Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 35 (1936)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: LES EQUATIONS AUX DERIVEES PARTIELLES DU TYPE
PARABOLIQUE

Autor: Doetsch, Gustav

DOl: https://doi.org/10.5169/seals-27305

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-27305
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

LES EQUATIONS AUX DERIVEES PARTIELLES
DU TYPE PARABOLIQUE!

PAR

Gustav Dortscu (Freiburg i. B.).

I. — INTRODUCTION.

1. — Il est bien connu que la distinction des types des équations
aux dérivées partielles du second ordre subsiste méme pour les
équations les plus générales & un nombre arbitraire de variables
indépendantes. Nous ne nous occuperons ici que des équations
du second ordre & deux variables indépendantes qui sont linéatres
par rapport aux dérivées partielles du second ordre

02z %z 02z

—_— § = t —= — .
ox?’ dxdY ’ oy?

Ces équations sont par conséquent de la forme suivante
03 0z

P=397 oy)
Afz, y)r + 2Bz, y)s + Clz, y)t + F(z,y,2z,p, 9 = 0.

L’équatioh est dite du type parabolique si 1’égalité

AC—B2 =0

1 Résumé de la Conférence faite les 17 et 18 juin 1935 dans le cycle des Conférences
internationales des Sciences mathématiques organisées par ’Université de Genéve; série
consacrée aux Equations aux dérivées partielles. Conditions propres & délerminer les
solutions. — La conférence a été faite en langue allemande; je tiens & exprimer ici mes
remerciements 4 M!e A. HALPERN, de I’Université de Genéve, qui a bien voulu se
charger de la traduction en francais. '

L’essentiel de la bibliographie se trouve & la fin de cet article. Les travaux sont indi-
qués dans le texte par le nom de I'auteur et le numéro.du mémoire entre crochets. Toute
autre indication bibliographique est insérée dans le texte.
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a lieu dans un domaine du plan des (z, y). On peut alors, par un
changement de variables, la ramener a la forme suivante
02z 0z 0z
ﬁ“f(x:yazaaa@>- (1,1)

Les caractéristiques de cette équation sont alors les droites
y = const.

2. — On peut mentionner deux sources différentes pour la
théorie des équations paraboliques. Ceci explique que les pro-
blémes furent posés d’une facon différenie dans les travaux parus
sur ce sujet.

1. Nous avons d’abord le probléme de Cauchy, qui peut icl
étre posé de la méme maniére que pour les équations des autres

types. Dans le cas de I’équation (1,1) on se donne z et 2—; sur
un segment de la droite x = z,:

. 02
o T R = el

X=X X

et I’on cherche z dans un domaine adjacent d’étendue indé-
terminée. La droite x = z, peut étre remplacée par une courbe €,
qui n’est pas une caractéristique. Si toutes les données, ¢’est-a-dire
la fonction f de I’équation (1,1), les « valeurs initiales» o, o,
ainsi que la courbe € sont analytiques et si 'on demande que
les solutions soient elles aussi analytiques, on aura une solution
et une seule, ce qui est démontré par la théorie classique de
Cauchy. Nous ne nous arréterons pas & approfondir ici ce cas
analytique & propos duquel 1l faut mentionner surtout le mémoire
célebre de S. pE KowaLEWSKY (Crellesches Journal, 80 (1875),
pp. 1-32).

2. La théorie de la propagation de la chaleur. On sait que les
exemples classiques des équations elliptiques et hyperboliques
ont été puisés dans la Physique mathématique, en particulier
dans la théorie du potentiel ainsi que dans la théorie des vibra-
tions des milieux élastiques. De méme, le type fondamental des
équations paraboliques est donné par la théorie de la propagation
de la chaleur dans un milieu & une dimension.
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La température u dans un milieu conducteur homogéne et a

une dimension (par exemple dans un fil) satisfait & I’équation

Ta_ Bw__ g (1,21)

0 &2 oy
(équation homogéne de la chaleur) ot x désigne I'abscisse, y le
temps. (Toutes les équations paraboliques, linéaires et homo-
génes a coefficients constants peuvent étre ramenées a ce type).
Dans le cas ou il y a des sources de chaleur a 'intérieur du fil,

on aura l’équation

%2 %% i, y) (1, 22)

ox?  dy
(équation non homogeéne de la chaleur). Le probleme qui se pose
ici d’une facon naturelle est le suivant: Le fil a, & un moment
donné y = 0, une certaine « température initiale» @ (x). A ses
extrémités x = 0 et £ = [ on place deux sources de chaleur de
température en général variable A(y) et B(y). On cherche la
distribution de la température & I'intérieur & un instant quel-
conque. Il s’agit donc ici d’intégrer I’équation différentielle dans
un domaine entiérement déterminé, la demi-bande 0 < z < [,
y = 0, les valeurs de la fonction sur les trois parties de la frontiére
étant données. Ici 'on ne parle plus de données analytiques, les
fonctions @ (z), A(y), B(y) étant arbitraires. La solution clas-

siwque de ’équation (1, 21) est la suivante:

Yy Y
wlw,y) = [AG, y—ndn+ [B)G(l—z, y—ndn +
0 0

l | | |
+ [oETe, &, yat, (1, 23)
0 |

G et T' étant les « fonctions de Green » de la forme suivante:

Gz, y) T e T E ne sinnnT, (1, 24)
n=1
Ui, 2. 9) = 27[”3( 21 ’z2> 33(\ 21 ﬁ)] -
o0 fy
2 o VT
= —[26 " sin nnﬁlsin nm (1,25)
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L’apport de chaleur au voisinage des extrémités est propor-
tionnel a g—z d’une part et a la différence des températures du
fil et de son voisinage de l'autre. L’on voit alors surgir des
problémes ou I'on a des relations linéaires entre u et S—Z données

aux extrémités du fil.

Le véritable calcul de la solution de ces problémes et d’autres
semblables — envisagés aussi dans le plan et dans 1'espace —
fut tellement approfondi par Fourier dans son mémoire
célebre « Théorie analytique de la chaleur» (1822) que, encore,
Poincarg, dans son cours bien connu [1] fait en 1895, ne fit que
suivre ’ceuvre de Fourier. Mentionnons cependant que des
savants célebres du XIXe siécle, comme Poisson, Lami et
Lord KEeLvIN, ont apporté des idées essentielles et trés ingé-
nieuses pour le calcul de la solution.

3. — Le point de vue sous lequel le probleme était envisagé
jusqu’en 1905 est caractérisé par les deux questions que nous
venons d’énoncer: la solution du probléeme de Cauchy dans le
cas analytique en partant de 1’équation générale (1,1) et la
solution de I’équation homogéne de la chaleur (1, 21), pour
quelques problémes aux limites dans une demi-bande posés par
la Physique mathématique. Or, précisément en 1905, un caractére
entiérement nouveau parait dans cette théorie. A cette époque
HoLmGREN (Suéde) envisagea le probléme de Cauchy dans le
cas non analytique et considéra d’autre part le probléeme de la
chaleur pour des domaines plus généraux que la demi-bande.
Il examina aussi la question de P’existence et de 'unicité des
solutions ainsi que leur analyticité et la possibilité de leur
prolongement analytique. En 1907, E. E. Levi (Italie) fit
progresser surtout la théorie de I’équation non homogéne de la
chaleur (ses autres résultats et en particulier le contenu de [1]
furent dans I’essentiel anticipés par Holmgren; pour la question
de priorité voir la note de Holmgren dans les Comptes Rendus
24.2.08). En 1913 et 1918, GeEVREY (France) s’est attaqué &
I’équation linéaire générale et aux équations essentiellement
plus générales et dans deux grands mémoires trés féconds mit
au clair une fois pour toutes la question de l’existence et de
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I’analyticité des solutions. Ses résultats n’ont pas été surpasses
depuis. Mes propres travaux (publiés & partir de 1923) — com-
mencés alors sans la connaissance des trois auteurs précités —
traitent 1’équation homogéne de la chaleur dans le sein d’une
théorie plus générale, celle des opérations fonctionnelles.

Je tracerai maintenant un résumé rapide du développement
que la théorie des équations paraboliques prit depuis les travaux
de Holmgren et j’attacherai le plus d’importance & un probléme
qui a été un peu négligé dans la littérature, & savoir & la question
de 'unicité de la solution. Pour cela il est indispensable de mettre
au clair la véritable signification du mot «solution ». Le fait
gqu’on peut attacher a ce terme des sens trés différents et que
cela entraine de vastes conséquences n’a jamais été exprimé
nettement dans la littérature. — Pour les autres parties de la
théorie, je serai obligé de me restreindre aux résultats essentiels,
sans quoi cet article prendrait ’étendue d’un livre.

II. — LES DIFFERENTES CONCEPTIONS D’'UNE « SOLUTION ».

1. — On sait depuis longtemps que la solution z (z, y) d’un
probléme aux limites ne représente pas nécessairement les
valeurs sur la frontiére elles-mémes, puisque, en général, cette
solution n’a pas de sens pour les points de la frontiére. Ceci a
lieu méme pour des cas les plus simples, comme par exemple pour
Pintégrale de Poisson, qui est solution pour le cercle du probléme
aux limites de I’équation de Laplace. La seule chose qu’on peut
demander est que z (x, y) converge vers la valeur donnée sur la
frontiére quand (z, y) se rapproche d’un point de cette frontiére;
la méme condition doit étre posée pour les dérivées, si la valeur
de celles-ci est donnée sur la frontiére. Mais méme cette conger-
gence peut s’interpréter dans différents sens.

