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LE PROBLÈME DE DIRICHLET 105

On démontre 1 que si l'on considère un domaine général —
ensemble ouvert — de frontière S, le balayage d'une masse dont
le potentiel, U, est continu à travers S, donne une distribution
sur 2, fx(e), dont le potentiel, égal à U à l'extérieur, est égal à la
solution du problème de Dirichlet généralisé, pour les valeurs
de U sur 2, à l'intérieur.

Grâce à l'unicité de cette solution — et non plus à la continuité
à la frontière — on démontre, en supposant 2 une surface

irrégulière S, que la distribution est unique.
Mais il y a plus. On démontre que le potentiel de la distribution

p(S) prend, en tout point p de S, comme valeur, la plus petite
limite de ses valeurs intérieures, en ce point, soit, U (p) — A. Il
est donc continu en tous les points de S où cette limite est

unique, donc égale à U (p). Ces points contiennent tous les

points irréguliers de S, et, en particulier, ceux en lesquels S

satisfait à la condition de Poincaré. Les points où il est discontinu
forment un ensemble impropre.

Par exemple, la balayage d'une masse unité concentrée en un
point P du domaine donne une distribution p. (S, P) dont le

potentiel est égal à ~—G (M, P), G (M, P) étant la fonction
de Green du domaine. Il est donc continu aux points réguliers
et discontinu aux points irréguliers.

On peut aller encore plus loin dans la voie ouverte par M. de la
Vallée Poussin par l'extension de la méthode du balayage.

IV. — Raccords avec les méthodes du chapitre I.

Ainsi que nous l'avons fait voir à la fin du chapitre I, il est
important de rechercher si les divers procédés que l'on a rappelés
dans ce chapitre, conduisent à des fonctions harmoniques
différentes ou non. Cette recherche est importante, en outre, au
point de vue suivant:

C'est que, si tous ces procédés conduisent à la même fonction
harmonique V, identique à la solution du problème de Dirichlet
généralisé, on enrichit du coup cette solution de toutes les propriétés
que ces divers procédés expriment.

i F. Vasilesco, C. R., t. 200, 1935, p. 199 et Joum., loc. cit., 1935.
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On démontre qu'il en est bien ainsil. On vient de le voir, dans
le chapitre précédent, pour la méthode du balayage. On le vérifie
pour la méthode de M. Zaremba qui apporte les propriétés dont
sa solution jouit, et qui ont été énumérées au chapitre I, en particulier

la suivante, qu'il n'est pas inutile de rappeler:
La solution du problème de Dirichlet généralisé rend minimum

l'intégrale

fff[0'+fà)'+0'\ia
Q

relative à toutes les fonctions continues u et ayant des dérivées

premières continues dans O, qui prennent sur la frontière S du
domaine Q les valeurs continues / qui définissent cette solution.

Pour d'autres procédés rappelés au chapitre I, tel que cela a
été le cas pour la méthode du balayage, il faut dissocier le

procédé de définition de la fonction V des conditions à la
frontière, et démontrer l'existence et l'unicité de cette fonction.
L'introduction de la solution du problème de Dirichlet facilite
cette tâche. Tel est le cas pour le procédé de Raynor, pour celui
de Phillips et Wiener, etc.

J'ajoute que, pour le procédé de M. Lebesgue, par des médiations

itérées, l'identité qui nous occupe a été démontrée, il y a

quelques années, par M. Perkins Ce procédé apporte une jolie
propriété de la solution du problème de Dirichlet généralisé.

Ainsi, tous les procédés envisagés conduisent à une même fonction

V, qui est la solution du problème de Dirichlet généralisé. On

pourra donc donner de celle-ci telle définition que l'on se plaira
de choisir parmi ces procédés.

Conclusion.

Nous pouvons conclure de la manière suivante: C'est que,
toutes les fois qu'un problème conduit au problème de Dirichlet
classique, pour un domaine D, ce qui implique, pour ce domaine,
une conformation particulière, ce même problème conduira au
problème de Dirichlet généralisé, si l'on envisage le domaine le

plus général, défini simplement comme un ensemble ouvert.

1 F. Vasilesco, C. R., t. 200, 1935, p. 1721, séance du 20 mai.
2 C. R., t. 184, 24 janvier 1927, p. 182.
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