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50 G. DOETSCH

boliques concernant 'existence des solutions dans le cas d’une
non-intégrabilité des valeurs sur la frontiére ni sur 'interpréta-
tion possible des conditions aux limites dans ce cas. Les démon-
strations de I'unicité nécessitent surtout une série d’hypothéses
sur les solutions et sur certaines dérivées, hypotheses comme
Pintégrabilité & une ou deux dimensions, continuité, ete. Ce sont
toutes des hypothéses étrangeres & la nature du probléme qui,
par conséquent, doivent étre chaque fois nettement explicitées 1.

3. — L’on voit alors ceci: Pour que le probléme soit clairement
posé 1l est indispensable d’une part de préciser quelles conditions
on impose a la solution et aux valeurs sur la frontiere, de fixer
d’autre part le sens dans lequel les conditions aux limites doivent
étre interprétées.

Il est a regretter qu’une partie méme de la littérature moderne,
pour ne plus parler de la plus ancienne, reste extrémement
vague sous ce rapport. Ceci entraine d’une part que les théorémes
et démonstrations sont faux eux-mémes, d’autre part que des
théorémes, justes sous certaines restrictions, sont employés dans
des cas ou ces restrictions ne sont pas respectées. Ce sont surtout
les démonstrations d’unicité qui montrent la gravité décisive du
sens dans lequel on envisage le probleme aux limites.

ITI. — LA QUESTION D’UNICITE OU DE MULTIPLICITE
DES SOLUTIONS.

1. — Dans les ouvrages parus avant 1925 on ne voit nulle part
surgir un doute sur I'unicité de la solution des équations para-
boliques 2, on y trouve, au contraire, une série de démonstrations
du fait que la solution, si elle existe, est bien unique; ainsi

1 Dans le cas de I’énoncé particulier du probléme on a I’hahitude d’appeler réguliéres
z 2
les solutions de I’équation (1,1) qui sont, ainsi que leurs dérivées b~, 93, _b__z continues
dx dy 0Ox2
dans le domaine plus la frontiére.

2 Seul M. E. Picard indiquait A P’occasion (Sur le développement de U’ Analyse mathé-
matique et ses rapports avec quelques aulres sciences, Paris, 1905), sans d’ailleurs insister,
que si I’on envisageait la propagation de la chaleur dans un conducteur illimité 'on
devait, pour démontrer 'unicité, admettre des hypothéses sur I’allure a Uinfini de la
fonction et de ses dérivées. Mais c’est plutdt le fait qu’un cas limite exige des considé-

rations particulieres, qui est souligné ici.
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| Holmgren (Ofversikt af K. Vet. Akad. Firhandlingar, 1901,
© pp. 91-103) le démontra pour 1’énoncé particulier du probléme
‘ de Cauchy dans le cas non analytique. Mais nous ne voulons pas
. insister ici sur le probléme de Cauchy.

2. — Pour un probléme aux limites — et nous en reparlerons
* dans VI — les valeurs de z sont données sur un contour ouvert ¢,
. composé de deux courbes €, et €, & gauche et a droite, dont les
© points extrémes inférieurs A;, A, ou supérieurs By, B, se trouvent,
a égale hauteur, et d’'un segment de caractéristique &, qui relie
~les points extrémes inférieurs ou supé-
~ rieurs. Dans les cas considérés dans la
suite & se trouve en bas. Le probleme
consiste & déterminer z dans les points £ fﬁ
~«entre €, et €,», c’est-a-dire dans les
- points intérieurs au domaine délimité
par A;A,B,B, A, et dans les points de
- BB, lui-méme. Soit B Iensemble de Fig. 1.

~ ces points.

~ L’on connait trois types de démonstration de P'unicité que je
~ ne citerai pas dans l'ordre historique, mais dans ’ordre de leur
~ simplicité. (J’omets ici le type le plus primitif de démonstration
. qui part de la représentation effective de la solution par ses
valeurs sur la frontiére, représentation sous forme d’une inté-
grale; j’en parlerai & l'occasion dans VI, 3).