@) Du point de vue mathématique on envisagera une conver-
gence & deux dimensions, définie par la condition suivante:
étant donnée la valeur T en un point (&, n) de la frontiére, il
doit étre possible de déterminer pour chaque ¢>0 un 3> 0
tel que I'on ait

lz(x,y)—-i | < ¢
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pour tous les (z, y) du domaine d’intégration pour lesquels on a

(g~ E) + fy— P &
S1 'on suppose z continu par rapport & I’ensemble des deux
variables a 'intérieur du domaine et si les valeurs sur la fron-
tiere sont elles-mémes continues, cette condition peut s’exprimer
ainsi: La fonection, définie & Pintérieur du domaine par z (z, y)
et par les valeurs { sur la frontiére, doit étre continue dans le
domaine composé de « 'intérieur plus la frontiére ». Cette condi-
tion se formule d’une maniére analogue pour les dérivées s’il
y a heu. C’est toujours dans ce sens qu’on concoit le raccord
avec les valeurs sur la frontiére dans des travaux purement
mathématiques.

b) Cette conception cependant est de beaucoup trop étroite
pour le point de vue de la physique et ici se présente un cas
intéressant ou la physique exige une conception plus générale
que celle qui semble étre imposée par le point de vue mathéma-
tique. Ainsi la conception a) exige que les valeurs sur la frontiére
solent elles-mémes continues, par exemple, pour la propagation
de la chaleur dans un fil, la température A (y) placée a’extrémité
x = 0 doit avoir la méme valeur pour y = 0 que la température
initiale @ (x) pour x = 0. Dans les cas pratiques cependant
c’est généralement le contraire qui a lieu; ce serait un hasard
particulier s1 la flamme avait au commencement de ’expérience
la méme température que la place qu’elle chauffe. (Il est méme
caractéristique que dans le tout premier probléme dont Fourier
donne la solution dans son grand ouvrage les valeurs sur la
frontiére ne soient pas continues; il s’agit ici de la distribution
stationnaire de température dans une plaque ayant la forme
d’une demi-bande et les valeurs sont égales a un sur le segment
fini de la frontiére, & zéro sur les demi-droites). Nous ne pouvons
donc pas parler d’une continuité & deux dimensions de la fonction
« solution plus valeurs sur la frontiére ». Pour la propagation de
la chaleur on sait clairement comment la physique doit inter-
préter le raccord avec les valeurs sur la frontiére!: Si & un

1 I’interprétation que nous donnons aux conditions aux limites est intimément liée
au fait que la chaleur se propage avec une vitesse infinie. Une interprétation trés diffé-
rente peut s’imposer pour des phénomenes qui se traduisent par des égquations hyper-
boliques et qui, par conséquent, se propagent avec une vitesse finie: 'observateur qui
£tablit les conditions aux limites devrait se déplacer avec une vitesse moindre que celle
du phénomeéne (Doetsch (8], p. 70).
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moment donné on avancait de l'intérieur vers extérieur du fil,
on devrait y trouver la température placée sur la frontiére; et si
en partant d’un temps y > 0 Pon reconstituait dans le temps la
température d’une place intérieure déterminée, I’on devrait y
trouver la température initiale donnée. Dans le plan des (z, y)
cela signifie que I'on exige le raccord continu avec les valeurs sur
la frontiére seulement pour des chemins qui aboutissent per-
pendiculairement & la frontiére (raccord d une dimension); cette
condition s’exprime d’une maniere analogue pour les dérivées
s'il y a ieu 1. Si les frontiéres ne sont pas rectilignes on exigera,
conformément & la nature du probléme, que ce chemin soit
normal a la frontiére, parallele aux axes ou une autre condition
pareille. Dans ce sens les discontinuités comme celles qui viennent
d’étre signalées gardent une signification précise: les sommets
(0,0) et (/, 0) de la demi-bande ne peuvent pas étre atteints si
Pon se dirige de I'intérieur normalement & la frontiére.

Nous appellerons particulier I’énoncé du probléeme tel qu’il
était décrit dans a), général I’énoncé 2 sous la forme donnée
dans b). Les deux cas ont leur sens et leur justification et se

présentent a juste titre comme deux classes différentes de la
théorie des problemes aux limites.

2. — Toute méthode de résolution d’un probléme aux limites
doit faire certaines hypotheéses sur la nature des solutions ainsi
que sur les valeurs sur la frontiére, sans quoi il serait impossible
d’appliquer la méthode et d’attribuer un sens & la solution
trouvée. Ainsi la solution (1,23) donnée sous forme d’intégrale
exige tout au moins l'intégrabilité des valeurs sur la frontiére.
En plus, on ne peut démontrer le raccord méme a une dimension
avec les valeurs sur la frontiére que pour des points pour lesquels
on a des hypotheses supplémentaires, telles que continuité ou
identité de la valeur de la fonction avec certaines valeurs
moyennes. (C'est ici qu’intervient la théorie des intégrales
singuliéres). Il n’y a pas de recherches pour les équations para-

1 Voir I’article de HiLB et SzAsz, Allgemeine Reihenentwicklungen. Enzyklopddie, 11,
3, fascicule 8, § 6, p. 1245, ol I’on trouve une indication d'une définition semblable
des conditions aux limites avec la note suivante: « Gerade diese der Natur des Problems
angepasste Fragestellung ist bisher in der Literatur verhaltnisméassig wenig behandelt ».

2 En allemand: « Spezielle » und « allgemeine » Problemstellung.

I’Enseignement mathém., 35me année, 1936.
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boliques concernant 'existence des solutions dans le cas d’une
non-intégrabilité des valeurs sur la frontiére ni sur 'interpréta-
tion possible des conditions aux limites dans ce cas. Les démon-
strations de I'unicité nécessitent surtout une série d’hypothéses
sur les solutions et sur certaines dérivées, hypotheses comme
Pintégrabilité & une ou deux dimensions, continuité, ete. Ce sont
toutes des hypothéses étrangeres & la nature du probléme qui,
par conséquent, doivent étre chaque fois nettement explicitées 1.

3. — L’on voit alors ceci: Pour que le probléme soit clairement
posé 1l est indispensable d’une part de préciser quelles conditions
on impose a la solution et aux valeurs sur la frontiere, de fixer
d’autre part le sens dans lequel les conditions aux limites doivent
étre interprétées.

Il est a regretter qu’une partie méme de la littérature moderne,
pour ne plus parler de la plus ancienne, reste extrémement
vague sous ce rapport. Ceci entraine d’une part que les théorémes
et démonstrations sont faux eux-mémes, d’autre part que des
théorémes, justes sous certaines restrictions, sont employés dans
des cas ou ces restrictions ne sont pas respectées. Ce sont surtout
les démonstrations d’unicité qui montrent la gravité décisive du
sens dans lequel on envisage le probleme aux limites.

ITI. — LA QUESTION D’UNICITE OU DE MULTIPLICITE
DES SOLUTIONS.

1. — Dans les ouvrages parus avant 1925 on ne voit nulle part
surgir un doute sur I'unicité de la solution des équations para-
boliques 2, on y trouve, au contraire, une série de démonstrations
du fait que la solution, si elle existe, est bien unique; ainsi

1 Dans le cas de I’énoncé particulier du probléme on a I’hahitude d’appeler réguliéres
z 2
les solutions de I’équation (1,1) qui sont, ainsi que leurs dérivées b~, 93, _b__z continues
dx dy 0Ox2
dans le domaine plus la frontiére.

2 Seul M. E. Picard indiquait A P’occasion (Sur le développement de U’ Analyse mathé-
matique et ses rapports avec quelques aulres sciences, Paris, 1905), sans d’ailleurs insister,
que si I’on envisageait la propagation de la chaleur dans un conducteur illimité 'on
devait, pour démontrer 'unicité, admettre des hypothéses sur I’allure a Uinfini de la
fonction et de ses dérivées. Mais c’est plutdt le fait qu’un cas limite exige des considé-

rations particulieres, qui est souligné ici.
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| Holmgren (Ofversikt af K. Vet. Akad. Firhandlingar, 1901,
© pp. 91-103) le démontra pour 1’énoncé particulier du probléme
‘ de Cauchy dans le cas non analytique. Mais nous ne voulons pas
. insister ici sur le probléme de Cauchy.

2. — Pour un probléme aux limites — et nous en reparlerons
* dans VI — les valeurs de z sont données sur un contour ouvert ¢,
. composé de deux courbes €, et €, & gauche et a droite, dont les
© points extrémes inférieurs A;, A, ou supérieurs By, B, se trouvent,
a égale hauteur, et d’'un segment de caractéristique &, qui relie
~les points extrémes inférieurs ou supé-
~ rieurs. Dans les cas considérés dans la
suite & se trouve en bas. Le probleme
consiste & déterminer z dans les points £ fﬁ
~«entre €, et €,», c’est-a-dire dans les
- points intérieurs au domaine délimité
par A;A,B,B, A, et dans les points de
- BB, lui-méme. Soit B Iensemble de Fig. 1.

~ ces points.

~ L’on connait trois types de démonstration de P'unicité que je
~ ne citerai pas dans l'ordre historique, mais dans ’ordre de leur
~ simplicité. (J’omets ici le type le plus primitif de démonstration
. qui part de la représentation effective de la solution par ses
valeurs sur la frontiére, représentation sous forme d’une inté-
grale; j’en parlerai & l'occasion dans VI, 3).

— e e e e wn e . - - —

- 1. Démonstration* de Gevrey ([1], n° 18). — Elle s’applique dans
certains cas a I’équation parabolique linéaire générale

02z

O 0
St oale, Y+ ble, y)g +oele,y)z=Ffle,y) . (3 21)

Nous envisageons d’abord I’équation homogéne

02y ou ou

Supposons que u satisfait & 'équation dans B et soient u continue

du du . %y .
dans B + €, = ©b Y continues dans B; pour T 1l suffira de

1 La démonstration de Picone [1] qui se sert aussi de la méthode de Gevrey, est du
¥ méme type.
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supposer 'existence dans B. Considérons les deux cas particuliers
suivants:

a) Soient dans B:
blz,y) =0, clr,y) <0.

Alors u ne peut pas prendre de maximum positif (> 0) dans .
(Cela exprime en un point (z,, y,) de B,B, que les inégalités
u(xy, yo) > 0 et u(xy, yo) > u(z, y) ne peuvent pas étre satis-
faites pour les points voisins avec y < y,). Si ¢’était le cas en un
point P de B, la considération des sections y = const. et
x = const. nous montrerait qu’'on aurait nécessairement en P

du 02y

ox ’ daxZ =
: ou
et, s1 P ne se trouve pas sur B;B,: s 0,
. ou
s1 P se trouve sur B,B,: v >0
, ou
et, par conséquent, dans tous les cas: bb_g} <0

En plus, nous avons en P
cu < 0.

