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9. Les deux inégalités (5,22) et (5,31) conduisent & envisager
d’une maniére plus générale (Holmgren [3]) des fonctions f(z)
dérivables une infinité de fois dans un intervalle et satisfaisant
dans cet intervalle a 1'inégalité

I]c(n)(z) , < ME(“_”__{"_Q i
p'n

qui est équivalente & ,
RIS

avec a > 1. Gevrey ([1], chap. ITI, et [2]) appelle ces fonctions
fonctions § de la classe «. A 1'exception de la classe a =1, qui
donne les fonctions analytiques, elles ne sont pas méme quasi-
analytiques, comme nous le montre I’exemple

1
O(r)e -fdy  avec B = -

1

flz) =

-
TS

(Holmgren [3], p. 5).

3. Gevrey [2] a étendu la notion de classe pour des fonctions
d un nombre arbitraire de variables. Aprés que E. E. Levi ([3], § 9)
eut démontré pour ’équation non homogene de la chaleur que z
restait analytique en x au voisinage d’un point ou f(z, y) était
analytique en z, Gevrey [2] montra pour I’équation linéaire la
plus générale et d’autres équations tres générales que, en gros,
les propriétés de classe de I’équation se transmettaient aussi aux
solutions. Ce serait trop long de Vou101r reproduire ici ces résul-
tats d’une trés grande portée.

VI. — IEXISTENCE DE LA SOLUTION.

Un théoréme d’unicité énonce seulement qu’il y a au plus une
solution. C’est un théoréme d’existence qui doit décider si
en vérité 11 y en a une.

Le probléme de Cauchy.

Dans le cas analytique Vexistence.de la solution est toujours
assurée, mais c’était un des premiers résultats des travaux
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célebres de Holmgren que le probléme de Cauchy avec des
données non analytiques n’a pas nécessairement une solution et
qu’une condition nécessaire et suffisante de résolubilité peut étre
écrite. Le résultat pour I'équation homogéne de la chaleur
s’énonce ainsi (Holmgren [1]) :
Si les valeurs initiales
ou

lim u(z, y) = o(y) , lim — = o, (y)

X = Xo x=x90 %

sont données sur le segment v = z,, a« <y < b, ¢ possédant
une dérivée du premier ordre continue, alors la condition néces-
saire et suffisante pour qu’il existe une solution réguliére est la
sutvante:

Y
1 9’ (7)
1 —- s ———; d
1 (y) + = :f e

est une fonction 9 de la classe 2.
On peut donner une autre forme trés intuitive a cette condition

assez surprenante. Le second terme de cette somme n’est autre
1

que la dérivée D? ¢ de Riemann-Liouville (on dérive ¢ une fois
et on effectue une intégration d’ordre une demie). Tandis que
Iéquation différentielle elle-méme peut s’écrire sous la forme

1 1
(Dxu + Dgu) (Dxu— D; u) = { ,

la condition de Holmgren s’énonce ainsi:
1

D.u + D;‘fu doit, pour x = z,, étre une fonction  de la
classe 2.
Holmgren ([3], p. 8) a généralisé ce résultat pour le cas ou u

du . .
et — seraient données sur une courbe et non pas sur un segment
X

de droite et Gevrey ([2], chap. IV) I’a étendu a I’équation non
homogéne (1, 22) et a montré comment on pouvait traiter le
probléme pour I’équation linéaire la plus générale et des équa-
tions plus générales encore.
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Le probléme aux limites.

1. — Les équations paraboliques occupent une place inter-
médiaire entre les équations elliptiques et hyperboliques.
Comme pour les équations elliptiques il suffit de nous donner
sur la frontiére seulement les valeurs de la fonction ou seulement
celles d’une de ses dérivées ou bien seulement les valeurs de la
fonction sur certaines parties de la frontiére et seulement celles
de la dérivée sur d’autres. Mais la valeur en un point ne dépend,
comme pour les équations hyperboliques, que des valeurs sur
la frontiere située entre les deux caractéristiques correspon-
dantes. Vu que ces derniéres sont ici horizontales et coincident, ce
sont seulement les points de la frontiere qui se trouvent en des-
sous ou bien en dessus des caractéristiques qui interviennent. Pour

p i i, 03z . 02 . , -
les équations linéaires en 5y c’est le signe de 5y TU le décide.

Si nous envisageons des domaines dans lesquels ce signe est
négatif, il s’agit de frontiéres courbes €, ouvertes vers le haut.
D’aprés E. E. Levi ([3], § 2) on distingue trois types:

&N

R A

Fig. 5.

