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LE PROBLÈME DE DIRICHLET DANS LE CAS LE PLUS

GÉNÉRAL 1

PAR

M. Florin Vasilesco (Paris).

I. — Le problème de Dirichlet classique.

Le problème de Dirichlet concerne les solutions de l'équation
de Laplace. Ce n'est que par extension que l'on a désigné par
ce nom un problème analogue pour les solutions d'autres équations

du type elliptique. De cette extension nous dirons quelques
mots à la fin de cette conférence.2

Comme on le sait, on désigne par le nom de fonction harmonique,

toute solution de l'équation de Laplace. Pour fixer les

idées, nous emploierons ici le langage de l'espace à trois dimensions.

On verra, d'ailleurs, que les récents progrès réalisés dans
l'étude de ce problème sont dus à des notions d'origine physique,
et c'est là une autre raison d'employer ce langage. Le cas de

l'espace à deux dimensions est, en général, plus simple et entraîne
des modifications faciles à faire.

Conformément au sous-titre de ce colloque, ainsi qu'au sujet
de cette conférence, on doit se demander quelles sont les conditions

propres à déterminer les solutions de l'équation de Laplace.
Ces conditions ont été exprimées, à l'origine, par l'énoncé
suivant du Principe de Dirichlet. Si D est un domaine, S sa frontière

et f (p) une fonction continue sur S, il existe une fonction

1 Conférence faite le 17 juin 1935 dans le cycle des Conférences internationales des
Sciences mathématiques organisées par l'Université de Genève; série consacrée aux
Equations aux dérivées partielles. Conditions propres à déterminer les solutions.

2 Cette extension se trouve dans la conférence de M. Schauder.
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harmonique V (P), dans D, prenant sur S les çaleurs données f (p).

Autrement dit, V est continue en tout point de S, sur D -f S,

si on lui attribue sur S les valeurs f(p).
Le problème de Dirichlet consiste à rechercher cette jonction V.

On a cru pendant longtemps que ce problème était toujours
possible, ce qui veut dire, qu'il admettait toujours une solution,
ainsi que l'affirmait le principe de Dirichlet. On ne parvenait pas
à la résoudre dans le cas d'un domaine quelconque, mais on

attribuait cela à l'extrême variété que présentait la notion de

domaine. C'est pourquoi on avait été amené, connaissant sa

solution dans des cas simples, tel celui de la sphère, à chercher
des méthodes de résolution pour des cas de plus en plus étendus.

Les domaines que l'on avait considérés pendant longtemps
étaient limités par des surfaces, et c'est, sans doute, à cause de

cela qu'un cas simple d'impossibilité, tel que celui qu'a
signalé M. Zaremba x, n'avait pas été aperçu, ou, s'il l'avait été,
n'avait pas été de nature à ébranler la solidité du principe de

Dirichlet.
Voici ce cas. Supposons le domaine D sphérique. V prend au

centre 0 une valeur déterminée. Envisageons le domaine D',
déduit du précédent, en considérant le point 0 comme point
frontière, et attribuons à /(p), en ce point, une valeur différente

de celle qu'y avait la fonction V précédente. Il est facile
de voir que la fonction V, dans le cas actuel, est encore celle du
cas précédent. Elle n'est donc plus continue au point frontière 0.
Le problème est impossible.

Quelques années plus tard 2, M. Lebesgue a fait connaître un
exemple d'un domaine, limité par une surface, pour lequel le
problème de Dirichlet n'est pas possible. A cet effet, il considère
le potentiel d'une masse distribuée sur un segment de longueur
unité, dont la densité, en tout point, est égale à la distance de ce

point à une des extrémités du segment, prise comme origine. La
surface équipotentielle sur laquelle le potentiel est égal à 2, par
exemple, entoure le segment et présente une pointe en origine.
Le domaine infini extérieur à cette surface, que l'on peut rendre

1 Bulletin intern, de VAc. des Se. de Cracovie, 1909, p. 199.
2 Comptes rendus séances de la Soc. Math. France, t. 41, 27 nov. 1912, p. 17.
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fini, si l'on veut, en le limitant par une sphère, est tel que le

problème de Dirichlet n'y est pas possible pour les valeurs 2 sur la
surface équipotentielle et les autres valeurs du potentiel sur la
sphère. La seule fonction possible V est le potentiel lui-même, et
il ne prend pas la valeur 2 en origine.

Ces deux exemples expriment des circonstances qui ne sont
que des cas particuliers de phénomènes généraux, que l'on verra
par la suite.

Ainsi, le problème de Dirichlet n'est pas toujours possible, et
cette impossibilité consiste en ce que: il n'existe pas de fonction V
prenant les valeurs données en tous les points de la frontière.

Il sera utile, pour la suite, de rappeler brièvement, quelques-
unes des méthodes de résolution du problème de Dirichlet.