L’équation (3,22) ne pourrait alors pas étre satisfaite.

Cependant, en raison de sa continuité, u doit avoir un maxi-
mum absolu dans le domaine fermé B + €. Par conséquent, ce
maximum sera <0 g’il est atteint dans B, ou bien il sera
atteint sur €.

Un raisonnement analogue nous montre que u ne peut pas
avoir de minimum négatif (< 0) dans B, et que, par conséquent,
ce minimum sera > 0 §’il est atteint dans B, ou bien qu’il sera
atteint sur €.

Supposons maintenant que I’équation non homogéne (3, 21) ait
deux solutions différentes z;, z,, qui prennent la méme valeur sur
la frontiére € et cect dans le sens particulier que «la fonction
plus la valeur sur la frontiére » est continue dans B + €, que
leurs premiéres dérivées sont continues dans B, tandis que de

%9

02z 02 . .
5}3—; el —5 on ne suppose que I’existence dans B. La différence
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{u= 2, — 2, satisfait alors & ’équation homogeéne (3, 22) et aux
conditions posées plus haut, elle a en plus sur la frontiére la
valeur zéro, de facon que le maximum absolu ne peut étre que
2 > 0. Mais alors il découle du résultat énoncé plus haut que ce
maximum est égal & zéro. La méme chose peut étre prouvée pour
' le minimum absolu. Par conséquent nous avons u = 0, c’est-a-
i dire z; = z,.

b) Soient dans B:

bz, ) SB <0, 0<clz,y<C.

- (L’équation de la chaleur appartient & ce type). Par la substitu-
' tion
| 2a, y) = eV, y) (K = const.)

Péquation (3, 21) se transforme en une équation en ¢, qui ne se
distingue de la premiére que par le fait que le coefficient de
" est maintenant égal & ¢ -+ Kb. D’aprés les hypothéses sur b et c,
 T'on peut choisir K assez grand pour que cette fonction soit
négative dans B, de facon que la déduction de a) est applicable
a {. Mais si, les valeurs sur la frontiére étant données, il n’y a
qu'une seule solution g, il n’existe de méme qu’une seule solution
z de I’équation primitive avec les valeurs correspondantes sur la
frontiére.

2. Démonstration de Poincaré ([1], pp. 27-30) pour I’équation
 de la chaleur (1, 22). (Cette démonstration est peut-étre plus
ancienne, on la trouve dans beaucoup de traités sur-les équations
aux dérivées partielles de la physique). Poincaré envisage I’équa-
tion pour la demi-bande (voir p. 45), mais on peut aussi considérer
- une frontiere plus générale, comme sur p. 51, si ’on suppose que
. les courbes €, et €, sont représentables par deux fonctions uni-
. voques et dérivables

G = v(y) Gyt = voly) .

~ Supposons que I’équation non homogéne (1, 22) ait deux solu-
. tions différentes pour des valeurs données sur la' frontiére.
l Alors I’équation homogéne (1, 21) a une solution u(z,y) non:
" identiquement nulle, prenant sur la frontiére les valeurs zéro.

*®

lé
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Je reproduis d’abord la démonstration usuelle et en m’abstenant
de remarques.

Envisageons I'intégrale

I =5 [ w, g, (@)

etendue sur un segment de caractéristique qui fait partie de B.
Alors nous avons

dJ 12.(Y) Bl 1 d 1 d
s _ ou 2o “Ys 2 9 Y1
11(Y)
72 (Y) -

12 (V) 12(¥y) 12 (Y)
aJ 2y du tm(y) du\2 du\?2
) : ) W) 1Y)
et par conséquent
a . , (d)
Yy

Avec y, ordonnée de A, et de A,, on a u(x, y,) = 0 et de ce fait
o Jl) =0 (¢
donc il découle de (d) et (e):
Jy) =0, (f)

tandis que, par définition, on a J(y) > 0. Donc on doit avoir
J (y) = 0, de facon que u, si elle est continue, est identiquement
nulle.

Cette démonstration se sert en réalité d’un si grand nombre
d’hypotheses qu’il est difficile de les énumérer toutes. L'intégrale
(a) existe certainement si u se raccorde d’une facon continue — au
moins dans la direction des x — avec les valeurs sur la frontiére,
puisque & I'intérieur u est en tous cas continue dans la direction

des x en vertu de 'existence de 2% Cependant (b) exige que J
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soit dérivable et encore que % puisse étre obtenue par la régle
connue. (¢) présuppose que, si (z, y) se déplace horizontalement

vers la frontiére, non seulement u mais aussi ug-g tende vers zéro
% reste bornée sur ce chemin; Gevrey a
montré ([2], chap. ITI) que ceci n’est, en général, pasle cas). Pour
autoriser le passage de (d) et (e) & (f), J devrait étre continue
pour y, ou, en d’autres termes, ’on devrait & la place de J(y,)
envisager la limite vers laquelle J tend pour y —= y,. Or, le
fait que u? tende vers zéro si I'on s’approche d’un point quel-
conque de &, n’entraine nullement que aussi fu2dx tende alors
vers zéro. Cecl signifierait que u converge vers zéro « en moyenne »
et cela nécessiterait des hypothéses, par exemple que u converge
vers zéro uniformément en x pour y — y, ou bien, d’apres
Arzeld, que u reste bornée dans le voisinage de & Nous verrons
plus tard, & quel point ces hypothéses sont indispensables pour
la validité de la démonstration.

(par exemple que

3. Démonstration de Volterra ([1], p. 64) pour I’équation de la
chaleur, plus développée chez E. E. Levi ([3], p. 190). Cette
démonstration se base sur la transformation connue de Green
d’une intégrale de surface en intégrale prise le long d’un contour,
transformation dont on se sert beaucoup dans d’autres domaines
des équations aux dérivées partielles. Les conditions sous
lesquelles la démonstration est juste ne sont point indiquées par
Volterra. Levi indique soit-disant toutes les hypothéses em-
ployées, mais il en néglige une et cela, comme nous verrons,
précisément la plus décisive. Son théoréme s’énonce ainsi: Soit €
un arc de courbe dont les points
extrémes A et B se trouvent a la Acmmma . 3
méme hauteur; supposons cet arc
placé entiérement au-dessous de AB \ Z /
et tel que les paralléles aux axes * A
aient au plus deux points communs
avec larc. Soit B Pensemble de £
points intérieurs & € + AB et du ¢
segment AB lui-méme et suppo- - Fig. 2.
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sons que la fonction u satisfait aux conditions suivantes :

ou .
— i
a) u et — sont continues dans B 4 €1,

02
0 x?

&

b)

est dans B + € linéairement intégrable par rapport

N o L
a z, 5—5 est dans B + € linéairement intégrable par rap-

port & vy,
¢) u satisfait dans B a I’équation (1, 21),
d) u a la valeur zéro sur €.

Alors on a u = (0 dans 8.
Les transformations dont la démonstration se sert s’écrivent
ainsi (voir fig. 2); de plus b) entraine que

B
L/;;/'u%%%alar:dy = deyfug-?x—idx = ‘/‘dy % uz—;—z

8
¥

2 du\2 \
)

74

en vertu de d), et par conséquent
» o’u  du ouw\?2 1
s S e s —_ o —_— 2
qu<bx2 by)dxdy t[f<bx> Gy 2 fu o -
B B8 AB

Le premier membre s’annulant en vertu de c), les deux
intégrales du second membre doivent étre nulles elles aussi,

Ou » n 4 ’
done = 0 en vertu de sa continuité et par conséquent

u = const. = 0.

ou ) - .
; 1 Remarquons que ’existence de 0— sur la frontiére est ici admise.
X
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L’on constate immédiatement que la continuité & deux dimen-
sions de u et g—z n’est point utilisée pour I’évaluation de I'inté-
grale; il suffit ici que le raccord de u avec les valeurs sur la frontiérex
sott continu dans la direction des x et des 'y et ‘que ;—’i; reste bornée

si Pon s’approche de la frontiére dans la direction des z. Par

contre 'on admet I’hypothése essentielle qui n’est pas exprimeée,

2u
1Y x2?
deux dimensions. Si u n’était supposée continue qu’a une dimen-
sion dans la direction des z et des y, ce qui est possible dans cette

ou ’ . & ., \
que ;- 0u, ce qui revient au méme sont dans B intégrables

, . . A . ou i
démonstration, I'on devrait méme exiger que u et i soient de

carré intégrable a deux dimensions.

3. — Je ne veux pas m’arréter ici a tirer des démonstrations
précédentes tout ce qui pourrait servir a établir un théoréme
aussi général que possible!; je veux plutét résumer ici mes
remarques sur les trois types de démonstration:

La premiere démonstration est entiérement adaptée a I’énoncé
« particulier » du probléme; la seconde et la troisiéeme peuvent
étre employées aussi pour I’énoncé « général », mais nécessitent
alors toute une série d’hypothéses fondamentales. Le soupcon
s'impose alors que la solution du probléme « général » n’est pas
unique si les hypothéses ne sont pas trés étroites. Et, en effet,
il en est ainsi! Pour le montrer il suffit que pour une simple
équation, comme 1’équation homogéne de la chaleur (1, 21) et
pour un simple domaine comme la demi-bande ou un quart du
plan qui est une demi-bande dégénérée, nous donnions 'exemple
d’une fonction-solution qui tende vers zéro si 'on s’approche de
la frontiére normalement, sans étre cependant identiquement
nulle. J’appellerai de telles fonctions « solutions singuliéres ».

1. Dans le quart du plan x> 0, y > 0 la fonction
3 x2

Oz, y) = ft—y Te W (3, 311)
'

1 J’en reparlerai & une autre occasion.
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a cette propriété. Elle remplace dans le quart du plan la fonction
de Green G (z,y) de (1, 24). Cette solution posséde méme une
signification physique: elle représente la distribution de tempé-
rature qu’on obtient si 'on apporte en un temps extrémement
court une quantité finie de chaleur a I'extrémité x = 0 du fil
(explosion de chaleur). Mais ce n’est pas seulement cette solution
qui possede la propriété demandée, toutes ses dérivées partielles
par rapport & y

?_‘i’ oy 2y 0%y

0y ox® T oy oxt’ T

(3, 312)

Pont aussi (Doetsch [3], p. 304). De ces fonctions Pon peut a
nouveau déduire une infinité de solutions singuliéres: si 1'on
pose, par exemple,

U(x, ¥ — ¥ pour y >y, >0,

ulz, y) = 0 pour 0 <y £ ¥, ,

(3, 313)
u tend encore vers zéro si I'on s’approche normalement des
frontiéres du quart du plan et I’équation différentielle est satis-
faite dans tout 'intérieur et aussi sur la droite y = y,.

