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2. Les deux inégalités (5,22) et (5,31) conduisent à envisager

d'une manière plus générale (Holmgren [3]) des fonctions f(z),
dérivables une infinité de fois dans un intervalle et satisfaisant

dans cet intervalle à l'inégalité

\fn)(g)lÛUT^n±i)t
P

qui est équivalente à

| /(n> (^) | g M

avec a > 1. Gevrey ([1], chap. III, et [2]) appelle ces fonctions

fonctions !q de la classe ol. A l'exception de la classe a= 1, qui
donne les fonctions analytiques, elles ne sont pas même quasi-
analytiques, comme nous le montre l'exemple

2 1

f(z) f ®(?i)e dri avec ß - -
0

(Holmgren [3], p. 5).

3. Gevrey [2] a étendu la notion de classe pour des fonctions
à un nombre arbitraire de variables. Après que E. E. Levi ([3], § 9)

eut démontré pour l'équation non homogène de la chaleur que z

restait analytique en x au voisinage d'un point où f(x, y) était
analytique en x, Gevrey [2] montra pour l'équation linéaire la
plus générale et d'autres équations très générales que, en gros,
les propriétés de classe de l'équation se transmettaient aussi aux
solutions. Ce serait trop long de vouloir reproduire ici ces résultats

d'une très grande portée.

VI. — L'existence de la solution.

Un théorème d'unicité énonce seulement qu'il y a au plus une
solution. C'est un théorème d'existence qui doit décider si

en vérité il y en a une.

Le problème de Cauchy.

Dans le cas analytique l'existence de la solution est toujours
assurée, mais c'était un des premiers résultats des travaux
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célèbres de Holmgren que le problème de Cauchy avec des
données non analytiques n'a pas nécessairement une solution et
qu'une condition nécessaire et suffisante de résolubilité peut être
écrite. Le résultat pour l'équation homogène de la chaleur
s'énonce ainsi (Holmgren [1]) :

Si les valeurs initiales

lim u(x, y) 9(y) lim ^ 9l[y)
X-*Xq X-ÏXOQX

sont données sur le segment x x0, oc < ?/ < ô, 9 possédant
une dérivée du premier ordre continue, alors la condition nécessaire

et suffisante pour qu'il existe une solution régulière est la
suivante :

+ Ld,
Vtt £ vy — y\

est une fonction <g de la classe 2.

On peut donner une autre forme très intuitive à cette condition
assez surprenante. Le second terme de cette somme n'est autre

j_
que la dérivée D^ 9 de Riemann-Liouville (on dérive 9 une fois

et on effectue une intégration d'ordre une demie). Tandis que
l'équation différentielle elle-même peut s'écrire sous la forme

(Dxm + Dy u) (DXm — Dy 0 '

la condition de Holmgren s'énonce ainsi:
_i_

Dxu + u doit, pour x x0l être une fonction ip de la
classe 2.

Holmgren ([3], p. 8) a généralisé ce résultat pour le cas où u

et ~ seraient données sur une courbe et non pas sur un segment

de droite et Gevrey ([2], chap. IV) l'a étendu à l'équation non
homogène (1, 22) et a montré comment on pouvait traiter le

problème pour l'équation linéaire la plus générale et des équations

plus générales encore.
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Le problème aux limites.

1. — Les équations paraboliques occupent une place
intermédiaire entre les équations elliptiques et hyperboliques.
Gomme pour les équations elliptiques il suffit de nous donner
sur la frontière seulement les valeurs de la fonction ou seulement
celles d'une de ses dérivées ou bien seulement les valeurs de la
fonction sur certaines parties de la frontière et seulement celles
de la dérivée sur d'autres. Mais la valeur en un point ne dépend,
comme pour les équations hyperboliques, que des valeurs sur
la frontière située entre les deux caractéristiques correspondantes.

Vu que ces dernières sont ici horizontales et coïncident, ce
sont seulement les points de la frontière qui se trouvent en
dessous ou bien en dessus des caractéristiques qui interviennent. Pour

les équations linéaires en ^ c'est le signe de ^ qui le décide.

Si nous envisageons des domaines dans lesquels ce signe est

négatif, il s'agit de frontières courbes ©, ouvertes vers le haut.
D'après E. E. Levi ([3], § 2) on distingue trois types:

Z

<Â

Fig. 5.

