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LE PROBLEME DE DIRICHLET DANS LE CAS LE PLUS
GENERAL !

PAR

M. Florin VasiLeEsco (Paris).

I[. — L PROBLEME DE DIRICHLET CLASSIQUE.

Le probleme de Dirichlet concerne les solutions de I’équation
de Laplace. Ce n’est que par extension que I'on a désigné par
ce nom un probléme analogue pour les solutions d’autres équa-
tions du type elliptique. De cette extension nous dirons quelques
mots & la fin de cette conférence.?

Comme on le sait, on désigne par le nom de fonction harmo-
nique, toute solution de I’équation de Laplace. Pour fixer les
1dées, nous emploierons ici le langage de I’espace a trois dimen-
sions. On verra, d’ailleurs, que les récents progrés réalisés dans
I’étude de ce probléeme sont dus a des notions d’origine physique,
et c’est 1a une autre raison d’employer ce langage. Le cas de
I'espace a deux dimensions est, en général, plus simple et entraine
des modifications faciles a faire.

Conformément au sous-titre de ce colloque, ains1 qu’au sujet
de cette conférence, on doit se demander quelles sont les condi-
tions propres a déterminer les solutions del’équation de Laplace.
Ces conditions ont été exprimées, & 1’origine, par 1’énoncé
suivant du Principe de Dirichlet. St D est un domaine, S sa fron-
ttére et f(p) une fonction continue sur S, il existe une fonction

1 Conférence faite le 17 juin 1935 dans le cycle des Conférences internationales des
Sciences mathématiques organisées par I’Université de Gencéve; série consacrée aux
Equations aux dérivédes partielles. Conditions propres & déterminer les solulions.

2 Cette extension se trouve dans la conférence de M. SCHAUDER.
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harmonique V (P), dans D, prenant sur S les valeurs données (p).
Autrement dit, V est continue en tout point de S, sur D + S,
si on lui attribue sur S les valeurs f(p). |

Le probléme de Dirichlet consiste & rechercher cette fonction V.

On a cru pendant longtemps que ce probleme était toujours
possible, ce qui veut dire, qu’il admettait toujours une solution,
ainsi que Paffirmait le principe de Dirichlet. On ne parvenait pas
4 la résoudre dans le cas d’un domaine quelconque, mais on
attribuait cela a I’extréme variété que présentait la notion de
domaine. C’est pourquoi on avait été amené, connaissant sa
solution dans des cas simples, tel celui de la sphére, a chercher
des méthodes de résolution pour des cas de plus en plus étendus.

Les domaines que ’on avait considérés pendant longtemps
étaient limités par des surfaces, et c’est, sans doute, & cause de
cela quun cas simple d’impossibilité, tel que celui qu’a
signalé M. ZAreMBA 1, n’avait pas été apercu, ou, s’il 'avait été,
n’avait pas été de nature a ébranler la solidité du principe de
Dirichlet.

Voici ce cas. Supposons le domaine D sphérique. V prend au
centre O une valeur déterminée. Envisageons le domaine D,
déduit du précédent, en considérant le point O comme point
frontiere, et attribuons & f(p), en ce point, une valeur diffé-
rente de celle qu’y avait la fonction V précédente. Il est facile
de voir que la fonction V, dans le cas actuel, est encore celle du
cas précédent. Elle n’est done plus continue au point frontiére O.
Le probléme est impossible.

Quelques années plus tard 2, M. LEBESGUE a fait connaitre un
exemple d’un domaine, limité par une surface, pour lequel le
probleme de Dirichlet n’est pas possible. A cet effet, il considére
le potentiel d’une masse distribuée sur un segment de longueur
unité, dont la densité, en tout point, est égale & la distance de ce
point & une des extrémités du segment, prise comme origine. La
surface équipotentielle sur laquelle le potentiel est égal a 2, par
exemple, entoure le segment et présente une pointe en origine.
Le domaine infini extérieur & cette surface, que I’on peut rendre

1 Bulletin intern. de I’ Ac. des Sc. de Cracovie, 1909, p. 199.
2 Comples rendus séances de la Soc. Math. France, t. 41, 27 nov. 1912, p. 17.
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fini, si 'on veut, en le limitant par une sphére, est tel que le
probléme de Dirichlet n’y est pas possible pour les valeurs 2 sur la
surface équipotentielle et les autres valeurs du potentiel sur la
sphére. La seule fonction possible V est le potentiel lui-méme, et
il ne prend pas la valeur Z en origine.

Ces deux exemples expriment des circonstances qui ne sont
que des cas particuliers de phénoménes généraux, que I’on verra
par la suite.

Ainsi, le probléme de Dirichlet n’est pas toujours possible, et
cette impossibilité consiste en ce que: il n’existe pas de fonction V
prenant les valeurs données en tous les points de la frontiére.

Il sera utile, pour la suite, de rappeler brievement, quelques-
unes des meéthodes de résolution du probleme de Dirichlet.

