3 H. WzvyL, Strahlbildung, nach der Kontinuititsmethode behandelt. Gottinger
Nachrichten, 1927, p. 227. .

4 K. FriepricHs, Ueber ein Minimumproblem fir Potentialstrommungen mit
freiem Rande. Math. Ann., t. 109, 1933, p. 60.
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Pexistence d’une telle fonction on aura en posant dans (15)
B = Uy (principe de variation multiplicative de Jacobi) I’équa-
tion

(U + n)dedy =0 (16)

o
B

qui donne immédiatement ’équation B = 0.

Examinons maintenant la question de I’existence de la fonction
U de M. Friedrichs. On vérifie immédiatement, par différentia-
tion !, que les composantes de la vitesse u = e cos 0 et ¢ = €T sin 0
satisfont a la condition (14) sur A. Il suffit donc de s’assurer
qu'une composante quelconque de la vitesse U =: au + bo
(a® 4+ 0* = 1, a et b étant constants) ne s’annule pas dans D,
pour en déduire I’équation B8 = 0. Par conséquent le procédé de
M. Friedrichs démontre I'unicité infinitésimale au sens restreint
pour une classe tres vaste de parois, en particulier pour toutes
les parois concaves, pour lesquelles la variation totale de la
direction de la tangente («courbure totale de la paroi») n’est
pas supérieure a .

Considérons dorénavant uniquement des parois pour lesquelles le
Probléeme auxiliaire 11 est supposé résolu, c¢’est-a-dire pour les-
quelles le théoréme d’unicité infinitésimale au sens restreint est
supposé démontré. (Nous ne nous préoccupons pas de la question
encore non tranchée de savoir quelles sont toutes les parois pour
lesquelles ce théoréme est vrai). La condition de détachement (12)
permet alors de démontrer pour les mémes parois I'unicité infini-
téstimale (Probleme I) sans aucune restriction arbitraire. Cette
réduction du Probleme I au Probléeme II a été longtemps une
difficulté principale de la théorie. Le temps me manque pour
donner des détails de cette réduction qui a été effectuée d’abord
pour des parois concaves 2. La démonstration donnée dans ce cas
peut étre interprétée de la maniére suivante: Si une variation
quelconque de la paroi donnée conserve la direction de cette
paroi au (nouveau) point de détachement z, + 3z, = 1(y, -+ dy,),
le signe de la variation du sera égal au signe de la variation 8y,

1 Cette simple démonstration des équations du/dn = cu et dv/dn = cv m’a été
communiquée par M. C..Jacob.

2 A. WEINSTEIN, Sur le théoréme d’existence des jets liquides. Rend. d. R. Acc. d.
Lincet, 1927, p. 157.
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du point de détachement. (Cest-a-dire que le débit augmente
avec Dorifice). Par conséquent I'invariance de la paroi implique
égalité dp. = 0 et on retrouve ainsi pour le Probleme I les
conditions aux limites du Probléme II. Récemment, M. LERAY
a étendu ces résultats aux parois non concaves en introduisant
dans le Probléme I au lieu de l'inconnue 3¢ la fonction

B* = 3¢ 4 <LIJ ~7—r2—> Slog w. On a pour B* les conditions aux
limites suivantes qui se déduisent de (10), (11) et (12):

%
ddi = ¢B* sur le segment A (107)
B* = 0 sur le segment @ (117)
B¥ = — T_; 3 log u. sur I’axe réel (11")
% &
ag* _ ap* _ au point de détachement f, . (12')

de — ' d¢

Les conditions (12’) nous montrent ’existence d’une ligne
B* = 0, différente du segment @, passant par le point de détache-
ment. Trois cas pourraient alors se présenter: cette ligne pourrait
rencontrer soit @, soit ’axe réel, soit A. Dans le premier cas on
trouverait immédiatement 8* = 0. Dans le second cas on aurait
du. = 0 -et, par conséquent, B* satisferait aux conditions du
Probléme II, ce qui donnerait de nouveau g* = 0. Enfin, dans
le troisieme cas, la fonction B* satisferait aux conditions aux
limites du Probléeme II sur les frontiéres d’un certain domaine
partiel B* de B et on arriverait a la méme conclusion: B* = 0.
Il va sans dire que le Probléme 11 pour le domaine B* ne peut
plus étre interprété comme un probléme d’unicité infinitésimale.

Je me suis jusqu’a présent limité & un aper¢cu du probléme de
Punicité infinitésimale. J’aborde maintenant la question de
Pexistence des solutions des probléemes posés par la théorie de
Helmholtz. Pour des raisons qui apparaitront bientdt, cette
question doit étre traitée avant le probléme de I'unicité absolue
(unicité dans le sens usuel de ce mot) L.

