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50 G. DOETSCH

bohques concernant l'existence des solutions dans le cas d'une
non-intégrabilité des valeurs sur la frontière ni sur l'interprétation

possible des conditions aux limites dans ce cas. Les
démonstrations de l'unicité nécessitent surtout une série d'hypothèses
sur les solutions et sur certaines dérivées, hypothèses comme
l'intégrabilité à une ou deux dimensions, continuité, etc. Ce sont
toutes des hypothèses étrangères à la nature du problème qui,
par conséquent, doivent être chaque fois nettement explicitées 1.

3. — L'on voit alors ceci: Pour que le problème soit clairement
posé il est indispensable d'une part de préciser quelles conditions
on impose à la solution et aux valeurs sur la frontière, de fixer
d'autre part le sens dans lequel les conditions aux limites doivent
être interprétées.

Il est à regretter qu'une partie même de la littérature moderne,

pour ne plus parler de la plus ancienne, reste extrêmement

vague sous ce rapport. Ceci entraîne d'une part que les théorèmes
et démonstrations sont faux eux-mêmes, d'autre part que des

théorèmes, justes sous certaines restrictions, sont employés dans
des cas où ces restrictions ne sont pas respectées. Ce sont surtout
les démonstrations d'unicité qui montrent la gravité décisive du

sens dans lequel on envisage le problème aux limites.

III. — La question d'unicité ou de multiplicité
DES SOLUTIONS.

1. — Dans les ouvrages parus avant 1925 on ne voit nulle part
surgir un doute sur l'unicité de la solution des équations
paraboliques 2, on y trouve, au contraire, une série de démonstrations
du fait que la solution, si elle existe, est bien unique; ainsi

1 Dans le cas de l'énoncé particulier du problème on a l'habitude d'appeler régulières
bz bz b2Z

les solutions de l'équation (1,1) qui sont, ainsi que leurs dérivées — —-, — continues
bx by doc2

dans le domaine plus la frontière.
2 Seul M. Ë. Picard indiquait à l'occasion (Sur le développement de l'Analyse

mathématique et ses rapports avec quelques autres sciences, Paris, 1905), sans d'ailleurs insister,
que si l'on envisageait la propagation de la chaleur dans un conducteur illimité l'on
devait, pour démontrer l'unicité, admettre des hypothèses sur l'allure à l'infini de la
fonction et de ses dérivées. Mais c'est plutôt le fait qu'un cas limite exige des considérations

particulières, qui est souligné ici.
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Holmgren (Öfversikt af K. Vet. Akad. Förhandlingar, 1901,

pp. 91-103) le démontra pour l'énoncé particulier du problème
de Cauchy dans le cas non analytique. Mais nous ne voulons pas
insister ici sur le problème de Cauchy.

2. — Pour un problème aux limites — et nous en reparlerons
dans VI — les valeurs de z sont données sur un contour ouvert ©,

composé de deux courbes ©j et ©2 à gauche et à droite, dont les

points extrêmes inférieurs Ax, A2 ou supérieurs Bx, B2 se trouvent
à égale hauteur, et d'un segment de caractéristique qui relie
les points extrêmes inférieurs ou
supérieurs. Dans les cas considérés dans la
suite & se trouve en bas. Le problème
consiste à déterminer z dans les points X1J *£-

« entre ©x et ©2 », c'est-à-dire dans les

points intérieurs au domaine délimité
par A1A2B2B1A1 et dans les points de A
B2B2 lui-même. Soit 33 l'ensemble de Fig. î.
ces points.

L'on connaît trois types de démonstration de l'unicité que je
ne citerai pas dans l'ordre historique, mais dans l'ordre de leur
simplicité. (J'omets ici le type le plus primitif de démonstration
qui part de la représentation effective de la solution par ses

valeurs sur la frontière, représentation sous forme d'une
intégrale; j'en parlerai à l'occasion dans VI, 3).