Méthode du balayage de Poincaré . — Grace a la formule bien
connue

PoincarE ramene la recherche de la solution de ce probléme a
celle de la fonction de Green du domaine, G (P, Q), et, celle-ci,
au moyen d’une inversion du pdle comme centre, & celle de la
fonction harmonique V a 'extérieur d’une surface C, réguliére
a I'infini et prenant les valeurs unité sur C: c¢’est le potentiel de
la distribution d’équilibre sur le conducteur C. Cette notion de
potentiel conducteur sera généralisée plus tard et jouera un role
fondamental.

Pour trouver cette fonction V, Poincaré considere, d’une part,
une sphére contenant a I'intérieur C, et sur elle une distribution
uniforme de masse dont le potentiel est égal & I'unité a I'intérieur
et, d’autre part, une suite de spheres extérieures a C, mais telles
que tout point extérieur a G soit intérieur & 'une d’elles, au
moins. Il range ces spheres en une suite, de facon que chacune
d’elles y figure une infinité de fois, et procede au balayage de la
masse qui se trouve dans chacune d’elles, successivement. Cette
opération se traduit par ce que le potentiel de la masse totale,

1 Sur les ¢quations aux dérivées partielles de la Physique mathématique (Amer. Jour.
of Math., t. 12, 1890).
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modifiée, diminue, & chaque stade de l'opération, et devient
harmonique dans la sphére de la suite qu’il concerne, puisqu’on
remplace la masse intérieure & cette sphére par une masse distri-
buée sur sa frontiére. En vertu du théoréme de Harnack, la suite
de fonctions ainsi trouvées a une limite V qui est harmonique.

En assujetissant la surface C & satisfaire & certaines condi-
tions — que M. Lebesgue a désignées, depuis, par le nom de
conditions de régularité ! — Poincaré montre que cette fonction
prend bien la valeur unité sur C, ce qui assure, de plus, son unicité.

Il est bon de remarquer qu’il y a, dans la méthode précédente,
deux parties: la définition d’une fonction V et ’étude de sa
continuité a la frontiére. De plus, la démonstration de 'unicité
est subordonnée aux conditions de régularité.

Méthodes relevant du principe du minimum. — Il y a tout un
groupe de telles méthodes 2. Leur but était de redresser les erreurs
contenues dans le raisonnement bien connu de Riemann, erreurs
qui ont été mises en évidence par Weierstrass et M. Hadamard 2.

Il suffira de rappeler ici deux de ces méthodes: celles de
M. Zaremba ? et celle de M. Lebesgue °.

Voici la méthode de M. Zaremba. Désignons par Q un domaine
général qui est simplement un ensemble ouvert d’un seul tenant,
et soit X sa frontiére. Considérons I'ensemble F des fonctions
continues dans Q 4 X et prenant sur X les valeurs données f,
fonctions admettant des dérivées premiéres continues dans Q.
Supposons que l'intégrale

A= SLTIGET () (e

existe pour elles, car, d’aprés I'objection de M. Hadamard, elle
pourrait bien n’exister pour aucune de ces fonctions. Soit I le
minimum de ces intégrales.

1 C. R. del’Ac. des Sc., t. 178, 21 janv. 1924, p. 349.

2 Voir pour Ia bibliographie le fascicule de M. Bouligand : Fonctions harmoniques, etc.,
du Mémorial des Sciences mathématiques.

3 WEIERSTRASS, Werke, Bd. 2, p. 49; HApAMARD, Bul. Soc. math. Fr., t. 34, 1906,
p. 135.

4 Loc. cit.

e

5 C. R. Ac. Sc., t. 154, 1912, p. 335; t. 155, 1912, p. 699 ; Rendiconti Circ. mat. di
Palermo, t. 24, 1907, p. 371.
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On appelle minimisante, une suite de fonctions ¢; de F dont
les intégrales tendent vers I.

Assignons & tout point M de Q un nombre positif ¢, inférieur
a la distance de M & X et soit

477:pr/'] 0; dzx dy dz

(oy)

F. (M

l

(py) étant la sphére de rayon p, et de centre M.
M. Zaremba démontre que

La suite F;(M) tend uniformément — sur tout ensemble
fermé E de points M, pour lesquels p,, admet une limite inférieure
plus grande que zéro — vers une fonction harmonique V, dans
Q, dont I'intégrale est égale a I.

V est indépendante du choix des p,,.

S’1l existe une fonction u de E dont I'intégrale soit encore
égale & I, on aura u = V.

V est, & une constante additive pres, la solution du probléme
sulvant:

On cherche une fonction harmonique U dans £, pour laquelle
I’intégrale existe et est telle que

o ) k
SIS ey 53t @)aa =L S (-5 + )0

pour toute fonction harmonique & dans €, et toute fonction u
de E, les intégrales A existant pour £ et u.

Si un point p de X peut étre pris pour sommet d’un cone de
révolution de hauteur non nulle, extérieur a Q, V tend vers f en
ce point.

On distingue également ici, comme dans la méthode du balayage,
les deux parties: le procédé de définition de V et la recherche de
sa continuité & la frontiére. Mais 'unicité de V n’est plus subor-
donnée a la condition de régularité constituée par I'existence du
cone.