Méthode du balayage de Poincaré h — Grâce à la formule bien
connue

v A f ff^-F'-Shs4tu J J c)nj
S

Poincaré ramène la recherche de la solution de ce problème à

celle de la fonction de Green du domaine, G(P, Q), et, celle-ci,
au moyen d'une inversion du pôle comme centre, à celle de la
fonction harmonique Y à l'extérieur d'une surface C, régulière
à l'infini et prenant les valeurs unité sur C: c'est le potentiel de

la distribution d'équilibre sur le conducteur C. Cette notion de

potentiel conducteur sera généralisée plus tard et jouera un rôle
fondamental.

Pour trouver cette fonction V, Poincaré considère, d'une part,
une sphère contenant à l'intérieur C, et sur elle une distribution
uniforme de masse dont le potentiel est égal à l'unité à l'intérieur
et, d'autre part, une suite de sphères extérieures à C, mais telles

que tout point extérieur à C soit intérieur à l'une d'elles, au
moins. Il range ces sphères en une suite, de façon que chacune
d'elles y figure une infinité de fois, et procède au balayage de la
masse qui se trouve dans chacune d'elles, successivement. Cette

opération se traduit par ce que le potentiel de la masse totale,

i Sur les équations aux dérivées partielles de la Physique mathématique (Amer. Jour,
of Math., t. 12, 1890).
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modifiée, diminue, à chaque stade de l'opération, et devient

harmonique dans la sphère de la suite qu'il concerne, puisqu'on
remplace la masse intérieure à cette sphère par une masse distribuée

sur sa frontière. En vertu du théorème de Harnack, la suite
de fonctions ainsi trouvées a une limite V qui est harmonique.

En assujetissant la surface C à satisfaire à certaines conditions

— que M. Lebesgue a désignées, depuis, par le nom de

conditions de régularité 1 — Poincaré montre que cette fonction
prend bien la valeur unité sur C, ce qui assure, de plus, son unicité.

Il est bon de remarquer qu'il y a, dans la méthode précédente,
deux parties: la définition d'une fonction V et l'étude de sa

continuité à la frontière. De plus, la démonstration de l'unicité
est subordonnée aux conditions de régularité.

Méthodes relevant du principe du minimum. — Il y a tout un
groupe de telles méthodes 2. Leur but était de redresser les erreurs
contenues dans le raisonnement bien connu de Riemann, erreurs
qui ont été mises en évidence par Weierstrass et M. Hadamard 3.

Il suffira de rappeler ici deux de ces méthodes: celles de
M. Zaremba 4 et celle de M. Lebesgue 5.

Voici la méthode de M. Zaremba. Désignons par Q un domaine
général qui est simplement un ensemble ouvert d'un seul tenant,
et soit S sa frontière. Considérons l'ensemble F des fonctions
continues dans Q + S et prenant sur S les valeurs données /,
fonctions admettant des dérivées premières continues dans Ü.
Supposons que l'intégrale

a=///[©"+ (SHbTh
0

existe pour elles, car, d'après l'objection de M. Hadamard, elle
pourrait bien n'exister pour aucune de ces fonctions. Soit I le
minimum de ces intégrales.

1 C. R. de VAc. des Sc., t. 178, 21 janv. 1924, p. 349.
2 Voir pour la bibliographie le fascicule de M. Bouligand : Fonctions harmoniques, etc.,

du Mémorial des Sciences mathématiques.
» Weierstrass, Werke, Bd. 2, p. 49; Hadamard, But. Soc. math. Fr., t. 34 1906

p. 135.
4 Loc. cit.
5 C. R. Ac. Sc., t. 154, 1912, p. 335; t. 155, 1912, p. 699; Rendiconti Cire, mat di

Palermo, t. 24, 1907, p. 371.
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On appelle minimisante, une suite de fonctions v{ de F dont
les intégrales tendent vers I.

Assignons à tout point M de ß un nombre positif pM inférieur
à la distance de M à 2 et soit

F, (M) ==—f i I v- dx dy dz
4 7T 0 «/«/«/

M (0

(pM) étant la sphère de rayon pM et de centre M.
M. Zaremba démontre que

La suite F^M) tend uniformément — sur tout ensemble
fermé E de points M, pour lesquels pM admet une limite inférieure
plus grande que zéro — vers une fonction harmonique V, dans

Q, dont l'intégrale est égale à I.
V est indépendante du choix des pM.
S'il existe une fonction u de E dont l'intégrale soit encore

égale à I, on aura u V.
V est, à une constante additive près, la solution du problème

suivant :

On cherche une fonction harmonique U dans Q, pour laquelle
l'intégrale existe et est telle que

rr ^ + îh + ^= r r(.ö-b + ...ydn
J J J \bx ûx à y üy öt tz) J J J \ö x à x /

q

pour toute fonction harmonique h dans O, et toute fonction u

de E, les intégrales A existant pour h et u.
Si un point p de 2 peut être pris pour sommet d'un cône de

révolution de hauteur non nulle, extérieur à O, V tend vers / en

ce point.
On distingue également ici, comme dans la méthode du balayage,

les deux parties: le procédé de définition de Y et la recherche de

sa continuité à la frontière. Mais l'unicité de V n'est plus
subordonnée à la condition de régularité constituée par l'existence du
cône.