2. Dans la demi-bande 0 <z <, y > 0 la fonction
-+ o0
Glz,y) = > blo+ 20, y) (3, 321)

Liemd
NnN=—owo

connue de (1,24), ainsi que ses dérivées partielles par rapport a y

oG 022G 02G oG

oy ox%’ oy:  oxt 7T

(3, 322)

possédent la propriété analogue (Doetsch [3], p. 299), comme
d’ailleurs aussi toutes les fonctions formées & partir de ces solu-
tions d’apres le schéma suivant

{ Glz, y—y) pour y >y, >0,

ufr,y) = ? (3, 323)

0 pour 0 < y <y,

(Doetsch [4], p. 612). Toutes ces solutions peuvent étre inter-
prétées comme distributions de température, créées par des
explosions de chaleur (Doetsch [3], p. 301). — De méme |

Gl —=x, y) (3, 324)
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et les fonctions qui en peuvent étre déduites de la maniére
indiquée plus haut sont des solutions singuliéres.

3. Les mémes relations se présentent aussi pour des problémes
aux limites d’un autre genre, par exemple pour ceux ou intervient

du - .
la valeur de 5; sur la frontiére: la fonction

x2
15y
Yz, y) = ———e *Y (3,331)
vy
satisfait dans le quart du plan & I’équation (1, 21) et tend vers
zéro si 'on s’approche normalement de la frontiére inférieure,

. 0 , - .y
tandis que % tend vers zéro si l'on s’approche de la frontiére

a gauche. Les dérivées par répport a y de cette fonction se
comportent de la méme facon.
La fonction
+ o0

5(5.v) = 3 2le+2n, 9 (3, 332)

N=—oo

dans la demi-bande 0 <z <1, y > 0 tend vers zéro si l'on
s’approche de la frontiére inférieure, tandis que sa dérivée par

rapport & x tend vers zéro s1 'on s’approche de la frontiére a
gauche et a droite.

La fonction
-+ o0

— o an(Ey) = D E e+ 2,y (3,39)

’ N=—x

dans la demi-bande 0 <z <1, y> 0 tend vers zéro si l'on
s’approche de la frontiére inférieure et de la frontiére & gauche,
tandis que sa dérivée par rapport a x tend vers zéro si I'on
s’approche de la frontiére & droite (Doetsch [9], pp. 333, 338).

4. 11 existe encore un type tout a fait différent de solutions
singuliéres. Supposons donnée la demi-bande de largeur [ et
établissons la fonction de Green correspondante a (1, 24) d’abord

pour l'intervalle 0 < 2 < ;ll* (n étant un nombre entier positif).
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Soit G <x, Y, %> cette fonction de Green et posons

[ l
s <& o L
G(x,y,n> pour 0 zE
- G(ﬁ—x,y,i> pour£§x§2£
ulr, y) = i n nT o T on (3,34)

------------------

u représente simplement le prolongement analytique de G dans

‘ s . . , + ;00U ou
la direction des z. Cette fonction ainsi que ses dérivées e

! @7
k2 . . . . A
g—; sont continues sur les droites x = v ni et satisfait méme sur
ces droites a I’équation (1, 21). Elle tend vers zéro quand on se
rapproche d’une frontiere quelconque de la demi-bande. Pour
n = 2 elle est simplement une combinaison linéaire de solutions
singulieres précitées, a savoir u(z,y) = G(z, y) — G(—z,¥),
ce qui n’est plus le cas pour n > 2.

Je voudrais ici faire la remarque que pour le probléme de Cauchy
je ne connais pas d’exemple réfutant I'unicité dans le cas de

I’énoncé « général ».

4. — 1l est trés intéressant d’examiner ici de quelle fagon les
démonstrations d’unicité tombent en défaut en face de ces
exemples, disons de la fonction G. La premiére démonstration
(de Gevrey) n’entre pas en ligne de compte puisque, dans la
demi-bande fermée, G(x,y) n’est pas continue et méme pas
bornée: dans le voisinage du sommet x = 0, y = 0 cette fonction
se comporte comme ¢ (z, y) et peut, par conséquent, y prendre
des valeurs positives arbitrairement petites et arbitrairement
grandes.

L’intégrale J (y) employée dans la seconde démonstration (de
Poincaré) prend dans le cas u = G(z, y) et [ = 1 la valeur

oo
J(y) = =2 Z n2e VY
n=1
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11 est vrai que cette expression est dérivable pour y > 0 et que

' la dérivée est constamment négative, mais pour y — 0 elle ne

tend point vers zéro mais vers oo (Doetsch [3], p. 300).

L’exemple (3,323) nous montre qu’il ne suffit point d’admettre
que J — 0 pour y — 0, de sorte par exemple que u(z, y) tende
uniformément vers zéro en x pour y — 0. Dans cet exemple cette
condition est évidemment satisfaite, tandis que J n’est pas
dérivable pour y = y,, étant de la forme

n2 ¢ 2= (=" pour y >y, ,
I y) = )

[ &2
o ﬁ[}/js

pour 0 Sy Sy

de facon que la régle exprimée dans (b), p. 54, n’est pas applicable
non plus 1.

La trotsiéme démonstration (de Levi) semble étre applicable &
G (z, y) puisque la condition «), comme nous I’avons indiqué plus
haut, n’intervient pas en toute sa rigueur dans la démonstration
et n’y est employée que dans une mesure qui est satisfaite pour G.
Mais G ne satisfait pas a la condition négligée par Levi, celle qui

. du .. : : : :

exige que 6—; soit intégrable & deux dimensions dans le domaine!

11 semble étre une ironie du destin que Levi lui-méme ait
: : 2 . d

démontré dans le méme mémoire ([3], p, 229) que 6—3 n’est pas

intégrable, ce qui entraine immédiatement la non intégrabilité

0G
de @_ ;
5. — Le procédé par lequel j’ai trouvé ces solutions singuliéres
vaut peut-étre la peine d’étre mentionné, parce qu’il donne la
possibilité de les trouyer toutes. Il fut déduit a P'occasion de
I’étude d’une nouvelle méthode d'intégration d’équations aux
dérivées partielles dans %me demi-bande, méthode bien adaptée
précisément a I’énoncé )« général » (Doetsch [1, 2, 3, 4, 8, 9]).

/

J

1 Pour cette méme raison la Adémonstratlon de Thum, qui opére avec des intégrales
de Lebesgue et des fonctions ‘de carré intégrable, tombe en défaut (v. L6ésung von
Randwertaufgaben der Wirmelehre und Potentialtheorie durch Reihenentwicklungen
und Integraldarstellungen. Crellesches Journal, 168 (1932), pp. 65-90, § 1).
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Elle emploie la transformation de Laplace

[=a}

fls) = [ eVFlydy = ¢{F}

0
et sa propriété fondamentale

¢{F} =s¢{F}1—TF(0), (3, 51)

ou F (0) représente la valeur limite de F pour y — + 0. Si
Pon applique cette transformation par rapport a la variable ! y
aux «fonctions objet » u(z, y) qui

i pourraient étre solutions de I’équa-
tion différentielle, on leur fait cor-

respondre certaines «fonctions résul-
Alg)pe—— Ly} —>1 Bly) tat » ¢ (x, s):

l ﬁ{u(x,y)}::o(x,s),

i) et I’équation aux dérivées partielles
(1, 21) se transforme suivant (3, b1)
en une équation différentielle ordi-

afs) be— vz, 5) —>{bis) naire en ¢:

2
37;)“50 + D) =0, (3,52

dans laquelle la condition initiale
® (x) est introduite et ou s joue le
role d’un parametre. Ce sont les deux
caractéres essentiels de la méthode 2. Les fonctions sur la fron-
tiere A (y) et B(y) se transforment en les deux valeurs de ¢
sur la frontiere

0(0,s) =a(s) = e{A}, o(l,s)=b(s) =¢{B}.

Fig. 3.

1 Qui parcourt dans notre probléme justement I’intervalle infini 0 <y < .

2 Cette méthode s’applique évidemment 4 toutes les équations linéaires dont les
coefficients de la partie homogene ne dépendent que de x et non pas de y. Elle donne
entre autres une justification rigoureuse de ce qu’on appelle calcul symbolique de
Heaviside (Doetsch [10]). On peut de méme employer une autre méthode qui transforme
les équations par rapport a la variable x et qui est adaptée & un intervalle fini. Alors
les coefficients peuvent dépendre de y (Doetsch [12]).

A propos du calcul de Heaviside voir L’Ens. mathématique, X X XIII, 1934, p. 118,
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Si nous prenons en particulier
®(z) = 0, By) =0

et par conséquent aussi b (s) = 0, alors la solution de (3,52) est
la suivante:

. l_—. /——
plx, s) = al(s) gz, s) avec glz, s) = @lnéinlf/)g >, (3, 53)

La solution de I’équation initiale aux dérivées partielles sera
trouvée si on peut déterminer inversement la fonction objet de
cette fonction résultat. On sait que A (y) correspond & a (s),
G(z,y) & g(z,s) et qu’au produit de deux fonctions résultat
f1(s) et f,(s) correspond ce que nous appelons la composition
(Faltung) | |

Yy
Fy x Fy = [ Fy(n) Foly — n)dn
g |
des fonctions objet:

¢{Fy x F} = ¢{F,} - ¢{F,} .

A (3,53) correspond alors la fonction objet

C’est la solution connue (1,23) pour ® = B = 0.