Premier type : Ê est composée de deux courbes, représentables
sous la forme

@i : x-Ti(y) : x y2(y) (a ^ y ^ b)

qui se rencontrent en bas:

ïi («) T2 (a) On a Tl (y) < Ï2 (y)

sauf pour y — a.

Deuxième type: ©j et Ê2 ne se rencontrent pas en bas, mais y
sont reliées par un segment Ä de caractéristique.
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Troisième type: La courbe Ê2 est rejetée à l'infini et 6 ne se

compose que de et d'un segment infini de caractéristique.
Dans la suite nous supposerons a — 0. — Nous ne parlerons

pas ici des courbes frontières du troisième type pour lesquelles
certaines choses sont particulièrement simples, d'autres non
encore expliquées (voir la remarque à la fin de III). Levi insiste
sur les domaines du premier type (comme limite de domaines du
deuxième type) et il les traite séparément, pour la raison seulement

qu'à son avis certaines intégrales dont on se sert pour la
démonstration d'existence n'ont pas de sens pour ces domaines.
Je crois que cette opinion n'est pas juste et que la distinction est

accessoire, au moins dans les cas considérés par Levi où les valeurs
sur la frontière G sont continues, où par conséquent les valeurs
dans les points inférieurs de et fè2 coïncident.

En ce qui concerne le caractère des courbes et Ê2, on peut
dire que les fonctions yx et y2 (excepté au plus en un nombre
fini de points)

sont analytiques chez Holmgren;

satisfont

chez Levi à une condition de Lipschitz d'ordre 1,

chez Gevrey à la même condition d'ordre oc:

Cette dernière condition s'explique par le fait que, essentiellement,

il s'agit toujours de la convergence d'intégrales de la
forme

I y [y) — y (y') I è H I y — y' r avec j < a ^ 1 •

y [t(y) - t(-i)12

du

Sous l'hypothèse de Gevrey on a pour 0 < vj < y

avec — — — a < 1

\yi — t \ 'H <
(y — -rç)3/2 " (y —

avec

et par conséquent la convergence de l'intégrale.
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Dernièrement Petrowsky [1] a appliqué aux équations
paraboliques la méthode de Perron, établie pour les équations
elliptiques (ce qui antérieurement a été déjà fait par Sternberg). Il a

démontré de cette façon l'existence de la solution de (1,21) pour
des courbes encore plus générales et il a aussi montré que cette
classe était la « meilleure » dans ce sens que si on la dépassait, on
pourrait donner des valeurs continues sur la frontière telles
qu'aucune solution ne pourrait exister.

2. — La démonstration d'existence (les valeurs sur la frontière
étant continues) que Holmgren a imaginée et les démonstrations
de Levi et Gevrey qui s'y rattachent, se sont inspirées de la
théorie du potentiel. Le rôle de la solution fondamentale (qui pour

un potentiel de volume est égale à est joué dans la propagation
de la chaleur par la fonction x(x-> y) de (3,331). Elle représente
la distribution de la température pour y > 0, si l'on suppose
comme état initial une source de chaleur concentrée en x — 0.
Au potentiel d'une couche correspondent des intégrales de la
forme

Po(^ » y) — Jx(x — 5 y) $(?) dZ, (prise le long de la caractéristique fà)

Xi

et
y

Pit® > y) fx(®— ï(l) y — l) ®(l) dr\ (prise le long de ou S8).
o

P0 n'est pas définie sur È{y 0), mais a la valeur limite <b(x)
si l'on s'approche d'un point intérieur à'Â. Px est définie et
continue aussi sur la courbe x y (y).— Dans la théorie du poten-

1 1tiel on envisage à côté de — aussi la dérivée de y, dérivée normale

à la couche. A celle-ci correspond ici la fonction >(x, y) — ^
de (3, 311). Elle donne lieu à l'intégrale

y

» y) f — y(*]) » y — *î) dy\ (prise le long de ou <S?),

o
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qui correspond au potentiel de double couche. Cette intégrale ar
comme dans la théorie du potentiel, des valeurs limites si (x, y)
tend vers la courbe x~ y (?/), qui d'ailleurs sont différentes
suivant qu'on s'en approche par la droite ou par la gauche:

lim P2 (x y) ± O (y0) +
y + yo, 3c^ï(yo) ± 0

y0

+ f 41 (y (2/0) y f7]) 2/0 *]) l7)) ^ •

0

Pour y(?/) const, ceci est un résultat classique, pour le cas

général il est donné par E. E. Levi ([2]; [3], p. 211) et Holmgren
([3], p. 6).