I. Démonstration1 de Gevrey ([1], n° 18). — Elle s'applique dans
certains cas à l'équation parabolique linéaire générale

0^2 ö Z ö Z
—2 + a(x,y)—+ b(x, y)~+ c(x, y)z f(x, y) (3, 21)

Nous envisageons d'abord l'équation homogène

D2u Du Du
-—X + ß — + b -— + eu 0 (3, 22)
ö xz ö x ö y \ i j

Supposons que u satisfait à l'équation dans 33 et soient u continue

dans 33 + ©, ^ et ~continuesdans 33; pour ~ il suffira de
ôa? Dy 1 r ö x

1 La démonstration de Picone [1] qui se sert aussi de la méthode de Gevrey, est du
même type.
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supposer l'existence dans 33. Considérons les deux cas particuliers
suivants :

a) Soient dans 33 :

b [x y) <L 0 c (x y) < 0

Alors u ne peut pas prendre de maximum positif (> 0) dans 33.

(Cela exprime en un point (x0, yd) de B1B2 que les inégalités
u(xos Vo) > 0 et u(x0l yQ) > u(x: y) ne peuvent pas être
satisfaites pour les points voisins avec y < y0). Si c'était le cas en un
point P de 33, la considération des sections y — const, et
x — const, nous montrerait qu'on aurait nécessairement en P

et, si P ne se trouve pas sur BXB2:

si P se trouve sur B1B2:

et, par conséquent, dans tous les cas:

En plus, nous avons en P
eu < 0

L'équation (3,22) ne pourrait alors pas être satisfaite.
Cependant, en raison de sa continuité, u doit avoir un maximum

absolu dans le domaine fermé 33 + Ë. Par conséquent, ce

maximum sera < 0 s'il est atteint dans 33, ou bien il sera
atteint sur 6.

Un raisonnement analogue nous montre que u ne peut pas
avoir de minimum négatif < 0) dans 33, et que, par conséquent,
ce minimum sera > 0 s'il est atteint dans 33, ou bien qu'il sera
atteint sur Ê.

Supposons maintenant que l'équation non homogène (3, 21) ait
deux solutions différentes z2, qui prennent la même valeur sur
la frontière Ê et ceci dans le sens particulier que « la fonction
plus la valeur sur la frontière » est continue dans 33 + ©, que
leurs premières dérivées sont continues dans 33, tandis que de

5"x^ on ne suPPose (Iue l'existence dans 33. La différence

ö u
— o
is y

^ > 0
ï>y -
à U ^b— < 0
isy -
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h zx — z2 satisfait alors à l'équation homogène (3, 22) et aux
'] conditions posées plus haut, elle a en plus sur la frontière la
i valeur zéro, de façon que le maximum absolu ne peut être que

-î > 0. Mais alors il découle du résultat énoncé plus haut que ce
>1 maximum est égal à zéro. La même chose peut être prouvée pour

| le minimum absolu. Par conséquent nous avons u 0, c'est-à-
j dire z1 z2.

i b) Soient dans 33:

b [x y) ^ B < 0 0 c (x y) C

; (L'équation de la chaleur appartient à ce type). Par la substitu-
I tion
I z (x, y) eKy^(x, y) (K — const.)

| l'équation (3, 21) se transforme en une équation en Ç, qui ne se

: distingue de la première que par le fait que le coefficient de Ç

; est maintenant égal à c + Kè. D'après les hypothèses sur b et c,

l'on peut choisir K assez grand pour que cette fonction soit
négative dans 33, de façon que la déduction de a) est applicable

; à Ç. Mais si, les valeurs sur la frontière étant données, il n'y a

qu'une seule solution Ç, il n'existe de même qu'une seule solution
| z de l'équation primitive avec les valeurs correspondantes sur la
frontière.

i 2. Démonstration de Poincaré ([1], pp. 27-30) pour l'équation
de la chaleur (1,22). (Cette démonstration est peut-être plus

; ancienne, on la trouve dans beaucoup de traités sur les équations
j aux dérivées partielles de la physique). Poincaré envisage l'équa-
tion pour la demi-bande (voir p. 45), mais on peut aussi considérer

i une frontière plus générale, comme sur p. 51, si l'on suppose que
I les courbes et Ë2 sont représentables par deux fonctions uni-
j voques et dérivables