1 Signalons que M. Friedrichs (1. ¢c., 117) a démontré I’unicité absolue au sens restreint,
c’est-a-dire en supposant w fixe. La solution supposée donnée fournit dans ce cas le
o . . & 2 2
minimum absolu de I'intégrale _/ f(dgx + -;y -+ 1)dxdy, car la seconde variation de cette

D
expression est égale & la moitié du premier membre de I’équation (16) ou (15).
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- Les théorémes d’existence ont été démontrés par des procédés

de continuité. Nous avons vu que la recherche d’une solution
pour des parois données se rameéne en principe & la recherche
d’une fonction inconnue o (f) appartenant a la classe des fonc-
tions étudiées dans la théorie de I'intégrale générale. Les fonec-
tions de cette classe dépendent en général d’une infinité de para-
meétres. Ces parametres sont les coefficients arbitraires des séries
de M. Levi-Civita ou bien les coefficients de Fourier de la fonction
arbitraire qui intervient dans l'intégrale de M. Villat. Le pro-
bleme de I'existence est donc équivalent a la détermination de
ces parametres.

Considérons d’abord le cas d’une parov polygonale donnée.
Désignons ses sommets par z, = 1Y, 21, 22, -, 2 (2p = X, + WY)-
M. Cisorri a démontré en 1908 ! que la fonction w ne dépend
dans ce cas que d’un nombre fint de parametres o, oy, ...y Koy
en nombre égal & celui des coordonnées des sommets. L’ensemble
des valeurs que peuvent prendre ces parametres peut étre
représenté par les points d'un certain domaine d’un es-
pace a 2n + 1 dimensions. Les coordonnées des sommets:
Yoy L1y Y1 ey Lns Y, SONt des fonctions explicitement données du
point oy, Oy, ..oy 0o,y - L théoréme d’existence affirme qu’il
existe un ou plusieurs points («) correspondants a des valeurs
des (z,, y,) données.

Ce théoréme a été démontré par la méthode de continuité
classique 2. Le temps me manque pour donner un apercu de cette
méthode, employée pour la premiere fois, en 1874, dans un pro-
bleme de représentation conforme, par le mathématicien bernois
ScurLArii. Il nous suffit pour les applications de savoir qu’elle
fournit I’énoncé de conditions suffisantes pour assurer I’existence
des solutions d’un nombre fini d’équations transcendantes, telles
que

.%‘h = fL’k (0(1, 0(2, cie a2n+1)

(k =1, 2, ..., n)
yk - yk(ala Bo, «ov sy O£2n+1)
Yo = Yo (o5 %oy «or) “2n+1)

1 U. Cisorri, Vene fluenti. Rend. d. Circ. Mat. d. Palermo, t. 25, 1908, p. 145.
2 A. WEINSTEIN, 1. ¢., p. 118.
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ou le nombre des équations est égal au nombre des parameétres.
La démonstration par continuité se réduit dans notre cas,
comme dans toutes les applications, & établir les théoremes
sutvants :

1. Le déterminant fonctionnel

b(yo, Zys Y15 -0 xna yn)

b((xl, g 5 «-e s 0(2n+1)

est toujours différent de zéro. Ce théoréme est vrai ici puisqu’il
exprime le théoreme de I'unicité infinitésimale.

2. Existence des limitations a priori. On peut affirmer a prior:
que les parametres inconnus oy, o, ..., %o, 4 restent entre cer-
taines limites données, si 'on se donne les limites pour les valeurs
de (x,,y,). Ce fait peut étre déduit, pour toutes les parois &
courbure totale non supérieure & =, des formules explicites de
M. Cisotti, qui donnent les (z;, y,) en fonctions des ay,.

La méthode de continuité permet de déduire de 1. et 2. que
notre probléme du jet a paroi polygonale admet au moins une
solution. 11 est aisé & prévoir que cette solution sera unique dans
le cas banal ou tous les sommets z,, z;, ..., 2, se trouvent sur la
méme droite parallele a ’axe réel (paroi rectiligne). Ce dernier
fait s’ajoutant aux résultats précédents permet de déduire
Vunicité absolue de la solution pour une paroi polygonale quel-
conque . En effet on peut démontrer par un raisonnement
classique que l'existence de deux solutions différentes pour une
méme parol donnée aurait pour conséquence l’existence d’un
point de ramification des solutions. Or, ce fait serait en contra-
diction avec le théoréme de 'unicité infinitésimale.

En résumé lexistence et U'unicité de la solution est établie pour
le probleme du jet syméirique a parot polygonale donnée, de cour-
bure totale inférieure a .