Maintenant intervient le raisonnement suivant (Doetsch [3],
p. 298; [8], p. 75). La méthode repose évidemment sur deux
hypothéses essentielles :

1. 11 est supposé que

afs) = ¢{A} et b(s) = ¢{B}

sont les valeurs sur la frontiére de ¢:

lim ¢f{u) = eflimu}, lime{u)l= flimul, (3,55
x=0 { } {x—»() } x= {u} {x-rlu} ( )
c’est-a-dire que les valeurs sur la frontiére des fonctions trans-

formées sont les transformées des valeurs sur la frontiére (ou, en
d’autres termes, que la transformation fonctionnelle est conti-
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nue). Si ce n’était pas le cas pour un u, 'on aurait une nouvelle
fonction sur la frontiére @(s) 3= L{A} dans le domaine résultat
et, par conséquent, une autre solution ¢(x, s) = a(s)g(zx, s).
Cette derniére donne lieu & une autre solution u(x, y) dans le
domaine objet. Mais étant donné que, plus haut, nous avons déja
obtenu une solution correspondante a la condition A (y) sur la
frontiére, ceci n’est possible que §’il existe plusieurs solutions
pour une fonction sur la frontiére. Si maintenant & a (s) corres-
pondait la fonction objet A (y), il en résulterait, par Papplication
de la régle de composition: |

ulz, y) = Aly) « Gz, y) .

Mais ce serait une solution avec la fonction A sur la frontiére
et certammement pas avec A. Il ne reste que la possibilité que
a(s) ne corresponde & aucune fonction objet. St nous choisissons
maintenant a(s) de facon qu’aucune fonction objet ne corresponde
a a(s), mais qu’il y ait une correspondante a a(s) g(x, s), alors
nous obtenons une solution de I’équation aux dérivées partielles
qui ne satisfait pas aux relations (3,55), qui par conséquent
différe de la solution déduite d’aprés (3,54) de la valeur sur la
frontiere.

St ’on choisit a(s) = 1, nous sommes slrs de n’avoir aucune
fonction objet correspondant a cette fonction, tandis que
a(s) g(x, s) = g(x, s) possede évidemment G(z, y) comme
fonction objet. Cette fonction a, pour z — 0, la valeur A(y) =0
sur la frontiére, valeur pour laquelle la formule (3,54) donnerait
seulement la solution u = 0, tandis que sa fonction résultat

g (z, s) prendra pour x — 0 la valeur un.
n
Si ’on choisit a(s) = s, on obtient u = Z—S, donc la solution
Y
singuliére (3,322). Pour a(s) = e¥® on trouve la solution
(3,323). Cette derniére est d’ailleurs une superposition des solu-

tions (3,322):

n! n
n=_0 oy

2. La seconde hypothese faite dans notre méthode est que la
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transformation de Laplace soit permutable avec la dérivation par

rapport d X: 2
22y

0 x?

g

hd

L’exemple (3, 34) nous montre pour n = 3 qu’il existe effective-
ment des solutions ou cette hypothése n’est pas satisfaite, qui
sont par conséquent des solutions singuliéres. Ici €{u} n’est

R . 2 : -
méme pas continue pour z = 3/, d’autant moins dérivable.

6. — Je voudrais encore montrer sur un exemple que méme
la formule classique (1, 23) de la solution entraine des contradic-
tions évidentes si ’on conserve I'unicité. Pour simplifier, considé-
rons le cas dégénéré du quart du plan > z,, y > 0 et donnons-
nous la valeur @ (z) = 0 sur la frontiére inférieure, la valeur A (y)

sur la frontiére a gauche. La solution classique de I’équation
(1, 21) s’écrit alors

u@z, y) = Afy) % d{zx — =, v) , (3, 61)

ou ¢ désigne la fonction (3,311). Envisageons maintenant la
fonction u = Y (x, y) elle-méme qui satisfait & ’équation (1, 21)
dans tout le demi-plan y > 0 et prend sur la frontiére inférieure
les valeurs zéro. Soit zy = — o« (> 0). Sur la frontiére z = =,
la solution ¢ prend la valeur ¢(— «, y) = — ¢(«, y). La
formule (3, 61) donne alors

——"IJ(OCJZ/) *xp(x—}-oc,y) »

D’aprés un théoréme d’addition de Cesaro (Sur un probléme de
propagation de la chaleur. Acad. Royale de Belgique, Bull. d. .
classe des Sc., Bruxelles, 1902, pp. 387-407), pour lequel il est

d’ailleurs essentiel que o> 0, z + o > 0, cette derniére expres-
sion est égale a

"—LI)(ZB—]— 2“7 y)

et pas du tout & ¢(x, y). D’ailleurs, la température restant
zéro sur la frontiére y = 0 et négative sur la frontiere z — — o,
la solution — ¢ (x + 2, y) semble au premier abord avoir plus
de sens pour la physique, car alors la température est constam-

L’Enseignement mathém., 35me année, 1936. 5
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ment négative, tandis que pour ¢ (x, y) la température passe
pour z = 0 des valeurs négatives aux valeurs positives. Mais
cecl s’explique du fait que les deux solutions correspondent a des
conditions aux limites différentes pour x —= o. L’influence des
conditions aux limites a U'infint et la question dans quelle mesure
celles-ci peuvent étre données n’a pas été jusqu’a maintenant
étudiée dans la littérature.

IV. — Lgs princiPES DE HuyvaHENS ET D’EULER.

1. — La non-unicité oblige & prendre des précautions surtout
dans 'application aux solutions d’équations paraboliques du
principe de Huyghens et de celui d’Euler. Le principe de
Huyghens (Hadamard [1]) détermine la solution une fois a partir
de la frontiére primitive, puis a partir d’une station intermé-
diaire. L’exemple le plus simple serait le suivant: Soit un fil,
de température initiale nulle, qui s’étend d’un coté a l'infini;
appliquons a la frontiére x = 0 la température un, alors; d’apres
(3,61) nous obtenons pour x > 0 la température

1% ¢z, y) .

Sil’on prend comme frontiere le point intermédiaire z, (0 <z, <x),
on y a la température 1 * ¢ (z,, y), donc dans x

T* gz, y) * bz — 2, 9) .
Dans le cas de 'unicité on en peut conclure
1 ¢z, y) = 1% gz, y) * p(x—=, 9,
d’ou, par dérivation par rapport a v,
bz, y) = b(@, y) * $lz—2, y) (0 < &y < ) .

Ceci n’est autre que le théoréme d’addition de Cesaro, mentionné
a la page 65. Mais la conclusion n’est pas légitime, s1 nous ne
possédons pas de théoréme d’unicité, rigoureusement applicable
dans ce cas.

Si dans la fonction de Green G de (1, 24) nous mettons en
évidence la largeur [ de l'intervalle en écrivant G(z, y; [),




LR

D e e S g Tpe e T T e — : 3 ‘ Ty

£
o
&

LES EQUATIONS DU TYPE PARABOLIQUE 67

alors le principe de Huyghens appliqué & la propagation de la
chaleur dans un fil fini, donne lieu a la relation

Ga,y;l) =Gy, y; 0 * Gl@—m,y ;51— 2 0<z<z<])

qui, explicitement écrite, représente une relation assez compli-
quée entre des fonctions 3, (Doetsch [11]).

Si 'on applique le principe de Huyghens dans la direction des y
au lieu de celle des x, on obtient pour la fonction I'(z, &; y) de
(1, 25) le théoréme transcendant d’addition (Doetsch [1], p. 51):

l
[ Tlay, B5 9 T(E, @05 92) dE = Tlay, w3 vs + vl
0

pour O<Zl<l et 1> .

P Ya

2. — Le principe d’Euler (Doetsch [9]) détermine une solution
dans le méme domaine de base au moyen de deux especes de
conditions sur la frontiére, par exemple une fois par les valeurs
sur la frontiére de la fonction elle-méme, puis par celies d’une
de ses dérivées. On obtient ainsi par identification une relation
en général transcendante. Envisageons par exemple (Doetsch [9],
p. 340) la distribution de la température dans un fil de longueur
un, distribution qui satisfait aux conditions suivantes sur la
frontiére

limu =0, limu=2y3(0,y) +1, lim2% —_ .
y~0 x=0 x+102
Elle sera donnée par
x
0‘32(—2“7 y)

wlz, y) = —[20 %0, y) + 1] * —

Puisqu’on a pour cette fonction

QU
Iim -2 — __ & —
x-»ODx 3(0, y) 1:

Pon peut déterminer u aussi par les conditions suivantes sur la
frontiére

limu =10, Hm2*=_— 90, y) —1 lim 2% _
y-0 x>002 J ‘J) ’ x-»1bx_0.
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La solution de ce probléme s’écrit ainsi:
wle, ) =[50, 9 + 1] * (5, 4) |

et 'identification des deux expressions pour u donne la relation

X
025 4)

ox

(50 v) * (%00, ) + 1] + # [29 9,00, 9) +1] =0 .
Pour x — 0 cette relation se transforme en une équation inté-
grale pour ,(0, y):

I3(0, y) * [33(07?!) + 1]—‘2y33(0,y)_’1 =0

indiquée par F. BErNsTEIN (Die Integralgleichung der elliptischen
Thetanullfunktion. Sitzungsber. d. preuss. Akad. d. Wiss., 1920,
pp. 735-747). Pour d’autres exemples et pour une autre méthode
de gagner de telles relations transcendantes par des transforma-
tions fonctionnelles, voir Doetsch [11].

V. — LE CARACTERE ANALYTIQUE DES SOLUTIONS.

1. — WEIERSTRASS [1] a montré en 1885 que la solution dans
le demi-plan y > 0 de I'équation (1,21) de la chaleur avec les
valeurs @ (z) sur la frontiere y = 0, représente sur chaque hori-
zontale une fonction entiére analytique en . Plus explicitement:
La solution donnée par la formule classique de Poisson

+
ule, ) =5 [ 2le—E, y) ()L, 5, 1)

—00

ou y désigne la fonction (3,331), a cette propriété. A cause de
nos expériences sur la multiplicité des solutions nous nous
trouvons obligés de nous servir de cet énoncé plus prudent.
Weierstrass établit la méme propriété pour la solution (1,23), si
les températures A (y) et B(y) s’annulent.