— e e e e wn e . - - —

- 1. Démonstration* de Gevrey ([1], n° 18). — Elle s’applique dans
certains cas a I’équation parabolique linéaire générale

02z

O 0
St oale, Y+ ble, y)g +oele,y)z=Ffle,y) . (3 21)

Nous envisageons d’abord I’équation homogéne

02y ou ou

Supposons que u satisfait & 'équation dans B et soient u continue

du du . %y .
dans B + €, = ©b Y continues dans B; pour T 1l suffira de

1 La démonstration de Picone [1] qui se sert aussi de la méthode de Gevrey, est du
¥ méme type.
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supposer 'existence dans B. Considérons les deux cas particuliers
suivants:

a) Soient dans B:
blz,y) =0, clr,y) <0.

Alors u ne peut pas prendre de maximum positif (> 0) dans .
(Cela exprime en un point (z,, y,) de B,B, que les inégalités
u(xy, yo) > 0 et u(xy, yo) > u(z, y) ne peuvent pas étre satis-
faites pour les points voisins avec y < y,). Si ¢’était le cas en un
point P de B, la considération des sections y = const. et
x = const. nous montrerait qu’'on aurait nécessairement en P

du 02y

ox ’ daxZ =
: ou
et, s1 P ne se trouve pas sur B;B,: s 0,
. ou
s1 P se trouve sur B,B,: v >0
, ou
et, par conséquent, dans tous les cas: bb_g} <0

En plus, nous avons en P
cu < 0.

L’équation (3,22) ne pourrait alors pas étre satisfaite.

Cependant, en raison de sa continuité, u doit avoir un maxi-
mum absolu dans le domaine fermé B + €. Par conséquent, ce
maximum sera <0 g’il est atteint dans B, ou bien il sera
atteint sur €.

Un raisonnement analogue nous montre que u ne peut pas
avoir de minimum négatif (< 0) dans B, et que, par conséquent,
ce minimum sera > 0 §’il est atteint dans B, ou bien qu’il sera
atteint sur €.

Supposons maintenant que I’équation non homogéne (3, 21) ait
deux solutions différentes z;, z,, qui prennent la méme valeur sur
la frontiére € et cect dans le sens particulier que «la fonction
plus la valeur sur la frontiére » est continue dans B + €, que
leurs premiéres dérivées sont continues dans B, tandis que de

%9

02z 02 . .
5}3—; el —5 on ne suppose que I’existence dans B. La différence
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{u= 2, — 2, satisfait alors & ’équation homogeéne (3, 22) et aux
conditions posées plus haut, elle a en plus sur la frontiére la
valeur zéro, de facon que le maximum absolu ne peut étre que
2 > 0. Mais alors il découle du résultat énoncé plus haut que ce
maximum est égal & zéro. La méme chose peut étre prouvée pour
' le minimum absolu. Par conséquent nous avons u = 0, c’est-a-
i dire z; = z,.

b) Soient dans B:

bz, ) SB <0, 0<clz,y<C.

- (L’équation de la chaleur appartient & ce type). Par la substitu-
' tion
| 2a, y) = eV, y) (K = const.)

Péquation (3, 21) se transforme en une équation en ¢, qui ne se
distingue de la premiére que par le fait que le coefficient de
" est maintenant égal & ¢ -+ Kb. D’aprés les hypothéses sur b et c,
 T'on peut choisir K assez grand pour que cette fonction soit
négative dans B, de facon que la déduction de a) est applicable
a {. Mais si, les valeurs sur la frontiére étant données, il n’y a
qu'une seule solution g, il n’existe de méme qu’une seule solution
z de I’équation primitive avec les valeurs correspondantes sur la
frontiére.

2. Démonstration de Poincaré ([1], pp. 27-30) pour I’équation
 de la chaleur (1, 22). (Cette démonstration est peut-étre plus
ancienne, on la trouve dans beaucoup de traités sur-les équations
aux dérivées partielles de la physique). Poincaré envisage I’équa-
tion pour la demi-bande (voir p. 45), mais on peut aussi considérer
- une frontiere plus générale, comme sur p. 51, si ’on suppose que
. les courbes €, et €, sont représentables par deux fonctions uni-
. voques et dérivables

G = v(y) Gyt = voly) .