Voici maintenant la méthode de M. Lebesgue. On considère,

comme précédemment, une suite minimisante mais on borne,
en valeur absolue, toutes ces fonctions, par un même nombre,
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car les fonctions çi peuvent ne pas avoir de dérivées premières
sur des surfaces analytiques telles que tout domaine intérieur à

Q n'en contienne qu'un nombre fini. Soit s une sphère intérieure à

Q. On peut extraire de la suite donnée une autre suite convergeant

uniformément vers une fonction harmonique dans «9. En

prenant des sphères successives, empiétant chacune sur la
précédente, et en tenant compte d'un théorème d'unicité1 de

M. Lebesgue — qui montre que si deux suites minimisantes
tendent vers des limites dans un domaine intérieur à O, ces

limites coïncident — on voit aisément que l'on définit ainsi une
fonction harmonique V dans Q.

Pour rechercher sa continuité à la frontière, M. Lebesgue
introduit la notion de fonction barrière 2, qui s'est montrée,
depuis, d'un puissant intérêt dans l'étude des fonctions
harmoniques 3. Cette notion permet à l'auteur de formuler un
critère de régularité plus général que celui de M. Zaremba.

On peut faire ici la même remarque au sujet des deux parties
que comporte la méthode.

On doit également à M. Lebesgue une autre méthode 4, par
médiations itérées, que nous regrettons de ne pouvoir exposer
ici.

D'autres méthodes sont dues à MM. Gleason, Raynor 5,

Phillips et Wiener 6, etc.
Dans toutes ces méthodes on peut distinguer les deux parties

précédemment mentionnées.
Enfin, il y a des méthodes relevant des équations intégrales,

telles la méthode de Robin, de Neumann, de Fredholm, etc.
Ces méthodes ne sauraient nous intéresser pour notre but actuel,
car elles sont fondées sur la continuité de la solution du problème
de Dirichlet à la frontière.

C'est M. Lebesgue qui a formulé 7 la distinction, qu'il y a lieu
de faire, entre les deux parties, dans les méthodes de résolution
du problème de Dirichlet. Ce fait, joint à l'exemple d'impossi-

1 Rendiconti (loc. cit.).
2 C. R., t. 155 (loc. cit.).
s Kellogg, Bui. of the Amer. Math. Soc., nov.-déc. 1926
4 C. R., t. 154 (loc. cit.).
5 Annual's of Math., vol. 23, p. 183.
0 Journ. math. phys. Mass. Inst, of Tech., 2me série, n° 55, mars 1923 "*~1~ ~~
7 C. R., t. 178 (loc. cit.).
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bilité de ce problème qu'il a donné, a conduit l'éminent auteur
aux notions fondamentales de point régulier et point irrégulier
de la frontière d'un domaine.

Un point frontière sera dit régulier si la fonction V est continue
et prend la valeur / en ce point, quelle que soit la fonction f.
Contrairement, le point sera dit irrégulier.

M. Lebesgue montre de plus que le caractère régulier et
irrégulier d'un point frontière est local et ne dépend que de son

voisinage immédiat de la frontière.
Les diverses conditions de régularité que l'on avait données

dépendent des procédés employés pour définir la fonction V.
Ce fait ne présenta aucun inconvénient tant qu'il s'était agi,
comme cela a été le cas, de rechercher des domaines de plus en

plus généraux pour lesquels on pût résoudre le problème de

Dirichlet. En effet, on obtenait de tels domaines en assujettissant
leurs frontières à satisfaire à un même critère de régularité,
obtenu au moyen d'un procédé déterminé.

Toutefois, on ne saurait employer, pour vérifier le caractère
régulier des points frontière d'un domaine, des conditions de

régularité différentes, si ces conditions correspondent à des

procédés ne conduisant pas tous à la même fonction Y.
Ce fait gênant conduit à se demander si les fonctions Y

auxquelles donnent naissance les divers procédés que l'on a donnés,
sont, ou ne sont pas, différentes. A cette importante question,
nous répondrons (chap. IV) par la négative: ces procédés
conduisent tous à une même fonction V. Dès lors, on pourra
employer indistinctement les critères de régularité connus, pour
juger de la régularité d'un point frontière.

Ces critères sont des conditions de régularité suffisantes, sauf

un, dû à M. Lebesgue x, qui est nécessaire et suffisant. Il a un
caractère fonctionnel.

On peut conclure ce chapitre de la manière suivante. Quelques-
uns des procédés que l'on avait donnés pour résoudre le problème
de Dirichlet définissent bien une fonction harmonique V, attachée
à des valeurs frontières données /, et cela dans le cas d'un domaine

général — défini simplement comme un ensemble ouvert. Mais,

i C. R., t. 178, loc. cit.
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soit que leurs auteurs eussent pour objectif simplement la
résolution du problème de Dirichlet classique, soit que les critères
de régularité ou d'irrégularité que l'on donnait ne permissent pas
de connaître le comportement de la fonction V en tous les points
de la frontière, à cause de leur caractère suffisant, une telle
fonction V n'a jamais été désignée pour être solution d'un
problème de Dirichlet plus étendu que le problème classique,
devant remplacer celui-ci dans les cas où il est impossible.

