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LES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

DU TYPE PARABOLIQUE1
PAR

Gustav Doetsch (Freiburg i. B.).

I. — Introduction.

1. — Il est bien connu que la distinction des types des équations
aux dérivées partielles du second ordre subsiste même pour les

équations les plus générales à un nombre arbitraire de variables
indépendantes. Nous ne nous occuperons ici que des équations
du second ordre à deux variables indépendantes qui sont linéaires

par rapport aux dérivées partielles du second ordre

Ô2JZ b2z b2Z

bx2 ' S

bxby ' t
by2

Ces équations sont par conséquent de la forme suivante
/ ö z ö z \{P=ïï>I=ÏÏ):

A (a;, y) r + 2B (x y) s + C(# y) t + F (x y z p q) =0

L'équation est dite du type parabolique si l'égalité

AC — B2 0

i Résumé de la Conférence faite les 17 et 18 juin 1935 dans le cycle des Conférences
internationales des Sciences mathématiques organisées par l'Université de Genève; série
consacrée aux Equations aux dérivées partielles. Conditions propres à déterminer les
solutions. — La conférence a été faite en langue allemande; je tiens à exprimer ici mes
remerciements à MUe A. Halpern, de l'Université de Genève, qui a bien voulu se
charger de la traduction en français.

L'essentiel de la bibliographie se trouve à la fin de cet article. Les travaux sont indiqués

dans le texte par le nom de l'auteur et le numéro du mémoire entre crochets. Toute
autre indication bibliographique est insérée dans le texte.
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a lieu dans un domaine du plan des (x, y). On peut alors, par un
changement de variables, la ramener à la forme suivante

±( 02 bZ\ IA A\^ f[x,y,z,-j .(1,1)
Les caractéristiques de cette équation sont alors les droites
y const.

2. — On peut mentionner deux sources différentes pour la
théorie des équations paraboliques. Ceci explique que les
problèmes furent posés d'une façon différente dans les travaux parus
sur ce sujet.

1. Nous avons d'abord le problème de Cauchy, qui peut ic1

être posé de la même manière que pour les équations des autres

types. Dans le cas de l'équation (1,1) on se donne z et ^ sur

un segment de la droite x xQ:

* =?(</), ^1 9l(y)
lx=x0 • ix=x0

et l'on cherche z dans un domaine adjacent d'étendue
indéterminée. La droite x x0 peut être remplacée par une courbe Ê,

qui n'est pas une caractéristique. Si toutes les données, c'est-à-dire
la fonction / de l'équation (1,1), les «valeurs initiales» 9, <p1

ainsi que la courbe 6 sont analytiques et si l'on demande que
les solutions soient elles aussi analytiques, on aura une solution
et une seule, ce qui est démontré par la théorie classique de

Cauchy. Nous ne nous arrêterons pas à approfondir ici ce cas

analytique à propos duquel il faut mentionner surtout le mémoire
célèbre de S. de Kowalewsky (Crellesches Journal, 80 (1875),

pp. 1-32).

2. La théorie de la propagation de la chaleur. On sait que les

exemples classiques des équations elliptiques et hyperboliques
ont été puisés dans la Physique mathématique, en particulier
dans la théorie du potentiel ainsi que dans la théorie des vibrations

des milieux élastiques. De même, le type fondamental des

équations paraboliques est donné par la théorie de la propagation
de la chaleur dans un milieu à une dimension.
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La température u dans, un milieu conducteur homogène et à

une dimension (par exemple dans un fil) satisfait à l'équation

S-^ ° ^ôr à y

(équation homogène de la chaleur) où x désigne l'abscisse, y le

temps. (Toutes les équations paraboliques, linéaires et homogènes

à coefficients constants peuvent être ramenées à ce type).
Dans le cas où il y a des sources de chaleur à l'intérieur du fil,
on aura l'équation

S f1'22)

(équation non homogène de la chaleur). Le problème qui se pose
ici d'une façon naturelle est le suivant: Le fil a, à un moment
donné y 0, une certaine «température initiale» <&(#). A ses

extrémités x 0 et x l on place deux sources de chaleur de

température en général variable A (y) et B(j/). On cherche la
distribution de la température à l'intérieur à un instant
quelconque. Il s'agit donc ici d'intégrer l'équation différentielle dans

un domaine entièrement déterminé, la demi-bande 0 < x < /,

y 0, les valeurs de la fonction sur les trois parties de la frontière
étant données. Ici l'on ne parle plus de données analytiques, les
fonctions î>(#), A (y), B (y) étant arbitraires. La solution
classique de l'équation (1, 21) est la suivante:

y y

u{x y) J A (t}) G (x y — v})dri + f B (tj) G (Z — x y — v\)dr\ +
0 0

l

+ f®(Ç)r(x, 5, y)dl (1, 23)
0

G et r étant les « fonctions de Green » de la forme suivante:

Ö5 (— 00 n*Tß
'

n v
1 \2U iy 2TT X -~TTV xG(x,y)=— j =-prLne sin « re y (1,24)

n l

9
00 -n^rß-L rZ \2 X C~ 2-ie s*n niz~[ s*n n7ZT ' (1,25)

n=1 ' 1
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L'apport de chaleur au voisinage des extrémités est proportionnel

à d'une part et à la différence des températures du

fil et de son voisinage de l'autre. L'on voit alors surgir des

problèmes où l'on a des relations linéaires entre u et ^ données

aux extrémités du fil.
Le véritable calcul de la solution de ces problèmes et d'autres

semblables — envisagés aussi dans le plan et dans l'espace —
fut tellement approfondi par Fourier dans son mémoire
célèbre «Théorie analytique de la chaleur» (1822) que, encore,
Poincaré, dans son cours bien connu [1] fait en 1895, ne fit que
suivre l'œuvre de Fourier. Mentionnons cependant que des

savants célèbres du XIXe siècle, comme Poisson, Lamé et
Lord Kelvin, ont apporté des idées essentielles et très
ingénieuses pour le calcul de la solution.

3. — Le point de vue sous lequel le problème était envisagé
jusqu'en 1905 est caractérisé par les deux questions que nous
venons d'énoncer: la solution du problème de Cauchy dans le
cas analytique en partant de l'équation générale (1, 1) et la
solution de l'équation homogène de la chaleur (1, 21), pour
quelques problèmes aux limites dans une demi-bande posés par
la Physique mathématique. Or, précisément en 1905, un caractère
entièrement nouveau paraît dans cette théorie. A cette époque
Holmgren (Suède) envisagea le problème de Cauchy dans le

cas non analytique et considéra d'autre part le problème de la
chaleur pour des domaines plus généraux que la demi-bande.

Il examina aussi la question de l'existence et de l'unicité des

solutions ainsi que leur analyticité et la possibilité de leur
prolongement analytique. En 1907, E. E. Levi (Italie) fit
progresser surtout la théorie de l'équation non homogène de la
chaleur (ses autres résultats et en particulier le contenu de [1]

furent dans l'essentiel anticipés par Holmgren; pour la question
de priorité voir la note de Holmgren dans les Comptes Rendus

24.2.08). En 1913 et 1918, Gevrey (France) s'est attaqué à

l'équation linéaire générale et aux équations essentiellement

plus générales et dans deux grands mémoires très féconds mit
au clair une fois pour toutes la question de l'existence et de
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l'analyticité des solutions.. Ses résultats n'ont pas été surpassés

depuis. Mes propres travaux (publiés à partir de 1923) —
commencés alors sans la connaissance des trois auteurs précités —
traitent l'équation homogène de la chaleur dans le sein d'une
théorie plus générale, celle des opérations fonctionnelles.

Je tracerai maintenant un résumé rapide du développement

que la théorie des équations paraboliques prit depuis les travaux
de Holmgren et j'attacherai le plus d'importance à un problème
qui a été un peu négligé dans la littérature, à savoir à la question
de l'unicité de la solution. Pour cela il est indispensable de mettre
au clair la véritable signification du mot « solution ». Le fait
qu'on peut attacher à ce terme des sens très différents et que
cela entraîne de vastes conséquences n'a jamais été exprimé
nettement dans la littérature. — Pour les autres parties de la
théorie, je serai obligé de me restreindre aux résultats essentiels,
sans quoi cet article prendrait l'étendue d'un livre.

II. — Les différentes conceptions d'une « solution ».

1. — On sait depuis longtemps que la solution z (x, y) d'un
problème aux limites ne représente pas nécessairement les
valeurs sur la frontière elles-mêmes, puisque, en général, cette
solution n'a pas de sens pour les points de la frontière. Ceci a
lieu même pour des cas les plus simples, comme par exemple pour
l'intégrale de Poisson, qui est solution pour le cercle du problème
aux limites de l'équation de Laplace. La seule chose qu'on peut
demander est que z (x, y) converge vers la valeur donnée sur la
frontière quand (x, y) se rapproche d'un point de cette frontière;
la même condition doit être posée pour les dérivées, si la valeur
de celles-ci est donnée sur la frontière. Mais même cette convergence

peut s'interpréter dans différents sens.
a) Du point de vue mathématique on envisagera une convergence

à deux dimensions, définie par la condition suivante:
étant donnée la valeur Ç en un point (£, tj) de la frontière, il
doit être possible de déterminer pour chaque £ > 0 un S > 0
tel que l'on ait

I « (x, y) — £ < £
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pour tous les (#, y) du domaine d'intégration pour lesquels on a

(x — Ç)2 + (y — Y])2 < 8

Si l'on suppose 2 continu par rapport à l'ensemble des deux
variables à l'intérieur du domaine et si les valeurs sur la frontière

sont elles-mêmes continues, cette condition peut s'exprimer
ainsi: La fonction, définie à l'intérieur du domaine par z (x, y)
et par les valeurs Ç sur la frontière, doit être continue dans le
domaine composé de « l'intérieur plus la frontière ». Cette condition

se formule d'une manière analogue pour les dérivées s'il
y a lieu. C'est toujours dans ce sens qu'on conçoit le raccord
avec les valeurs sur la frontière dans des travaux purement
mathématiques.

b) Cette conception cependant est de beaucoup trop étroite

pour le point de vue de la physique et ici se présente un cas
intéressant où la physique exige une conception plus générale

que celle qui semble être imposée par le point de vue mathématique.