~ Supposons que I’équation non homogéne (1, 22) ait deux solu-
. tions différentes pour des valeurs données sur la' frontiére.
l Alors I’équation homogéne (1, 21) a une solution u(z,y) non:
" identiquement nulle, prenant sur la frontiére les valeurs zéro.

*®

lé
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Je reproduis d’abord la démonstration usuelle et en m’abstenant
de remarques.

Envisageons I'intégrale

I =5 [ w, g, (@)

etendue sur un segment de caractéristique qui fait partie de B.
Alors nous avons

dJ 12.(Y) Bl 1 d 1 d
s _ ou 2o “Ys 2 9 Y1
11(Y)
72 (Y) -

12 (V) 12(¥y) 12 (Y)
aJ 2y du tm(y) du\2 du\?2
) : ) W) 1Y)
et par conséquent
a . , (d)
Yy

Avec y, ordonnée de A, et de A,, on a u(x, y,) = 0 et de ce fait
o Jl) =0 (¢
donc il découle de (d) et (e):
Jy) =0, (f)

tandis que, par définition, on a J(y) > 0. Donc on doit avoir
J (y) = 0, de facon que u, si elle est continue, est identiquement
nulle.

Cette démonstration se sert en réalité d’un si grand nombre
d’hypotheses qu’il est difficile de les énumérer toutes. L'intégrale
(a) existe certainement si u se raccorde d’une facon continue — au
moins dans la direction des x — avec les valeurs sur la frontiére,
puisque & I'intérieur u est en tous cas continue dans la direction

des x en vertu de 'existence de 2% Cependant (b) exige que J
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soit dérivable et encore que % puisse étre obtenue par la régle
connue. (¢) présuppose que, si (z, y) se déplace horizontalement

vers la frontiére, non seulement u mais aussi ug-g tende vers zéro
% reste bornée sur ce chemin; Gevrey a
montré ([2], chap. ITI) que ceci n’est, en général, pasle cas). Pour
autoriser le passage de (d) et (e) & (f), J devrait étre continue
pour y, ou, en d’autres termes, ’on devrait & la place de J(y,)
envisager la limite vers laquelle J tend pour y —= y,. Or, le
fait que u? tende vers zéro si I'on s’approche d’un point quel-
conque de &, n’entraine nullement que aussi fu2dx tende alors
vers zéro. Cecl signifierait que u converge vers zéro « en moyenne »
et cela nécessiterait des hypothéses, par exemple que u converge
vers zéro uniformément en x pour y — y, ou bien, d’apres
Arzeld, que u reste bornée dans le voisinage de & Nous verrons
plus tard, & quel point ces hypothéses sont indispensables pour
la validité de la démonstration.

(par exemple que

3. Démonstration de Volterra ([1], p. 64) pour I’équation de la
chaleur, plus développée chez E. E. Levi ([3], p. 190). Cette
démonstration se base sur la transformation connue de Green
d’une intégrale de surface en intégrale prise le long d’un contour,
transformation dont on se sert beaucoup dans d’autres domaines
des équations aux dérivées partielles. Les conditions sous
lesquelles la démonstration est juste ne sont point indiquées par
Volterra. Levi indique soit-disant toutes les hypothéses em-
ployées, mais il en néglige une et cela, comme nous verrons,
précisément la plus décisive. Son théoréme s’énonce ainsi: Soit €
un arc de courbe dont les points
extrémes A et B se trouvent a la Acmmma . 3
méme hauteur; supposons cet arc
placé entiérement au-dessous de AB \ Z /
et tel que les paralléles aux axes * A
aient au plus deux points communs
avec larc. Soit B Pensemble de £
points intérieurs & € + AB et du ¢
segment AB lui-méme et suppo- - Fig. 2.
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sons que la fonction u satisfait aux conditions suivantes :

ou .
— i
a) u et — sont continues dans B 4 €1,

02
0 x?

&

b)

est dans B + € linéairement intégrable par rapport

N o L
a z, 5—5 est dans B + € linéairement intégrable par rap-

port & vy,
¢) u satisfait dans B a I’équation (1, 21),
d) u a la valeur zéro sur €.