II. — Le problème de Dirichlet généralisé.

C'est M. N. Wiener 1 qui, en 1934, donna un procédé de définition

d'une fonction V, indépendamment de l'idée de résoudre le

problème de Dirichlet classique. De plus, il caractérisa, au

moyen d'un critère nécessaire et suffisant de nature quasi-
géométrique 2, les points réguliers et irréguliers de la frontière,
pour ce procédé. Il envisagea ainsi un problème plus étendu que
le problème de Dirichlet classique qu'il désigna par le nom de

Problème de Dirichlet généralisé. Son procédé constitue une
extension naturelle du problème classique et cela permet de voir
que, lorsque celui-ci est possible, sa solution coïncide avec la
fonction V donnée par ce procédé.

Il est, dès lors, naturel que l'on désigne un domaine pour
lequel le problème classique est possible, par un nom particulier:
convenons, selon un usage déjà répandu, de l'appeler domaine
normal. Par exemple, un domaine formé par un assemblage de

cubes, est un tel domaine: on le voit en utilisant, si l'on veut, le
critère de M. Zaremba.

Voici le procédé de M. Wiener.
Soient Q un domaine, borné ou non — ensemble ouvert —

S sa frontière, supposée bornée, et f(p) une distribution, continue

sur elle. Considérons d'une part, une fonction continue dans
tout l'espace, F, coïncidant avec / sur 2 3 et, d'autre part, une
suite Qk de domaines normaux intérieurs à O et tendant vers lui.

1 J. Math. Phys. Mass. Inst, of Tech., 2me série, n° 70, janv. 1924.
2 Ibid., n° 1, janv. 1925.
3 C'est M. Lebesgue qui a montré la possibilité de construire une telle fonction

dans son mémoire cité du Circolo matematico. 1



96 FL. VASILESCO

Si Vfe est la solution du problème de Dirichlet dans Ük pour les

valeurs de F sur sa frontière Ek, la suite des fonctions Vk tend
uniformément vers une fonction harmonique V, dans toute
région fermée de Q. Cette fonction est indépendante du choix
des Qk et de la fonction F. C'est la solution du problème de

Dirichlet généralisé.
M. Wiener applique tout de suite ce procédé au cas d'un

ensemble fermé borné E, en considérant le domaine infini qu'il
détermine dans l'espace et dont E, ou une partie de E est la
frontière. Pour ce domaine, il prend / égale à l'unité. La fonction V
ainsi obtenue est appelée, par lui, potentiel conducteur de Ven-

semble E. C'est la généralisation de la notion classique pour un
conducteur. De plus, si e(P) est cette fonction, l'intégrale de

Gauss

étendue à une surface contenant E à l'intérieur permet à

M. Wiener de définir la notion de capacité de Vensemble E, comme
dans le cas classique.

Les deux notions précédentes, de potentiel conducteur et de

capacité d'un ensemble, se sont révélées fondamentales pour la
théorie des fonctions harmoniques. On le verra par la suite.

C'est ainsi que, grâce à elles, M. Wiener a pu donner le critère
suivant de régularité d'un point frontière.

Soient p un point frontière de O, X un nombre positif inférieur
à Vunité, yn la capacité de l'ensemble de points non appartenant
à Q et tels que leur distance à p soit comprise entre Xn et Xn_1.

Alors, p est régulier ou irrégulier selon que la série

est divergente ou convergente1.

i Dans le cas de l'espace à deux dimensions cette série est remplacée par la suivante:

* + 2Ta + + 2wyw + ...; "Xm étant la capacité de l'ensemble des points non appartenant

à a, dont la distance à p est comprise entre et y2w+1.
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Les points de la frontière sont ainsi caractérisés d'une manière

précise, et le caractère local est évident.
Mais cette précision même impose, dès lors, la recherche

suivante: Etudier la distribution des points réguliers et irréguliers
à la frontière d'un domaine.

On a réussi à faire cette étude complètement, dans ces temps
derniers. Comme les recherches que l'on a faites sur le problème
de Dirichlet généralisé ont, plus ou moins directement, concouru
vers ce but, nous allons en donner un aperçu rapide qui aboutira
au résultat général et définitif obtenu dans cette étude.

Fonction de Green (généralisée). Si l'on considère un point
fixe Q dans O et la solution du problème de Dirichlet généralisé

1 1

pour les valeurs — sur la frontière, soit T(P, Q), la fonction

G(P, Q) y-r(P, Q)

sera la fonction de Green du domaine Q. De même que dans le
cas classique, cette fonction est positive et a un pôle en Q; mais
elle ne s'annule plus nécessairement à la frontière du domaine.