Ainsi la conception a) exige que les valeurs sur la frontière
soient elles-mêmes continues, par exemple, pour la propagation
de la chaleur dans un fil, la température A (y) placée à l'extrémité
x 0 doit avoir la même valeur pour y 0 que la température
initiale <P (x) pour x 0. Dans les cas pratiques cependant
c'est généralement le contraire qui a lieu; ce serait un hasard

particulier si la flamme avait au commencement de l'expérience
la même température que la place qu'elle chauffe. (Il est même

caractéristique que dans le tout premier problème dont Fourier
donne la solution dans son grand ouvrage les valeurs sur la
frontière ne soient pas continues; il s'agit ici de la distribution
stationnaire de température dans une plaque ayant la forme
d'une demi-bande et les valeurs sont égales à un sur le segment
fini de la frontière, à zéro sur les demi-droites). Nous ne pouvons
donc pas parler d'une continuité à deux dimensions de la fonction
« solution plus valeurs sur la frontière ». Pour la propagation de

la chaleur on sait clairement comment la physique doit
interpréter le raccord avec les valeurs sur la frontière 1 : Si à un

1 L'interpré(af ion que nous donnons aux conditions aux limites est intimément liée
au fait que la chaleur se propage avec une vitesse infinie. Une interprétation très
différente peut s'imposer pour des phénomènes qui se traduisent par des équations
hyperboliques et qui, par conséquent, se propagent avec une vitesse finie: l'observateur qui
établit les conditions aux limites devrait se déplacer avec une vitesse moindre que celle
-du phénomène (Doetsch [8], p. 70).
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moment donné on avançait de l'intérieur vers l'extérieur du fil,
on devrait y trouver la température placée sur la frontière; et si

en partant d'un temps y > 0 l'on reconstituait dans le temps la

température d'une place intérieure déterminée, l'on devrait y
trouver la température initiale donnée. Dans le plan des (x, y)
cela signifie que l'on exige le raccord continu avec les valeurs sur
la frontière seulement pour des chemins qui aboutissent
perpendiculairement à la frontière (raccord à une dimension) ; cette
condition s'exprime d'une manière analogue pour les dérivées
s'il y a lieu 1. Si les frontières ne sont pas rectilignes on exigera,
conformément à la nature du problème, que ce chemin soit
normal à la frontière, parallèle aux axes ou une autre condition
pareille. Dans ce sens les discontinuités comme celles qui viennent
d'être signalées gardent une signification précise: les sommets
(0,0) et (Z, 0) de la demi-bande ne peuvent pas être atteints si

l'on se dirige de l'intérieur normalement à la frontière.
Nous appellerons particulier l'énoncé du problème tel qu'il

était décrit dans a), général l'énoncé 2 sous la forme donnée
dans b). Les deux cas ont leur sens et leur justification et se

présentent à juste titre comme deux classes différentes de la
théorie des problèmes aux limites.

2. — Toute méthode de résolution d'un problème aux limites
doit faire certaines hypothèses sur la nature des solutions ainsi
que sur les valeurs sur la frontière, sans quoi il serait impossible
d'appliquer la méthode et d'attribuer un sens à la solution
trouvée. Ainsi la solution (1,23) donnée sous forme d'intégrale
exige tout au moins l'intégrabilité des valeurs sur la frontière.
En plus, on ne peut démontrer le raccord même à une dimension
avec les valeurs sur la frontière que pour des points pour lesquels
on a des hypothèses supplémentaires, telles que continuité ou
identité de la valeur de la fonction avec certaines valeurs
moyennes. (C'est ici qu'intervient la théorie des intégrales
singulières). Il n'y a pas de recherches pour les équations para-

1 Voir l'article de Hilb et Szasz, Allgemeine Reihenentwicklungen. Enzyklopädie, II,3, fascicule 8, § 6, p. 1245, où l'on trouve une indication d'une définition semblable
des conditions aux limites avec la note suivante: « G-erade diese der Natur des Problems
angepasste Fragestellung ist bisher in der Literatur verhältnismässig wenig behandelt ».2 En allemand: «Spezielle» und «allgemeine» Problemstellung.

L'Enseignement mathém., 35me année, 1936. 4
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bohques concernant l'existence des solutions dans le cas d'une
non-intégrabilité des valeurs sur la frontière ni sur l'interprétation

possible des conditions aux limites dans ce cas. Les
démonstrations de l'unicité nécessitent surtout une série d'hypothèses
sur les solutions et sur certaines dérivées, hypothèses comme
l'intégrabilité à une ou deux dimensions, continuité, etc. Ce sont
toutes des hypothèses étrangères à la nature du problème qui,
par conséquent, doivent être chaque fois nettement explicitées 1.

3. — L'on voit alors ceci: Pour que le problème soit clairement
posé il est indispensable d'une part de préciser quelles conditions
on impose à la solution et aux valeurs sur la frontière, de fixer
d'autre part le sens dans lequel les conditions aux limites doivent
être interprétées.

Il est à regretter qu'une partie même de la littérature moderne,

pour ne plus parler de la plus ancienne, reste extrêmement

vague sous ce rapport. Ceci entraîne d'une part que les théorèmes
et démonstrations sont faux eux-mêmes, d'autre part que des

théorèmes, justes sous certaines restrictions, sont employés dans
des cas où ces restrictions ne sont pas respectées. Ce sont surtout
les démonstrations d'unicité qui montrent la gravité décisive du

sens dans lequel on envisage le problème aux limites.

III. — La question d'unicité ou de multiplicité
DES SOLUTIONS.

1. — Dans les ouvrages parus avant 1925 on ne voit nulle part
surgir un doute sur l'unicité de la solution des équations
paraboliques 2, on y trouve, au contraire, une série de démonstrations
du fait que la solution, si elle existe, est bien unique; ainsi

1 Dans le cas de l'énoncé particulier du problème on a l'habitude d'appeler régulières
bz bz b2Z

les solutions de l'équation (1,1) qui sont, ainsi que leurs dérivées — —-, — continues
bx by doc2

dans le domaine plus la frontière.
2 Seul M. Ë. Picard indiquait à l'occasion (Sur le développement de l'Analyse

mathématique et ses rapports avec quelques autres sciences, Paris, 1905), sans d'ailleurs insister,
que si l'on envisageait la propagation de la chaleur dans un conducteur illimité l'on
devait, pour démontrer l'unicité, admettre des hypothèses sur l'allure à l'infini de la
fonction et de ses dérivées. Mais c'est plutôt le fait qu'un cas limite exige des considérations

particulières, qui est souligné ici.
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Holmgren (Öfversikt af K. Vet. Akad. Förhandlingar, 1901,

pp. 91-103) le démontra pour l'énoncé particulier du problème
de Cauchy dans le cas non analytique. Mais nous ne voulons pas
insister ici sur le problème de Cauchy.

2. — Pour un problème aux limites — et nous en reparlerons
dans VI — les valeurs de z sont données sur un contour ouvert ©,

composé de deux courbes ©j et ©2 à gauche et à droite, dont les

points extrêmes inférieurs Ax, A2 ou supérieurs Bx, B2 se trouvent
à égale hauteur, et d'un segment de caractéristique qui relie
les points extrêmes inférieurs ou
supérieurs. Dans les cas considérés dans la
suite & se trouve en bas. Le problème
consiste à déterminer z dans les points X1J *£-

« entre ©x et ©2 », c'est-à-dire dans les

points intérieurs au domaine délimité
par A1A2B2B1A1 et dans les points de A
B2B2 lui-même. Soit 33 l'ensemble de Fig. î.
ces points.

L'on connaît trois types de démonstration de l'unicité que je
ne citerai pas dans l'ordre historique, mais dans l'ordre de leur
simplicité. (J'omets ici le type le plus primitif de démonstration
qui part de la représentation effective de la solution par ses

valeurs sur la frontière, représentation sous forme d'une
intégrale; j'en parlerai à l'occasion dans VI, 3).

I. Démonstration1 de Gevrey ([1], n° 18). — Elle s'applique dans
certains cas à l'équation parabolique linéaire générale

0^2 ö Z ö Z
—2 + a(x,y)—+ b(x, y)~+ c(x, y)z f(x, y) (3, 21)

Nous envisageons d'abord l'équation homogène

D2u Du Du
-—X + ß — + b -— + eu 0 (3, 22)
ö xz ö x ö y \ i j

Supposons que u satisfait à l'équation dans 33 et soient u continue

dans 33 + ©, ^ et ~continuesdans 33; pour ~ il suffira de
ôa? Dy 1 r ö x

1 La démonstration de Picone [1] qui se sert aussi de la méthode de Gevrey, est du
même type.
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supposer l'existence dans 33. Considérons les deux cas particuliers
suivants :

a) Soient dans 33 :

b [x y) <L 0 c (x y) < 0

Alors u ne peut pas prendre de maximum positif (> 0) dans 33.

(Cela exprime en un point (x0, yd) de B1B2 que les inégalités
u(xos Vo) > 0 et u(x0l yQ) > u(x: y) ne peuvent pas être
satisfaites pour les points voisins avec y < y0). Si c'était le cas en un
point P de 33, la considération des sections y — const, et
x — const, nous montrerait qu'on aurait nécessairement en P

et, si P ne se trouve pas sur BXB2:

si P se trouve sur B1B2:

et, par conséquent, dans tous les cas:

En plus, nous avons en P
eu < 0

L'équation (3,22) ne pourrait alors pas être satisfaite.
Cependant, en raison de sa continuité, u doit avoir un maximum

absolu dans le domaine fermé 33 + Ë. Par conséquent, ce

maximum sera < 0 s'il est atteint dans 33, ou bien il sera
atteint sur 6.