Premuer type: € est composée de deux courbes, représentables
sous la forme

G = v(y) G x = v,(y) @ey<?),
qui se rencontrent en bas:
v1(a) = vala) . Ona vi(y) < v,(y) ,

sauf pour y = a.

Deuxiéme type: €, et €, ne se rencontrent pas en bas, mais y
sont reliées par un segment & de caractéristique.
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Trotsiéme type: La courbe €, est rejetée a I'infini et € ne se
compose que de €, et d'un segment infin1 & de caractéristique.

Dans la suite nous supposerons ¢ = 0. — Nous ne parlerons
pas ici des courbes frontiéres du troisiéme type pour lesquelles
certaines choses sont particuliérement simples, d’autres non
encore expliquées (voir la remarque a la fin de I1I). Levi insiste
sur les domaines du premier type (comme limite de domaines du
deuxiéme type) et il les traite séparément, pour la raison seule-
ment qu’d son avis certaines intégrales dont on se sert pour la
démonstration d’existence n’ont pas de sens pour ces domaines.
Je crois que cette opinion n’est pas juste et que la distinction est
accessoire, au moins dans les cas considérés par Levi ou les valeurs
sur la frontiere € sont continues, o par conséquent les valeurs
dans les points inférieurs de €, et €, coincident.

En ce qui concerne le caractére des courbes €, et C,, on peut
dire que les fonctions v, et v, (excepté au plus en un nombre
fini de points)

sont analytiques chez Holmgren;

satisfont

chez Levi & une condition de Lipschitz d’ordre 1,
chez Gevrey a la méme condition d’ordre o:

1
vl) —vW) | S Hly—y'|"  avee <o 1.

Cette derniére condition s’explique par le fait que, essentielle-
ment, il s’agit toujours de la convergence d’intégrales de la
forme
Yy Iy —1())2
Y{y) —v(n) &(y—n)
—aj, ¢ dn .
5y ly—m)"

Sous I’hypothése de Gevrey on a pour 0 <7 <y

[r(y) — y(x)]2
— BT Y(y) — vy H
0 < e A= <, { —~‘ < s
= (y — )l (y — )2
avec i T § — <1
2 = 2

et par conséquent la convergence de I'intégrale.
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Derniérement PETrowskY [1] a appliqué aux équations para-
boliques la méthode de Perron, établie pour les équations ellip-
tiques (ce qui antérieurement a été déja fait par Sternberg). Il a
démontré de cette facon I'existence de la solution de (1,21) pour
des courbes encore plus générales et il a ausst montré que cette
classe était la « meilleure » dans ce sens que si on la dépassait, on
pourrait donner des valeurs continues sur la frontiére telles
qu’aucune solution ne pourrait exister.

2. — La démonstration d’existence (les valeurs sur la frontiére
étant continues) que Holmgren a imaginée et les démonstrations
de Levi et Gevrey qui s’y rattachent, se sont inspirées de la
théorie du potentiel. Le role de la solution fondamentale (qui pour

un potentiel de volume est égale a %) est joué dans la propagation

de la chaleur par la fonction y(z, y) de (3,331). Elle repréSente
la distribution de la température pour y > 0, si I'on suppose
comme état initial une source de chaleur concentrée en z = 0.

Au potentiel d’une couche correspondent des intégrales de la
“forme

X3
Po(z, y) = fx(x — &, y) ©®(E)dE (prise le long de la caractéristique &)
X1

et
Yy

Pz, y) = fx(x — (), y— ) ®(n)dn (prise le long de €, ou G,).
0

P, n’est pas définie sur & (y = 0), mais a la valeur limite ® ()
si 'on s’approche d’un point intérieur a'R&. P, est-définie et con-
tinue aussi sur la courbe z = y(y). — Dans la théorie du poten-

tiel on envisage a coté de —i~ aussi la dérivée de %, dérivée normale
a la couche. A celle-ci correspond ici la fonction ¢ (z, y) = — %’—i
de (3, 311). Elle donne lieu a l'intégrale

Yy

Py(xz, y) = ;/‘@P(x* v(), y— ) @(n)dn (prise le long de G, ou @,),
0 |
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qui correspond au potenitel de double couche. Cette intégrale a,
comme dans la théorie du potentiel, des valeurs limites si (z, y)
tend vers la courbe x = v (y), qui d’ailleurs sont différentes
sulvant qu’on s’en approche par la droite ou par la gauche:

lim Py, y) = & @y, +
Y=>Yg, x=+(Yyo) & 0

*

Yo
+',/7¢(Y(yo)——¥(n), Yo — 1) P () dn .
0

Pour v (y) = const. ceci est un résultat classique, pour le cas
général 1l est donné par E. E. Levi ([2]; [3], p- 211) et Holmgren
({3, p- 6).