:
: % ~ Ta. [y) : x y2 (y)

j Supposons que l'équation non homogène (1, 22) ait deux solu-
1 tions différentes pour des valeurs données sur la frontière,
j Alors l'équation homogène (1,21) a une solution u{x,y) mur
j identiquement nulle, prenant sur la frontière les valeurs zéro.

i
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Je reproduis d'abord la démonstration usuelle et en m'abstenant
de remarques.

Envisageons l'intégrale
72 (y)

J (y)
2 f u2 [x y) dx (a)

ri (y)

étendue sur un segment de caractéristique qui fait partie de 33.

Alors nous avons

,r 72 (y)

w fu?ydx + ltt2(Y2(2/)'
7i (y)

72 (y)

f u — dx (b)J by '

7i (y)

En vertu de l'équation différentielle (1, 21) on a

di n(f utüdx - u~
:*(V)

— - — *T (— (c)Jubx* \x J \dx) J \bx)
a{y) ri (y) 7i (y)

dy
7i (y)

et par conséquent

IM°- «

Avec y0 ordonnée de Ax et de A2, on a u(x, y0) 0 et de ce fait

j (2/0) 0 ; (e)

donc il découle de (d) et (c):

J(2/)g03 (/)

tandis que, par définition, on a J (y) > 0. Donc on doit avoir
J (y) ~ 0, de façon que w, si elle est continue, est identiquement
nulle.

Cette démonstration se sert en réalité d'un si grand nombre
d'hypothèses qu'il est difficile de les énumérer toutes. L'intégrale
(a) existe certainement si u se raccorde d'une façon continue — au
moins dans la direction des x — avec les valeurs sur la frontière,
puisque à l'intérieur u est en tous cas continue dans la direction

des x en vertu de l'existence de Cependant (b) exige que J
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soit derivable et encore que — puisse être obtenue par la règle

connue. (c) présuppose que, si (#, y) se déplace horizontalement

vers la frontière, non seulement u mais aussi u^ tende vers zéro
7 Ö X

(par exemple que ^ reste bornée sur ce chemin; Gevrey a

montré ([2], chap. III) que ceci n'est, en général, pas le cas). Pour
autoriser le passage de (d) et (e) à (/), J devrait être continue

pour y0 ou, en d'autres termes, l'on devrait à la place de J (y0)

envisager la limite vers laquelle J tend pour y y0. Or, le
fait que u2 tende vers zéro si l'on s'approche d'un point
quelconque de S, n'entraîne nullement que aussi fu2dx tende alors

vers zéro. Ceci signifierait que u converge vers zéro « en moyenne »

et cela nécessiterait des hypothèses, par exemple que u converge
vers zéro uniformément en x pour y —y0 ou bien, d'après
Arzelà, que u reste bornée dans le voisinage de Nous verrons
plus tard, à quel point ces hypothèses sont indispensables pour
la validité de la démonstration.

3. Démonstration de Volterra ([1], p. 64) pour l'équation de la
chaleur, plus développée chez E. E. Levi ([3], p. 190). Cette
démonstration se base sur la transformation connue de Green
d'une intégrale de surface en intégrale prise le long d'un contour,
transformation dont on se sert beaucoup dans d'autres domaines
des équations aux dérivées partielles. Les conditions sous
lesquelles la démonstration est juste ne sont point indiquées par
Volterra. Levi indique soit-disant toutes les hypothèses
employées, mais il en néglige une et cela, comme nous verrons,
précisément la plus décisive. Son théorème s'énonce ainsi: Soit G

un arc de courbe dont les points
extrêmes A et B se trouvent à la
même hauteur; supposons cet arc
placé entièrement au-dessous de AB
et tel que les parallèles aux axes
aient au plus deux points communs
avec l'arc. Soit 33 l'ensemble de

points intérieurs à G + AB et du
segment AB lui-même et suppo- Fig. 2.
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sons que la fonction u satisfait aux conditions suivantes :

a) u et ~ sont continues dans 93 + 6 L
0 X

1 '

ô) est dans 93 + © linéairement intégrable par rapport
Ö u

t est dans 93 + © linéairement intégrable par rap-

ö x'

à x,

port à y,
c) u satisfait dans 93 à l'équation (1, 21),
d) u a la valeur zéro sur Ê.