Un raisonnement analogue nous montre que u ne peut pas
avoir de minimum négatif < 0) dans 33, et que, par conséquent,
ce minimum sera > 0 s'il est atteint dans 33, ou bien qu'il sera
atteint sur Ê.

Supposons maintenant que l'équation non homogène (3, 21) ait
deux solutions différentes z2, qui prennent la même valeur sur
la frontière Ê et ceci dans le sens particulier que « la fonction
plus la valeur sur la frontière » est continue dans 33 + ©, que
leurs premières dérivées sont continues dans 33, tandis que de

5"x^ on ne suPPose (Iue l'existence dans 33. La différence

ö u
— o
is y

^ > 0
ï>y -
à U ^b— < 0
isy -
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h zx — z2 satisfait alors à l'équation homogène (3, 22) et aux
'] conditions posées plus haut, elle a en plus sur la frontière la
i valeur zéro, de façon que le maximum absolu ne peut être que

-î > 0. Mais alors il découle du résultat énoncé plus haut que ce
>1 maximum est égal à zéro. La même chose peut être prouvée pour

| le minimum absolu. Par conséquent nous avons u 0, c'est-à-
j dire z1 z2.

i b) Soient dans 33:

b [x y) ^ B < 0 0 c (x y) C

; (L'équation de la chaleur appartient à ce type). Par la substitu-
I tion
I z (x, y) eKy^(x, y) (K — const.)

| l'équation (3, 21) se transforme en une équation en Ç, qui ne se

: distingue de la première que par le fait que le coefficient de Ç

; est maintenant égal à c + Kè. D'après les hypothèses sur b et c,

l'on peut choisir K assez grand pour que cette fonction soit
négative dans 33, de façon que la déduction de a) est applicable

; à Ç. Mais si, les valeurs sur la frontière étant données, il n'y a

qu'une seule solution Ç, il n'existe de même qu'une seule solution
| z de l'équation primitive avec les valeurs correspondantes sur la
frontière.

i 2. Démonstration de Poincaré ([1], pp. 27-30) pour l'équation
de la chaleur (1,22). (Cette démonstration est peut-être plus

; ancienne, on la trouve dans beaucoup de traités sur les équations
j aux dérivées partielles de la physique). Poincaré envisage l'équa-
tion pour la demi-bande (voir p. 45), mais on peut aussi considérer

i une frontière plus générale, comme sur p. 51, si l'on suppose que
I les courbes et Ë2 sont représentables par deux fonctions uni-
j voques et dérivables

:
: % ~ Ta. [y) : x y2 (y)

j Supposons que l'équation non homogène (1, 22) ait deux solu-
1 tions différentes pour des valeurs données sur la frontière,
j Alors l'équation homogène (1,21) a une solution u{x,y) mur
j identiquement nulle, prenant sur la frontière les valeurs zéro.

i
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Je reproduis d'abord la démonstration usuelle et en m'abstenant
de remarques.

Envisageons l'intégrale
72 (y)

J (y)
2 f u2 [x y) dx (a)

ri (y)

étendue sur un segment de caractéristique qui fait partie de 33.

Alors nous avons

,r 72 (y)

w fu?ydx + ltt2(Y2(2/)'
7i (y)

72 (y)

f u — dx (b)J by '

7i (y)

En vertu de l'équation différentielle (1, 21) on a

di n(f utüdx - u~
:*(V)

— - — *T (— (c)Jubx* \x J \dx) J \bx)
a{y) ri (y) 7i (y)

dy
7i (y)

et par conséquent

IM°- «

Avec y0 ordonnée de Ax et de A2, on a u(x, y0) 0 et de ce fait

j (2/0) 0 ; (e)

donc il découle de (d) et (c):

J(2/)g03 (/)

tandis que, par définition, on a J (y) > 0. Donc on doit avoir
J (y) ~ 0, de façon que w, si elle est continue, est identiquement
nulle.

Cette démonstration se sert en réalité d'un si grand nombre
d'hypothèses qu'il est difficile de les énumérer toutes. L'intégrale
(a) existe certainement si u se raccorde d'une façon continue — au
moins dans la direction des x — avec les valeurs sur la frontière,
puisque à l'intérieur u est en tous cas continue dans la direction

des x en vertu de l'existence de Cependant (b) exige que J
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soit derivable et encore que — puisse être obtenue par la règle

connue. (c) présuppose que, si (#, y) se déplace horizontalement

vers la frontière, non seulement u mais aussi u^ tende vers zéro
7 Ö X

(par exemple que ^ reste bornée sur ce chemin; Gevrey a

montré ([2], chap. III) que ceci n'est, en général, pas le cas). Pour
autoriser le passage de (d) et (e) à (/), J devrait être continue

pour y0 ou, en d'autres termes, l'on devrait à la place de J (y0)

envisager la limite vers laquelle J tend pour y y0. Or, le
fait que u2 tende vers zéro si l'on s'approche d'un point
quelconque de S, n'entraîne nullement que aussi fu2dx tende alors

vers zéro. Ceci signifierait que u converge vers zéro « en moyenne »

et cela nécessiterait des hypothèses, par exemple que u converge
vers zéro uniformément en x pour y —y0 ou bien, d'après
Arzelà, que u reste bornée dans le voisinage de Nous verrons
plus tard, à quel point ces hypothèses sont indispensables pour
la validité de la démonstration.

3. Démonstration de Volterra ([1], p. 64) pour l'équation de la
chaleur, plus développée chez E. E. Levi ([3], p. 190). Cette
démonstration se base sur la transformation connue de Green
d'une intégrale de surface en intégrale prise le long d'un contour,
transformation dont on se sert beaucoup dans d'autres domaines
des équations aux dérivées partielles. Les conditions sous
lesquelles la démonstration est juste ne sont point indiquées par
Volterra. Levi indique soit-disant toutes les hypothèses
employées, mais il en néglige une et cela, comme nous verrons,
précisément la plus décisive. Son théorème s'énonce ainsi: Soit G

un arc de courbe dont les points
extrêmes A et B se trouvent à la
même hauteur; supposons cet arc
placé entièrement au-dessous de AB
et tel que les parallèles aux axes
aient au plus deux points communs
avec l'arc. Soit 33 l'ensemble de

points intérieurs à G + AB et du
segment AB lui-même et suppo- Fig. 2.
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sons que la fonction u satisfait aux conditions suivantes :

a) u et ~ sont continues dans 93 + 6 L
0 X

1 '

ô) est dans 93 + © linéairement intégrable par rapport
Ö u

t est dans 93 + © linéairement intégrable par rap-

ö x'

à x,

port à y,
c) u satisfait dans 93 à l'équation (1, 21),
d) u a la valeur zéro sur Ê.

Alors on a u 0 dans 93.

Les transformations dont la démonstration se sert s'écrivent
ainsi (voir fig. 2) ; de plus b) entraîne que

fI uv^dxdy J dyf fdy
ô2 u Ö u

1 V~Ö X

n /ô u\2
' J \ôx,

dx

- ff^x)dxdy
B

en vertu de a) et d)\

s

ff u~~dxdy f dx f ^~dy ~ j* dx { u2(B) — u2(y) }
1

&
*

y Ç U2 (S) dx y y U2 dx

en vertu de d), et par conséquent

ffu(S~^)dxdy=-f
B B AB

Le premier membre s'annulant en vertu de c), les deux

intégrales du second membre doivent être nulles elles aussi,

donc 0 en vertu de sa continuité et par conséquent

u const. 0.

i Remarquons que l'existence de — sur la frontière est ici admise.
ôx
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L'on constate immédiatement que la continuité à deux dimensions

de u et ^ n'est point utilisée pour l'évaluation de l'intégrale;

il suffit ici que le raccord de u avec les valeurs sur la frontière

soit continu dans la direction des x et des y et que ^ reste bornée

si l'on s'approche de la frontière dans la direction des x. Par

contre l'on admet Vhypothèse essentielle qui n'est pas exprimée,

que ou, ce qui revient au même, sont dans 33 intégrables à

deux dimensions. Si u n'était supposée continue qu'à une dimension

dans la direction des x et des ?/, ce qui est possible dans cette

démonstration, l'on devrait même exiger que u et ~ soient de

carré intégrable à deux dimensions.

3. — Je ne veux pas m'arrêter ici à tirer des démonstrations
précédentes tout ce qui pourrait servir à établir un théorème
aussi général que possible1; je veux plutôt résumer ici mes

remarques sur les trois types de démonstration:
La première démonstration est entièrement adaptée à l'énoncé

«particulier)) du problème; la seconde et la troisième peuvent
être employées aussi pour l'énoncé « général », mais nécessitent
alors toute une série d'hypothèses fondamentales. Le soupçon
s'impose alors que la solution du problème « général » ri1 est pas
unique si les hypothèses ne sont pas très étroites. Et, en effet,
il en est ainsi Pour le montrer il suffit que pour une simple
équation, comme l'équation homogène de la chaleur (1, 21) et

pour un simple domaine comme la demi-bande ou un quart du
plan qui est une demi-bande dégénérée, nous donnions l'exemple
d'une fonction-solution qui tende vers zéro si l'on s'approche de
la frontière normalement, sans être cependant identiquement
nulle. J'appellerai de telles fonctions « solutions singulières ».