Alors on a u = (0 dans 8.
Les transformations dont la démonstration se sert s’écrivent
ainsi (voir fig. 2); de plus b) entraine que

B
L/;;/'u%%%alar:dy = deyfug-?x—idx = ‘/‘dy % uz—;—z

8
¥

2 du\2 \
)

74

en vertu de d), et par conséquent
» o’u  du ouw\?2 1
s S e s —_ o —_— 2
qu<bx2 by)dxdy t[f<bx> Gy 2 fu o -
B B8 AB

Le premier membre s’annulant en vertu de c), les deux
intégrales du second membre doivent étre nulles elles aussi,

Ou » n 4 ’
done = 0 en vertu de sa continuité et par conséquent

u = const. = 0.

ou ) - .
; 1 Remarquons que ’existence de 0— sur la frontiére est ici admise.
X
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L’on constate immédiatement que la continuité & deux dimen-
sions de u et g—z n’est point utilisée pour I’évaluation de I'inté-
grale; il suffit ici que le raccord de u avec les valeurs sur la frontiérex
sott continu dans la direction des x et des 'y et ‘que ;—’i; reste bornée

si Pon s’approche de la frontiére dans la direction des z. Par

contre 'on admet I’hypothése essentielle qui n’est pas exprimeée,

2u
1Y x2?
deux dimensions. Si u n’était supposée continue qu’a une dimen-
sion dans la direction des z et des y, ce qui est possible dans cette

ou ’ . & ., \
que ;- 0u, ce qui revient au méme sont dans B intégrables

, . . A . ou i
démonstration, I'on devrait méme exiger que u et i soient de

carré intégrable a deux dimensions.

3. — Je ne veux pas m’arréter ici a tirer des démonstrations
précédentes tout ce qui pourrait servir a établir un théoréme
aussi général que possible!; je veux plutét résumer ici mes
remarques sur les trois types de démonstration:

La premiere démonstration est entiérement adaptée a I’énoncé
« particulier » du probléme; la seconde et la troisiéeme peuvent
étre employées aussi pour I’énoncé « général », mais nécessitent
alors toute une série d’hypothéses fondamentales. Le soupcon
s'impose alors que la solution du probléme « général » n’est pas
unique si les hypothéses ne sont pas trés étroites. Et, en effet,
il en est ainsi! Pour le montrer il suffit que pour une simple
équation, comme 1’équation homogéne de la chaleur (1, 21) et
pour un simple domaine comme la demi-bande ou un quart du
plan qui est une demi-bande dégénérée, nous donnions 'exemple
d’une fonction-solution qui tende vers zéro si 'on s’approche de
la frontiére normalement, sans étre cependant identiquement
nulle. J’appellerai de telles fonctions « solutions singuliéres ».

1. Dans le quart du plan x> 0, y > 0 la fonction
3 x2

Oz, y) = ft—y Te W (3, 311)
'

1 J’en reparlerai & une autre occasion.
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a cette propriété. Elle remplace dans le quart du plan la fonction
de Green G (z,y) de (1, 24). Cette solution posséde méme une
signification physique: elle représente la distribution de tempé-
rature qu’on obtient si 'on apporte en un temps extrémement
court une quantité finie de chaleur a I'extrémité x = 0 du fil
(explosion de chaleur). Mais ce n’est pas seulement cette solution
qui possede la propriété demandée, toutes ses dérivées partielles
par rapport & y

?_‘i’ oy 2y 0%y

0y ox® T oy oxt’ T

(3, 312)

Pont aussi (Doetsch [3], p. 304). De ces fonctions Pon peut a
nouveau déduire une infinité de solutions singuliéres: si 1'on
pose, par exemple,

U(x, ¥ — ¥ pour y >y, >0,

ulz, y) = 0 pour 0 <y £ ¥, ,

(3, 313)
u tend encore vers zéro si I'on s’approche normalement des
frontiéres du quart du plan et I’équation différentielle est satis-
faite dans tout 'intérieur et aussi sur la droite y = y,.