On démontre 1
que : si la fonction de Green tend vers zéro sur

une suite de points de O tendant vers /?, la fonction V tend
vers f (p).

On conclut de là ce fait important que
Un point p de la frontière est régulier ou irrégulier selon que

la fonction de Green tend vers zéro ou non.
Ainsi, l'étude qui nous intéresse se ramène à celle de la fonction

de Green du domaine. On a remarqué 2
que l'on peut, avec

avantage ramener encore l'étude de cette fonction à celle du
potentiel conducteur. Le passage à cette dernière fonction
s'opère aisément au moyen de l'énoncé suivant:

Si e est un ensemble fermé borné dont aucun point n'appartient
à Q et v (P) son potentiel conducteur, on a l'inégalité

î ri — p (P)

r I 1 — M ] ^ G(P, Q)

1 Bouligand, Annales de la Soc. polonaise de Math., 1925.
Kellogg, Proc. of the Nat. Ac. of Sc., t. 12, VI, 1926, p. 402.

2 F. Vasilesco, Journal de math., t. IX, 1930.

L'Enseignement mathém., 35me année, 1936. 7
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en désignant par r le rayon d'une sphère a de centre Q, tout
entière dans O et par M le maximum de v sur elle.

On pourra utiliser cette inégalité de la manière suivante. Un
point régulier p de 21 restera régulier pour le domaine infini
extérieur à la portion 21r déterminée sur l'ensemble des points
n'appartenant pas à Q par une sphère (r) de centre p et de

rayon r. Si la fonction de Green de ce domaine tend vers zéro
en ce point, le potentiel de 21r tend vers 1, et réciproquement.
C'est de l'étude à la frontière du potentiel que l'on obtiendra
facilement des résultats sur les points frontière d'un domaine.

Ensembles impropres. Ensemble réduit. Frontière réduite 1. On

appelle impropre, un ensemble borné ou non, dont chaque partie
fermée est de capacité nulle.

Un ensemble est de capacité nulle en un point, lorsqu'il existe
une sphère centrée en ce point telle que la partie de l'ensemble
qu'elle contient soit de capacité nulle.

On démontre, à l'aide du lemme de MM. Borel-Lebesgue que
Un ensemble fermé borné qui est la somme d'une infinité

dénombrable d'ensembles fermés de capacité nulle est aussi de

capacité nulle.
On voit que tout ensemble de capacité nulle en un point est

impropre. Mais la réciproque n'est pas vraie.
Si E est un ensemble fermé borné ou non, et & l'ensemble de

ceux de ses points en lesquels il est de capacité nulle, & est

impropre. On appellera & la partie impropre de E. Si E—&
existe, il est fermé et n'est de capacité nulle en aucun de ses

points. Il n'a donc plus de partie impropre.
Un ensemble sans partie impropre sera dit réduit. Tout

ensemble pourra être réduit.
En particulier, si & est la partie impropre de la frontière S

d'un domaine, S — & est fermé, et l'on démontre qu'aucun
point de & n'est limite de points extérieurs à Q. Donc Q,' O + &
est encore un domaine de frontière réduite 21 — &. On appellera
frontière extérieure de O l'ensemble de points 21^ de 21 qui sont
limites de points extérieurs à O. Les autres points de 21 forment

i F. Vasilesco (loc. cit.).
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la frontière intérieure 2i. On voit que O" — Q' + 2$ est encore

un domaine.

Singularités artificielles des fonctions harmoniques. Résultats

définitifs. On connaît le résultat suivant, qui remonte à Schwartz,
et qui, pour avoir été retrouvé récemment par M. Picard 1, a

donné lieu à tous les développements que l'on verra:
Il n'y a pas de singularité pour une fonction harmonique, en

un point où elle est continue, si elle reste bornée dans le voisinage
de ce point.

M. Lebesgue 2 en a donné l'extension suivante:
Il n'y a pas de singularités pour une fonction harmonique

bornée dans un domaine, aux points entièrement intérieurs à ce

domaine, où elle n'est pas définie,

1° d'un arc borné de courbe analytique, ou de courbe rec-
tifiable,

2° d'un ensemble réductible de points ou de courbes,
3° d'un ensemble pouvant être enfermé dans un nombre fini

de sphères, dont la somme des rayons puisse être prise aussi petite
que l'on voudra.

On peut remarquer que tous ces ensembles sont de capacité
nulle. Mais cette notion n'était pas née au moment où cet énoncé
avait été donné.

M. Bouligand 3 a établi l'énoncé plus général suivant:
Il n'y a pas de singularités pour une fonction harmonique aux

points d'un ensemble de capacité nulle entièrement intérieur à

un domaine où elle reste bornée.
M. Kellog 4 établit la réciproque de cet énoncé.