1. Dans le quart du plan x > 0, y > 0 la fonction

__3_ __x2

ty(x,y)= —X7=ry 2 e 4y (3,311)
2 y/ 7T

1 J'en reparlerai à une autre occasion.
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a cette propriété. Elle remplace dans le quart du plan la fonction
de Green G (x, y) de (1, 24). Cette solution possède même une
signification physique: elle représente la distribution de température

qu'on obtient si l'on apporte en un temps extrêmement
court une quantité finie de chaleur à l'extrémité x — 0 du fil
(explosion de chaleur). Mais ce n'est pas seulement cette solution
qui possède la propriété demandée, toutes ses dérivées partielles
par rapport à y

(3j312)
ôy bx2 by2 bx4"

l'ont aussi (Doetsch [3], p. 304). De ces fonctions l'on peut à

nouveau déduire une infinité de solutions singulières: si l'on
pose, par exemple,

U(X, y) y-yà pour
0 pour 0 < y g yQ

u tend encore vers zéro si l'on s'approche normalement des

frontières du quart du plan et l'équation différentielle est satisfaite

dans tout l'intérieur et aussi sur la droite y — y0.

2. Dans la demi-bande 0 <x <1, ?/ > 0 la fonction
4- oo

G(x,y)2 «K* + 2nl,y)(3,321)
n=—oo

connue de (1,24), ainsi que ses dérivées partielles par rapport à y

öG _ bH} ö*G _
by bx2 ' by* öa;4 '

1 ' 1

possèdent la propriété analogue (Doetsch [3], p. 299), comme
d'ailleurs aussi toutes les fonctions formées à partir de ces
solutions d'après le schéma suivant

S G(x,y — y0) pour y > y0 > 0

u(x,y)mmi (3,323)
0 pour 0 < y S y0

(Doetsch [4], p. 612). Toutes ces solutions peuvent être
interprétées comme distributions de température, créées par des

explosions de chaleur (Doetsch [3], p. 301). — De même

G(l — x, y) (3,324)
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et les fonctions qui en peuvent être déduites de la manière

indiquée plus haut sont des solutions singulières.

3. Les mêmes relations se présentent aussi pour des problèmes

aux limites d'un autre genre, par exemple pour ceux où intervient

la valeur de sur la frontière : la fonction
ÖX

oc2

X (x y) /—' g kV (3,331)
Vtzy

satisfait dans le quart du plan à l'équation (1, 21) et tend vers
zéro si l'on s'approche normalement de la frontière inférieure,

tandis que — tend vers zéro si l'on s'approche de la frontière

à gauche. Les dérivées par rapport à y de cette fonction se

comportent de la même façon.
La fonction

-f- co

3,(f, y)2 x(* + 2», y)(3,332)
n=-oo

dans la demi-bande 0 <# <1, y> 0 tend vers zéro si l'on
s'approche de la frontière inférieure, tandis que sa dérivée par
rapport à x tend vers zéro si l'on s'approche de la frontière à

gauche et à droite.
La fonction

(-l)n«M*+2 (3,333)
' n=-co

dans la demi-bande 0 <# <1, y> 0 tend vers zéro si l'on
s'approche de la frontière inférieure et de la frontière à gauche,
tandis que sa dérivée par rapport à x tend vers zéro si l'on
s'approche de la frontière à droite (Doetsch [9], pp. 333, 338).

4. Il existe encore un type tout à fait différent de solutions
singulières. Supposons donnée la demi-bande de largeur l et
établissons la fonction de Green correspondante à (1,24) d'abord

pour l'intervalle 0<x<^-(n étant un nombre entier positif).
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Soit G (^x1 y, ^ cette fonction de Green et posons

| G (x y pour 0 g x ^ ~

I n(21 l\ 1 V o
1

/—Gl x v,- pour — < x < 2 —
m (a:, y) { \w " "/ n ~ ~ n (3^34)

*\ «
Z ^ ^ o

*
GI a; ;?/ - 1 pour 2 — S a; S 3 —

u représente simplement le prolongement analytique de G dans

la direction des x. Cette fonction ainsi que ses dérivées V~,1 öx 7 öv
d2 u l
—o sont continues sur les droites £ v — et satisfait même surö ar n
ces droites à l'équation (1, 21). Elle tend vers zéro quand on se

rapproche d'une frontière quelconque de la demi-bande. Pour
n 2 elle est simplement une combinaison linéaire de solutions
singulières précitées, à savoir u(x, y) G(#, y) — G (l — %,y),
ce qui n'est plus le cas pour n > 2.

Je voudrais ici faire la remarque que pour le problème de Cauchy
je ne connais pas d'exemple réfutant l'unicité dans le cas de

l'énoncé « général ».

4. — Il est très intéressant d'examiner ici de quelle façon les

démonstrations d'unicité tombent en défaut en face de ces

exemples, disons de la fonction G. La première démonstration
(de Gevrey) n'entre pas en ligne de compte puisque, dans la
demi-bande fermée, G (x,y) n'est pas continue et même pas
bornée : dans le voisinage du sommet x 0, y 0 cette fonction
se comporte comme (x, y) et peut, par conséquent, y prendre
des valeurs positives arbitrairement petites et arbitrairement
grandes.

L'intégrale J (y) employée dans la seconde démonstration (de
Poincaré) prend dans le cas u G(x, y) et l 1 la valeur

00

J (y) 7T2y nie'WTiv
n 1
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11 est vrai que cette expression est dérivable pour y > 0 et que

la dérivée est constamment négative, mais pour y —0 elle ne

tend point vers zéro mais vers oo (Doetsch [3], p. 300).

L'exemple (3,323) nous montre qu'il ne suffit point d'admettre

que J —^ 0 pour y —^ 0, de sorte par exemple que u(x, y) tende

uniformément vers zéro en x pour y—*~ 0. Dans cet exemple cette

condition est évidemment satisfaite, tandis que J n'est pas
dérivable pour y ?/0, étant de la forme

/ 00

\ 7T2 V tt2éT2n2~2(?/_?/o) pour y > y0
J(y)= n= 1

0 pour 0 y g y0

de façon que la règle exprimée dans (è), p. 54, n'est pas applicable
non plus h

La troisième démonstration (de Levi) semble être applicable à

G (x, y) puisque la condition a), comme nous l'avons indiqué plus
haut, n'intervient pas en toute sa rigueur dans la démonstration
et n'y est employée que dans une mesure qui est satisfaite pour G.

Mais G ne satisfait pas à la condition négligée par Levi, celle qui

exige que ~ soit intégrable à deux dimensions dans le domaine

Il semble être une ironie du destin que Levi lui-même ait

démontré dans le même mémoire ([3], pf 229) que n'est pas

intégrable, ce qui entraîne immédiatement la non intégrabilité
bG

de —.by

5. — Le procédé par lequel j'ai trouvé ces solutions singulières
vaut peut-être la peine d'être mentionné, parce qu'il donne la
possibilité de les trouver toutes. Il fut déduit à l'occasion de

l'étude d'une nouvellè^ méthode dintégration d'équations aux
dérivées partielles dans une demi-bande, méthode bien adaptée
précisément à l'énoncé «général» (Doetsch [1, 2, 3, 4, 8, 9]).

i Pour cette même raison la/démonstration de Thum, qui opère avec des intégrales
de Lebesgue et des fonctions de carré intégrable, tombe en défaut (v. Lösung von
Randwertaufgaben der Wärmelehre und Potentialtheorie durch Reihenentwicklungen
und Integraldarstellungen. Crellesches Journal, i6tf'(1932), pp. 65-90, § 1).
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Elle emploie la transformation de Laplace

00

f(s) f é-*F [y)dy2{F}
0

et sa propriété fondamentale

S{F'} 5S{F} F(0) (3, 51)

où F (0) représente la valeur limite de F pour y —>- + 0. Si
l'on applique cette transformation par rapport à la variable 1 y

aux «fonctions objet» a(x, y) qui
pourraient être solutions de l'équation

différentielle, on leur fait
correspondre certaines «fonctionsrésultat

» v (x1 s) :

8 { u (x y) } ç(x, s)

et l'équation aux dérivées partielles
(1, 21) se transforme suivant (3, 51)
en une équation différentielle
ordinaire en e:

S-S" + ®(s) » 0 (3,52)

dans laquelle la condition initiale
®(#) est introduite et où s joue le
rôle d'un paramètre. Ce sont les deux

caractères essentiels de la méthode 2. Les fonctions sur la frontière

A (y) et B (y) se transforment en les deux valeurs de e

sur la frontière

p(0, s) a (s) A} e(l, s) b (s) 2{b}

1 Qui parcourt dans notre problème justement l'intervalle infini 0 <y < w.
2 Cette méthode s'applique évidemment à toutes les équations linéaires dont les

coefficients de la partie homogène ne dépendent que de x et non pas de y. Elle donne
entre autres une justification rigoureuse de ce qu'on appelle calcul symbolique de
Heaviside (Doetsch [10]). On peut de même employer une autre méthode qui transforme
les équations par rapport à la variable x et qui est adaptée à un intervalle fini. Alors
les coefficients peuvent dépendre de y (Doetsch [12]).

A propos du calcul de Heaviside voir L'Ens. mathématique, XXXIII, 1934, p. 118.

Fig. 3.



LESÉQUATIONS DU TYPE PARABOLIQUE 63

Si nous prenons en particulier

<D (x) EE 0 B (y) EE 0

et par conséquent aussi b (s) 0, alors la solution de (3,52) est

la suivante :

ç (x s) — a {s) g(x 5) avec g(x, s) — — (3, 53)
©in l y 5

La solution de l'équation initiale aux dérivées partielles sera
trouvée si l'on peut déterminer inversement la fonction objet de

cette fonction résultat. On sait que A (y) correspond à a (s),
G (x,y) à g(x,s) et qu'au produit de deux fonctions résultat
f1(s) et f2(s) correspond ce que nous appelons la composition
(Faltung)

y

Fx * F2 J Fx (7)) F2 (y — iq) dri
0

des fonctions objet:

S{FX * F2} S{Fx}.S{F2}

A (3,53) correspond alors la fonction objet

u{x y) A (y) * G(x y) (3, 54)

C'est la solution connue (1,23) pour <D B 0.