Alors on a u 0 dans 93.

Les transformations dont la démonstration se sert s'écrivent
ainsi (voir fig. 2) ; de plus b) entraîne que

fI uv^dxdy J dyf fdy
ô2 u Ö u

1 V~Ö X

n /ô u\2
' J \ôx,

dx

- ff^x)dxdy
B

en vertu de a) et d)\

s

ff u~~dxdy f dx f ^~dy ~ j* dx { u2(B) — u2(y) }
1

&
*

y Ç U2 (S) dx y y U2 dx

en vertu de d), et par conséquent

ffu(S~^)dxdy=-f
B B AB

Le premier membre s'annulant en vertu de c), les deux

intégrales du second membre doivent être nulles elles aussi,

donc 0 en vertu de sa continuité et par conséquent

u const. 0.

i Remarquons que l'existence de — sur la frontière est ici admise.
ôx
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L'on constate immédiatement que la continuité à deux dimensions

de u et ^ n'est point utilisée pour l'évaluation de l'intégrale;

il suffit ici que le raccord de u avec les valeurs sur la frontière

soit continu dans la direction des x et des y et que ^ reste bornée

si l'on s'approche de la frontière dans la direction des x. Par

contre l'on admet Vhypothèse essentielle qui n'est pas exprimée,

que ou, ce qui revient au même, sont dans 33 intégrables à

deux dimensions. Si u n'était supposée continue qu'à une dimension

dans la direction des x et des ?/, ce qui est possible dans cette

démonstration, l'on devrait même exiger que u et ~ soient de

carré intégrable à deux dimensions.

3. — Je ne veux pas m'arrêter ici à tirer des démonstrations
précédentes tout ce qui pourrait servir à établir un théorème
aussi général que possible1; je veux plutôt résumer ici mes

remarques sur les trois types de démonstration:
La première démonstration est entièrement adaptée à l'énoncé

«particulier)) du problème; la seconde et la troisième peuvent
être employées aussi pour l'énoncé « général », mais nécessitent
alors toute une série d'hypothèses fondamentales. Le soupçon
s'impose alors que la solution du problème « général » ri1 est pas
unique si les hypothèses ne sont pas très étroites. Et, en effet,
il en est ainsi Pour le montrer il suffit que pour une simple
équation, comme l'équation homogène de la chaleur (1, 21) et

pour un simple domaine comme la demi-bande ou un quart du
plan qui est une demi-bande dégénérée, nous donnions l'exemple
d'une fonction-solution qui tende vers zéro si l'on s'approche de
la frontière normalement, sans être cependant identiquement
nulle. J'appellerai de telles fonctions « solutions singulières ».

1. Dans le quart du plan x > 0, y > 0 la fonction

__3_ __x2

ty(x,y)= —X7=ry 2 e 4y (3,311)
2 y/ 7T

1 J'en reparlerai à une autre occasion.



58 G. DOETSCH

a cette propriété. Elle remplace dans le quart du plan la fonction
de Green G (x, y) de (1, 24). Cette solution possède même une
signification physique: elle représente la distribution de température

qu'on obtient si l'on apporte en un temps extrêmement
court une quantité finie de chaleur à l'extrémité x — 0 du fil
(explosion de chaleur). Mais ce n'est pas seulement cette solution
qui possède la propriété demandée, toutes ses dérivées partielles
par rapport à y

(3j312)
ôy bx2 by2 bx4"

l'ont aussi (Doetsch [3], p. 304). De ces fonctions l'on peut à

nouveau déduire une infinité de solutions singulières: si l'on
pose, par exemple,

U(X, y) y-yà pour
0 pour 0 < y g yQ

u tend encore vers zéro si l'on s'approche normalement des

frontières du quart du plan et l'équation différentielle est satisfaite

dans tout l'intérieur et aussi sur la droite y — y0.