Enfin, le raisonnement de Kellogg permet de démontrer le
résultat définitif 5

que l'on peut atteindre dans cet ordre d'idées:
Soient T un domaine et B une partie de sa frontière telle que

T T + B soit encore un domaine; T et B peuvent s'étendre à
l'infini. Si B est impropre, toute fonction harmonique bornée

1 C. R., t. 176, 1923, p. 933.
2 C. R., t. 176, 1923, p. 1097.
3 Loc. cit.
4 Loc. cit.
5 F. Vasilesco, loc. cit.
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dans le voisinage de chaque point de B peut être définie sur B,
de manière qu'elle soit harmonique sur T', et réciproquement, si
cela est possible, B est un ensemble impropre. Le maximum de

l'ensemble B est la partie impropre de la frontière de T.

Théorèmes généraux sur les fonctions harmoniques. Grâce aux
notions de capacité, de potentiel conducteur et d'ensemble
impropre, on peut établir les théorèmes généraux suivants:

Soient F (P) et ®(P) deux fonctions harmoniques bornées
dans un domaine O, prenant les mêmes valeurs sur une partie
2 — s de la frontière, s étant un ensemble fermé de 2.

Si M est une borne supérieure commune à | F (P) | et à

| O(P) | et e(P) le potentiel de s, on a dans D

2Mp(P) ^ | F (P) — ®(P) |
1

Ainsi, le potentiel conducteur de 5 mesure, en quelque sorte,
la différence entre ces deux fonctions harmoniques.

En particulier, si s est de capacité nulle, F (P) et ®(P)
coïncident.

Cependant, ce cas particulier peut être également considéré

comme tel, pour l'énoncé général2 suivant:
Il ne peut y avoir deux fonctions harmoniques bornées,

distinctes, dans un domaine Ü, si leur différence tend vers zéro

partout sur sa frontière 2, sauf sur un ensemble impropre de

celle-ci.
Enfin, on a le théorème 3 suivant:
Si une fonction harmonique bornée dans Q est continue aux

points de 2, sauf aux points d'un ensemble s de capacité nulle
de celle-ci, elle admet, dans £}, le même maximum et le même

minimum que sur 2 — s.

Potentiel (Tune distribution de masse. Continuité à travers la

masse 4. Une distribution de masse sera une fonction complète-

1 F. Vasilesco, loc. cit.
2 F. Vasilesco, C. R., t. 200, 1935, p. 199 et aussi Journ. de math., 1935, fasc. 2.
3 Ibid.
4 F. Vasilesco, C. R., t. 200, 1935, p. 1173 et Journ. (loc. cit.). Gr. C. Evans,

Transactions of the Am. Math. Soc., vol. 37, 1935, p. 226.
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ment additive d'ensemble mesurable B. On peut se borner à

n'envisager que des distributions positives, toute autre distribution

étant la différence de deux telles distributions. On a le

théorème suivant:
Soient E un ensemble parfait borné et (x {e) une distribution

positive sur lui. Le potentiel de cette distribution (donné par une

intégrale de Stieltjes) est continu en tout point de E où il est

continu sur E. L'ensemble des points de E où il est continu sur E
est partout dense, sur E.

Etude de la distribution des points réguliers et irréguliers de la

frontière Tun domaine. Nous sommes maintenant en mesure
d'aborder cette étude.

Tout d'abord, on démontre que la solution du problème de

Dirichlet généralisé pour le domaine û est la même que pour le
domaine Q' si les données frontières coïncident sur En
particulier, la fonction de Green est la même pour ces domaines 1.

En conséquence, pour étudier le comportement à la frontière
du potentiel d'un ensemble fermé borné E, il suffît de considérer
l'ensemble réduit qui s'en déduit, et de celui-ci, seulement la
partie E' qui constitue-la frontière du domaine infini et d'un
seul tenant D. Soient Eg la frontière extérieure de ce domaine et
E- sa frontière intérieure.

On démontre que le potentiel de Eg tend vers l'unité aux
points d'un ensemble partout dense sur Eg. De même, un
ensemble réduit borné sans domaine intérieur est tel que, en
chacun de ses points, son potentiel a comme plus grande limite
l'unité. On en déduit, en réunissant ces énoncés, le résultat sur
E'2.

On peut aller plus loin dans cette voie et démontrer

Le lemme de Kellogg. — Tout ensemble réduit borné a des points
réguliers 3.

On en conclut que, sur l'ensemble E', l'ensemble des points

1 F. Vasilesco, Journ. de math., loc. cit., 1930.
2 Ibid.
3 Evans, Proc. of the Nat. Acad, of Sc., 19, 1933, p. 457; Vasilesco, Journ., loc. cit.

1935.
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réguliers est partout dense, et que, par conséquent, la fonction
de Green du domaine D tend vers zéro sur un ensemble de points
partout dense sur E'.

Le passage de cette étude concernant le potentiel conducteur,
au cas d'un domaine quelconque, se fait au moyen de l'artifice
indiqué précédemment, et l'on peut énoncer le théorème suivant:

L'ensemble des points réguliers est partout dense sur la frontière

réduite d'un domaine O.
Mais que peut-on dire de l'ensemble des points irréguliers
On peut former un exemple montrant que cet ensemble peut,

également, être partout dense sur la frontière L Sans entrer dans
les détails de la construction, disons simplement que chaque
point irrégulier est formé par une épine de M. Lebesgue, et que
cet ensemble est dénombrable. Il est donc impropre.