Maintenant intervient le raisonnement suivant (Doetsch [3],
p. 298; [8], p. 75). La méthode repose évidemment sur deux
hypothèses essentielles :

1. Il est supposé que

a (s) S{ A} et b(s) SIB}

sont les valeurs sur la frontière de v :

lim i{ u\ S {lim u\ lim&{ u 2 (lim u (3,55)
0 x-> 0 x-¥ l x-+l

c'est-à-dire que les valeurs sur la frontière des fonctions
transformées sont les transformées des valeurs sur la frontière (ou, en
d'autres termes, que la transformation fonctionnelle est conti-



64 G. DOETSCH

nue). Si ce ri*était pas le cas pour un u, l'on aurait une nouvelle
fonction sur la frontière ~ä(s) 9^ S {A } dans le domaine résultat
et, par conséquent, une autre solution v(x, s) a(s)g(x, s).
Cette dernière donne lieu à une autre solution u(x, y) dans le
domaine objet. Mais étant donné que, plus haut, nous avons déjà
obtenu une solution correspondante à la condition A (y) sur la
frontière, ceci n'est possible que s'il existe plusieurs solutions
pour une fonction sur la frontière. Si maintenant à a (s)
correspondait la fonction objet A (y), il en résulterait, par l'application
de la règle de composition:

u (x y) A (y) * G (x y)

Mais ce serait une solution avec la fonction A sur la frontière
et certainement pas avec A. Il ne reste que la possibilité que
a (s) ne corresponde à aucune fonction objet. Si nous choisissons
maintenant a (s) de façon qu'aucune fonction objet ne corresponde
à a (s), mais qu'il y ait une correspondante à â(s)g(x, s), alors

nous obtenons une solution de l'équation aux dérivées partielles
qui ne satisfait pas aux relations (3,55), qui par conséquent
diffère de la solution déduite d'après (3,54) de la valeur sur la
frontière.

Si l'on choisit a (s) 1, nous sommes sûrs de n'avoir aucune
fonction objet correspondant à cette fonction, tandis que
a (s) g(x, s) g(x, s) possède évidemment G(x, y) comme
fonction objet. Cette fonction a, pour x ->- 0, la valeur A.(y) 0

sur la frontière, valeur pour laquelle la formule (3,54) donnerait
seulement la solution u 0, tandis que sa fonction résultat
g (x, s) prendra pour x —0 la valeur un.

_ önG
Si l'on choisit a (s) sn, on obtient u —-, donc la solution

öy

singulière (3,322). Pour a (s) e~y°s on trouve la solution
(3,323). Cette dernière est d'ailleurs une superposition des

solutions (3,322):
y0)n ïnG(x, y)

0 ïyn

2. La seconde hypothèse faite dans notre méthode est que la
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transformation de Laplace soit permutable avec la dérivation par
rapport à x:

L'exemple (3,34) nous montre pour n — 3 qu'il existe effectivement

des solutions où cette hypothèse n'est pas satisfaite, qui
sont par conséquent des solutions singulières. Ici n'est

2
même pas continue pour x j Z, d'autant moins dérivable.

6. — Je voudrais encore montrer sur un exemple que même
la formule classique (1, 23) de la solution entraîne des contradictions

évidentes si l'on conserve l'unicité. Pour simplifier, considérons

le cas dégénéré du quart du plan x > x0, y > 0 et donnons-
nous la valeur <&(#) 0 sur la frontière inférieure, la valeur A (y)
sur la frontière à gauche. La solution classique de l'équation
(1, 21) s'écrit alors

u(x, y) A (y) * f {x — x0 y) (3,61)

où désigne la fonction (3,311). Envisageons maintenant la
fonction u y) elle-même qui satisfait à l'équation (1, 21)
dans tout le demi-plan y > 0 et prend sur la frontière inférieure
les valeurs zéro. Soit x0 — oc (oc> 0). Sur la frontière x x0
la solution ^ prend la valeur —a, y) — — y)- La
formule (3, 61) donne alors

— $(oc, y) » <\)(x + oc y)

D'après un théorème d'addition de Cesàro (Sur un problème de

propagation de la chaleur. Acad. Royale de Belgique, Bull. d. I
classe des Se., Bruxelles, 1902, pp. 387-407), pour lequel il est
d'ailleurs essentiel que a > 0, x -f- a > 0, cette dernière expression

est égale à

— + 2a y)

et pas du tout à ^(x, y). D'ailleurs, la température restant
zéro sur la frontière y 0 et négative sur la frontière x — oc,

la solution — ^{x + 2oc, y) semble au premier abord avoir plus
de sens pour la physique, car alors la température est constam-

L'Enseignement mathém., 35me année, 1936. 5
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ment négative, tandis que pour ^(x, y) la température passe

pour x 0 des valeurs négatives aux valeurs positives. Mais
ceci s'explique du fait que les deux solutions correspondent à des

conditions aux limites différentes pour x—>- oo. L'influence des

conditions aux limites à Vinfini et la question dans quelle mesure
celles-ci peuvent être données n'a pas été jusqu'à maintenant
étudiée dans la littérature.

IV. — Les principes de Huyghens et d'Euler.

1. — La non-unicité oblige à prendre des précautions surtout
dans l'application aux solutions d'équations paraboliques du
principe de Huyghens et de celui d'Euler. Le principe de

Huyghens (Hadamard [1]) détermine la solution une fois à partir
de la frontière primitive, puis à partir d'une station intermédiaire.

L'exemple le plus simple serait le suivant: Soit un fîl,
de température initiale nulle, qui s'étend d'un côté à l'infini;
appliquons à la frontière x 0 la température un, alors,- d'après
(3, 61) nous obtenons pour x > 0 ]a température

1 * (x, y)

Si l'on prend comme frontière le point intermédiaire x0 (0 <x0 <x)f
on y a la température 1 * ^ (x0, y), donc dans x

1 * (xQ y) * ^ (x — x0 y)

Dans le cas de l'unicité on en peut conclure

1 * <|> (x y) 1 * (x0, y) * (x — y)

d'où, par dérivation par rapport à y,

^ (x y) {x0 y) * (x — > y) (0 < x0< x)

Ceci n'est autre que le théorème d'addition de Cesàro, mentionné
à la page 65. Mais la conclusion n'est pas légitime, si nous ne

possédons pas de théorème d'unicité, rigoureusement applicable
dans ce cas.

Si dans la fonction de Green G de (1, 24) nous mettons en
évidence la largeur l de l'intervalle en écrivant G(x, y\ Z),
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alors le principe de Huyghens appliqué à la propagation de la

chaleur dans un fil fini, donne lieu à la relation

G (x y ; l) G (x0 y ; l) * G (x — rr0 y ; Z — x0) (0 < x0 < x < l)

qui, explicitement écrite, représente une relation assez compliquée

entre des fonctions B3 (Doetsch [11]).
Si l'on applique le principe de Huyghens dans la direction des y

au lieu de celle des x, on obtient pour la fonction T(^, i-; y) de

(1, 25) le théorème transcendant d'addition (Doetsch [1], p. 51):

2. — Le principe (PEuler (Doetsch [9]) détermine une solution
dans le même domaine de base au moyen de deux espèces de
conditions sur la frontière, par exemple une fois par les valeurs
sur la frontière de la fonction elle-même, puis par celles d'une
de ses dérivées. On obtient ainsi par identification une relation
en général transcendante. Envisageons par exemple (Doetsch [9],
p. 340) la distribution de la température dans un fil de longueur
un, distribution qui satisfait aux conditions suivantes sur la
frontière

lim u esa 0 lim u 2y 53(0 y) + 1 lim — — o
y-+ 0 x-* 0 x-f 1 ö x

Elle sera donnée par

l'on peut déterminer u aussi par les conditions suivantes sur la
frontière

f r (aca l;yj) T(l,x% ; j/2) dï, ; + î/2)

y)— [2î/53(0, + l] *

Puisqu'on a pour cette fonction

lim ^ _ 5 (o, y) — i,x-+0d# V '
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La solution de ce problème s'écrit ainsi:

u(x, y) [3-3 (0 y) + 1] * Sj] * ^(f, y)

et l'identification des deux expressions pour a donne la relation

Pour x —0 cette relation se transforme en une équation inté-
grale pour S3(0, y):

53(°. y) * [^3(0. y) +i] — 2 2/^(0. — 1 0

indiquée par F. Bernstein (Die Integralgleichung der elliptischen
Thetanullfunktion. Sitzungsber. d. preuss. Akad. d. Wiss., 1920,

pp. 735-747). Pour d'autres exemples et pour une autre méthode
de gagner de telles relations transcendantes par des transformations

fonctionnelles, voir Doetsch [11].

V. — Le caractère analytique des solutions.

1. — Weierstrass [1] a montré en 1885 que la solution dans
le demi-plan y > 0 de l'équation (1,21) de la chaleur avec les

valeurs O(^) sur la frontière y 0, représente sur chaque
horizontale une fonction entière analytique en x. Plus explicitement :

La solution donnée par la formule classique de Poisson

où x désigne la fonction (3,331), a cette propriété. A cause de

nos expériences sur la multiplicité des solutions nous nous
trouvons obligés de nous servir de cet énoncé plus prudent.
Weierstrass établit la même propriété pour la solution (1,23), si

les températures A (y) et B (y) s'annulent.
Holmgren montra en 1905 ([1] et plus explicitement dans [3])

qu'une solution régulière (voir p. 50) de (1,21) représente sur

* [2v sÄ(o » y) + i] ^ o •

+ OO
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chaque horizontale une fonction analytique de x; d'une manière

plus précise: soit u(x, y) une solution de (1,21), régulière dans

un domaine ® et supposons le

segment x x0, a < y <b
entièrement intérieur à S). Alors, dans

un certain rectangle

\x — x0 \ < d a <^y <?b

u est développable en série de

puissances

» («, y)2 ^jr~ '
•

V=0

Cette série a donc sur chaque
horizontale y — const, un rayon de

convergence égal au moins à d.