Holmgren montra en 1905 ([1] et plus explicitement dans [3])
qu’'une solution réguliére (voir p. 50) de (1,21) représente sur
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chaque horizontale une fonction analytique de x; d’une maniere
plus précise: soit u(z, y) une solution de (1,21), réguliére dans
un domaine ® et supposons le
segment = 1x,, a <y <0b entié-
rement intérieur 4 ®. Alors, dans
un certain rectangle

|2 — x| <d, afysh

- - - - o

u est développable en série de puis-
sances

ule, v) = S (@ — )
v=0

el (EEIR A S

Cette série a donc sur chaque hori- %
zontale y = const. un rayon de con- Fig. &.
 vergence égal au moins a d.
2. — Holmgren [1] donna a ce résultat une interprétation \
: . |
inattendue et trés importante. Tout d’abord, comme toutes les
s A . . : du 2y
dérivées par rapport a z existent, il découle de iy que

toutes les dérivées par rapport a y existent aussi et satisfont aux
relations:

My u Mty A au
o = o b Il 57
o oy d T bynbx
Puisqu’on a
du
Cy (y) - ———) D
Oz [x=x0

Conl) = M(y) o) = ™ (y)
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de facon que la solution a la méme forme que pour le probléme
de Cauchy dans le cas analytique connu:

E‘i" @ — z,)? Z

n=>0

<‘”>< )

D’apres les inégalités de Cauchy pour les coefficients on a

%]

nl

IA
S=

ou M est la borne supérieure de u dans le reetangle et par
conséquent

(2n + 1)1

™My < M 2 2nEl

(n)

. (5, 22)

Cela signifie qu'une solution réguliére représente sur chaque

~segment vertical entiérement intérieur au domaine de régularité,

une fonction ¢ (y) dérivable un nombre tllimité de fois et dont les
dérivées admettent les majorantes (5,22), avec les valeurs M et d

. . R 5 ou
indépendantes de y. (La méme chose a lieu pour v ).

8. — Les remarques suivantes se rattachent immédiatement
a ce dernier fait:

1. A coté de Pinégalité (5,22) pour ¢™(y) on envisagera celle
pour les dérivées d’une fonction analytique f(y):

1My | < M';—,},; ~ (5, 31)

Mais une fonction pour laquelle (5,22) est valable, n’est pas
nécessairement analytique et méme pas, comme l'on pourrait
croire, quasi-analytique dans le sens de Carleman. Car alors ses
valeurs sur un petit intervalle devraient définir d’'une maniére
univoque la répartition de ses valeurs partout. Or la solution
(3,61) nous montre qu'en général ce n’est pas le cas pour o.
C’est que, si nous remplacons A (y) pour y > y, par une autre
fonction, u conserve bien sa valeur pour 0 <y <y,, mais ne la
conserve pas pour y > Y,.
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9. Les deux inégalités (5,22) et (5,31) conduisent & envisager
d’une maniére plus générale (Holmgren [3]) des fonctions f(z)
dérivables une infinité de fois dans un intervalle et satisfaisant
dans cet intervalle a 1'inégalité

I]c(n)(z) , < ME(“_”__{"_Q i
p'n

qui est équivalente & ,
RIS

avec a > 1. Gevrey ([1], chap. ITI, et [2]) appelle ces fonctions
fonctions § de la classe «. A 1'exception de la classe a =1, qui
donne les fonctions analytiques, elles ne sont pas méme quasi-
analytiques, comme nous le montre I’exemple

1
O(r)e -fdy  avec B = -

1

flz) =

-
TS

(Holmgren [3], p. 5).

3. Gevrey [2] a étendu la notion de classe pour des fonctions
d un nombre arbitraire de variables. Aprés que E. E. Levi ([3], § 9)
eut démontré pour ’équation non homogene de la chaleur que z
restait analytique en x au voisinage d’un point ou f(z, y) était
analytique en z, Gevrey [2] montra pour I’équation linéaire la
plus générale et d’autres équations tres générales que, en gros,
les propriétés de classe de I’équation se transmettaient aussi aux
solutions. Ce serait trop long de Vou101r reproduire ici ces résul-
tats d’une trés grande portée.

VI. — IEXISTENCE DE LA SOLUTION.

Un théoréme d’unicité énonce seulement qu’il y a au plus une
solution. C’est un théoréme d’existence qui doit décider si
en vérité 11 y en a une.

Le probléme de Cauchy.

Dans le cas analytique Vexistence.de la solution est toujours
assurée, mais c’était un des premiers résultats des travaux
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célebres de Holmgren que le probléme de Cauchy avec des
données non analytiques n’a pas nécessairement une solution et
qu’une condition nécessaire et suffisante de résolubilité peut étre
écrite. Le résultat pour I'équation homogéne de la chaleur
s’énonce ainsi (Holmgren [1]) :
Si les valeurs initiales
ou

lim u(z, y) = o(y) , lim — = o, (y)

X = Xo x=x90 %

sont données sur le segment v = z,, a« <y < b, ¢ possédant
une dérivée du premier ordre continue, alors la condition néces-
saire et suffisante pour qu’il existe une solution réguliére est la
sutvante:

Y
1 9’ (7)
1 —- s ———; d
1 (y) + = :f e

est une fonction 9 de la classe 2.
On peut donner une autre forme trés intuitive a cette condition

assez surprenante. Le second terme de cette somme n’est autre
1

que la dérivée D? ¢ de Riemann-Liouville (on dérive ¢ une fois
et on effectue une intégration d’ordre une demie). Tandis que
Iéquation différentielle elle-méme peut s’écrire sous la forme

1 1
(Dxu + Dgu) (Dxu— D; u) = { ,

la condition de Holmgren s’énonce ainsi:
1

D.u + D;‘fu doit, pour x = z,, étre une fonction  de la
classe 2.
Holmgren ([3], p. 8) a généralisé ce résultat pour le cas ou u

du . .
et — seraient données sur une courbe et non pas sur un segment
X

de droite et Gevrey ([2], chap. IV) I’a étendu a I’équation non
homogéne (1, 22) et a montré comment on pouvait traiter le
probléme pour I’équation linéaire la plus générale et des équa-
tions plus générales encore.
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Le probléme aux limites.

1. — Les équations paraboliques occupent une place inter-
médiaire entre les équations elliptiques et hyperboliques.
Comme pour les équations elliptiques il suffit de nous donner
sur la frontiére seulement les valeurs de la fonction ou seulement
celles d’une de ses dérivées ou bien seulement les valeurs de la
fonction sur certaines parties de la frontiére et seulement celles
de la dérivée sur d’autres. Mais la valeur en un point ne dépend,
comme pour les équations hyperboliques, que des valeurs sur
la frontiere située entre les deux caractéristiques correspon-
dantes. Vu que ces derniéres sont ici horizontales et coincident, ce
sont seulement les points de la frontiere qui se trouvent en des-
sous ou bien en dessus des caractéristiques qui interviennent. Pour

p i i, 03z . 02 . , -
les équations linéaires en 5y c’est le signe de 5y TU le décide.

Si nous envisageons des domaines dans lesquels ce signe est
négatif, il s’agit de frontiéres courbes €, ouvertes vers le haut.
D’aprés E. E. Levi ([3], § 2) on distingue trois types:

&N

R A

Fig. 5.

Premuer type: € est composée de deux courbes, représentables
sous la forme

G = v(y) G x = v,(y) @ey<?),
qui se rencontrent en bas:
v1(a) = vala) . Ona vi(y) < v,(y) ,

sauf pour y = a.

Deuxiéme type: €, et €, ne se rencontrent pas en bas, mais y
sont reliées par un segment & de caractéristique.
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Trotsiéme type: La courbe €, est rejetée a I'infini et € ne se
compose que de €, et d'un segment infin1 & de caractéristique.

Dans la suite nous supposerons ¢ = 0. — Nous ne parlerons
pas ici des courbes frontiéres du troisiéme type pour lesquelles
certaines choses sont particuliérement simples, d’autres non
encore expliquées (voir la remarque a la fin de I1I). Levi insiste
sur les domaines du premier type (comme limite de domaines du
deuxiéme type) et il les traite séparément, pour la raison seule-
ment qu’d son avis certaines intégrales dont on se sert pour la
démonstration d’existence n’ont pas de sens pour ces domaines.
Je crois que cette opinion n’est pas juste et que la distinction est
accessoire, au moins dans les cas considérés par Levi ou les valeurs
sur la frontiere € sont continues, o par conséquent les valeurs
dans les points inférieurs de €, et €, coincident.

En ce qui concerne le caractére des courbes €, et C,, on peut
dire que les fonctions v, et v, (excepté au plus en un nombre
fini de points)

sont analytiques chez Holmgren;

satisfont

chez Levi & une condition de Lipschitz d’ordre 1,
chez Gevrey a la méme condition d’ordre o:

1
vl) —vW) | S Hly—y'|"  avee <o 1.

Cette derniére condition s’explique par le fait que, essentielle-
ment, il s’agit toujours de la convergence d’intégrales de la
forme
Yy Iy —1())2
Y{y) —v(n) &(y—n)
—aj, ¢ dn .
5y ly—m)"

Sous I’hypothése de Gevrey on a pour 0 <7 <y

[r(y) — y(x)]2
— BT Y(y) — vy H
0 < e A= <, { —~‘ < s
= (y — )l (y — )2
avec i T § — <1
2 = 2

et par conséquent la convergence de I'intégrale.
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Derniérement PETrowskY [1] a appliqué aux équations para-
boliques la méthode de Perron, établie pour les équations ellip-
tiques (ce qui antérieurement a été déja fait par Sternberg). Il a
démontré de cette facon I'existence de la solution de (1,21) pour
des courbes encore plus générales et il a ausst montré que cette
classe était la « meilleure » dans ce sens que si on la dépassait, on
pourrait donner des valeurs continues sur la frontiére telles
qu’aucune solution ne pourrait exister.

2. — La démonstration d’existence (les valeurs sur la frontiére
étant continues) que Holmgren a imaginée et les démonstrations
de Levi et Gevrey qui s’y rattachent, se sont inspirées de la
théorie du potentiel. Le role de la solution fondamentale (qui pour

un potentiel de volume est égale a %) est joué dans la propagation

de la chaleur par la fonction y(z, y) de (3,331). Elle repréSente
la distribution de la température pour y > 0, si I'on suppose
comme état initial une source de chaleur concentrée en z = 0.