2. Dans la demi-bande 0 <x <1, ?/ > 0 la fonction
4- oo

G(x,y)2 «K* + 2nl,y)(3,321)
n=—oo

connue de (1,24), ainsi que ses dérivées partielles par rapport à y

öG _ bH} ö*G _
by bx2 ' by* öa;4 '

1 ' 1

possèdent la propriété analogue (Doetsch [3], p. 299), comme
d'ailleurs aussi toutes les fonctions formées à partir de ces
solutions d'après le schéma suivant

S G(x,y — y0) pour y > y0 > 0

u(x,y)mmi (3,323)
0 pour 0 < y S y0

(Doetsch [4], p. 612). Toutes ces solutions peuvent être
interprétées comme distributions de température, créées par des

explosions de chaleur (Doetsch [3], p. 301). — De même

G(l — x, y) (3,324)
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et les fonctions qui en peuvent être déduites de la manière

indiquée plus haut sont des solutions singulières.

3. Les mêmes relations se présentent aussi pour des problèmes

aux limites d'un autre genre, par exemple pour ceux où intervient

la valeur de sur la frontière : la fonction
ÖX

oc2

X (x y) /—' g kV (3,331)
Vtzy

satisfait dans le quart du plan à l'équation (1, 21) et tend vers
zéro si l'on s'approche normalement de la frontière inférieure,

tandis que — tend vers zéro si l'on s'approche de la frontière

à gauche. Les dérivées par rapport à y de cette fonction se

comportent de la même façon.
La fonction

-f- co

3,(f, y)2 x(* + 2», y)(3,332)
n=-oo

dans la demi-bande 0 <# <1, y> 0 tend vers zéro si l'on
s'approche de la frontière inférieure, tandis que sa dérivée par
rapport à x tend vers zéro si l'on s'approche de la frontière à

gauche et à droite.
La fonction

(-l)n«M*+2 (3,333)
' n=-co

dans la demi-bande 0 <# <1, y> 0 tend vers zéro si l'on
s'approche de la frontière inférieure et de la frontière à gauche,
tandis que sa dérivée par rapport à x tend vers zéro si l'on
s'approche de la frontière à droite (Doetsch [9], pp. 333, 338).

4. Il existe encore un type tout à fait différent de solutions
singulières. Supposons donnée la demi-bande de largeur l et
établissons la fonction de Green correspondante à (1,24) d'abord

pour l'intervalle 0<x<^-(n étant un nombre entier positif).
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Soit G (^x1 y, ^ cette fonction de Green et posons

| G (x y pour 0 g x ^ ~

I n(21 l\ 1 V o
1

/—Gl x v,- pour — < x < 2 —
m (a:, y) { \w " "/ n ~ ~ n (3^34)

*\ «
Z ^ ^ o

*
GI a; ;?/ - 1 pour 2 — S a; S 3 —

u représente simplement le prolongement analytique de G dans

la direction des x. Cette fonction ainsi que ses dérivées V~,1 öx 7 öv
d2 u l
—o sont continues sur les droites £ v — et satisfait même surö ar n
ces droites à l'équation (1, 21). Elle tend vers zéro quand on se

rapproche d'une frontière quelconque de la demi-bande. Pour
n 2 elle est simplement une combinaison linéaire de solutions
singulières précitées, à savoir u(x, y) G(#, y) — G (l — %,y),
ce qui n'est plus le cas pour n > 2.

Je voudrais ici faire la remarque que pour le problème de Cauchy
je ne connais pas d'exemple réfutant l'unicité dans le cas de

l'énoncé « général ».