2. — Holmgren [1] donna à ce résultat une interprétation
inattendue et très importante. Tout d'abord, comme toutes les

dérivées par rapport à x existent, il découle de ~ que

toutes les dérivées par rapport à y existent aussi et satisfont aux
relations :

dx 2 n

ùnu
— et

iyn

&2n+1u

öa:2n+1
j_ lit
byn

Puisqu'on a

c-,(y) =--
dv U

ö X'
X 3Co

il en résulte : En posant

" |x=x„ 9
tilt
ÛX 9i (y)

X Xq

on trouve

c2n(y) >c2n+l (v) 1?/)
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de façon que la solution a la même forme que pour le problème
de Cauchy dans le cas analytique connu:

M= S^ - ^2n + 2 ~ *o)2n+1 • (s-21)
n 0

v 7

n 0
v 1 / •

D'après les inégalités de Cauchy pour les coefficients on a

| cn|< M
»! dn '

où M est la borne supérieure de dans le rectangle, et par
conséquent

I ?(n) (y)1 ?: m^ I «p^ I £ m (2y+|'! (5,22)

Cela signifie qu'une solution régulière représente sur chaque
segment vertical entièrement intérieur au domaine de régularité,
une fonction 9 (y) dérivable un nombre illimité de fois et dont les

dérivées admettent les majorantes (5,22), avec les valeurs M et d

indépendantes de y. (La même chose a lieu pour ~

3. — Les remarques suivantes se rattachent immédiatement
à ce dernier fait:

1. A côté de l'inégalité (5,22) pour 9(n)(y) on envisagera celle

pour les dérivées d'une fonction analytique f(y) :

l/<n)(2/)l £ • (5,31)
P

Mais une fonction pour laquelle (5,22) est valable, n'est pas
nécessairement analytique et même pas, comme l'on pourrait
croire, quasi-analytique dans le sens de Carleman. Car alors ses

valeurs sur un petit intervalle devraient définir d'une manière

univoque la répartition de ses valeurs partout. Or la solution

(3,61) nous montre qu'en général ce n'est pas le cas pour 9.
C'est que, si nous remplaçons A (y) pour y > y0 par une autre

fonction, u conserve bien sa valeur pour 0 <y <y0, mais ne la

conserve pas pour y > y0.
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2. Les deux inégalités (5,22) et (5,31) conduisent à envisager

d'une manière plus générale (Holmgren [3]) des fonctions f(z),
dérivables une infinité de fois dans un intervalle et satisfaisant

dans cet intervalle à l'inégalité

\fn)(g)lÛUT^n±i)t
P

qui est équivalente à

| /(n> (^) | g M

avec a > 1. Gevrey ([1], chap. III, et [2]) appelle ces fonctions

fonctions !q de la classe ol. A l'exception de la classe a= 1, qui
donne les fonctions analytiques, elles ne sont pas même quasi-
analytiques, comme nous le montre l'exemple

2 1

f(z) f ®(?i)e dri avec ß - -
0

(Holmgren [3], p. 5).

3. Gevrey [2] a étendu la notion de classe pour des fonctions
à un nombre arbitraire de variables. Après que E. E. Levi ([3], § 9)

eut démontré pour l'équation non homogène de la chaleur que z

restait analytique en x au voisinage d'un point où f(x, y) était
analytique en x, Gevrey [2] montra pour l'équation linéaire la
plus générale et d'autres équations très générales que, en gros,
les propriétés de classe de l'équation se transmettaient aussi aux
solutions. Ce serait trop long de vouloir reproduire ici ces résultats

d'une très grande portée.

VI. — L'existence de la solution.

Un théorème d'unicité énonce seulement qu'il y a au plus une
solution. C'est un théorème d'existence qui doit décider si

en vérité il y en a une.

Le problème de Cauchy.

Dans le cas analytique l'existence de la solution est toujours
assurée, mais c'était un des premiers résultats des travaux
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célèbres de Holmgren que le problème de Cauchy avec des
données non analytiques n'a pas nécessairement une solution et
qu'une condition nécessaire et suffisante de résolubilité peut être
écrite. Le résultat pour l'équation homogène de la chaleur
s'énonce ainsi (Holmgren [1]) :

Si les valeurs initiales

lim u(x, y) 9(y) lim ^ 9l[y)
X-*Xq X-ÏXOQX

sont données sur le segment x x0, oc < ?/ < ô, 9 possédant
une dérivée du premier ordre continue, alors la condition nécessaire

et suffisante pour qu'il existe une solution régulière est la
suivante :

+ Ld,
Vtt £ vy — y\

est une fonction <g de la classe 2.

On peut donner une autre forme très intuitive à cette condition
assez surprenante. Le second terme de cette somme n'est autre

j_
que la dérivée D^ 9 de Riemann-Liouville (on dérive 9 une fois

et on effectue une intégration d'ordre une demie). Tandis que
l'équation différentielle elle-même peut s'écrire sous la forme

(Dxm + Dy u) (DXm — Dy 0 '

la condition de Holmgren s'énonce ainsi:
_i_

Dxu + u doit, pour x x0l être une fonction ip de la
classe 2.

Holmgren ([3], p. 8) a généralisé ce résultat pour le cas où u

et ~ seraient données sur une courbe et non pas sur un segment

de droite et Gevrey ([2], chap. IV) l'a étendu à l'équation non
homogène (1, 22) et a montré comment on pouvait traiter le

problème pour l'équation linéaire la plus générale et des équations

plus générales encore.
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Le problème aux limites.

1. — Les équations paraboliques occupent une place
intermédiaire entre les équations elliptiques et hyperboliques.
Gomme pour les équations elliptiques il suffit de nous donner
sur la frontière seulement les valeurs de la fonction ou seulement
celles d'une de ses dérivées ou bien seulement les valeurs de la
fonction sur certaines parties de la frontière et seulement celles
de la dérivée sur d'autres. Mais la valeur en un point ne dépend,
comme pour les équations hyperboliques, que des valeurs sur
la frontière située entre les deux caractéristiques correspondantes.

Vu que ces dernières sont ici horizontales et coïncident, ce
sont seulement les points de la frontière qui se trouvent en
dessous ou bien en dessus des caractéristiques qui interviennent. Pour

les équations linéaires en ^ c'est le signe de ^ qui le décide.

Si nous envisageons des domaines dans lesquels ce signe est

négatif, il s'agit de frontières courbes ©, ouvertes vers le haut.
D'après E. E. Levi ([3], § 2) on distingue trois types:

Z

<Â

Fig. 5.

Premier type : Ê est composée de deux courbes, représentables
sous la forme

@i : x-Ti(y) : x y2(y) (a ^ y ^ b)

qui se rencontrent en bas:

ïi («) T2 (a) On a Tl (y) < Ï2 (y)

sauf pour y — a.

Deuxième type: ©j et Ê2 ne se rencontrent pas en bas, mais y
sont reliées par un segment Ä de caractéristique.
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Troisième type: La courbe Ê2 est rejetée à l'infini et 6 ne se

compose que de et d'un segment infini de caractéristique.
Dans la suite nous supposerons a — 0. — Nous ne parlerons

pas ici des courbes frontières du troisième type pour lesquelles
certaines choses sont particulièrement simples, d'autres non
encore expliquées (voir la remarque à la fin de III). Levi insiste
sur les domaines du premier type (comme limite de domaines du
deuxième type) et il les traite séparément, pour la raison seulement

qu'à son avis certaines intégrales dont on se sert pour la
démonstration d'existence n'ont pas de sens pour ces domaines.
Je crois que cette opinion n'est pas juste et que la distinction est

accessoire, au moins dans les cas considérés par Levi où les valeurs
sur la frontière G sont continues, où par conséquent les valeurs
dans les points inférieurs de et fè2 coïncident.

En ce qui concerne le caractère des courbes et Ê2, on peut
dire que les fonctions yx et y2 (excepté au plus en un nombre
fini de points)

sont analytiques chez Holmgren;

satisfont

chez Levi à une condition de Lipschitz d'ordre 1,

chez Gevrey à la même condition d'ordre oc:

Cette dernière condition s'explique par le fait que, essentiellement,

il s'agit toujours de la convergence d'intégrales de la
forme

I y [y) — y (y') I è H I y — y' r avec j < a ^ 1 •

y [t(y) - t(-i)12

du

Sous l'hypothèse de Gevrey on a pour 0 < vj < y

avec — — — a < 1

\yi — t \ 'H <
(y — -rç)3/2 " (y —

avec

et par conséquent la convergence de l'intégrale.
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Dernièrement Petrowsky [1] a appliqué aux équations
paraboliques la méthode de Perron, établie pour les équations
elliptiques (ce qui antérieurement a été déjà fait par Sternberg). Il a

démontré de cette façon l'existence de la solution de (1,21) pour
des courbes encore plus générales et il a aussi montré que cette
classe était la « meilleure » dans ce sens que si on la dépassait, on
pourrait donner des valeurs continues sur la frontière telles
qu'aucune solution ne pourrait exister.

