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80 G. DOETSCH

dans le cas de la demi-bande et d'une solution s'annulant aux
extrémités x — 0 et x — n. En posant

00

z (x> y)— 2 v(y)sinnx
71=1

il réduit l'équation (6, 52) à un système infini d'équations
intégrales, qui est résolu par des approximations successives.

VII. — Prolongement analytique.

1. — Soit z (x, y) une fonction satisfaisant dans un domaine ©
à une équation parabolique. S'il existe un domaine ©x contigu
à © le long d'un arc AB, et une fonction !(#, y) satisfaisant dans
© + ©! à la même équation et identique à z dans ©, nous dirons

que z est prolongeable au travers de AB. C'est ainsi que Holmgren
définit cette notion, en supposant d'ailleurs la régularité de z et i.
L'on pourrait aussi définir la possibilité'd'un prolongement de la
manière suivante: Il doit exister une fonction zl(x1 y) satisfaisant

dans ©j à l'équation différentielle qui, ainsi que certaines
de ses dérivées, se raccorde d'une façon continue avec z; l'équation

différentielle doit être satisfaite aussi sur AB.
L'exemple suivant montre l'importance de la manière d'envisager

le prolongement et le raccord continu le long de AB:
La fonction z 0 satisfait dans © : 0 < x < #0, y > 0, à

l'équation ~ 0 et a, ainsi que toutes ses dérivées, la

valeur zéro sur la frontière donnée par x — x0.

La fonction zx (x, y) =ty(x — x0, y + a) avec a > 0 satisfait
dans le domaine adjacent

: x > x0 y > 0

à la même équation différentielle et possède le long de la droite
x x0 la valeur zéro. Mais que font les dérivées Si l'on

complète zx par sa valeur sur la frontière, existe le long de

1 Ö2 Z
x xn (du côté droit) et a la valeur — ,T ; —\ existe0

2 -vA (2/ + «)/2 0X
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également et a la valeur zéro. Puisqu'on a aussi ^ 0 sur

x x0< il en résulte que

1) l'équation différentielle est satisfaite sur x x0,

2) pour le passage de z à z1 le raccord continu des dérivées

intervenant dans l'équation différentielle a lieu.

Par contre la dérivée par rapport à x, qui n'intervient pas
dans l'équation différentielle, n'est pas continue. Si sa continuité
n'est pas expressément exigée, on peut prolonger 2 d'une infinité
de manières (a > 0 est arbitraire), prolongements qui ne donnent
alors évidemment pas de fonctions régulières et de ce fait
analytiques en x.

2. — L'aspect du problème du prolongement est complètement
différent suivant qu'on exige que le prolongement soit fait vers
la droite ou la gauche ou bien vers le bas, c'est -à-dire si l'on veut
traverser une des courbes Ë1? Ë2 ou bien la caractéristique S ;

ceci est en rapport avec le fait que, pour l'équation (1, 21) par
exemple, un u régulier est bien analytique dans la direction
des x, tandis qu'il appartient seulement à la classe 2 dans la
direction des y. Si et Ê2 sont, comme toujours dans la
physique, des droites perpendiculaires x — 0 et x Z, il s'agit une
fois d'une extrapolation de l'état de température plus loin que
les extrémités du fil («räumliche Fortsetzung))), la seconde fois
de la reconstitution d'un état antérieur à l'état initial observé
(« zeitliche Zurückverfolgung »), deux cas d'importance capitale
en physique.

Envisageons d'abord le prolongement au travers de ©x et S2,

par exemple au travers de 6X. Pour cela Holmgren [3, 4] obtint
le beau résultat suivant:

Si 6X est représentable par une fonction analytique x yx(y),
a < y < ô, alors la condition nécessaire et suffisante pour qu'une
solution u(x, y) régulière dans 23 + Ê (voir page 51) de l'équation

(1, 21) puisse être prolongée au travers de ©x vers la gauche,
s'énonce ainsi: Les valeurs que u prend sur chaque arc plus petit:
a < a < y < ß <6, définissent une fonction f(y) qui possède
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82 G. DOETSCH

dans oc < y < ß toutes les dérivées et représente une fonction §
de la classe 2.