4. — Il est très intéressant d'examiner ici de quelle façon les

démonstrations d'unicité tombent en défaut en face de ces

exemples, disons de la fonction G. La première démonstration
(de Gevrey) n'entre pas en ligne de compte puisque, dans la
demi-bande fermée, G (x,y) n'est pas continue et même pas
bornée : dans le voisinage du sommet x 0, y 0 cette fonction
se comporte comme (x, y) et peut, par conséquent, y prendre
des valeurs positives arbitrairement petites et arbitrairement
grandes.

L'intégrale J (y) employée dans la seconde démonstration (de
Poincaré) prend dans le cas u G(x, y) et l 1 la valeur

00

J (y) 7T2y nie'WTiv
n 1
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11 est vrai que cette expression est dérivable pour y > 0 et que

la dérivée est constamment négative, mais pour y —0 elle ne

tend point vers zéro mais vers oo (Doetsch [3], p. 300).

L'exemple (3,323) nous montre qu'il ne suffit point d'admettre

que J —^ 0 pour y —^ 0, de sorte par exemple que u(x, y) tende

uniformément vers zéro en x pour y—*~ 0. Dans cet exemple cette

condition est évidemment satisfaite, tandis que J n'est pas
dérivable pour y ?/0, étant de la forme

/ 00

\ 7T2 V tt2éT2n2~2(?/_?/o) pour y > y0
J(y)= n= 1

0 pour 0 y g y0

de façon que la règle exprimée dans (è), p. 54, n'est pas applicable
non plus h

La troisième démonstration (de Levi) semble être applicable à

G (x, y) puisque la condition a), comme nous l'avons indiqué plus
haut, n'intervient pas en toute sa rigueur dans la démonstration
et n'y est employée que dans une mesure qui est satisfaite pour G.

Mais G ne satisfait pas à la condition négligée par Levi, celle qui

exige que ~ soit intégrable à deux dimensions dans le domaine

Il semble être une ironie du destin que Levi lui-même ait

démontré dans le même mémoire ([3], pf 229) que n'est pas

intégrable, ce qui entraîne immédiatement la non intégrabilité
bG

de —.by

5. — Le procédé par lequel j'ai trouvé ces solutions singulières
vaut peut-être la peine d'être mentionné, parce qu'il donne la
possibilité de les trouver toutes. Il fut déduit à l'occasion de

l'étude d'une nouvellè^ méthode dintégration d'équations aux
dérivées partielles dans une demi-bande, méthode bien adaptée
précisément à l'énoncé «général» (Doetsch [1, 2, 3, 4, 8, 9]).

i Pour cette même raison la/démonstration de Thum, qui opère avec des intégrales
de Lebesgue et des fonctions de carré intégrable, tombe en défaut (v. Lösung von
Randwertaufgaben der Wärmelehre und Potentialtheorie durch Reihenentwicklungen
und Integraldarstellungen. Crellesches Journal, i6tf'(1932), pp. 65-90, § 1).
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Elle emploie la transformation de Laplace

00

f(s) f é-*F [y)dy2{F}
0

et sa propriété fondamentale

S{F'} 5S{F} F(0) (3, 51)

où F (0) représente la valeur limite de F pour y —>- + 0. Si
l'on applique cette transformation par rapport à la variable 1 y

aux «fonctions objet» a(x, y) qui
pourraient être solutions de l'équation

différentielle, on leur fait
correspondre certaines «fonctionsrésultat

» v (x1 s) :

8 { u (x y) } ç(x, s)

et l'équation aux dérivées partielles
(1, 21) se transforme suivant (3, 51)
en une équation différentielle
ordinaire en e:

S-S" + ®(s) » 0 (3,52)

dans laquelle la condition initiale
®(#) est introduite et où s joue le
rôle d'un paramètre. Ce sont les deux

caractères essentiels de la méthode 2. Les fonctions sur la frontière

A (y) et B (y) se transforment en les deux valeurs de e

sur la frontière

p(0, s) a (s) A} e(l, s) b (s) 2{b}

1 Qui parcourt dans notre problème justement l'intervalle infini 0 <y < w.
2 Cette méthode s'applique évidemment à toutes les équations linéaires dont les

coefficients de la partie homogène ne dépendent que de x et non pas de y. Elle donne
entre autres une justification rigoureuse de ce qu'on appelle calcul symbolique de
Heaviside (Doetsch [10]). On peut de même employer une autre méthode qui transforme
les équations par rapport à la variable x et qui est adaptée à un intervalle fini. Alors
les coefficients peuvent dépendre de y (Doetsch [12]).