2. — La démonstration d'existence (les valeurs sur la frontière
étant continues) que Holmgren a imaginée et les démonstrations
de Levi et Gevrey qui s'y rattachent, se sont inspirées de la
théorie du potentiel. Le rôle de la solution fondamentale (qui pour

un potentiel de volume est égale à est joué dans la propagation
de la chaleur par la fonction x(x-> y) de (3,331). Elle représente
la distribution de la température pour y > 0, si l'on suppose
comme état initial une source de chaleur concentrée en x — 0.
Au potentiel d'une couche correspondent des intégrales de la
forme

Po(^ » y) — Jx(x — 5 y) $(?) dZ, (prise le long de la caractéristique fà)

Xi

et
y

Pit® > y) fx(®— ï(l) y — l) ®(l) dr\ (prise le long de ou S8).
o

P0 n'est pas définie sur È{y 0), mais a la valeur limite <b(x)
si l'on s'approche d'un point intérieur à'Â. Px est définie et
continue aussi sur la courbe x y (y).— Dans la théorie du poten-

1 1tiel on envisage à côté de — aussi la dérivée de y, dérivée normale

à la couche. A celle-ci correspond ici la fonction >(x, y) — ^
de (3, 311). Elle donne lieu à l'intégrale

y

» y) f — y(*]) » y — *î) dy\ (prise le long de ou <S?),

o
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qui correspond au potentiel de double couche. Cette intégrale ar
comme dans la théorie du potentiel, des valeurs limites si (x, y)
tend vers la courbe x~ y (?/), qui d'ailleurs sont différentes
suivant qu'on s'en approche par la droite ou par la gauche:

lim P2 (x y) ± O (y0) +
y + yo, 3c^ï(yo) ± 0

y0

+ f 41 (y (2/0) y f7]) 2/0 *]) l7)) ^ •

0

Pour y(?/) const, ceci est un résultat classique, pour le cas

général il est donné par E. E. Levi ([2]; [3], p. 211) et Holmgren
([3], p. 6).

Avec cela on gagne le point de départ pour des démonstrations
d'existence. Holmgren [2] se donne les valeurs A (y) et B (y) sur

et Ê2, la valeur zéro sur £ (on peut toujours y arriver par
soustraction d'une intégrale de la forme P0) et prend la solution
de l'équation (1, 21) sous forme d'une somme de deux potentiels
de chaleur de la forme P3, sur et ©2 :

y

u(%> y) f x(* — Yifa) > y — ®i(ï)) dr\ +
b

y

+ f x(x — r2(*n), y — *î) $a(*î) dri •

0

Il en tire, en vertu de leur continuité sur et ©2, les deux
conditions:

y

a (y) f x (y1 iy) - TiW» y ~ dv +
0

y

+ f x (ti (y) — t2 (*n) » y — *i) ^2(1) dy >

0

y

h (y) f x (y2 (y) — riW, y — +
0

y

+ fxitAy) ~ yM > y — 1) $2 fa) ^ •

0
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C'est un système de deux équations intégrales de Volterra de

première espèce pour les densités inconnues et ff>2. Holmgren
le transforme, suivant le procédé de Volterra, en un système
d'équations intégrales de seconde espèce dont la résolubilité
est assurée.

E. E. Levi ([2]; [3], § 5) donna plus tard une démonstration
d'existence basée sur la même idée, qui suit de plus près encore
le procédé indiqué par Neumann pour le potentiel ordinaire. Il
pose u comme différence de deux intégrales P2, donc comme
potentiel de double couche:

y

u{x, y) y^ — Yi (r\) y — yj) T^t]) dt\ —
0

y

— f <\>{x — y2(yj) y — yj) Ta(rj) dy\
0

et obtient, conformément à ce qui a été dit plus haut sur la
valeur limite de P2 sur les courbes ©x, Ê2, les conditions :

y
A (y) XF1 (y) + Ç + (n (2/) - ïi W y ~ *)) xY1(ri) dv\ —

0

y

— f <Mïi (y) — y2(7]) y — 73) t2(yj) dy
0

y

B(y)=^a(y) + f + (t2(2/) — Ti(^), y -
0

y

— f "MYsfe/) — Ta (•>)) — vj) ^(ïj) df\
0

Ces équations intégrales pour XP1 et XY2 sont a priori de seconde
espèce, de façon que leur résolubilité est évidente.

Holmgren [3] appliqua la même méthode aux cas où sur
et ®2 est donnée la valeur de u ou de ~ ou encore une combinaison

linéaire de u et —.dx

3. — Ces résultats ont à nouveau beaucoup à faire avec la
question de 1 unicité. Il semble d'après cela que pour des valeurs
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continues données sur la frontière, la solution pourrait bien être
unique. Cette contradiction réfutant la non-unicité s'explique
par le fait que cette méthode n'est applicable qu'aux solutions
représentables par des potentiels de chaleur. Holmgren et Levi
supposaient cela de chaque solution, mais ce n'est pas le cas pour
nos solutions singulières! Supposons qu'on ait pour une solution
singulière arbitraire S (x, y) :

S (x, y) xF1(y) * + (as, y) — T2(y) * <]>(! — x y)

(dans le cas de la demi-bande de largeur un nous pouvons bien
écrire le point de départ de Levi sous cette forme). Si, y étant
constant, on fait tendre x une fois vers zéro, puis vers un, alors:

0 ^i(y)-^2(y) * +(1, y)

o XF1 (y) * «ni, y)~^2(y)

d'où, en employant le théorème d'addition de Cesàro (voir p. 65):

(y) (2/) * + (2, y) t (y) ^2 (y) * + (2, y) •

Cela n'est possible que pour xi'\ T2 0. Mais avec ces valeurs-

on aurait S 0.

4. — Volterra ([1], p. 66) établit, d'après la méthode de
Riemann de l'équation adjointe, une formule de Green pour la
solution de l'équation non homogène (1, 22), qui à côté des valeurs

sur la frontière de z contient aussi celles de ~ ; il montra aussi
Ô£C 7

ô Z
([1], p. 67) comment on peut éliminer les valeurs de — sur une

frontière rectiligne en employant le principe des images de

Lord Kelvin. E. E. Levi ([2]; [3], § 7) indiqua comment d'après,
cette méthode de Volterra on pouvait représenter la solution
(de l'équation homogène) par ses valeurs sur la frontière, supposée

polygonale, et arriver par un passage à la limite à des
frontières arbitraires.

Gevrey ([1], n° 4) donna, plus explicitement,encore, une
représentation de Green de la solution de l'équation non homogène
(1,22); il le fait en introduisant une fonction de Green

G{x,y\ ?,vj), représentant une certaine solution de l'équation
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adjointe et dont il établit l'existence à l'aide de la méthode de

Holmgren indiquée plus haut, qui utilise les équations
intégrales. Cette représentation est donnée par la formule

z{x,y)- H)dyi +

+ j'Gz(l, 0)dl — ffam, rùàld,(6,4)

Sy désignant la partie du domaine limité par ßj + Ä + ©2 se

trouvant en dessous de la caractéristique d'ordonnée y.
(L'intégrale double représente la solution de l'équation non homogène

qui s'annule sur la frontière).

5. — Cette représentation (6,4) conduisit Gevrey ([1], n° 19-24)
à une démonstration d'existence pour la solution de l'équation
linéaire générale (3, 21). Car si l'on remplace (en supposant

b — 1) la fonction / par — a(x,y) ^ — c(x, y) z + /(#, y),

alors (6, 4) donne :

z(x y) Ç(a, y) + J J G • + cz^d^dt\ (6, 51)

où Ç représente la solution de (1, 22) avec les mêmes valeurs sur
la frontière. Avec cela on établit pour 2 une équation intégro-
difïérentielle qui est résoluble, si certaines hypothèses sur la
frontière, les coefficients et les valeurs aux limites sont satisfaites.

L'équation parabolique générale (1, 1) et surtout le type plus
particulier

Ö2* ÖZ / b z\
f(x>y'z'rx)(6'a2)

peuvent alors être traités par la méthode qu'on emploie aussi

pour des équations différentielles ordinaires, c'est-à-dire en les
rendant « comparables » à l'équation linéaire en supposant
satisfaites des conditions de Lipschitz (Gevrey [1], n° 28-34).

Récemment, une autre méthode a été employée par Siddiqi [1]
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dans le cas de la demi-bande et d'une solution s'annulant aux
extrémités x — 0 et x — n. En posant

00

z (x> y)— 2 v(y)sinnx
71=1

il réduit l'équation (6, 52) à un système infini d'équations
intégrales, qui est résolu par des approximations successives.

VII. — Prolongement analytique.

1. — Soit z (x, y) une fonction satisfaisant dans un domaine ©
à une équation parabolique. S'il existe un domaine ©x contigu
à © le long d'un arc AB, et une fonction !(#, y) satisfaisant dans
© + ©! à la même équation et identique à z dans ©, nous dirons

que z est prolongeable au travers de AB. C'est ainsi que Holmgren
définit cette notion, en supposant d'ailleurs la régularité de z et i.
L'on pourrait aussi définir la possibilité'd'un prolongement de la
manière suivante: Il doit exister une fonction zl(x1 y) satisfaisant

dans ©j à l'équation différentielle qui, ainsi que certaines
de ses dérivées, se raccorde d'une façon continue avec z; l'équation

différentielle doit être satisfaite aussi sur AB.
L'exemple suivant montre l'importance de la manière d'envisager

le prolongement et le raccord continu le long de AB:
La fonction z 0 satisfait dans © : 0 < x < #0, y > 0, à

l'équation ~ 0 et a, ainsi que toutes ses dérivées, la

valeur zéro sur la frontière donnée par x — x0.

La fonction zx (x, y) =ty(x — x0, y + a) avec a > 0 satisfait
dans le domaine adjacent

: x > x0 y > 0

à la même équation différentielle et possède le long de la droite
x x0 la valeur zéro. Mais que font les dérivées Si l'on

complète zx par sa valeur sur la frontière, existe le long de

1 Ö2 Z
x xn (du côté droit) et a la valeur — ,T ; —\ existe0

2 -vA (2/ + «)/2 0X
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également et a la valeur zéro. Puisqu'on a aussi ^ 0 sur

x x0< il en résulte que

1) l'équation différentielle est satisfaite sur x x0,

2) pour le passage de z à z1 le raccord continu des dérivées

intervenant dans l'équation différentielle a lieu.