Voici maintenant la méthode de M. Lebesgue. On considére,
comme précédemment, une suite minimisante ¢;, mais on borne,
en valeur absolue, toutes ces fonctions, par un méme nombre,

e |
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car les fonctions ¢, peuvent ne pas avoir de dérivées premieres
sur des surfaces analytiques telles que tout domaine intérieur a
Q n’en contienne qu'un nombre fini. Soit s une sphére intérieure a
Q. On peut extraire de la suite donnée une autre suite conver-
geant uniformément vers une fonction harmonique dans s. En
prenant des sphéres successives, empiétant chacune sur la préce-
dente, et en tenant compte d’un théoréme d’'unicité?! de
M. Lebesgue — qui montre que si deux suites minimisantes
tendent vers des limites dans un domaine intérieur a €, ces
limites coincident — on voit aisément que I'on définit ainsi une
fonction harmonique V dans Q.

Pour rechercher sa continuité & la frontiére, M. Lebesgue
introduit la notion de fonction barriére 2, qui s’est montrée,
depuis, d’un puissant intérét dans I’étude des fonctions har-
moniques 3. Cette notion permet a l'auteur de formuler un
critere de régularité plus général que celui de M. Zaremba.

On peut faire ici la méme remarque au sujet des deux parties
que comporte la méthode.

On doit également a M. Lebesgue une autre méthode 4, par
médiations itérées, que nous regrettons de ne pouvoir exposer
1cl.

D’autres méthodes sont dues & MM. Greason, RAYNOR
Puitrirs et WIENER 6, etc.

Dans toutes ces méthodes on peut distinguer les deux parties
précédemment mentionnées.

Enfin, il y a des méthodes relevant des équations intégrales,
telles la méthode de Rosin, de Neumany, de FrREDHOLM, etc.
Ces méthodes ne sauraient nous intéresser pour notre but actuel,
car elles sont fondées sur la continuité de la solution du probléme
de Dirichlet & la frontiére.

C’est M. Lebesgue qui a formulé 7 la distinction, qu’il y a lieu
de faire, entre les deux parties, dans les méthodes de résolution
du probléme de Dirichlet. Ce fait, joint & I'exemple d’impossi-

Rendiconti (loc. cit.).

C. R, t. 155 (loc. cit.)."

KELLOGG, Bul. of the Amer. Math. Soc., nov.-déc. 1926.
C. R., t. 154 (loc. cit.). '

Annual’s of Math., vol. 23, p. 183.

Journ. math. phys. Mass. Inst. of Tech., 2me série, no 55, mars 1923, =~ 77" "
C. R, t. 178 (loc. cit.). .

L e R A
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bilité de ce probleme qu’il a donné, a conduit I’éminent auteur
aux notions fondamentales de point régulier et point trrégulier
de la frontiéere d’un domaine.

Un point frontiere sera dit régulier si la fonction V est continue
et prend la valeur f en ce point, quelle que soit la fonction /.
Contrairement, le point sera dit irrégulier.

M. Lebesgue montre de plus que le caractére régulier et irré-
gulier d’un point frontiére est local et ne dépend que de son
voisinage immeédiat de la frontiére.

Les diverses conditions de régularité que I’on avait données
dépendent des procédés employés pour définir la fonction V.
Ce fait ne présenta aucun inconvénient tant qu’il s’était agi,
comme cela a été le cas, de rechercher des domaines de plus en
plus généraux pour lesquels on put résoudre le probleme de
Dirichlet. En effet, on obtenait de tels domaines en assujettissant
leurs frontieres a satisfaire & un meéme critéere de régularité,
obtenu au moyen d’un procédé déterminé.

Toutefois, on ne saurait employer, pour vérifier le caractere
régulier des points frontiere d’un domaine, des conditions de
régularité différentes, si ces conditions correspondent a des
procédés ne conduisant pas tous a la méme fonction V.

Ce fait génant conduit & se demander si les fonctions V aux-
quelles donnent naissance les divers procédés que I’on a donnés,
sont, ou ne sont pas, différentes. A cette importante question,
nous répondrons (chap. IV) par la négative: ces procédés
conduisent tous a une méme fonction V. Dés lors, on pourra
employer indistinctement les critéres de régularité connus, pour
juger de la régularité d’un point frontiere.

Ces critéres sont des conditions de régularité suffisantes, sauf
un, di a M. Lebesgue !, qui est nécessaire et suffisant. Il a un
caraciere fonctionnel.

On peut conclure ce chapitre de la maniere suivante. Quelques-
uns des procédés que 1’on avait donnés pour résoudre le probleme
de Dirichlet définissent bien une fonction harmonique V, attachée
a des valeurs frontiéres données f, et cela dans le cas d’un domaine
général — défini simplement comme un ensemble ouvert. Mais,

1 C. R., t. 178, loc. cit.
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soit que leurs auteurs eussent pour objectif simplement la réso-
lution du probléme de Dirichlet classique, soit que les criteres
de régularité ou d’irrégularité que ’on donnait ne permissent pas
de connaitre le comportement de la fonction V en tous les points
de la frontiére, & cause de leur caractére suffisant, une telle
fonction V n’a jamais été désignée pour étre solution d’un pro-
bleme de Dirichlet plus étendu que le probléme classique,
devant remplacer celui-ci dans les cas ou il est impossible.