Avec cela on gagne le point de départ pour des démonstrations
d’existence. Holmgren [2] se donne les valeurs A (y) et B(y) sur
¢, et €&,, la valeur zéro sur & (on peut toujours y arriver par
soustraction d’une intégrale de la forme P,) et prend la solution
de ’équation (1, 21) sous forme d’une somme de deux potentiels
de chaleur de la forme P,, sur ¢, et €,:

Y
wle, y) = [xle—raln), y— n) By(n) dn +
0
y
+ [ ale—aln), y— 7) By(n) dy .
0

Il en tire, en vertu de leur continuité sur ¢, et €,, les deux
conditions:

y
Aly) = [xbnaly) —valn), y — ) Du(n) dy +

Y
+ [ xbraly) — valn) s y — 1) By(n) d

ee
S
I
™
=
=
| -]
<
=2
fa=y
3
<
3
=)
Yok
=
I W
=
+
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C’est un systeme de deux équations intégrales de Volterra de
premiere espece pour les densités inconnues @, et ®,. Holmgren
le transforme, suivant le procédé de Volterra, en un systéme
d’équations intégrales de seconde espeéce dont la résolubilité
est assurée.

E. E. Levi ([2];[3], § ) donna plus tard une démonstration
d’existence basée sur la méme idée, qui suit de plus prés encore
le procédé indiqué par Neumann pour le potentiel ordinaire. Il
pose u comme différence de deux intégrales P, donc comme
potentiel de double couche:

Yy

ulw, y) = [Ylo— i), y— ) ¥y(n) dng —
0

Y
— [ b=, y— ) Caln) dy
0

et obtient, conformément a ce qui a été dit plus haut sur la
valeur limite de P, sur les courbes €,, €,, les conditions:

Yy

Aly) = Fily) + f&IJ(Yl(y) —vi(n), ¥y — ) Viln) dn —
0
Yy

— [t = valn), y — ) Waln) dn
0
Yy

Bly) = ¥aly) + [ $(valy) —valn), y — 0) Fyln) dy —
0

Yy
— [ laly) — valnl, y — ) Wy ln) dr .
0

Ces équations intégrales pour ¥, et ¥, sont a priori de seconde

espéce, de facon que leur résolubilité est évidente.
Holmgren [3] appliqua la méme méthode aux cas ou sur ¢,

, ou .
et €, est donnée la valeur de u ou de 5, Ouencore une combinaison

., . ou
linéaire de u et vt

3. — Ces résultats ont & nouveau beaucoup a faire avec la

question de 'unicité. 11 semble d’aprés cela que pour des valeurs
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continues données sur la frontiére, la solution pourrait bien étre
unique. Celte contradiction réfutant la non-unicité s’explique
par le fait que cette méthode n’est applicable qu’aux solutions
représentables par des potentiels de chaleur. Holmgren et Levi
supposalent cela de chaque solution, mais ce n’est pas le cas pour
nos solutions singulieres! Supposons qu’on ait pour une solution
singuliere arbitraire S (x, y):

Sle, y) = ¥ily) x ¢z, y) —Yoly) » 91—z, y)

(dans le cas de la demi-bande de largeur un nous pouvons bien
écrire le point de départ de Levi sous cette forme). Si, y étant
constant, on fait tendre z une fois vers zéro, puis vers un, alors:

0 = W;(y) —Yoly) = $(1, y),
0 =Yy * ¢(1, y) — Yely) ,

d’ou, en employant le théoreme d’addition de Cesaro (voir p. 65):
Vily) = Yily) *» (2, 9), Wily) = ¥oly) = $(2,y) .

Cela n’est possible que pour ¥, = ¥, = 0. Mais avec ces valeurs
on aurait S = 0.