La démonstration se base essentiellement sur le théorème
d'unicité du problème de Cauchy. Il est donc nécessaire de

prendre les hypothèses assez étroites pour que l'unicité soit
effectivement assurée.

L'unicité du prolongement lui-même résulte de l'analyticité
de u dans la direction des x.

Gevrey ([1], nos 57, 58) a étendu cela à l'équation linéaire
générale.

Pour le cas physique où le domaine primitif est formé par une
demi-bande 0 < x < Z, y > 0 l'on peut donner au problème du

prolongement un autre aspect (Doetsch [1], p. 48). Exigeons de

nos solutions au moins que l'unicité soit hors de doute et que la
solution du problème aux limites soit représentée par la formule
classique (1, 23), Pour simplifier nous supposerons que les valeurs
s'annulent sur les frontières x l et y — 0; nous pouvons
toujours arriver à cela par soustraction des termes relatifs à ces
frontières de la formule (1, 23), termes qui, d'ailleurs, sont pro-
longeables au travers de la frontière x 0. Si l'on peut maintenant

prolonger u vers la gauche jusqu'à une droite x — oc incl.
et cela de façon à ce que les valeurs initiales restent nulles sur le

prolongement de la frontière inférieure, alors on peut considérer
la droite x — a comme frontière à gauche. Alors la température

pour x > 0 ou bien, puisque ça suffit, pour x — 0 doit
être représentable au moyen de la température sur la nouvelle
frontière. Si l'on change la notation des abscisses cela peut
s'exprimer ainsi: La formule classique

U {%o, y) a (y) * G (xQ, y)

est, si les valeurs zéro sont données à droite et en bas, solution
du problème qui consiste à évaluer, à partir de la température
sur la frontière x 0 à gauche, la température en chaque point x0

placé plus à droite. Posons maintenant le problème inverse:
Quelle température A (y) doit être placée à la frontière x 0,

pour qu'on trouve en x0 précisément la température u(x0,y)?
Cela revient évidemment à la résolution d'une équation intégrale
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de première espèce de Volterra, mais qui ne se laisse pas
transformer de la façon habituelle par dérivation en une équation
de seconde espèce, puisque toutes les dérivées de G (x0,y)
s'annulent pour y 0. On peut cependant ramener cette équation

intégrale à une autre de noyau §(xQ,y) plus simple
(Doetsch [5]), qui correspond d'ailleurs au cas du fil indéfini, et

énoncer pour cette dernière ce qui suit (Doetsch [6]):
Pour qu'elle possède une solution il est nécessaire que toutes

les dérivées par rapport à y de u(x0l y) existent pour y > 0 et

s'annulent, comme d'ailleurs u(x0,y) elle-même, pour y 0.

Si la série suivante, procédant suivant des quotients différentiels
d'ordre fractionnaire

00 xn —

2 AD2 u (*» •

n= 0

converge pour y > 0 et est intégrable terme à terme dans chaque
intervalle fini, alors elle représente la solution A (y) de l'équation
intégrale.

Tandis que Holmgren ne démontre que l'existence du
prolongement, lequel peut rester indéterminé jusqu'où ce prolongement
peut être effectué, nous donnons ici une expression explicite
pour la solution, à condition que l'étendue du prolongement
soit déterminé a priori. Mais c'est précisément cela qui est donné

pour des problèmes physiques: si par exemple l'extrémité
x 0 est « inaccessible » et que l'on veuille déterminer sa

température à partir de celle qui a été constatée en un point
« accessible » x0.