II. — LE PROBLEME DE DIRICHLET GENERALISE.

Cest M. N. WiENER ! qui, en 1934, donna un procédé de défini-
tion d’une fonction V, indépendamment de 'idée de résoudre le
probléme de Dirichlet classique. De plus, il caractérisa, au
moyen d’un eritére nécessaire et suffisant de nature quasi-
géométrique 2, les points réguliers et irréguliers de la frontiére,
pour ce procédé. 1l envisagea ainsi un probléme plus étendu que
le probléme de Dir.chlet classique qu’il désigna par le nom de
Probleme de Dirichlet généralisé. Son procédé constitue une
extension naturelle du probleme classique et cela permet de voir
que, lorsque celui-ci est possible, sa solution coincide avec la
fonction V donnée par ce procédé.

Il est, dés lors, naturel que I'on désigne un domaine pour
lequel le probleme classique est possible, par un nom particulier:
convenons, selon un usage déja répandu, de 'appeler domaine
normal. Par exemple, un domaine formé par un assemblage de
cubes, est un tel domaine: on le voit en utilisant, si 'on veut, le
critere de M. Zaremba.

Voict le procédé de M. Wiener.

Soient Q un domaine, borné ou non — ensemble ouvert —
2 sa frontiere, supposée bornée, et f(p) une distribution conti-
nue sur elle. Considérons d’une part, une fonction continue dans
tout l'espace, F, coincidant avec f sur X 3 et, d’autre part, une
suite €2, de domaines normaux intérieurs a4 Q et tendant vers lui.

1 J. Math. Phys. Mass. Inst, of Tech., 2™me série, n° 70, janv. 1924,

2 Ibid., n° 1, janv. 1925.

3 C’est M. LEBESGUE qui a montré la possibilité de construire une telle fonction
dans son mémoire cité du Circolo matematico.
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Si 'V, est la solution du probléme de Dirichlet dans Q, pour les
valeurs de I¥ sur sa frontiére 2, la suite des fonctions V, tend
uniformément vers une fonction harmonique V, dans toute
région fermée de €. Cette fonction est indépendante du choix
des €, et de la fonction F. C’est la solution du probleme de
Dirichlet généralisé.

M. Wiener applique tout de suite ce procédé au cas d’un en-
semble fermé borné E, en considérant le domaine infini qu’il
détermine dans l’espace et dont E, ou une partie de E est la
frontiére. Pour ce domaine, il prend f égale a I'unité. La fonction V
ainsi obtenue est appelée, par lui, potentiel conducteur de l'en-
semble E. Cest la généralisation de la notion classique pour un
conducteur. De plus, si ¢(P) est cette fonction, l'intégrale de

Gauss
c:%t‘/s.f;—:—idS

étendue a une surface contenant E a l'intérieur permet a
M. Wiener de définir la notion de capacité de 'ensemble E, comme
dans le cas classique.

Les deux notions précédentes, de potentiel conducteur et de
capacité d’un ensemble, se sont révélées fondamentales pour la
théorie des fonctions harmoniques. On le verra par la suite.

(est ainsi que, grace a elles, M. Wiener a pu donner le critere
suivant de régularité d’un point frontiére.

Sotent p un point frontiére de 0, \ un nombre positif inférieur
a Punité, v, la capaciié de U'ensemble de points non appartenant
a Q et tels que leur distance a p soit comprise entre \* et X",
Alors, p est régulier ou irrégulier selon que la série

Y1
x e

Tn
Y24 I
)\n

est divergente‘ ou convergente?l.

1 Dans le cas de I’espace & deux dimensions cette série est remplacée par la suivante:
't 2*{2 + ...+ 2’”Ym + ...; Y, €tantla capacité de 'ensemble des points non appar-
tenant A 2, dont la distance & p est comprise entre 227 et 271,
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Les points de la frontiére sont ainsi caractérisés d’une maniére
précise, et le caractére local est évident.

Mais cette précision méme impose, deés lors, la reoherche sui-
vante: Etudier la distribution des points réguliers et irréguliers
& la frontiére d’un domaine.

On a réussi a faire cette étude complétement, dans ces temps
derniers. Comme les recherches que 'on a faites sur le probleme
de Dirichlet généralisé ont, plus ou moins directement, concouru
vers ce but, nous allons en donner un apercu rapide qui aboutira
au résultat général et définitif obtenu dans cette étude.

Fonction de Green (généralisée). Si ’on considére un point
fixe Q dans Q et la solution du probleme de Dirichlet généralisé

1 1 .\ : .
pour les valenrs — = Hg Sur la frontiére, soit I'(P, Q), la fonction
1

GP, Q) = ;——F(P, Q)

sera la fonction de Green du domaine Q. De méme que dans le
cas classique, cette fonction est positive et a un pdle en Q; mais
elle ne s’annule plus nécessairement a la frontiére du domaine.