2. Dans la demi-bande 0 <z <, y > 0 la fonction
-+ o0
Glz,y) = > blo+ 20, y) (3, 321)

Liemd
NnN=—owo

connue de (1,24), ainsi que ses dérivées partielles par rapport a y

oG 022G 02G oG

oy ox%’ oy:  oxt 7T

(3, 322)

possédent la propriété analogue (Doetsch [3], p. 299), comme
d’ailleurs aussi toutes les fonctions formées & partir de ces solu-
tions d’apres le schéma suivant

{ Glz, y—y) pour y >y, >0,

ufr,y) = ? (3, 323)

0 pour 0 < y <y,

(Doetsch [4], p. 612). Toutes ces solutions peuvent étre inter-
prétées comme distributions de température, créées par des
explosions de chaleur (Doetsch [3], p. 301). — De méme |

Gl —=x, y) (3, 324)
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et les fonctions qui en peuvent étre déduites de la maniére
indiquée plus haut sont des solutions singuliéres.

3. Les mémes relations se présentent aussi pour des problémes
aux limites d’un autre genre, par exemple pour ceux ou intervient

du - .
la valeur de 5; sur la frontiére: la fonction

x2
15y
Yz, y) = ———e *Y (3,331)
vy
satisfait dans le quart du plan & I’équation (1, 21) et tend vers
zéro si 'on s’approche normalement de la frontiére inférieure,

. 0 , - .y
tandis que % tend vers zéro si l'on s’approche de la frontiére

a gauche. Les dérivées par répport a y de cette fonction se
comportent de la méme facon.
La fonction
+ o0

5(5.v) = 3 2le+2n, 9 (3, 332)

N=—oo

dans la demi-bande 0 <z <1, y > 0 tend vers zéro si l'on
s’approche de la frontiére inférieure, tandis que sa dérivée par

rapport & x tend vers zéro s1 'on s’approche de la frontiére a
gauche et a droite.

La fonction
-+ o0

— o an(Ey) = D E e+ 2,y (3,39)

’ N=—x

dans la demi-bande 0 <z <1, y> 0 tend vers zéro si l'on
s’approche de la frontiére inférieure et de la frontiére & gauche,
tandis que sa dérivée par rapport a x tend vers zéro si I'on
s’approche de la frontiére & droite (Doetsch [9], pp. 333, 338).

4. 11 existe encore un type tout a fait différent de solutions
singuliéres. Supposons donnée la demi-bande de largeur [ et
établissons la fonction de Green correspondante a (1, 24) d’abord

pour l'intervalle 0 < 2 < ;ll* (n étant un nombre entier positif).
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Soit G <x, Y, %> cette fonction de Green et posons

[ l
s <& o L
G(x,y,n> pour 0 zE
- G(ﬁ—x,y,i> pour£§x§2£
ulr, y) = i n nT o T on (3,34)

------------------

u représente simplement le prolongement analytique de G dans

‘ s . . , + ;00U ou
la direction des z. Cette fonction ainsi que ses dérivées e

! @7
k2 . . . . A
g—; sont continues sur les droites x = v ni et satisfait méme sur
ces droites a I’équation (1, 21). Elle tend vers zéro quand on se
rapproche d’une frontiere quelconque de la demi-bande. Pour
n = 2 elle est simplement une combinaison linéaire de solutions
singulieres précitées, a savoir u(z,y) = G(z, y) — G(—z,¥),
ce qui n’est plus le cas pour n > 2.

Je voudrais ici faire la remarque que pour le probléme de Cauchy
je ne connais pas d’exemple réfutant I'unicité dans le cas de

I’énoncé « général ».

4. — 1l est trés intéressant d’examiner ici de quelle fagon les
démonstrations d’unicité tombent en défaut en face de ces
exemples, disons de la fonction G. La premiére démonstration
(de Gevrey) n’entre pas en ligne de compte puisque, dans la
demi-bande fermée, G(x,y) n’est pas continue et méme pas
bornée: dans le voisinage du sommet x = 0, y = 0 cette fonction
se comporte comme ¢ (z, y) et peut, par conséquent, y prendre
des valeurs positives arbitrairement petites et arbitrairement
grandes.

