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66 G. DOETSCH

ment négative, tandis que pour ¢ (x, y) la température passe
pour z = 0 des valeurs négatives aux valeurs positives. Mais
cecl s’explique du fait que les deux solutions correspondent a des
conditions aux limites différentes pour x —= o. L’influence des
conditions aux limites a U'infint et la question dans quelle mesure
celles-ci peuvent étre données n’a pas été jusqu’a maintenant
étudiée dans la littérature.

IV. — Lgs princiPES DE HuyvaHENS ET D’EULER.

1. — La non-unicité oblige & prendre des précautions surtout
dans 'application aux solutions d’équations paraboliques du
principe de Huyghens et de celui d’Euler. Le principe de
Huyghens (Hadamard [1]) détermine la solution une fois a partir
de la frontiére primitive, puis a partir d’une station intermé-
diaire. L’exemple le plus simple serait le suivant: Soit un fil,
de température initiale nulle, qui s’étend d’un coté a l'infini;
appliquons a la frontiére x = 0 la température un, alors; d’apres
(3,61) nous obtenons pour x > 0 la température

1% ¢z, y) .

Sil’on prend comme frontiere le point intermédiaire z, (0 <z, <x),
on y a la température 1 * ¢ (z,, y), donc dans x

T* gz, y) * bz — 2, 9) .
Dans le cas de 'unicité on en peut conclure
1 ¢z, y) = 1% gz, y) * p(x—=, 9,
d’ou, par dérivation par rapport a v,
bz, y) = b(@, y) * $lz—2, y) (0 < &y < ) .

Ceci n’est autre que le théoréme d’addition de Cesaro, mentionné
a la page 65. Mais la conclusion n’est pas légitime, s1 nous ne
possédons pas de théoréme d’unicité, rigoureusement applicable
dans ce cas.

Si dans la fonction de Green G de (1, 24) nous mettons en
évidence la largeur [ de l'intervalle en écrivant G(z, y; [),
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alors le principe de Huyghens appliqué & la propagation de la
chaleur dans un fil fini, donne lieu a la relation

Ga,y;l) =Gy, y; 0 * Gl@—m,y ;51— 2 0<z<z<])

qui, explicitement écrite, représente une relation assez compli-
quée entre des fonctions 3, (Doetsch [11]).

Si 'on applique le principe de Huyghens dans la direction des y
au lieu de celle des x, on obtient pour la fonction I'(z, &; y) de
(1, 25) le théoréme transcendant d’addition (Doetsch [1], p. 51):

l
[ Tlay, B5 9 T(E, @05 92) dE = Tlay, w3 vs + vl
0

pour O<Zl<l et 1> .

P Ya

2. — Le principe d’Euler (Doetsch [9]) détermine une solution
dans le méme domaine de base au moyen de deux especes de
conditions sur la frontiére, par exemple une fois par les valeurs
sur la frontiére de la fonction elle-méme, puis par celies d’une
de ses dérivées. On obtient ainsi par identification une relation
en général transcendante. Envisageons par exemple (Doetsch [9],
p. 340) la distribution de la température dans un fil de longueur
un, distribution qui satisfait aux conditions suivantes sur la
frontiére

limu =0, limu=2y3(0,y) +1, lim2% —_ .
y~0 x=0 x+102
Elle sera donnée par
x
0‘32(—2“7 y)

wlz, y) = —[20 %0, y) + 1] * —

Puisqu’on a pour cette fonction

QU
Iim -2 — __ & —
x-»ODx 3(0, y) 1:

Pon peut déterminer u aussi par les conditions suivantes sur la
frontiére

limu =10, Hm2*=_— 90, y) —1 lim 2% _
y-0 x>002 J ‘J) ’ x-»1bx_0.
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La solution de ce probléme s’écrit ainsi:
wle, ) =[50, 9 + 1] * (5, 4) |

et 'identification des deux expressions pour u donne la relation

X
025 4)

ox

(50 v) * (%00, ) + 1] + # [29 9,00, 9) +1] =0 .
Pour x — 0 cette relation se transforme en une équation inté-
grale pour ,(0, y):

I3(0, y) * [33(07?!) + 1]—‘2y33(0,y)_’1 =0

indiquée par F. BErNsTEIN (Die Integralgleichung der elliptischen
Thetanullfunktion. Sitzungsber. d. preuss. Akad. d. Wiss., 1920,
pp. 735-747). Pour d’autres exemples et pour une autre méthode
de gagner de telles relations transcendantes par des transforma-
tions fonctionnelles, voir Doetsch [11].

V. — LE CARACTERE ANALYTIQUE DES SOLUTIONS.

1. — WEIERSTRASS [1] a montré en 1885 que la solution dans
le demi-plan y > 0 de I'équation (1,21) de la chaleur avec les
valeurs @ (z) sur la frontiere y = 0, représente sur chaque hori-
zontale une fonction entiére analytique en . Plus explicitement:
La solution donnée par la formule classique de Poisson

+
ule, ) =5 [ 2le—E, y) ()L, 5, 1)

—00

ou y désigne la fonction (3,331), a cette propriété. A cause de
nos expériences sur la multiplicité des solutions nous nous
trouvons obligés de nous servir de cet énoncé plus prudent.
Weierstrass établit la méme propriété pour la solution (1,23), si
les températures A (y) et B(y) s’annulent.

Holmgren montra en 1905 ([1] et plus explicitement dans [3])
qu’'une solution réguliére (voir p. 50) de (1,21) représente sur
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