On démontre ' que: si la fonction de Green tend vers zéro sur
une suite de points de Q tendant vers p, la fonction V tend
vers [ (p)-

On conclut de la ce fait important que

Un point p de la frontiére est régulier ou irrégulier selon que
la fonction de Green tend vers zéro ou non.

Ainsi, I’étude qui nous intéresse se rameéne a celle de la fonction
de Green du domaine. On a remarqué? que l'on peut, avec
avantage ramener encore ’étude de cette fonction & celle du
potentiel conducteur. Le passage & cette derniére fonction
s’opere aisément au moyen de ’énoncé suivant:

S1 e est un ensemble fermé borné dont aucun point n’appar-
tient & Q et ¢(P) son potentiel conducteur, on a I'inégalité
1 [1 — o(P)}

r{ 1—M =GP, Q

1 BouLIiGAND, Annales de la Soc. polonaise de Math., 1925.
KELLOGG, Proc. of the Nat. Ac. of Sc., t. 12, VI, 1926 p 402.
2 F. VasirLesco, Journal de math., t. IX 1930

L’Enseignement mathém., 35=e année, 1936.
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en désignant par r le rayon d’une spheére o de centre (Q, tout
entiere dans et par M le maximum de ¢ sur elle.

On pourra utiliser cette inégalité de la maniére suivante. Un
point régulier p de X restera régulier pour le domaine infini
extérieur a la portion X  déterminée sur I’ensemble des points
n’appartenant pas a  par une sphére (r) de centre p et de
rayon r. Si la fonction de Green de ce domaine tend vers zéro
en ce point, le potentiel de X tend vers 1, et réciproquement.
(’est de I’étude a la frontiére du potentiel que ’on obtiendra
facilement des résultats sur les points frontiere d’un domaine.

Ensembles tmpropres. Ensemble réduit. Frontiére réduite . On
appelle impropre, un ensemble borné ou non, dont chaque partie
fermée est de capacité nulle.

Un ensemble est de capacité nulle en un point, lorsqu’il existe
une sphere centrée en ce point telle que la partie de ’ensemble
qu’elle contient soit de capacité nulle.

On démontre, & ’aide du lemme de MM. Borel-Lebesgue que

Un ensemble fermé borné qui est la somme d’une infinité
dénombrable d’ensembles fermés de capacité nulle est aussi de
capacité nulle. ,

On voit que tout ensemble de capacité nulle en un point est
impropre. Mais la réciproque n’est pas vrale.

Si E est un ensemble fermé borné ou non, et & ’ensemble de
ceux de ses points en lesquels il est de capacité nulle, & est
impropre. On appellera & la partie impropre de E. S1 E — &
existe, 1l est fermé et n’est de capacité nulle en aucun de ses
points. Il n’a donc plus de partie impropre.

Un ensemble sans partie impropre sera dit réduit. Tout en-
semble pourra étre réduit.

En particulier, s1 & est la partie impropre de la frontiére X
d’un domaine, ¥ — & est fermé, et 'on démontre qu’aucun
point de & n’est limite de points extérieurs a Q. Donc Q' = Q + &
est encore un domaine de frontiére réduite % — &. On appellera
frontiére extérieure de Q I’ensemble de points =, de = qui sont
limites de points extérieurs a €. Les autres points de X forment

1 F. VasiLesco (loc. cit.).
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la frontiére intérieure ;. On voit que Q"' = Q' + X, est encore
un domaine.

Singularités artificielles des fonctions harmoniques. Résuliats
définitifs. On connait le résultat suivant, qui remonte & Schwartz,
et qui, pour avoir été retrouvé récemment par M. Prcarpn’, a
donné lieu & tous les développements que 'on verra:

Il n’y a pas de singularité pour une fonction harmonique, en
un point ot elle est continue, si elle reste bornée dans le voisinage
de ce point.

M. Lebesgue ? en a donné I’extension suivante:

Il n’y a pas de singularités pour une fonction harmonique
bornée dans un domaine, aux points entiérement intérieurs a ce
domaine, ou elle n’est pas définie,

1o d’un arc borné de courbe analytique, ou de courbe rec-
tifiable,

20 d’un ensemble réductible de points ou de courbes,

3° d’un ensemble pouvant étre enfermé dans un nombre fini
de sphéres, dont la somme des rayons puisse étre prise aussi petite
que 'on voudra.

On peut remarquer que tous ces ensembles sont de capacité
nulle. Mais cette notion n’était pas née au moment ou cet énoncé
avait été donné.

M. BouLicanp 3 a établi I'énoncé plus général suivant:

Il n’y a pas de singularités pour une fonction harmonique aux
points d’un ensemble de capacité nulle entiérement intérieur a
un domaine ou elle reste bornée. '

M. KeLLoG ¢ établit la réciproque de cet énoncé.

Enfin, le raisonnement de Kellogg permet de démontrer le
résultat définitif > que 'on peut atteindre dans cet ordre d’idées:

Soient T un domaine et B une partie de sa frontiére telle que
T" = T 4 B'soit encore un domaine; T et B peuvent s’étendre a
Vinfini. Si B est impropre, toute fonction harmonique bornée

C. R.,, t. 176, 1923, p. 933.
C. R., t. 176, 1923, p. 1097.
Loc. cit.

Loc. cit.

