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ses Leçons sur quelques types simples d'équations aux dérivées

partielles [33d], assigner les données que l'on peut choisir le long
de contours plus compliqués, où chacune des deux coordonnées

peut présenter un nombre arbitraire de maxima ou de minima.

VII

Un cas particulièrement intéressant est celui d'un contour
fermé. Pour ne pas multiplier à l'excès les hypothèses possibles,
bornons-nous au cas d'un contour convexe, ou tout au moins le

long duquel chacune des coordonnées caractéristiques n'admet

qu'un seul maximum et un seul minimum. Avec M. H über [24],
employons le mot angle, en le détournant de son sens habituel,
pour désigner l'un des points qui correspondent à de tels maxima
ou minima. Notre contour sera donc en général un quadrangle
ABCD (fig. 3), mais pourra aussi se réduire à un triangle ABC
(fig. 3bis) ou même à un biangle AB (fig. 3ter). Dans le premier
cas, les résultats généraux montrent qu'une solution de l'équation

est déterminée si on se donne:

les données de Cauchy sur l'un des arcs partiels, BG, par
exemple ;

une seule donnée sur les deux arcs adjacents AB, CD;
rien sur le quatrième arc AD.

Une question se pose alors d'elle-même. Peut-on, le long d'un
tel contour fermé, se poser pour l'équation (11) le problème qui
intervient dans le cas elliptique, à savoir le problème de

Dirichlet
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Comme l'a remarqué M. Sommerfeld [39a], ce point a attiré
l'attention de Du Bois Reymond lui-même dans le travail
fondamental [12] où, comme on sait [10, t. II], il reprend et

généralise la méthode d'intégration de Riemann. Les deux
auteurs dont nous venons de parler considèrent d'ailleurs comme
probable qu'en effet, de telles données de Dirichlet peuvent être

encore choisies dans le cas de l'équation hyperbolique (11).
Or la réponse est toute contraire. Pas plus que le problème de

Cauchy ne convient au type elliptique, le problème de Dirichlet
ne peut se poser pour le cas hyperbolique.

La manière la plus immédiate de le constater est de prendre
pour contour portant les données un rectangle parallèle aux
axes, c'est-à-dire à côtés caractéristiques. Ainsi qu'il est
classique [10, t. II], une inconnue e, solution de l'équation (11), est

déterminée dans tout ce rectangle si l'on donne ses valeurs le

long de deux côtés adjacents: aucune donnée relative aux deux
autres côtés ne peut donc être jointe à celles-là.

Considérons les autres formes possibles du contour. La réponse

peut encore être donnée aisément en ce qui regarde un biangle ou

un triangle. Dans ce dernier cas (fig. 3bis), nous savons que la
connaissance des valeurs de u sur les deux côtés AB, AC suffit à

déterminer cette fonction dans tout le rectangle circonscrit, donc
aussi sur le troisième côté BC.

Le cas du biangle demande un peu plus d'attention. Reprenons,

pour un instant, la figure 2. Les valeurs de u étant données
le long de AB, AC, le calcul de cette fonction en un point P

conduit [20d] à tracer deux lignes brisées PQX Q2..., PRX R2

à côtés caractéristiques (et tous dirigés dans le sens des x ou des y
décroissants, si les arcs donnés AB, AC sont dans l'angle positif
des parallèles aux axes menées par A), inscrites à l'angle formé

par les deux arcs donnés, lignes polygonales qui tendent évidemment

toutes deux vers le point A. La valeur de u en P, cette

fonction étant assujettie à être continue en A, s'exprime par une

somme de termes dont les uns sont proportionnels aux valeurs
données aux sommets des lignes polygonales et les autres sont
des intégrales définies le long des arcs partiels en lesquels ces

sommets décomposent AB ou AC. Tout ceci reste valable lorsque
les extrémités B, C des deux arcs issus de A coïncident, c'est-à-dire
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lorsque la figure devient le biangle AB de la figure 3ter. Mais s'il

en est ainsi, Vexpression ainsi formée est discontinue en B : il est

clair, en effet, qu'à deux points P, P' très voisins l'un de l'autre
et de B correspondent, par le tracé qui vient d'être indiqué, deux

lignes polygonales très différentes entre elles.

On pourrait, de même, former, pour le même problème, une

solution continue en B; mais elle serait alors discontinue en A.
Reste le cas du quadrangle. Nous en avons précédemment [20/]

traité un exemple simple, celui d'une ellipse quelconque, l'équation

aux dérivées partielles étant simplement

02 u
0 (U')

ùx o 2/

Cette équation, en raison de la forme bien connue de son

intégrale générale, possède cette propriété que tout rectangle
ABCD parallèle aux axes donne lieu, pour l'une quelconque u

de ses solutions, à la relation

UA + UC UB + UB (12)

Plus généralement, toute ligne polygonale fermée à côtés

parallèles aux axes donne lieu à une relation de même forme
entre les sommes de valeurs de u prises l'une aux sommets de

rangs pairs, l'autre aux sommets de rangs impairs.
Dès lors, si l'ellipse E a ses axes parallèles aux axes de coordonnées,

en particulier si elle est un cercle, on peut y inscrire une
infinité de rectangles donnant lieu chacun à la relation (12), ce

qui fait apparaître immédiatement l'impossibilité de se donner
les valeurs de u en tous les points d'une telle ellipse. Plus
généralement, si l'ellipse E est telle qu'on peut y inscrire une ligne
polygonale fermée à côtés parallèles aux axes, on peut lui en
inscrire une infinité d'autres, d'où encore une infinité de conditions

de possibilité du problème. Il en sera ainsi si un certain
argument A-est commensurablg avec tt.