4. — VoLTERRA ([1], p. 66) établit, d’aprés la méthode de
Riemann de I’équation adjointe, une formule de Green pour la
solution de I’équation non homogéne (1, 22), qui a c6té des valeurs
03

=3 il montra aussi

sur la frontiére de z contient aussi celles de

([1], p- 67) comment on peut éliminer les valeurs de '2;: sur une

frontiére rectiligne en employant le principe des images de
Lord Kelvin. E. E. Levi ([2]; [3], § 7) indiqua comment d’apres
cette méthode de Volterra on pouvait représenter la solution
(de I’équation homogene) par ses valeurs sur la frontiére, suppo-
sée polygonale, et arriver par un passage a la limite a des fron-
tiéres arbitraires.

Gevrey ([1], n® 4) donna, plus explicitement.encore, une repré-
sentation de Green de la solution de I’équation non homogéne
(1,22); 1l le fait en introduisant une fonction de Green
G (z, y; &, m), représentant une certaine solution de l’équation
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adjointe et dont il établit Pexistence a P'aide de la méthode de
Holmgren indiquée plus haut, qui utilise les équations inté-
grales. Cette représentation est donnée par la formule

sz
= —j—-—’ﬁ ) dn +
<£1+0:2

¢ [azE, 0ar— [ [GfE, nazdn, (6,4
H

Sy

S, désignant la partie du domaine limité par €, + & + €, se
trouvant en dessous de la caractéristique d’ordonnée y. (L’in-
tégrale double représente la solution de I’équation non homogene
qui s’annule sur la frontiére).

5. — Cette représentation (6,4) conduisit Gevrey ([1], n® 19-24)
a une démonstration d’existence pour la solution de I’équation
linéaire générale (3,21). Car si 'on remplace (en supposant
b = —1) la fonction f par — a(z, y)g—z—— clz,y)z + f(z,y),
alors (6, 4) donne:
sz, y) = Lz, y) + ff(}-(ab—z + cz)didn (6, 51)

0g
Sy

ou { représente la solution de (1, 22) avec les mémes valeurs sur
la frontiére. Avec cela on établhit pour z une équation intégro-
différentielle qui est résoluble, si certaines hypotheéses sur la
frontiére, les coefficients et les valeurs aux limites sont satisfaites.
L’équation parabolique générale (1, 1) et surtout le type plus
particulier
02z 03

02 .
-b_;_z“@—f(xa y, z, g}) (6502)

peuvent alors étre traités par la méthode qu’on emploie aussi
pour des équations différentielles ordinaires, c’est-a-dire en les
rendant «comparables» a l’équation linéaire en supposant
satisfaites des conditions de Lipschitz (Gevrey [1], n° 28-34).

Récemment, une autre méthode a été employée par Sippiq1 [1]
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dans le cas de la demi-bande et d’une solution s’annulant aux
extrémités x = 0 et x = =. En posant

z(x, y) = 2 0, (y) sin nx
n=1

il réduit ’équation (6, 52) & un systéme infini d’équations inté-
grales, qui est résolu par des approximations successives.

VII. — PROLONGEMENT ANALYTIQUE.

1. — Soit z (z, y) une fonction satisfaisant dans un domaine &
a une équation parabolique. S’1l existe un domaine &, contigu
a & le long d’un arc AB, et une fonction z (z, y) satisfaisant dans
& + &, & la méme équation et identique a z dans &, nous dirons
que z est prolongeable au travers de AB. C’est ainsi que Holmgren
définit cette notion, en supposant d’ailleurs la régularité de z et z.
L’on pourrait aussi définir la possibilité d’un prolongement de la
maniére suivante: Il doit exister une fonction z,(x, y) satisfai-
sant dans &, a ’équation différentielle qui, ainsi que certaines
de ses dérivées, se raccorde d’une fagon continue avec z; I’équa-
tion différentielle doit étre satisfaite aussi sur AB.

L’exemple suivant montre 'importance de la maniere d’envi-
sager le prolongement et le raccord continu le long de AB:

La fonction z = 0 satisfait dans &: 0 <2 <z, y> 0, &

, . 023 .o L.,
I’équation — — —= = 0 et a, ainsi que toutes ses dérivées, la
ox? oY !

valeur zéro sur la frontiere donnée par z = x,,.
La fonection z,(z,y) = 4 (x —zy, ¥ + «) avec o > 0 satisfait
dans le domaine adjacent

Gy x>z, yYy>0

& la méme équation différentielle et possede le long de la droite
x = x, la valeur zéro. Mais que font les dérivées ? Si I'on
: D :
compléte z; par sa valeur sur la frontiére, 6% existe le long de
2

‘ oy . 1 d .
x = x, (du cété droit) et a la valeur == i) Z; existe
* 247 (y + )2’ o
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