F. VasiLesco, loc. cit.

S O
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dans le voisinage de chaque point de B peut étre définie sur B,
de maniére qu’elle soit harmonique sur T’, et réciproquement, si
cela est possible, B est un ensemble impropre. Le maximum de
I’ensemble B est la partie impropre de la frontiére de T.

Théorémes généraux sur les fonctions harmoniques. Grice aux
notions de capacité, de potentiel conducteur et d’ensemble
impropre, on peut établir les théorémes généraux suivants:

Soient F(P) et ®(P) deux fonctions harmoniques bornées
dans un domaine €2, prenant les mémes valeurs sur une partie
2 — s de la frontiére, s étant un ensemble fermé de 2.

Si M est une borne supérieure commune a ]F(P)[ et a
| @ (P)| et ¢(P) le potentiel de s, on a dans Q

2Mp(P) = |F(P) — @ (P)| !

Ainsi, le potentiel conducteur de s mesure, en quelque sorte,
la différence entre ces deux fonctions harmoniques.

En particnlier, s1 s est de capacité nulle, F'(P) et ®(P) coin-
cident. :

Cependant, ce cas particulier peut étre également considéré
comme tel, pour I’énoncé général  suivant:

Il ne peut y avoir deux fonctions harmoniques bornées, dis-
tinctes, dans un domaine (), si leur différence tend vers zéro
partout sur sa frontiére X, sauf sur un ensemble impropre de
celle-ci.

Enfin, on a le théoréme 2 suivant:

Si une fonction harmonique bornée dans £ est continue aux
points de X, sauf aux points d’un ensemble s de capacité nulle
de celle-ci, elle admet, dans Q, le méme maximum et le méme
minimum que sur % — s.

Potentiel d’une distribution de masse. Continuité a travers la
masse *. Une distribution de masse sera une fonction compléte-

1 F. VASILESCO, loc. cit. ]

2 F. VasiLesco, C. R., t. 200, 1935, p. 199 et aussi Journ. de math., 1935, fasc. 2.

3 Ibid.

4 F. VasiLesco, C. R., t. 200, 1935, p. 1173 et Journ. (loc. cit.). G. C. EvANs, Tran-
sactions of the Am. Math. Soc., vol. 37, 1935, p. 226.
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ment additive d’ensemble mesurable B. On peut se borner a
n’envisager que des distributions positives, toute autre distribu-
tion étant la différence de deux telles distributions. On a le
théoréme suivant:

Soient E un ensemble parfait borné et u (e) une distribution
positive sur lui. Le potentiel de cette distribution (donné par une
intégrale de Stieltjes) est continu en tout point de E ou il est
continu sur E. L’ensemble des points de E ou il est continu sur E
est partout dense, sur E. |

Etude de la distribution des points réguliers et irréguliers de la
fronitére d’un domaine. Nous sommes maintenant en mesure
d’aborder cette étude.

Tout d’abord, on démontre que la solution du probléme de
Dirichlet généralisé pour le domaine € est la méme que pour le
domaine ' si les données frontiéres coincident sur X%’. En parti-
culier, la fonction de Green est la méme pour ces domaines ™.

En conséquence, pour étudier le comportement a la frontiere
du potentiel d’un ensemble fermé borné E, il suffit de considérer
Pensemble réduit qui s’en déduit, et de celui-ci, seulement la
partie E’ qui constitue-la frontiére du domaine infini et d’un
seul tenant D. Soient E, la frontiére extérieure de ce domaine et
E; sa frontiére intérieure.

On démontre que le potentiel de E, tend vers l'unité aux
points d’'un ensemble partout dense sur E,. De méme, un en-
semble réduit borné sans domaine intérieur est tel que, en
chacun de ses points, son potentiel a comme plus grande limite
Punité. On en déduit, en réunissant ces énoncés, le résultat sur
E’2

On peut aller plus loin dans cette voie et démontrer

Le lemme de Kellogg. — Tout ensemble réduit borné a des points
réguliers 3.
On en conclut que, sur ’ensemble E’, I'ensemble des points

1 F. VasiLesco, Journ. de math., loc. cit., 1930,
2 JIbid.
19335EVANS, Proc. of the Nat. Acad. of Sc., 19, 1933, p. 457; VASILESCO, Journ., loc. cit.
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réguliers est partout dense, et que, par conséquent, la fonction
de Green du domaine D tend vers zéro sur un ensemble de points
partout dense sur E’.

Le passage de cette étude concernant le potentiel conducteur,
au cas d’un domaine quelconque, se fait au moyen de Dartifice
indiqué précédemment, et ’on peut énoncer le théoréme suivant:

L’ensemble des points réguliers est partout dense sur la fron-
tiere réduite d’un domaine Q.

Mais que peut-on dire de I’ensemble des points irréguliers ?