Avec cela on gagne le point de départ pour des démonstrations
d'existence. Holmgren [2] se donne les valeurs A (y) et B (y) sur

et Ê2, la valeur zéro sur £ (on peut toujours y arriver par
soustraction d'une intégrale de la forme P0) et prend la solution
de l'équation (1, 21) sous forme d'une somme de deux potentiels
de chaleur de la forme P3, sur et ©2 :

y

u(%> y) f x(* — Yifa) > y — ®i(ï)) dr\ +
b

y

+ f x(x — r2(*n), y — *î) $a(*î) dri •

0

Il en tire, en vertu de leur continuité sur et ©2, les deux
conditions:

y

a (y) f x (y1 iy) - TiW» y ~ dv +
0

y

+ f x (ti (y) — t2 (*n) » y — *i) ^2(1) dy >

0

y

h (y) f x (y2 (y) — riW, y — +
0

y

+ fxitAy) ~ yM > y — 1) $2 fa) ^ •

0



LES ÉQUATIONS DU TYPE PARABOLIQUE 77

C'est un système de deux équations intégrales de Volterra de

première espèce pour les densités inconnues et ff>2. Holmgren
le transforme, suivant le procédé de Volterra, en un système
d'équations intégrales de seconde espèce dont la résolubilité
est assurée.

E. E. Levi ([2]; [3], § 5) donna plus tard une démonstration
d'existence basée sur la même idée, qui suit de plus près encore
le procédé indiqué par Neumann pour le potentiel ordinaire. Il
pose u comme différence de deux intégrales P2, donc comme
potentiel de double couche:

y

u{x, y) y^ — Yi (r\) y — yj) T^t]) dt\ —
0

y

— f <\>{x — y2(yj) y — yj) Ta(rj) dy\
0

et obtient, conformément à ce qui a été dit plus haut sur la
valeur limite de P2 sur les courbes ©x, Ê2, les conditions :

y
A (y) XF1 (y) + Ç + (n (2/) - ïi W y ~ *)) xY1(ri) dv\ —

0

y

— f <Mïi (y) — y2(7]) y — 73) t2(yj) dy
0

y

B(y)=^a(y) + f + (t2(2/) — Ti(^), y -
0

y

— f "MYsfe/) — Ta (•>)) — vj) ^(ïj) df\
0

Ces équations intégrales pour XP1 et XY2 sont a priori de seconde
espèce, de façon que leur résolubilité est évidente.

Holmgren [3] appliqua la même méthode aux cas où sur
et ®2 est donnée la valeur de u ou de ~ ou encore une combinaison

linéaire de u et —.dx

3. — Ces résultats ont à nouveau beaucoup à faire avec la
question de 1 unicité. Il semble d'après cela que pour des valeurs
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continues données sur la frontière, la solution pourrait bien être
unique. Cette contradiction réfutant la non-unicité s'explique
par le fait que cette méthode n'est applicable qu'aux solutions
représentables par des potentiels de chaleur. Holmgren et Levi
supposaient cela de chaque solution, mais ce n'est pas le cas pour
nos solutions singulières! Supposons qu'on ait pour une solution
singulière arbitraire S (x, y) :

S (x, y) xF1(y) * + (as, y) — T2(y) * <]>(! — x y)

(dans le cas de la demi-bande de largeur un nous pouvons bien
écrire le point de départ de Levi sous cette forme). Si, y étant
constant, on fait tendre x une fois vers zéro, puis vers un, alors:

0 ^i(y)-^2(y) * +(1, y)

o XF1 (y) * «ni, y)~^2(y)

d'où, en employant le théorème d'addition de Cesàro (voir p. 65):

(y) (2/) * + (2, y) t (y) ^2 (y) * + (2, y) •

Cela n'est possible que pour xi'\ T2 0. Mais avec ces valeurs-

on aurait S 0.