On peut même donner un exemple 2 d'un domaine sur la
frontière réduite duquel les points irréguliers forment une infinité
de lignes analytiques, ou en général, d'ensembles de capacité
nulle, qui sont partout denses. Dans cet exemple, l'ensemble des

points irréguliers est encore impropre, mais il n'est plus dénombrable.

La recherche de ces exemples a été provoquée par l'affirmation
qui avait été formulée, auparavant, que l'ensemble des points
irréguliers serait de capacité nulle 3. Il n'en est rien, comme on
vient de le voir, et comme on le démontrera d'une façon générale.

En effet, grâce au lemme de Kellogg, on démontre que
l'ensemble des points de la frontière d'un domaine, où la plus grande
limite de la fonction de Green est supérieure ou égale à un
nombre donné s, est de capacité nulle 4.

On en conclut que

L'ensemble des points irréguliers est impropre.

Nous atteignons ainsi le résultat général au sujet de l'étude

que nous nous sommes proposée.

Sur la frontière réduite d'un domaine, l'ensemble des points

1 F. Vasilesco, Journ., loc. cit., 1930.
2 F. Vasilesco, C. R., t. 187, 1928, p. 1116.
3 O. D. Kellogg, Bul., loc. cit.
4 Vasilesco, Journ., loc. cit., 1930.
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irréguliers est partout dense. Il peut en être de même de celui des

points irréguliers, mais celui-ci est un ensemble impropre.

Le résultat qui précède, concernant la fonction de Green,

permet de formuler l'énoncé suivant, dû à M. Bouligand 1:

V (P) étant la solution du problème de Dirichlet généralisé,
l'ensemble des points frontière où quelque valeur limite de V
est extérieure à l'intervalle [f{p) — s, f(p) + s] est de capacité
nulle.

Cas des surfaces de niveau du potentiel 2. Considérons un
ensemble réduit borné. En chacun de ses points irréguliers le potentiel

conducteur a une limite inférieure plus petite que l'unité.
Appelons surface de niveau Sx du potentiel, la frontière du
domaine formé par les points où v < X < 1. On démontre que le

potentiel de Sx est égal à et que les points irréguliers de Sx

sont ceux où la plus petite limite de v est inférieure à X, les

autres étant réguliers. D'après le résultat général précédent,
on conclut que

Une surface de niveau du potentiel d'un ensemble réduit borné

ne peut avoir qu'un ensemble de capacité nulle de points réguliers.

Propriété de la solution du problème de Dirichlet généralisé.
Le même résultat général précédent, joint à des résultats
antérieurs concernant les fonctions harmoniques, permet d'énoncer
le théorème suivant:

Il ne peut y avoir deux fonctions harmoniques bornées qui
tendent vers la même valeur aux points réguliers de la frontière
d'un domaine 3.

Et cet énoncé permet de démontrer la propriété suivante de la
solution du problème de Dirichlet généralisé:

Elle peut être définie au moyen de domaines normaux tendant
vers O d'une manière quelconque, et non plus seulement par son
intérieur 4.

1 Loc. cit. et Vasilesco, Journ., loc. cit., 1930.
2 F. Vasilesco, C. R., t. 187, 1928, p. 635.
3 F. Vasilesco, C. R., t. 200, 1935, p. 199 et Journ., loc. cit., 1935.
4 Ibid.
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III. — Le problème de Dirichlet généralisé
ET LA MÉTHODE DU BALAYAGE.

On a vu dans le chapitre I que la méthode du balayage conduit
à la définition d'une fonction harmonique V, mais que la démonstration

de l'unicité de cette fonction est surbordonnée à

l'assujettissement de la surface du conducteur à vérifier certaines
conditions de régularité, qui assurent sa continuité à la frontière.

Cependant, le raisonnement de Poincaré n'implique nullement
que l'on ait affaire à un conducteur limité par une surface
régulière. Il suffit de considérer à la place de celui-ci un ensemble
fermé borné. La question de l'unicité se pose alors. On démontre 1

que la fonction V définie dans ces conditions par le procédé du
balayage est unique. Elle coïncide avec le potentiel conducteur
de l'ensemble considéré. La méthode du balayage conduit donc,
en fait, à la solution du problème de Dirichlet généralisé pour
les valeurs unité à la frontière.