On peut former un exemple montrant que cet ensemble peut,
également, étre partout dense sur la frontiere *. Sans entrer dans
les détails de la construction, disons simplement que chaque
point irrégulier est formé par une épine de M. Lebesgue, et que
cet ensemble est dénombrable. Il est donc impropre.

On peut méme donner un exemple? d’'un domaine sur la
frontiere réduite duquel les points irréguliers forment une infinité
de lignes analytiques, ou en général, d’ensembles de capacité
nulle, qui sont partout denses. Dans cet exemple, I’ensemble des
points irréguliers est encore impropre, mais il n’est plus dénom-
brable.

La recherche de ces exemples a été provoquée par I'affirmation
qui avait été formulée, auparavant, que l’ensemble des points
irréguliers serait de capacité nulle 3. 11 n’en est rien, comme on
vient de le voir, et comme on le démontrera d’une facon générale.

En effet, grace au lemme de Kellogg, on démontre que I'en-
semble des points de la frontiere d’un domaine, ol la plus grande
limite de la fonction de Green est supérieure ou égale & un
nombre donné ¢, est de capacité nulle .

On en conclut que

L’ensemble des points irréguliers est impropre.

Nous atteignons ainsi le résultat général au sujet de I'étude
que nous nous sommes proposée.

Sur la frontiére réduite d’'un domaine, l’ensemble des points

1 F. VasiLEsco, Journ., loc. cit., 1930.

2 F. VasiLesco, C. R., t. 187, 1928, p. 1116.
3 0. D. KELLOGG, Bul., loc. cit.

4 VaAsiLESco, Journ., loc. cit., 1930.
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irréguliers est partout dense. Il peut en étre de méme de celui des
points irréguliers, mais celui-ci est un ensemble vmpropre.

Le résultat qui précéde, concernant la fonction de Green,
permet de formuler I’énoncé suivant, dét & M. Bouligand *:

V(P) étant la solution du probléme de Dirichlet généralisé,
Pensemble des points frontiére ou quelque valeur limite de V
est extérieure a lintervalle [f(p) — ¢, f(p) + <] est de capacité
nulle.

Cas des surfaces de niveau du potentiel ®. Considérons un en-
semble réduit borné. En chacun de ses points irréguliers le poten-
tiel conducteur a une limite inférieure plus petite que l'unité.
Appelons surface de niveau S; du potentiel, la frontiére du
domaine formé par les points ot ¢ < A < 1. On démontre que le

potentiel de Sy est égal & % et que les poihts irréguliers de Sy

sont ceux ou la plus petite limite de ¢ est inférieure a 2, les
autres étant réguliers. D’aprés le résultat général précédent,
on conclut que

Une surface de niveau du potentiel d'un ensemble réduit borné
ne peut avoir qu'un ensemble de capacité nulle de points réguliers.

Propriété de la solution du probléme de Dirichlet généralisé.
Le méme résultat général précédent, joint & des résultats anté-
rieurs concernant les fonctions harmoniques, permet d’énoncer
le théoreme suivant:

Il ne peut y avoir deux fonctions harmoniques bornées qui
tendent vers la méme valeur aux points réguliers de la frontiére
d’un domaine 3.

Et cet énoncé permet de démontrer la propriété suivante de la
solution du probléme de Dirichlet généralisé:

Elle peut étre définie au moyen de domaines normaux tendant

vers  d’une maniére quelconque, et non plus seulement par son
intérieur 4.

1 Loc. cit. et VASILEsco, Journ., loc. cit., 1930.
2 F. VasiLesco, C. R., t. 187, 1928, p. 635.

3 F. VasiLesco, C. R., t. 200, 1935, p. 199 et Journ., loc. cit:, 1935.
4 Ibid. , ‘ .
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[1I. — LE PROBLEME DE DIRICHLET GENERALISE
ET LA METHODE DU BALAYAGE.

On a vu dans le chapitre I que lsa méthode du balayage conduit
a la définition d’une fonction harmonique V, mais que la démons-
tration de I'unicité de cette fonction est surbordonnée a 1’assu-
jettissement de la surface du conducteur & vérifier certaines
conditions de régularité, qui assurent sa continuité & la frontiére.

Cependant, le raisonnement de Poincaré n’implique nullement
que P'on ait affaire & un conducteur limité par une surface
réguliere. Il suffit de considérer a la place de celui-ci un ensemble
fermé borné. La question de I'unicité se pose alors. On démontre !
que la fonction V définie dans ces conditions par le procédé du
balayage est unique. Elle coincide avec le potentiel conducteur
de I’ensemble considéré. La méthode du balayage conduit donc,
en fait, & la solution du probléme de Dirichlet généralisé pour
les valeurs unité a la frontiere.