A propos du calcul de Heaviside voir L'Ens. mathématique, XXXIII, 1934, p. 118.

Fig. 3.
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Si nous prenons en particulier

<D (x) EE 0 B (y) EE 0

et par conséquent aussi b (s) 0, alors la solution de (3,52) est

la suivante :

ç (x s) — a {s) g(x 5) avec g(x, s) — — (3, 53)
©in l y 5

La solution de l'équation initiale aux dérivées partielles sera
trouvée si l'on peut déterminer inversement la fonction objet de

cette fonction résultat. On sait que A (y) correspond à a (s),
G (x,y) à g(x,s) et qu'au produit de deux fonctions résultat
f1(s) et f2(s) correspond ce que nous appelons la composition
(Faltung)

y

Fx * F2 J Fx (7)) F2 (y — iq) dri
0

des fonctions objet:

S{FX * F2} S{Fx}.S{F2}

A (3,53) correspond alors la fonction objet

u{x y) A (y) * G(x y) (3, 54)

C'est la solution connue (1,23) pour <D B 0.

Maintenant intervient le raisonnement suivant (Doetsch [3],
p. 298; [8], p. 75). La méthode repose évidemment sur deux
hypothèses essentielles :

1. Il est supposé que

a (s) S{ A} et b(s) SIB}

sont les valeurs sur la frontière de v :

lim i{ u\ S {lim u\ lim&{ u 2 (lim u (3,55)
0 x-> 0 x-¥ l x-+l

c'est-à-dire que les valeurs sur la frontière des fonctions
transformées sont les transformées des valeurs sur la frontière (ou, en
d'autres termes, que la transformation fonctionnelle est conti-
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nue). Si ce ri*était pas le cas pour un u, l'on aurait une nouvelle
fonction sur la frontière ~ä(s) 9^ S {A } dans le domaine résultat
et, par conséquent, une autre solution v(x, s) a(s)g(x, s).
Cette dernière donne lieu à une autre solution u(x, y) dans le
domaine objet. Mais étant donné que, plus haut, nous avons déjà
obtenu une solution correspondante à la condition A (y) sur la
frontière, ceci n'est possible que s'il existe plusieurs solutions
pour une fonction sur la frontière. Si maintenant à a (s)
correspondait la fonction objet A (y), il en résulterait, par l'application
de la règle de composition:

u (x y) A (y) * G (x y)

Mais ce serait une solution avec la fonction A sur la frontière
et certainement pas avec A. Il ne reste que la possibilité que
a (s) ne corresponde à aucune fonction objet. Si nous choisissons
maintenant a (s) de façon qu'aucune fonction objet ne corresponde
à a (s), mais qu'il y ait une correspondante à â(s)g(x, s), alors

nous obtenons une solution de l'équation aux dérivées partielles
qui ne satisfait pas aux relations (3,55), qui par conséquent
diffère de la solution déduite d'après (3,54) de la valeur sur la
frontière.

Si l'on choisit a (s) 1, nous sommes sûrs de n'avoir aucune
fonction objet correspondant à cette fonction, tandis que
a (s) g(x, s) g(x, s) possède évidemment G(x, y) comme
fonction objet. Cette fonction a, pour x ->- 0, la valeur A.(y) 0

sur la frontière, valeur pour laquelle la formule (3,54) donnerait
seulement la solution u 0, tandis que sa fonction résultat
g (x, s) prendra pour x —0 la valeur un.