L’existence des solutions correspondantes aux parois curvilignes
a pu étre établi par un passage @ la limite 2, en approchant la

1 J. LErRAY et A. WEINSTEIN, Sur un probléme de représentation conforme posé par
la theorle de Helmholtz. C. R., 1934 p. 429.
2 A. WEINSTEIN, Zur Theorle der Flu331gkeltsstrahlen Math. Zeitsch., t. 31 1929,
p. 424,
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paroi donnée par des parois polygonales. Toutefois, ce procédé ne
fournit pas I'unicité absolue de la solution.

Les problémes posés par la théorie de Helmholtz, en particulier.
le probleme du sillage en présence d’un obstacle curviligne, ont
été récemment I'objet d’une étude directe, qui fait intervenir la
théorie récente de la résolution des équations fonctionnelles non
linéaires. La différence entre cette nouvelle méthode et la pré-
cédente est peut-étre plus apparente que réelle. En effet, la
résolution de ces équations se fait elle-méme en raisonnant par
continuité dans un domaine fonctionnel. Les théoréemes dans le
domaine fonctionnel s’obtiennent par un passage a limite
préalable & partir des théoremes relatifs a ’espace a un nombre
fini de dimensions.

Je me permets de donner quelques indications trés sommaires
sur ce développement tout a fait récent de la théorie. Nous
avons vu & plusieurs reprises que la résolution d’un probleme
quelconque de Helmholtz revient a la détermination de la
fonction o (f) = 0 + i1 introduite par M. Levi-Civita. La
partie réelle 6 de cette fonction donne la direction de Ja vitesse.
Considérons un obstacle curviligne donné. Sa courbure d0/ds sera
une fonction ¢ (0) donnée de la direction 6 de la tangente &

Pobstacle. On aura donc sur le segment ® du plan f I’équation
df/ds = ¢(0), c’est-a-dire

db _ db ds ds

= c(ﬁ)ngP.

do &5 dg 17)

On peut exprimer ds/dp par les fonctions (inconnues) 6 et =.

Par conséquent on aura une relation de la forme j—q = h(6, 7, 9)
¢

ou & est une fonction donnée. L’équation (17) peut étre écrite
alors de la facon suivante

— = h(0, 7, @) c(0) . (18)

Cette équation, indiquée en 1907 par M. Levi-Civita, lie sur @
les parties réelle et imaginaire de la fonction o correspondante a
un obstacle donné. M. Villat a proposé en 1912 d’éliminer 0
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en se servant de la formule de Green-Dini. En 1931, M. QUARLER1 !
a proposé d’éliminer, toujours en se servant de la méme formule,
la fonction © et de ramener ainsi étude du probléme & la réso-
lution d’une équation intégrale non linéaire. Malheureusement
son procédé a donné lieu & des objections et il a fallu y apporter
plusieurs modifications essentielles.

Je me permets d’écrire les équations finales auxquelles se
raméne le probléme du sillage dans le cas le plus simple 2:
Pobstacle donné sera un arc de cercle de rayon unité. On aura
dans ce cas c(0) = 1.

Il est plus commode d’introduire dans (18) au lieu de f une
nouvelle variable indépendante ¢ en représentant conformément
le plan f (entaillé le long de ’axe des ¢ positifs) sur un demi-cercle
de rayon 1 dans le plan { = pe!s. Dans cette correspondance
I'obstacle aura pour image la demi-circonférence |¢| = 1
(Transformation de M. Levi-Civita). On aura sur cette demi-
circonférence la condition suivante déduite de ’équation (18)

B e Y gl
de dn = H8l91€

(19)

\

ou g (o) désigne une fonction explicitement connue et ou w joue
le role de la constante quasi-isométrique. La formule classique
de Green-Dini permet de transformer cette condition en une
équation intégrale non linéaire. Sous sa forme définitive cette
équation peut s’écrire comme il suit

7
t(6) = qu(c, o*) e ) g x| (20)
0

L’inconnue ¢(c) est liée d’une facon élémentaire a la fone-
tion 7. Le «noyau» N de cette équation est positif. Le probléme
consiste & résoudre cette équation et & montrer qu’on peut

1 A. QuarLERI, Sulla teoria della scia nei liquidi perfetti. Caso del cilindro rotondo.
Rend. d. R. Acc. d. Lincei, 1931, p. 332. Une autre tentative de résoudre les problémes
de Helmholtz a été faite par M. C. SCHMIEDEN (Ingenieur-Archiv, 1932, p. 368, 1934,
p. 373), mais son raisonnement contient des erreurs.