L’intégrale J (y) employée dans la seconde démonstration (de
Poincaré) prend dans le cas u = G(z, y) et [ = 1 la valeur

oo
J(y) = =2 Z n2e VY
n=1
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11 est vrai que cette expression est dérivable pour y > 0 et que

' la dérivée est constamment négative, mais pour y — 0 elle ne

tend point vers zéro mais vers oo (Doetsch [3], p. 300).

L’exemple (3,323) nous montre qu’il ne suffit point d’admettre
que J — 0 pour y — 0, de sorte par exemple que u(z, y) tende
uniformément vers zéro en x pour y — 0. Dans cet exemple cette
condition est évidemment satisfaite, tandis que J n’est pas
dérivable pour y = y,, étant de la forme

n2 ¢ 2= (=" pour y >y, ,
I y) = )

[ &2
o ﬁ[}/js

pour 0 Sy Sy

de facon que la régle exprimée dans (b), p. 54, n’est pas applicable
non plus 1.

La trotsiéme démonstration (de Levi) semble étre applicable &
G (z, y) puisque la condition «), comme nous I’avons indiqué plus
haut, n’intervient pas en toute sa rigueur dans la démonstration
et n’y est employée que dans une mesure qui est satisfaite pour G.
Mais G ne satisfait pas a la condition négligée par Levi, celle qui

. du .. : : : :

exige que 6—; soit intégrable & deux dimensions dans le domaine!

11 semble étre une ironie du destin que Levi lui-méme ait
: : 2 . d

démontré dans le méme mémoire ([3], p, 229) que 6—3 n’est pas

intégrable, ce qui entraine immédiatement la non intégrabilité

0G
de @_ ;
5. — Le procédé par lequel j’ai trouvé ces solutions singuliéres
vaut peut-étre la peine d’étre mentionné, parce qu’il donne la
possibilité de les trouyer toutes. Il fut déduit a P'occasion de
I’étude d’une nouvelle méthode d'intégration d’équations aux
dérivées partielles dans %me demi-bande, méthode bien adaptée
précisément a I’énoncé )« général » (Doetsch [1, 2, 3, 4, 8, 9]).

/

J

1 Pour cette méme raison la Adémonstratlon de Thum, qui opére avec des intégrales
de Lebesgue et des fonctions ‘de carré intégrable, tombe en défaut (v. L6ésung von
Randwertaufgaben der Wirmelehre und Potentialtheorie durch Reihenentwicklungen
und Integraldarstellungen. Crellesches Journal, 168 (1932), pp. 65-90, § 1).
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Elle emploie la transformation de Laplace

[=a}

fls) = [ eVFlydy = ¢{F}

0
et sa propriété fondamentale

¢{F} =s¢{F}1—TF(0), (3, 51)

ou F (0) représente la valeur limite de F pour y — + 0. Si
Pon applique cette transformation par rapport a la variable ! y
aux «fonctions objet » u(z, y) qui

i pourraient étre solutions de I’équa-
tion différentielle, on leur fait cor-

respondre certaines «fonctions résul-
Alg)pe—— Ly} —>1 Bly) tat » ¢ (x, s):

l ﬁ{u(x,y)}::o(x,s),

i) et I’équation aux dérivées partielles
(1, 21) se transforme suivant (3, b1)
en une équation différentielle ordi-

afs) be— vz, 5) —>{bis) naire en ¢:

2
37;)“50 + D) =0, (3,52

dans laquelle la condition initiale
® (x) est introduite et ou s joue le
role d’un parametre. Ce sont les deux
caractéres essentiels de la méthode 2. Les fonctions sur la fron-
tiere A (y) et B(y) se transforment en les deux valeurs de ¢
sur la frontiere

0(0,s) =a(s) = e{A}, o(l,s)=b(s) =¢{B}.

Fig. 3.

1 Qui parcourt dans notre probléme justement I’intervalle infini 0 <y < .

2 Cette méthode s’applique évidemment 4 toutes les équations linéaires dont les
coefficients de la partie homogene ne dépendent que de x et non pas de y. Elle donne
entre autres une justification rigoureuse de ce qu’on appelle calcul symbolique de
Heaviside (Doetsch [10]). On peut de méme employer une autre méthode qui transforme
les équations par rapport a la variable x et qui est adaptée & un intervalle fini. Alors
les coefficients peuvent dépendre de y (Doetsch [12]).