Si l'argument h est incommensurable avec tt, les impossibilités
apparaissent sous une autre forme, à savoir par la divergence de
séries trigonométriques susceptibles de représenter la fonction
de x et la fonction de y qui figurent dans l'intégrale générale (ou,
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plus rigoureusement, par le fait que les constantes de Fourier
correspondantes ne sont plus nécessairement bornées).

Certaines de ces considérations ont été notablement généralisées

dans le travail de M. Huber. Ce que nous avons noté dans
le cas du cercle s'étend de soi-même à un « deltoïde » quelconque,
c'est-à-dire à tout quadrangle dans lequel on peut inscrire une
infinité de rectangles parallèles aux axes.

On peut évidemment construire un tel deltoïde si l'on s'en
donne trois côtés (sans fixer les extrémités libres des côtés ex¬

trêmes). La ligne qui fermera le
deltoïde (fig. 4) sera alors le lieu du
quatrième sommet d'un rectangle inscrit
s'appuyant sur les trois côtés donnés.

Pour tout deltoïde, il est clair que les

valeurs de u ne peuvent être choisies

que sur trois côtés seulement, celles qui
sont relatives au quatrième s'en déduisant

par l'égalité rectangulaire (12).
Par contre, les données étant ainsi
choisies, le problème de Dirichlet, qui

devient ainsi possible, devient indéterminé. Ce fait, qui apparaît

aisément sur le cercle [20g], [24], se constate pour un
deltoïde quelconque en remarquant qu'aux
valeurs de u sur trois côtés on peut
adjoindre celles de sa dérivée
transversale sur le côté médian 1.

Soit maintenant un quadrangle ABCD
qui ne soit pas un deltoïde: on peut,
avec M. Huber, transformer le
problème de plusieurs façons, en formant
(fig. 5), par la construction précédente,
un deltoïde BCEF ayant trois côtés

communs avec le quadrangle donné. Les valeurs de u le long
de EF étant connues d'après ce que nous venons de dire, on est

Fig. 4.

Fig. 5.

i On peut encore aisément former une solution de (11') s'annulant sur tout le
périmètre du deltoïde de la figure 4 sans être identiquement nulle, de la manière suivante.
Désignant par A (xl5 yx), B (x2, y2), C (x3, yp, D (x2, p4) les quatre sommets, on choisira
arbitrairement, dans l'intervalle (xl5 x2), le premier terme =(x) de la valeur de u, après
quoi le second terme à (y) sera défini, dans l'intervalle (yv y2), par la condition que
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ramené à un problème de Dirichlet relatif, suivant la disposition
de la figure, à un biangle, à un triangle ou à un quadrangle.
Dans les deux premiers cas, l'impossibilité

du problème (pour des données

arbitraires) est démontrée 1.

Si ADEF est à nouveau un quadrangle,
l'opération pourra être recommencée. Mais

la discussion devient alors difficile en raison

de la multiplicité des cas de figure
possibles et il peut arriver que les

opérations se continuent indéfiniment sans

aboutir 2.

La question n'est donc pas complètement élucidée, en toute
rigueur, pour le cas d'un quadrangle. De plus, tout ce que nous
avons dit concernant ce cas ne vaut que pour l'équation (IL)?
la seule qui donne lieu à une égalité rectangulaire de la forme (12).

VIII

Les principes précédents ont déjà [25a, 37a, 23è, c, 43] reçu
des généralisations étendues relatives aux équations d'ordre
supérieur totalement hyperboliques, c'est-à-dire, pour le cas des
deux variables indépendantes, telles que l'équation aux coefficients

angulaires des caractéristiques ait toutes ses racines réelles

o(x) -f •!>(y) s'annule sur le côté AB; puis les conditions analogues relatives aux côtés
BC, CD détermineront ?(x) dans l'intervalle (x2, x3), puis à(y) dans l'intervalle (y4, yx).
La somme ?(x) + 6(y) ainsi formée, nulle, sur AB, BC, CD, le sera aussi sur DA, en
vertu de l'identité rectangulaire.

1 M. Hub er conclut à la possibilité du problème dans le cas du biangle et dans ceux
qui s'en déduisent par la transformation indiquée dans le texte. Nous avons dit plus
haut la raison qui nous fournit une conclusion contraire.

2 Brenons, par exemple, pour notre quadrangle, un parallélogramme ayant ses côtés
a, b symétriquement inclinés sur les axes (flg. 6). Un tel parallélogramme est un deltoïde
s'il est un losange. Dans le cas contraire, soit a > b, la construction de M. Huber revient
à tracer, autant de fois que possible, à l'intérieur du parallélogramme donné, des
losanges successifs adjacents les uns aux autres, jusqu'cà ce que la bande parallélogramme
restante, s'il y en a une, ait son côté parallèle à a plus petit que celui qui est parallèle
à b. Opérant de même (mais avec interversion des rôles de a et de b) sur cette bande,
et continuant ainsi, il est aisé de voir que cette suite d'opérations est celle même qui
détermine, par l'algorithme d'Euclide, la commune mesure à a et à b. Elle se termine
donc si cette commune mesure existe (d'où des conditions de possibilité du problème)et continue indéfiniment dans le cas contraire.

Dans ce dernier cas, une discontinuité devra, en général, se manifester au sommet au
voisinage duquel les losanges partiels viennent s'accumuler.
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