2 A. WEINSTEIN, Sur les sillages provoqués par des arcs circulaires. Rend. d. R. Acc.

il. Lincei, 1933, p. 83, — Sur les points de détachement des lignes de glissement. C. R.,
933, p. 324,
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disposer du parametre u de maniére a avoir dans le plan z un
arc donné du cercle de rayon 1. Les premiers résultats concrets
obtenus par cette nouvelle voie étaient les suivants: Le théoréme
d’existence a été démontré pour des ares inférieurs a 40°. Quelque
temps apres, M. Leray a repris la question du sillage non seule-
ment pour les arcs de cercle, mais pour des obstacles curvilignes
quelconques. M. Leray a démontré que les équations du probléme
(par exemple I’équation (20)) appartiennent & la classe d’équa-
tions fonctionnelles étudiées par lui-méme en collaboration avec
M. ScHAaUDER 2. Leur méthode, qui est précisément une sorte
de méthode de continuité dans le domaine fonctionnel, résout
la question de l'existence indépendamment de la question de
Punicité des solutions. Je dois me borner a citer une partie des
résultats de M. LErAyY 3:

Le théoréme d’existence dans la théorie des sillages est établi pour
toute courbe-obstacle, dont les points ont toujours des ordonnées
différentes, sauf si le segment qui les joint appartient a la courbe.

Pour étudier I'unicité (infinitésimale et absolue) 1l faut former
les « équations aux variations » des équations fonctionnelles. Il
est aisé a prévoir qu’on retrouve par cette voie des problémes
d’unicité du genre étudié plus haut. M. Leray démontre 'unicité
absolue des sillages symétriqgues correspondant a des obstacles
symétriques ainsi que 1’'unicité du sillage correspondant a un
obstacle disymétrique convexe, tous ces obstacles appartenant,
bien entendu, a la classe définie plus haut.

Dans le cas particulier du cercle, le théoreme d’existence et
I’unicité de la solution ont été démontrés par M. Leray pour un arc
quelconque: la grandeur de ’arc-obstacle est une fonction crois-
sante de w. M. JacoB a récemment retrouve cette propriété de
monotonie de I’arc-obstacle par une voie élémentaire 4. Signalons

1 M. J. SEKERI-ZENKOWITCH, a I’attention duquel ont échappé les travaux cités dans
la note précédente, a repris récemment (C. R. de l’ Académie des Sciences de 'URSS, 1934,
p. 373; 1935, p. 151) I'étude des problémes de Helmholtz. Toutefois cet auteur omet
de traiter la question essentielle de la détermination de u.

2 J. LERAY et J. ScHAUDER, Topologie et équations fonctionnelles. Annales de 'Ec.
Normale, 1934, p. 45.

3 J. LEraY, Les problémes de représentation conforme de Helmholtz; théorie des
sillages et des proues. C. R., 1934, p. 1282 — C. R., 1935, p. 2007. — Comm. Math.
Helvetici, Vol. 8, 1935/36, p. 149 et p. 260. — J. KRAVTCHENKO, C. R., 1936, p, 276,

4 C. Jacos, Theése, Paris, 1935 ( Mathematica, 1935). '
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enfin que P'existence des solutions de I’équation (20) pour le cas
du cercle se déduit, indépendamment des méthodes de conti-
nuité, du « Fixpunktsatz » de M. Schauder *.

Le cas du cercle nous montre qu’il est possible de lever parfois
les restrictions imposées aux parois et aux obstacles. Les pro-
blémes qui se posent ainsi paraissent dignes d’attirer I’attention
des chercheurs.

J’arrive & la fin de mon bref aper¢u. A mon grand regret, le
manque de temps ne m’a pas permis d’insister davantage ni sur
des travaux aujourd’hui classiques 2, ni sur des recherches tout
& fait récentes. J'a1 diirestreindre ma tache & I’énoncé de quelques
problémes d’une théorie qui a commencé par des résultats mo-
destes, mais qui, grace aux travaux de plusieurs mathématiciens,
opére aujourd’hui dans un champ trés vaste.

1 J. SCHAUDER, Studia Mathematica, t. 2, 1930, p. 170. On peut utiliser aussi des
théoremes de M. A. HAMMERSTEIN, Nichtlineare Integralgleichungen, Acta Math. 1930,
p. 122. Signalons enfin que M. S. BRODETSKY avait dés 1922 donné d’excellentes solutions
approchées du probléme, I’obstacle étant circulaire ou elliptique. Voir p. ex. C. R. du
Deuxieme Congreés international de Mécan. appliquée. Zurich, 1927.

2 Voir, par exemple, les Traités suivants: H. ViLLAT, Apercus théoriques sur la résis-

tance des fluides (Coll. Scientia, Paris, 1920). — U. Cisorr1, Idromeccanica piana (Milano,

1921).
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