A propos du calcul de Heaviside voir L’Ens. mathématique, X X XIII, 1934, p. 118,
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Si nous prenons en particulier
®(z) = 0, By) =0

et par conséquent aussi b (s) = 0, alors la solution de (3,52) est
la suivante:

. l_—. /——
plx, s) = al(s) gz, s) avec glz, s) = @lnéinlf/)g >, (3, 53)

La solution de I’équation initiale aux dérivées partielles sera
trouvée si on peut déterminer inversement la fonction objet de
cette fonction résultat. On sait que A (y) correspond & a (s),
G(z,y) & g(z,s) et qu’au produit de deux fonctions résultat
f1(s) et f,(s) correspond ce que nous appelons la composition
(Faltung) | |

Yy
Fy x Fy = [ Fy(n) Foly — n)dn
g |
des fonctions objet:

¢{Fy x F} = ¢{F,} - ¢{F,} .

A (3,53) correspond alors la fonction objet

C’est la solution connue (1,23) pour ® = B = 0.

Maintenant intervient le raisonnement suivant (Doetsch [3],
p. 298; [8], p. 75). La méthode repose évidemment sur deux
hypothéses essentielles :

1. 11 est supposé que

afs) = ¢{A} et b(s) = ¢{B}

sont les valeurs sur la frontiére de ¢:

lim ¢f{u) = eflimu}, lime{u)l= flimul, (3,55
x=0 { } {x—»() } x= {u} {x-rlu} ( )
c’est-a-dire que les valeurs sur la frontiére des fonctions trans-

formées sont les transformées des valeurs sur la frontiére (ou, en
d’autres termes, que la transformation fonctionnelle est conti-
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nue). Si ce n’était pas le cas pour un u, 'on aurait une nouvelle
fonction sur la frontiére @(s) 3= L{A} dans le domaine résultat
et, par conséquent, une autre solution ¢(x, s) = a(s)g(zx, s).
Cette derniére donne lieu & une autre solution u(x, y) dans le
domaine objet. Mais étant donné que, plus haut, nous avons déja
obtenu une solution correspondante a la condition A (y) sur la
frontiére, ceci n’est possible que §’il existe plusieurs solutions
pour une fonction sur la frontiére. Si maintenant & a (s) corres-
pondait la fonction objet A (y), il en résulterait, par Papplication
de la régle de composition: |

ulz, y) = Aly) « Gz, y) .

Mais ce serait une solution avec la fonction A sur la frontiére
et certammement pas avec A. Il ne reste que la possibilité que
a(s) ne corresponde & aucune fonction objet. St nous choisissons
maintenant a(s) de facon qu’aucune fonction objet ne corresponde
a a(s), mais qu’il y ait une correspondante a a(s) g(x, s), alors
nous obtenons une solution de I’équation aux dérivées partielles
qui ne satisfait pas aux relations (3,55), qui par conséquent
différe de la solution déduite d’aprés (3,54) de la valeur sur la
frontiere.

St ’on choisit a(s) = 1, nous sommes slrs de n’avoir aucune
fonction objet correspondant a cette fonction, tandis que
a(s) g(x, s) = g(x, s) possede évidemment G(z, y) comme
fonction objet. Cette fonction a, pour z — 0, la valeur A(y) =0
sur la frontiére, valeur pour laquelle la formule (3,54) donnerait
seulement la solution u = 0, tandis que sa fonction résultat

g (z, s) prendra pour x — 0 la valeur un.
n
Si ’on choisit a(s) = s, on obtient u = Z—S, donc la solution
Y
singuliére (3,322). Pour a(s) = e¥® on trouve la solution
(3,323). Cette derniére est d’ailleurs une superposition des solu-

tions (3,322):

n! n
n=_0 oy

2. La seconde hypothese faite dans notre méthode est que la




LES EQUATIONS DU TYPE PARABOLIQUE 65

transformation de Laplace soit permutable avec la dérivation par

rapport d X: 2
22y

0 x?

g

hd

L’exemple (3, 34) nous montre pour n = 3 qu’il existe effective-
ment des solutions ou cette hypothése n’est pas satisfaite, qui
sont par conséquent des solutions singuliéres. Ici €{u} n’est

R . 2 : -
méme pas continue pour z = 3/, d’autant moins dérivable.