Au potentiel d’une couche correspondent des intégrales de la
“forme

X3
Po(z, y) = fx(x — &, y) ©®(E)dE (prise le long de la caractéristique &)
X1

et
Yy

Pz, y) = fx(x — (), y— ) ®(n)dn (prise le long de €, ou G,).
0

P, n’est pas définie sur & (y = 0), mais a la valeur limite ® ()
si 'on s’approche d’un point intérieur a'R&. P, est-définie et con-
tinue aussi sur la courbe z = y(y). — Dans la théorie du poten-

tiel on envisage a coté de —i~ aussi la dérivée de %, dérivée normale
a la couche. A celle-ci correspond ici la fonction ¢ (z, y) = — %’—i
de (3, 311). Elle donne lieu a l'intégrale

Yy

Py(xz, y) = ;/‘@P(x* v(), y— ) @(n)dn (prise le long de G, ou @,),
0 |
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qui correspond au potenitel de double couche. Cette intégrale a,
comme dans la théorie du potentiel, des valeurs limites si (z, y)
tend vers la courbe x = v (y), qui d’ailleurs sont différentes
sulvant qu’on s’en approche par la droite ou par la gauche:

lim Py, y) = & @y, +
Y=>Yg, x=+(Yyo) & 0

*

Yo
+',/7¢(Y(yo)——¥(n), Yo — 1) P () dn .
0

Pour v (y) = const. ceci est un résultat classique, pour le cas
général 1l est donné par E. E. Levi ([2]; [3], p- 211) et Holmgren
({3, p- 6).

Avec cela on gagne le point de départ pour des démonstrations
d’existence. Holmgren [2] se donne les valeurs A (y) et B(y) sur
¢, et €&,, la valeur zéro sur & (on peut toujours y arriver par
soustraction d’une intégrale de la forme P,) et prend la solution
de ’équation (1, 21) sous forme d’une somme de deux potentiels
de chaleur de la forme P,, sur ¢, et €,:

Y
wle, y) = [xle—raln), y— n) By(n) dn +
0
y
+ [ ale—aln), y— 7) By(n) dy .
0

Il en tire, en vertu de leur continuité sur ¢, et €,, les deux
conditions:

y
Aly) = [xbnaly) —valn), y — ) Du(n) dy +

Y
+ [ xbraly) — valn) s y — 1) By(n) d

ee
S
I
™
=
=
| -]
<
=2
fa=y
3
<
3
=)
Yok
=
I W
=
+
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C’est un systeme de deux équations intégrales de Volterra de
premiere espece pour les densités inconnues @, et ®,. Holmgren
le transforme, suivant le procédé de Volterra, en un systéme
d’équations intégrales de seconde espeéce dont la résolubilité
est assurée.

E. E. Levi ([2];[3], § ) donna plus tard une démonstration
d’existence basée sur la méme idée, qui suit de plus prés encore
le procédé indiqué par Neumann pour le potentiel ordinaire. Il
pose u comme différence de deux intégrales P, donc comme
potentiel de double couche:

Yy

ulw, y) = [Ylo— i), y— ) ¥y(n) dng —
0

Y
— [ b=, y— ) Caln) dy
0

et obtient, conformément a ce qui a été dit plus haut sur la
valeur limite de P, sur les courbes €,, €,, les conditions:

Yy

Aly) = Fily) + f&IJ(Yl(y) —vi(n), ¥y — ) Viln) dn —
0
Yy

— [t = valn), y — ) Waln) dn
0
Yy

Bly) = ¥aly) + [ $(valy) —valn), y — 0) Fyln) dy —
0

Yy
— [ laly) — valnl, y — ) Wy ln) dr .
0

Ces équations intégrales pour ¥, et ¥, sont a priori de seconde

espéce, de facon que leur résolubilité est évidente.
Holmgren [3] appliqua la méme méthode aux cas ou sur ¢,

, ou .
et €, est donnée la valeur de u ou de 5, Ouencore une combinaison

., . ou
linéaire de u et vt

3. — Ces résultats ont & nouveau beaucoup a faire avec la

question de 'unicité. 11 semble d’aprés cela que pour des valeurs
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continues données sur la frontiére, la solution pourrait bien étre
unique. Celte contradiction réfutant la non-unicité s’explique
par le fait que cette méthode n’est applicable qu’aux solutions
représentables par des potentiels de chaleur. Holmgren et Levi
supposalent cela de chaque solution, mais ce n’est pas le cas pour
nos solutions singulieres! Supposons qu’on ait pour une solution
singuliere arbitraire S (x, y):

Sle, y) = ¥ily) x ¢z, y) —Yoly) » 91—z, y)

(dans le cas de la demi-bande de largeur un nous pouvons bien
écrire le point de départ de Levi sous cette forme). Si, y étant
constant, on fait tendre z une fois vers zéro, puis vers un, alors:

0 = W;(y) —Yoly) = $(1, y),
0 =Yy * ¢(1, y) — Yely) ,

d’ou, en employant le théoreme d’addition de Cesaro (voir p. 65):
Vily) = Yily) *» (2, 9), Wily) = ¥oly) = $(2,y) .

Cela n’est possible que pour ¥, = ¥, = 0. Mais avec ces valeurs
on aurait S = 0.

4. — VoLTERRA ([1], p. 66) établit, d’aprés la méthode de
Riemann de I’équation adjointe, une formule de Green pour la
solution de I’équation non homogéne (1, 22), qui a c6té des valeurs
03

=3 il montra aussi

sur la frontiére de z contient aussi celles de

([1], p- 67) comment on peut éliminer les valeurs de '2;: sur une

frontiére rectiligne en employant le principe des images de
Lord Kelvin. E. E. Levi ([2]; [3], § 7) indiqua comment d’apres
cette méthode de Volterra on pouvait représenter la solution
(de I’équation homogene) par ses valeurs sur la frontiére, suppo-
sée polygonale, et arriver par un passage a la limite a des fron-
tiéres arbitraires.

Gevrey ([1], n® 4) donna, plus explicitement.encore, une repré-
sentation de Green de la solution de I’équation non homogéne
(1,22); 1l le fait en introduisant une fonction de Green
G (z, y; &, m), représentant une certaine solution de l’équation




LES EQUATIONS DU TYPE PARABOLIQUE 79

adjointe et dont il établit Pexistence a P'aide de la méthode de
Holmgren indiquée plus haut, qui utilise les équations inté-
grales. Cette représentation est donnée par la formule

sz
= —j—-—’ﬁ ) dn +
<£1+0:2

¢ [azE, 0ar— [ [GfE, nazdn, (6,4
H

Sy

S, désignant la partie du domaine limité par €, + & + €, se
trouvant en dessous de la caractéristique d’ordonnée y. (L’in-
tégrale double représente la solution de I’équation non homogene
qui s’annule sur la frontiére).

5. — Cette représentation (6,4) conduisit Gevrey ([1], n® 19-24)
a une démonstration d’existence pour la solution de I’équation
linéaire générale (3,21). Car si 'on remplace (en supposant
b = —1) la fonction f par — a(z, y)g—z—— clz,y)z + f(z,y),
alors (6, 4) donne:
sz, y) = Lz, y) + ff(}-(ab—z + cz)didn (6, 51)

0g
Sy

ou { représente la solution de (1, 22) avec les mémes valeurs sur
la frontiére. Avec cela on établhit pour z une équation intégro-
différentielle qui est résoluble, si certaines hypotheéses sur la
frontiére, les coefficients et les valeurs aux limites sont satisfaites.
L’équation parabolique générale (1, 1) et surtout le type plus
particulier
02z 03

02 .
-b_;_z“@—f(xa y, z, g}) (6502)

peuvent alors étre traités par la méthode qu’on emploie aussi
pour des équations différentielles ordinaires, c’est-a-dire en les
rendant «comparables» a l’équation linéaire en supposant
satisfaites des conditions de Lipschitz (Gevrey [1], n° 28-34).

Récemment, une autre méthode a été employée par Sippiq1 [1]
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dans le cas de la demi-bande et d’une solution s’annulant aux
extrémités x = 0 et x = =. En posant

z(x, y) = 2 0, (y) sin nx
n=1

il réduit ’équation (6, 52) & un systéme infini d’équations inté-
grales, qui est résolu par des approximations successives.

VII. — PROLONGEMENT ANALYTIQUE.

1. — Soit z (z, y) une fonction satisfaisant dans un domaine &
a une équation parabolique. S’1l existe un domaine &, contigu
a & le long d’un arc AB, et une fonction z (z, y) satisfaisant dans
& + &, & la méme équation et identique a z dans &, nous dirons
que z est prolongeable au travers de AB. C’est ainsi que Holmgren
définit cette notion, en supposant d’ailleurs la régularité de z et z.
L’on pourrait aussi définir la possibilité d’un prolongement de la
maniére suivante: Il doit exister une fonction z,(x, y) satisfai-
sant dans &, a ’équation différentielle qui, ainsi que certaines
de ses dérivées, se raccorde d’une fagon continue avec z; I’équa-
tion différentielle doit étre satisfaite aussi sur AB.

L’exemple suivant montre 'importance de la maniere d’envi-
sager le prolongement et le raccord continu le long de AB:

La fonction z = 0 satisfait dans &: 0 <2 <z, y> 0, &

, . 023 .o L.,
I’équation — — —= = 0 et a, ainsi que toutes ses dérivées, la
ox? oY !

valeur zéro sur la frontiere donnée par z = x,,.
La fonection z,(z,y) = 4 (x —zy, ¥ + «) avec o > 0 satisfait
dans le domaine adjacent

Gy x>z, yYy>0

& la méme équation différentielle et possede le long de la droite
x = x, la valeur zéro. Mais que font les dérivées ? Si I'on
: D :
compléte z; par sa valeur sur la frontiére, 6% existe le long de
2

‘ oy . 1 d .
x = x, (du cété droit) et a la valeur == i) Z; existe
* 247 (y + )2’ o
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. . 03
également et a la valeur zéro. Puisqu’on a aussl é_y—l = 0 sur
x = x,, il en résulte que

1) Péquation différentielle est satisfaite sur x = z,,

2) pour le passage de z & z; le raccord continu des dérivées
intervenant dans ’équation différentielle a lieu.