4. — Volterra ([1], p. 66) établit, d'après la méthode de
Riemann de l'équation adjointe, une formule de Green pour la
solution de l'équation non homogène (1, 22), qui à côté des valeurs

sur la frontière de z contient aussi celles de ~ ; il montra aussi
Ô£C 7

ô Z
([1], p. 67) comment on peut éliminer les valeurs de — sur une

frontière rectiligne en employant le principe des images de

Lord Kelvin. E. E. Levi ([2]; [3], § 7) indiqua comment d'après,
cette méthode de Volterra on pouvait représenter la solution
(de l'équation homogène) par ses valeurs sur la frontière, supposée

polygonale, et arriver par un passage à la limite à des
frontières arbitraires.

Gevrey ([1], n° 4) donna, plus explicitement,encore, une
représentation de Green de la solution de l'équation non homogène
(1,22); il le fait en introduisant une fonction de Green

G{x,y\ ?,vj), représentant une certaine solution de l'équation
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adjointe et dont il établit l'existence à l'aide de la méthode de

Holmgren indiquée plus haut, qui utilise les équations
intégrales. Cette représentation est donnée par la formule

z{x,y)- H)dyi +

+ j'Gz(l, 0)dl — ffam, rùàld,(6,4)

Sy désignant la partie du domaine limité par ßj + Ä + ©2 se

trouvant en dessous de la caractéristique d'ordonnée y.
(L'intégrale double représente la solution de l'équation non homogène

qui s'annule sur la frontière).

5. — Cette représentation (6,4) conduisit Gevrey ([1], n° 19-24)
à une démonstration d'existence pour la solution de l'équation
linéaire générale (3, 21). Car si l'on remplace (en supposant

b — 1) la fonction / par — a(x,y) ^ — c(x, y) z + /(#, y),

alors (6, 4) donne :

z(x y) Ç(a, y) + J J G • + cz^d^dt\ (6, 51)

où Ç représente la solution de (1, 22) avec les mêmes valeurs sur
la frontière. Avec cela on établit pour 2 une équation intégro-
difïérentielle qui est résoluble, si certaines hypothèses sur la
frontière, les coefficients et les valeurs aux limites sont satisfaites.

L'équation parabolique générale (1, 1) et surtout le type plus
particulier

Ö2* ÖZ / b z\
f(x>y'z'rx)(6'a2)

peuvent alors être traités par la méthode qu'on emploie aussi

pour des équations différentielles ordinaires, c'est-à-dire en les
rendant « comparables » à l'équation linéaire en supposant
satisfaites des conditions de Lipschitz (Gevrey [1], n° 28-34).

Récemment, une autre méthode a été employée par Siddiqi [1]
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dans le cas de la demi-bande et d'une solution s'annulant aux
extrémités x — 0 et x — n. En posant

00

z (x> y)— 2 v(y)sinnx
71=1

il réduit l'équation (6, 52) à un système infini d'équations
intégrales, qui est résolu par des approximations successives.

VII. — Prolongement analytique.

1. — Soit z (x, y) une fonction satisfaisant dans un domaine ©
à une équation parabolique. S'il existe un domaine ©x contigu
à © le long d'un arc AB, et une fonction !(#, y) satisfaisant dans
© + ©! à la même équation et identique à z dans ©, nous dirons

que z est prolongeable au travers de AB. C'est ainsi que Holmgren
définit cette notion, en supposant d'ailleurs la régularité de z et i.
L'on pourrait aussi définir la possibilité'd'un prolongement de la
manière suivante: Il doit exister une fonction zl(x1 y) satisfaisant

dans ©j à l'équation différentielle qui, ainsi que certaines
de ses dérivées, se raccorde d'une façon continue avec z; l'équation

différentielle doit être satisfaite aussi sur AB.
L'exemple suivant montre l'importance de la manière d'envisager

le prolongement et le raccord continu le long de AB:
La fonction z 0 satisfait dans © : 0 < x < #0, y > 0, à

l'équation ~ 0 et a, ainsi que toutes ses dérivées, la

valeur zéro sur la frontière donnée par x — x0.

La fonction zx (x, y) =ty(x — x0, y + a) avec a > 0 satisfait
dans le domaine adjacent

: x > x0 y > 0

à la même équation différentielle et possède le long de la droite
x x0 la valeur zéro. Mais que font les dérivées Si l'on

complète zx par sa valeur sur la frontière, existe le long de

1 Ö2 Z
x xn (du côté droit) et a la valeur — ,T ; —\ existe0

2 -vA (2/ + «)/2 0X
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