6. — Je voudrais encore montrer sur un exemple que méme
la formule classique (1, 23) de la solution entraine des contradic-
tions évidentes si ’on conserve I'unicité. Pour simplifier, considé-
rons le cas dégénéré du quart du plan > z,, y > 0 et donnons-
nous la valeur @ (z) = 0 sur la frontiére inférieure, la valeur A (y)

sur la frontiére a gauche. La solution classique de I’équation
(1, 21) s’écrit alors

u@z, y) = Afy) % d{zx — =, v) , (3, 61)

ou ¢ désigne la fonction (3,311). Envisageons maintenant la
fonction u = Y (x, y) elle-méme qui satisfait & ’équation (1, 21)
dans tout le demi-plan y > 0 et prend sur la frontiére inférieure
les valeurs zéro. Soit zy = — o« (> 0). Sur la frontiére z = =,
la solution ¢ prend la valeur ¢(— «, y) = — ¢(«, y). La
formule (3, 61) donne alors

——"IJ(OCJZ/) *xp(x—}-oc,y) »

D’aprés un théoréme d’addition de Cesaro (Sur un probléme de
propagation de la chaleur. Acad. Royale de Belgique, Bull. d. .
classe des Sc., Bruxelles, 1902, pp. 387-407), pour lequel il est

d’ailleurs essentiel que o> 0, z + o > 0, cette derniére expres-
sion est égale a

"—LI)(ZB—]— 2“7 y)

et pas du tout & ¢(x, y). D’ailleurs, la température restant
zéro sur la frontiére y = 0 et négative sur la frontiere z — — o,
la solution — ¢ (x + 2, y) semble au premier abord avoir plus
de sens pour la physique, car alors la température est constam-

L’Enseignement mathém., 35me année, 1936. 5
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ment négative, tandis que pour ¢ (x, y) la température passe
pour z = 0 des valeurs négatives aux valeurs positives. Mais
cecl s’explique du fait que les deux solutions correspondent a des
conditions aux limites différentes pour x —= o. L’influence des
conditions aux limites a U'infint et la question dans quelle mesure
celles-ci peuvent étre données n’a pas été jusqu’a maintenant
étudiée dans la littérature.

IV. — Lgs princiPES DE HuyvaHENS ET D’EULER.

1. — La non-unicité oblige & prendre des précautions surtout
dans 'application aux solutions d’équations paraboliques du
principe de Huyghens et de celui d’Euler. Le principe de
Huyghens (Hadamard [1]) détermine la solution une fois a partir
de la frontiére primitive, puis a partir d’une station intermé-
diaire. L’exemple le plus simple serait le suivant: Soit un fil,
de température initiale nulle, qui s’étend d’un coté a l'infini;
appliquons a la frontiére x = 0 la température un, alors; d’apres
(3,61) nous obtenons pour x > 0 la température

1% ¢z, y) .

Sil’on prend comme frontiere le point intermédiaire z, (0 <z, <x),
on y a la température 1 * ¢ (z,, y), donc dans x

T* gz, y) * bz — 2, 9) .
Dans le cas de 'unicité on en peut conclure
1 ¢z, y) = 1% gz, y) * p(x—=, 9,
d’ou, par dérivation par rapport a v,
bz, y) = b(@, y) * $lz—2, y) (0 < &y < ) .

Ceci n’est autre que le théoréme d’addition de Cesaro, mentionné
a la page 65. Mais la conclusion n’est pas légitime, s1 nous ne
possédons pas de théoréme d’unicité, rigoureusement applicable
dans ce cas.

Si dans la fonction de Green G de (1, 24) nous mettons en
évidence la largeur [ de l'intervalle en écrivant G(z, y; [),
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