Par contre la dérivée par rapport à x, qui n'intervient pas
dans l'équation différentielle, n'est pas continue. Si sa continuité
n'est pas expressément exigée, on peut prolonger 2 d'une infinité
de manières (a > 0 est arbitraire), prolongements qui ne donnent
alors évidemment pas de fonctions régulières et de ce fait
analytiques en x.

2. — L'aspect du problème du prolongement est complètement
différent suivant qu'on exige que le prolongement soit fait vers
la droite ou la gauche ou bien vers le bas, c'est -à-dire si l'on veut
traverser une des courbes Ë1? Ë2 ou bien la caractéristique S ;

ceci est en rapport avec le fait que, pour l'équation (1, 21) par
exemple, un u régulier est bien analytique dans la direction
des x, tandis qu'il appartient seulement à la classe 2 dans la
direction des y. Si et Ê2 sont, comme toujours dans la
physique, des droites perpendiculaires x — 0 et x Z, il s'agit une
fois d'une extrapolation de l'état de température plus loin que
les extrémités du fil («räumliche Fortsetzung))), la seconde fois
de la reconstitution d'un état antérieur à l'état initial observé
(« zeitliche Zurückverfolgung »), deux cas d'importance capitale
en physique.

Envisageons d'abord le prolongement au travers de ©x et S2,

par exemple au travers de 6X. Pour cela Holmgren [3, 4] obtint
le beau résultat suivant:

Si 6X est représentable par une fonction analytique x yx(y),
a < y < ô, alors la condition nécessaire et suffisante pour qu'une
solution u(x, y) régulière dans 23 + Ê (voir page 51) de l'équation

(1, 21) puisse être prolongée au travers de ©x vers la gauche,
s'énonce ainsi: Les valeurs que u prend sur chaque arc plus petit:
a < a < y < ß <6, définissent une fonction f(y) qui possède

L'Enseignement mathém., 35me année, 1936. 6
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dans oc < y < ß toutes les dérivées et représente une fonction §
de la classe 2.

La démonstration se base essentiellement sur le théorème
d'unicité du problème de Cauchy. Il est donc nécessaire de

prendre les hypothèses assez étroites pour que l'unicité soit
effectivement assurée.

L'unicité du prolongement lui-même résulte de l'analyticité
de u dans la direction des x.

Gevrey ([1], nos 57, 58) a étendu cela à l'équation linéaire
générale.

Pour le cas physique où le domaine primitif est formé par une
demi-bande 0 < x < Z, y > 0 l'on peut donner au problème du

prolongement un autre aspect (Doetsch [1], p. 48). Exigeons de

nos solutions au moins que l'unicité soit hors de doute et que la
solution du problème aux limites soit représentée par la formule
classique (1, 23), Pour simplifier nous supposerons que les valeurs
s'annulent sur les frontières x l et y — 0; nous pouvons
toujours arriver à cela par soustraction des termes relatifs à ces
frontières de la formule (1, 23), termes qui, d'ailleurs, sont pro-
longeables au travers de la frontière x 0. Si l'on peut maintenant

prolonger u vers la gauche jusqu'à une droite x — oc incl.
et cela de façon à ce que les valeurs initiales restent nulles sur le

prolongement de la frontière inférieure, alors on peut considérer
la droite x — a comme frontière à gauche. Alors la température

pour x > 0 ou bien, puisque ça suffit, pour x — 0 doit
être représentable au moyen de la température sur la nouvelle
frontière. Si l'on change la notation des abscisses cela peut
s'exprimer ainsi: La formule classique

U {%o, y) a (y) * G (xQ, y)

est, si les valeurs zéro sont données à droite et en bas, solution
du problème qui consiste à évaluer, à partir de la température
sur la frontière x 0 à gauche, la température en chaque point x0

placé plus à droite. Posons maintenant le problème inverse:
Quelle température A (y) doit être placée à la frontière x 0,

pour qu'on trouve en x0 précisément la température u(x0,y)?
Cela revient évidemment à la résolution d'une équation intégrale
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de première espèce de Volterra, mais qui ne se laisse pas
transformer de la façon habituelle par dérivation en une équation
de seconde espèce, puisque toutes les dérivées de G (x0,y)
s'annulent pour y 0. On peut cependant ramener cette équation

intégrale à une autre de noyau §(xQ,y) plus simple
(Doetsch [5]), qui correspond d'ailleurs au cas du fil indéfini, et

énoncer pour cette dernière ce qui suit (Doetsch [6]):
Pour qu'elle possède une solution il est nécessaire que toutes

les dérivées par rapport à y de u(x0l y) existent pour y > 0 et

s'annulent, comme d'ailleurs u(x0,y) elle-même, pour y 0.

Si la série suivante, procédant suivant des quotients différentiels
d'ordre fractionnaire

00 xn —

2 AD2 u (*» •

n= 0

converge pour y > 0 et est intégrable terme à terme dans chaque
intervalle fini, alors elle représente la solution A (y) de l'équation
intégrale.

Tandis que Holmgren ne démontre que l'existence du
prolongement, lequel peut rester indéterminé jusqu'où ce prolongement
peut être effectué, nous donnons ici une expression explicite
pour la solution, à condition que l'étendue du prolongement
soit déterminé a priori. Mais c'est précisément cela qui est donné

pour des problèmes physiques: si par exemple l'extrémité
x 0 est « inaccessible » et que l'on veuille déterminer sa

température à partir de celle qui a été constatée en un point
« accessible » x0.

3. — Envisageons maintenant le prolongement au travers de $
Supposons ici tout de suite que et ©2 sont deux droites
verticales gx et g2. Pour ce cas Gevrey ([1], n° 59) déjà a remarqué
que le prolongement n'est pas univoque si l'on ne connaît pas
les valeurs de u sur les prolongements vers le bas de et g2. Pour
la possibilité d'un prolongement il trouve comme condition
nécessaire et suffisante ([1], n° 60) que les valeurs de u sur
Sï étant située dans un plan complexe des x, doivent définir
une fonction analytique dans le carré construit sur R comme
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diagonale. Nous pouvons cependant donner un résultat plus
complet, qui en plus n'exige pas l'introduction du domaine
complexe (Doetsch [4]). Supposons tout de suite que u s'annule
sur les droites g1 et g2, à quoi on peut toujours arriver par une
soustraction de solutions appropriées. Si l'unicité de u et la
possibilité de lui appliquer la formule (1, 23) sont assurées et si a

peut être reconstituée dans le temps jusqu'au temps négatif
— ?/0, alors l'ancienne température initiale 0(#) pour y 0

doit se laisser déduire de la température u(x, — y0) au moment
— 2/0, par la formule

Si <S>(x) est donnée, c'est une équation intégrale de Fredholm de

première espèce pour u(x,—y0) et nous en tirons le résultat
suivant :

La température ne peut être reconstituée dans un passé antérieur

à l'état initial <D (x) que si ® (x) est une fonction analytique,
entière et périodique de période 21 avec <D (— x) — — O (x) et
O (0) O (l) 0. Si on la développe en série de Fourier
(convergente absolument et uniformément) de la forme

alors la température peut être reconstituée sans singularités pour
des y — y0 négatifs aussi loin que

reste convergente. Si Y est la coupure entre les yQ de la

convergence et de la divergence alors on obtient l'état de

température pour 0 < y0 < Y par la série de Fourier convergente
absolument et uniformément en x:

®(x) =/ T(x,l,y0)tt(Ç, -2/0MS •

0

O0

S («
" i2 ") (7, 31)

(7,,32)
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Si Y est une valeur pour laquelle la série (7, 31) converge encore,

alors la série (7, 32) représente pour y0 Y la valeur u(x, Y)

au moins dans le sens de la convergence en moyenne.

4. — La reconstitution dans le passé de la température dans

un fil infiniment long des deux côtés est d'intérêt particulier et

cela à cause de ses applications pratiques multiples. Appell [1]

s'en est occupé en 1892, mais sans aller très loin. Si l'on ne

considère que des fonctions pour lesquelles on peut employer la

formule de solution de Poisson (5,1), alors le problème est

équivalent à la résolution de l'équation intégrale singulière

+ 0° (x-Q2

Q(g) /— / e
41,0 -y*)dl • (7,4)

2 y izyo

Ce problème revient évidemment à une décomposition spectrale

de la fonction <S>(x) en courbes de Gauss j=^e 4yo (maxi-
2 V 7ty0

mum toujours en Ç, mesure de précision et cela explique

que le même problème se pose souvent dans le calcul des probabilités,

en statistique, en physique, etc. Moi-même, j'étais amené
à cette question par un problème de l'analyse spectrale
(Doetsch [7]) et j'ai obtenu la solution, à partir de la solution

pour un intervalle fini, par un passage à la limite peut-être assez
audacieux. On obtient le même résultat si l'on remarque que
l'équation intégrale (7,4) est du « type décomposition»
(Faltungstypus) et admet par conséquent la transformation de

Laplace ou celle de Fourier (voir Doetsch [13]). Plus tard,
P. Lévy [1] s'est occupé de ce problème surtout du point de vue
de la théorie des probabilités et sans tenir compte, semble-t-il,
des recherches mentionnées plus haut; ses résultats ne sont,
d'ailleurs, pas encore définitifs.

On pourrait encore dire beaucoup de choses sur les solutions
dans un intervalle infini d'un ou de deux côtés et montrer quelques

problèmes importants qui ne sont pas encore résolus. Je
dois ici m'en abstenir et réserver ce sujet pour une autre occasion.
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