M. de la Vallée Poussin 2 a étendu récemment la méthode
du balayage à une distribution de masse générale, telle qu'on l'a
définie plus haut. Il considère une distribution dans un domaine,
et suppose que son potentiel est continu à la frontière du domaine.
En balayant cette masse, il trouve une distribution sur la frontière

du domaine, qui jouit de la propriété que: son potentiel est

égal au potentiel initial à l'extérieur et inférieur à l'intérieur. Si
la surface frontière est régulière, le potentiel obtenu est continu
à travers elle; à l'intérieur, il est donc la solution du problème de

Dirichlet pour les valeurs qu'y prend le potentiel primitif. Il
en est de même si, la surface étant irrégulière, elle satisfait, en
chacun de ses points à la condition de Poincaré. A cause de la
continuité à travers la frontière, M. de la Vallée Poussin démontre

que la distribution sur la frontière donnée par le balayage est

unique.
La considération du problème de Dirichlet généralisé permet

d'aller plus loin dans cette voie, en montrant la vraie raison des

choses.

1 F. Vasilesco, C. R., t. 193, 1931, p. 640.
2 Annales de Vlnst. Poincaré, 3, 1933, p. 175.
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On démontre 1 que si l'on considère un domaine général —
ensemble ouvert — de frontière S, le balayage d'une masse dont
le potentiel, U, est continu à travers S, donne une distribution
sur 2, fx(e), dont le potentiel, égal à U à l'extérieur, est égal à la
solution du problème de Dirichlet généralisé, pour les valeurs
de U sur 2, à l'intérieur.

Grâce à l'unicité de cette solution — et non plus à la continuité
à la frontière — on démontre, en supposant 2 une surface

irrégulière S, que la distribution est unique.
Mais il y a plus. On démontre que le potentiel de la distribution

p(S) prend, en tout point p de S, comme valeur, la plus petite
limite de ses valeurs intérieures, en ce point, soit, U (p) — A. Il
est donc continu en tous les points de S où cette limite est

unique, donc égale à U (p). Ces points contiennent tous les

points irréguliers de S, et, en particulier, ceux en lesquels S

satisfait à la condition de Poincaré. Les points où il est discontinu
forment un ensemble impropre.

Par exemple, la balayage d'une masse unité concentrée en un
point P du domaine donne une distribution p. (S, P) dont le

potentiel est égal à ~—G (M, P), G (M, P) étant la fonction
de Green du domaine. Il est donc continu aux points réguliers
et discontinu aux points irréguliers.

On peut aller encore plus loin dans la voie ouverte par M. de la
Vallée Poussin par l'extension de la méthode du balayage.

IV. — Raccords avec les méthodes du chapitre I.

Ainsi que nous l'avons fait voir à la fin du chapitre I, il est
important de rechercher si les divers procédés que l'on a rappelés
dans ce chapitre, conduisent à des fonctions harmoniques
différentes ou non. Cette recherche est importante, en outre, au
point de vue suivant:

C'est que, si tous ces procédés conduisent à la même fonction
harmonique V, identique à la solution du problème de Dirichlet
généralisé, on enrichit du coup cette solution de toutes les propriétés
que ces divers procédés expriment.

i F. Vasilesco, C. R., t. 200, 1935, p. 199 et Joum., loc. cit., 1935.
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On démontre qu'il en est bien ainsil. On vient de le voir, dans
le chapitre précédent, pour la méthode du balayage. On le vérifie
pour la méthode de M. Zaremba qui apporte les propriétés dont
sa solution jouit, et qui ont été énumérées au chapitre I, en particulier

la suivante, qu'il n'est pas inutile de rappeler:
La solution du problème de Dirichlet généralisé rend minimum

l'intégrale

fff[0'+fà)'+0'\ia
Q

relative à toutes les fonctions continues u et ayant des dérivées

premières continues dans O, qui prennent sur la frontière S du
domaine Q les valeurs continues / qui définissent cette solution.

Pour d'autres procédés rappelés au chapitre I, tel que cela a
été le cas pour la méthode du balayage, il faut dissocier le

procédé de définition de la fonction V des conditions à la
frontière, et démontrer l'existence et l'unicité de cette fonction.
L'introduction de la solution du problème de Dirichlet facilite
cette tâche. Tel est le cas pour le procédé de Raynor, pour celui
de Phillips et Wiener, etc.

J'ajoute que, pour le procédé de M. Lebesgue, par des médiations

itérées, l'identité qui nous occupe a été démontrée, il y a

quelques années, par M. Perkins Ce procédé apporte une jolie
propriété de la solution du problème de Dirichlet généralisé.

Ainsi, tous les procédés envisagés conduisent à une même fonction

V, qui est la solution du problème de Dirichlet généralisé. On

pourra donc donner de celle-ci telle définition que l'on se plaira
de choisir parmi ces procédés.

Conclusion.

Nous pouvons conclure de la manière suivante: C'est que,
toutes les fois qu'un problème conduit au problème de Dirichlet
classique, pour un domaine D, ce qui implique, pour ce domaine,
une conformation particulière, ce même problème conduira au
problème de Dirichlet généralisé, si l'on envisage le domaine le

plus général, défini simplement comme un ensemble ouvert.

1 F. Vasilesco, C. R., t. 200, 1935, p. 1721, séance du 20 mai.
2 C. R., t. 184, 24 janvier 1927, p. 182.
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