_ önG
Si l'on choisit a (s) sn, on obtient u —-, donc la solution

öy

singulière (3,322). Pour a (s) e~y°s on trouve la solution
(3,323). Cette dernière est d'ailleurs une superposition des

solutions (3,322):
y0)n ïnG(x, y)

0 ïyn

2. La seconde hypothèse faite dans notre méthode est que la
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transformation de Laplace soit permutable avec la dérivation par
rapport à x:

L'exemple (3,34) nous montre pour n — 3 qu'il existe effectivement

des solutions où cette hypothèse n'est pas satisfaite, qui
sont par conséquent des solutions singulières. Ici n'est

2
même pas continue pour x j Z, d'autant moins dérivable.

6. — Je voudrais encore montrer sur un exemple que même
la formule classique (1, 23) de la solution entraîne des contradictions

évidentes si l'on conserve l'unicité. Pour simplifier, considérons

le cas dégénéré du quart du plan x > x0, y > 0 et donnons-
nous la valeur <&(#) 0 sur la frontière inférieure, la valeur A (y)
sur la frontière à gauche. La solution classique de l'équation
(1, 21) s'écrit alors

u(x, y) A (y) * f {x — x0 y) (3,61)

où désigne la fonction (3,311). Envisageons maintenant la
fonction u y) elle-même qui satisfait à l'équation (1, 21)
dans tout le demi-plan y > 0 et prend sur la frontière inférieure
les valeurs zéro. Soit x0 — oc (oc> 0). Sur la frontière x x0
la solution ^ prend la valeur —a, y) — — y)- La
formule (3, 61) donne alors

— $(oc, y) » <\)(x + oc y)

D'après un théorème d'addition de Cesàro (Sur un problème de

propagation de la chaleur. Acad. Royale de Belgique, Bull. d. I
classe des Se., Bruxelles, 1902, pp. 387-407), pour lequel il est
d'ailleurs essentiel que a > 0, x -f- a > 0, cette dernière expression

est égale à

— + 2a y)

et pas du tout à ^(x, y). D'ailleurs, la température restant
zéro sur la frontière y 0 et négative sur la frontière x — oc,

la solution — ^{x + 2oc, y) semble au premier abord avoir plus
de sens pour la physique, car alors la température est constam-

L'Enseignement mathém., 35me année, 1936. 5
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ment négative, tandis que pour ^(x, y) la température passe

pour x 0 des valeurs négatives aux valeurs positives. Mais
ceci s'explique du fait que les deux solutions correspondent à des

conditions aux limites différentes pour x—>- oo. L'influence des

conditions aux limites à Vinfini et la question dans quelle mesure
celles-ci peuvent être données n'a pas été jusqu'à maintenant
étudiée dans la littérature.

IV. — Les principes de Huyghens et d'Euler.

1. — La non-unicité oblige à prendre des précautions surtout
dans l'application aux solutions d'équations paraboliques du
principe de Huyghens et de celui d'Euler. Le principe de

Huyghens (Hadamard [1]) détermine la solution une fois à partir
de la frontière primitive, puis à partir d'une station intermédiaire.

L'exemple le plus simple serait le suivant: Soit un fîl,
de température initiale nulle, qui s'étend d'un côté à l'infini;
appliquons à la frontière x 0 la température un, alors,- d'après
(3, 61) nous obtenons pour x > 0 ]a température

1 * (x, y)

Si l'on prend comme frontière le point intermédiaire x0 (0 <x0 <x)f
on y a la température 1 * ^ (x0, y), donc dans x

1 * (xQ y) * ^ (x — x0 y)

Dans le cas de l'unicité on en peut conclure

1 * <|> (x y) 1 * (x0, y) * (x — y)

d'où, par dérivation par rapport à y,

^ (x y) {x0 y) * (x — > y) (0 < x0< x)

Ceci n'est autre que le théorème d'addition de Cesàro, mentionné
à la page 65. Mais la conclusion n'est pas légitime, si nous ne

possédons pas de théorème d'unicité, rigoureusement applicable
dans ce cas.

Si dans la fonction de Green G de (1, 24) nous mettons en
évidence la largeur l de l'intervalle en écrivant G(x, y\ Z),
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