M. pE LA VALLEE PoussiN 2 a étendu récemment la méthode
du balayage & une distribution de masse générale, telle qu'on I'a
définie plus haut. Il considére une distribution dans un domaine,
et suppose que son potentiel est continu a la frontiére du domaine.
En balayant cette masse, il trouve une distribution sur la fron-
tiere du domaine, qui jouit de la propriété que: son potentiel est
égal au potentiel initial & 'extérieur et inférieur a I'intérieur. Si
la surface frontiere est réguliére, le potentiel obtenu est continu
a travers elle; a I'intérieur, il est donc la solution du probleme de
Dirichlet pour les valeurs qu’y prend le potentiel primitif. 11
en est de méme si, la surface étant irréguliére, elle satisfait, en
chacun de ses points a la condition de Poincaré. A cause de la
continuité a travers la frontiere, M. de la Vallée Poussin démontre
que la distribution sur la frontiere donnée par le balayage est
unique.

La considération du probleme de Dirichlet généralisé permet
d’aller plus loin dans cette voie, en montrant la vraie raison des
choses.

1 F, VasiLesco, C. R., t. 193, 1931, p. 640.
2 Annales de U’ Inst. Poincaré, 3, 1933, p. 175.
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On démontre® que si Pon considére un domaine général —
ensemble ouvert — de frontiére X, le balayage d’une masse dont
le potentiel, U, est continu & travers X, donne une distribution
sur 2, w(e), dont le potentiel, égal & U a Pextérieur, est égal a la
solutlon du probléeme de Dirichlet généralisé, pour les valeurs
de U sur X, & I'intérieur.

Grace a l’umclte de cette solution — et non plus a la continuité
a la frontiére — on démontre, en supposant X une surface irré-
guliére S, que la distribution est unique.

Mais il y a plus. On démontre que le potentiel de la distribution
w(S) prend, en tout point p de S, comme valeur, la plus petite
limite de ses valeurs intérieures, en ce point, soit, U(p) — A. 1l
est donc continu en tous les points de S ou cette limite est
unique, donc égale & U(p). Ces points contiennent tous les
points irréguliers de S, et, en particulier, ceux en lesquels S
satisfait & la condition de Poincaré. Les points ou il est discontinu
forment un ensemble impropre.

Par exemple, la balayage d’une masse unité concentrée en un
point P du domaine donne une distribution (S, P) dont le

potentiel est égal a %—— G(M, P), G(M, P) étant la fonction

de Green du domaine. Il est donc continu aux points réguliers
et discontinu aux points irréguliers.

On peut aller encore plus loin dans la voie ouverte par M. de la
Vallée Poussin par I'extension de la méthode du balayage.

IV. — RACCORDS AVEC LES METHODES DU CHAPITRE I.

Ainsi que nous I'avons fait voir & la fin du chapitre I, il est
important de rechercher siles divers procédés que I’on a rappelés
dans ce chapitre, conduisent & des fonctions harmoniques diffé-
rentes ou non. Cette recherche est importante, en outre, au
point de vue suivant: |

C’est que, si tous ces procédés conduisent & la méme fonction
harmonique V, identique & la solution du probléme de Dirichlet
généralisé, on enrichit du coup cette solution de toutes les propriétés
que ces divers procédés expriment.

1 F. VasiLesco, C. R., t. 200, 1935, p. 199 et Journ., loc. cit., 1935.
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On démontre qu’il en est bien ainsi 1. On vient de le voir, dans
le chapitre précédent, pour la méthode du balayage. On le vérifie
pour la méthode de M. Zaremba qui apporte les propriétés dont
sa solution jouit, et qui ont été énumérées au chapitre I, en parti-
culier la suivante, qu’il n’est pas inutile de rappeler:

La solution du probléme de Dirichlet généralisé rend minimum

I'intégrale
. 2 g\ 2 2
LT G (2]

relative & toutes les fonctions continues u et ayant des dérivées
premiéres continues dans €, qui prennent sur la frontiére X du
domaine Q les valeurs continues f qui définissent cette solution.

Pour d’autres procédés rappelés au chapitre I, tel que cela a
été le cas pour la méthode du balayage, il faut dissocier le
procédé de définition de la fonction V des conditions a la fron-
tiere, et démontrer I'existence et I'unicité de cette fonction.
L’introduction de la solution du probléme de Dirichlet facilite
cette tache. Tel est le cas pour le procédé de Raynor, pour celui
de Phillips et Wiener, etc.

J’ajoute que, pour le procédé de M. Lebesgue, par des média-
tions itérées, I'identité qui nous occupe a été démontrée, il y a
quelques années, par M. Perkins % Ce procédé apporte une jolie
propriété de la solution du probléme de Dirichlet généralisé.

Ainsi, tous les procédés envisagés conduisent a une méme fonc-
tion V, qui est la solution du probléme de Dirichlet généralisé. On
pourra donc donner de celle-ci telle définition que ’on se plaira
de choisir parmi ces procédés.

CONCLUSION.

Nous pouvons conclure de la manieére suivante: C’est que,
toutes les fois qu'un probléme conduit au probléme de Dirichlet
classique, pour un domaine D, ce qui implique, pour ce domaine,
une conformation particuliére, ce méme probléme conduira au
probleme de Dirichlet généralisé, si 'on envisage le domaine le
plus général, défini simplement comme un ensemble ouvert.

1 F. VasiLeEsco, C. R., t. 200, 1935, p. 1721, séance du 20 mai.
2 C, R., t. 184, 24 janvier 1927, p. 182. ' '
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