3. — Envisageons maintenant le prolongement au travers de $
Supposons ici tout de suite que et ©2 sont deux droites
verticales gx et g2. Pour ce cas Gevrey ([1], n° 59) déjà a remarqué
que le prolongement n'est pas univoque si l'on ne connaît pas
les valeurs de u sur les prolongements vers le bas de et g2. Pour
la possibilité d'un prolongement il trouve comme condition
nécessaire et suffisante ([1], n° 60) que les valeurs de u sur
Sï étant située dans un plan complexe des x, doivent définir
une fonction analytique dans le carré construit sur R comme
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diagonale. Nous pouvons cependant donner un résultat plus
complet, qui en plus n'exige pas l'introduction du domaine
complexe (Doetsch [4]). Supposons tout de suite que u s'annule
sur les droites g1 et g2, à quoi on peut toujours arriver par une
soustraction de solutions appropriées. Si l'unicité de u et la
possibilité de lui appliquer la formule (1, 23) sont assurées et si a

peut être reconstituée dans le temps jusqu'au temps négatif
— ?/0, alors l'ancienne température initiale 0(#) pour y 0

doit se laisser déduire de la température u(x, — y0) au moment
— 2/0, par la formule

Si <S>(x) est donnée, c'est une équation intégrale de Fredholm de

première espèce pour u(x,—y0) et nous en tirons le résultat
suivant :

La température ne peut être reconstituée dans un passé antérieur

à l'état initial <D (x) que si ® (x) est une fonction analytique,
entière et périodique de période 21 avec <D (— x) — — O (x) et
O (0) O (l) 0. Si on la développe en série de Fourier
(convergente absolument et uniformément) de la forme

alors la température peut être reconstituée sans singularités pour
des y — y0 négatifs aussi loin que

reste convergente. Si Y est la coupure entre les yQ de la

convergence et de la divergence alors on obtient l'état de

température pour 0 < y0 < Y par la série de Fourier convergente
absolument et uniformément en x:

®(x) =/ T(x,l,y0)tt(Ç, -2/0MS •

0

O0

S («
" i2 ") (7, 31)

(7,,32)
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Si Y est une valeur pour laquelle la série (7, 31) converge encore,

alors la série (7, 32) représente pour y0 Y la valeur u(x, Y)

au moins dans le sens de la convergence en moyenne.

4. — La reconstitution dans le passé de la température dans

un fil infiniment long des deux côtés est d'intérêt particulier et

cela à cause de ses applications pratiques multiples. Appell [1]

s'en est occupé en 1892, mais sans aller très loin. Si l'on ne

considère que des fonctions pour lesquelles on peut employer la

formule de solution de Poisson (5,1), alors le problème est

équivalent à la résolution de l'équation intégrale singulière

+ 0° (x-Q2

Q(g) /— / e
41,0 -y*)dl • (7,4)

2 y izyo

Ce problème revient évidemment à une décomposition spectrale

de la fonction <S>(x) en courbes de Gauss j=^e 4yo (maxi-
2 V 7ty0

mum toujours en Ç, mesure de précision et cela explique

que le même problème se pose souvent dans le calcul des probabilités,

en statistique, en physique, etc. Moi-même, j'étais amené
à cette question par un problème de l'analyse spectrale
(Doetsch [7]) et j'ai obtenu la solution, à partir de la solution

pour un intervalle fini, par un passage à la limite peut-être assez
audacieux. On obtient le même résultat si l'on remarque que
l'équation intégrale (7,4) est du « type décomposition»
(Faltungstypus) et admet par conséquent la transformation de

Laplace ou celle de Fourier (voir Doetsch [13]). Plus tard,
P. Lévy [1] s'est occupé de ce problème surtout du point de vue
de la théorie des probabilités et sans tenir compte, semble-t-il,
des recherches mentionnées plus haut; ses résultats ne sont,
d'ailleurs, pas encore définitifs.

On pourrait encore dire beaucoup de choses sur les solutions
dans un intervalle infini d'un ou de deux côtés et montrer quelques

problèmes importants qui ne sont pas encore résolus. Je
dois ici m'en abstenir et réserver ce sujet pour une autre occasion.
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