Par contre la dérivée par rapport a z, qui n’intervient pas
dans I’équation différentielle, n’est pas continue. Si sa continuité
n’est pas expressément exigée, on peut prolonger z d’une infinité
de maniéres (o > 0 est arbitraire), prolongements qui ne donnent
alors évidemment pas de fonctions réguliéres et de ce fait ana-
Iytiques en z.

2. — L’aspect du probléme du prolongement est complétement
différent suivant qu’on exige que le prolongement soit fait vers
la droite ou la gauche ou bien vers le bas, c’est -a-dire si ’on veut
traverser une des courbes €;, €, ou bien la caractéristique R ;
cecl est en rapport avec le fait que, pour I'équation (1, 21) par
exemple, un u régulier est bien analytique dans la direction
des z, tandis qu’il appartient seulement a la classe 2 dans la
direction des y. S1 €, et €, sont, comme toujours dans la phy-
sique, des droites perpendiculaires z = 0 et z = [, il s’agit une
fois d’une extrapolation de I’état de température plus loin que
les extrémités du fil (« rdumliche Fortsetzung »), la seconde fois
de la reconstitution d’un état antérieur & I’état initial observé
(« zeitliche Zuriickverfolgung »), deux cas d’importance capitale
en physique.

Envisageons d’abord le prolongement au travers de €, et €,,
par exemple au travers de €;. Pour cela Holmgren [3, 4] obtint
le beau résultat suivant:

St €, est représentable par une fonction analytique x = v, (y),
a <y < b, alors la condition nécessaire et suffisante pour qu’une
solution u(z, y) réguliére dans B + € (voir page 51) de I’équa-
tion (1, 21) puisse étre prolongée au travers de G, vers la gauche,
s’énonce ainsi: Les valeurs que u prend sur chaque arc plus petit:
a <o=<y=<PB <b, définissent une fonction f(y) qui posséde

L’Enseignement mathém., 35™e année, 1936. 6
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dans o <y < B toutes les dérivées et représente une fonction 9
de la classe 2.

La démonstration se base essentiellement sur le théoréme
d’unicité du probléme de Cauchy. Il est donc nécessaire de
prendre les hypothéses assez étroites pour que 'unicité soit
effectivement assurée.

L’unicité du prolongement lui-méme résulte de I'analyticité
de u dans la direction des x.

Gevrey ([1], no 57, 58) a étendu cela a 'équation linéaire
générale.

Pour le cas physique ou le domaine primitif est formé par une
demi-bande 0 <z <[, ¥y > 0 I’on peut donner au probleme du
prolongement un autre aspect (Doetsch [1], p. 48). Exigeons de
nos solutions au moins que I'unicité soit hors de doute et que la
solution du probléeme aux limites soit représentée par la formule
classique (1, 23). Pour simplifier nous supposerons que les valeurs
s’annulent sur les frontiéres x = [ et y = 0; nous pouvons tou-
jours arriver a cela par soustraction des termes relatifs a ces
frontiéres de la formule (1, 23), termes qui, d’ailleurs, sont pro-
longeables au travers de la frontiére x = 0. Si I’on peut mainte-
nant prolonger u vers la gauche jusqu’a une droite x = — a incl.
et cela de facon & ce que les valeurs initiales restent nulles sur le
prolongement de la frontiére inférieure, alors on peut considérer
la droite x = — o comme frontiére a gauche. Alors la tempé-
rature pour z > 0 ou bien, puisque ¢a suffit, pour x = 0 doit
étre représentable au moyen de la température sur la nouvelle
frontiére. Si I'on change la notation des abscisses cela peut
s’exprimer ainsi: La formule classique

ulzy, y) = Aly) * Gz, )

est, si les valeurs zéro sont données & droite et en bas, solution
du probléme qui consiste a évaluer, a partir de la température
sur la frontiere x = 0 & gauche, la température en chaque point x,
placé plus a droite. Posons maintenant le probleme inverse:
Quelle température A (y) doit étre placée a la frontiere x = 0,
pour qu’on trouve en z, précisément la température u(z,, y)?
Cela revient évidemment & la résolution d’une équation intégrale

q
L |
3
3
B
i
i
i
i
¥.
:
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de premiére espéce de Volterra, mais qui ne se laisse pas trans-
former de la facon habituelle par dérivation en une équation
de seconde espéce, puisque toutes les dérivées de G(z,, )
s’annulent pour y = 0. On peut cependant ramener cette équa-
tion intégrale & une autre de noyau ¢(zy,y) plus simple
(Doetsch [5]), qui correspond d’ailleurs au cas du fil indéfini, et
énoncer pour cette derniére ce qui suit (Doetsch [6]):

Pour qu’elle posséde une solution il est nécessaire que toutes
les dérivées par rapport & y de u(z,, y) existent pour y > 0 et
s’annulent, comme d’ailleurs u(x,,y) elle-méme, pour y = 0.
Si la série suivante, procédant suivant des quotients différentiels
d’ordre fractionnaire

n

ez
ZT 2 xO; y)

n=0

converge pour ¥ > 0 et est intégrable terme & terme dans chaque
intervalle fini, alors elle représente la solution A (y) de I’équation
intégrale.

Tandis que Holmgren ne démontre que ’existence du prolon-
gement, lequel peut rester indéterminé jusqu’ou ce prolongement
peut étre effectué, nous donnons ici une expression explicite
pour la solution, & condition que I’étendue du prolongement
soit déterminé a priori. Mais c’est précisément cela qui est donné
pour des problémes physiques: si par exemple Dextrémité
x = 0 est «inaccessible» et que l'on veuille déterminer sa
température a partir de celle qui a été constatée en un point
« accessible » z,.

3. — Envisageons maintenant le prolongement au travers de !
Supposons 1cl tout de suite que €; et €, sont deux droites
verticales g, et g,. Pour ce cas Gevrey ([1], n® 59) déja a remarqué
que le prolongement n’est pas univoque si ’on ne connait pas
les valeurs de u sur les prolongements vers le bas de g; et g,. Pour
la possibilité d’un prolongement 1l trouve comme condition
nécessaire et suffisante ([1], n° 60) que les valeurs de u sur &,
{ étant située dans un plan complexe des z, doivent définir
une fonction analytique dans le carré construit sur & comme
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diagonale. Nous pouvons cependant donner un résultat plus
complet, qui en plus n’exige pas l'introduction du domaine
complexe (Doetsch [4]). Supposons tout de suite que u s’annule
sur les droites g, et g,, & quol on peut toujours arriver par une
soustraction de solutions appropriées. Si I'unicité de u et la
possibilité de lui appliquer la formule (1, 23) sont assurées et s1 u
peut étre reconstituée dans le temps jusqu’au temps négatif
— ¥y, alors I'ancienne température initiale @ (z) pour y = 0
doit se laisser déduire de la température u(x, — y,) au moment
— ¥, par la formule

l
= [T, &, yo) ule, —y,) dE .
0

Si @ (x) est donnée, c’est une équation intégrale de Fredholm de
premiere espece pour u(x, — ¥y,) et nous en tirons le résultat
suitvant:

La température ne peut étre reconstituée dans un passé ante-
rieur a I’état initial @ (x) que s1 @ (x) est une fonction analytique,
entiere et périodique de période 2/ avec P (— z) = — D () et
®(0)=d() =0. Si on la développe en série de Fourier
(convergente absolument et uniformément) de la forme

®(z) = %zausinvn%—,

alors la température peut étre reconstituée sans singularités pour
des y = — y, négatifs aussi loin que

M Fa) (7, 31)

reste convergente. Si Y est la coupure entre les y, de la
convergence et de la divergence alors on obtient 1’état de tem-
pérature pour 0 <y, <Y par la série de Fourler convergente
absolument et umformement en x:

;2-\:2 )
_ l2 - hadl )
y0 \/ E a.e sin vTc o (7,43\\2‘)

v=1
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Si Y est une valeur pour laquelle la série (7, 31) converge encore,
alors la série (7, 32) représente pour y, = Y la valeur u (, — Y)
au moins dans le sens de la convergence en moyenne.

4. — La reconstitution dans le passé de la température dans
un fil infiniment long des deux coiés est d’intérét particulier et
cela & cause de ses applications pratiques multiples. AppELL [1]
s’en est occupé en 1892, mais sans aller trés lom. Si 'on ne
considére que des fonctions pour lesquelles on peut employer la
formule de solution de Poisson (5, 1), alors le probléme est équi-
valent & la résolution de I’équation intégrale singuliere

+oo (x—E)2

e e CLL L

~— 00

Ce probléme revient évidemment & une décomposition spectrale
(x-2)2
: 1 — :
de la fonction @ (x) en courbes de Gauss 5 \/:-—_—e ‘Y (maxi-
Yo

T

. e 1 .
mum toujours en &, mesure de précision E/—>’ et cela explique
0

que le méme probléme se pose souvent dans le calcul des proba-
bilités, en statistique, en physique, etc. Moi-méme, j’étals amené
a cette question par un probleme de !’analyse spectrale
(Doetsch [7]) et j’al obtenu la solution, & partir de la solution
pour un intervalle fini, par un passage a la limite peut-étre assez
audacieux. On obtient le méme résultat si I’on remarque que
Péquation intégrale (7, 4) est du «type de composition » (Fal-
tungstypus) et admet par conséquent la transformation de
Laplace ou celle de Fourier (voir Dorrscu [13]). Plus tard,
P. LEvy [1] s’est occupé de ce probléme surtout du point de vue
de la théorie des probabilités et sans tenir compte, semble-t-il,
des recherches mentionnées plus haut; ses résultats ne sont,
d’ailleurs, pas encore définitifs.

On pourrait encore dire beaucoup de choses sur les solutions
dans un intervalle infini d’un ou de deux cotés et montrer quel-
ques problémes importants qui ne sont pas encore résolus. Je
dois 1ci m’en abstenir et réserver ce sujet pour une autre occa-
sion.
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