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LE CAS HYPERBOLIQUE 25

ses Lecons sur quelques types simples déquations aux dérivées
partielles [33d], assigner les données que 1'on peut choisir le long
de contours plus compliqués, ou chacune des deux coordonnees
peut présenter un nombre arbitraire de maxima ou de minima.

VIl

Un cas particuliérement intéressant est celui d’un contour
fermé. Pour ne pas multiplier & exces les hypothéses possibles,
bornons-nous au cas d’un contour convexe, ou tout au moins le
long duquel chacune des coordonnées caractéristiques n’admet

Fig. 3. Fig. 3 bis. Fig. 3 ter.

qu’'un seul maximum et un seul minimum. Avec M. HuBgr [24],
employons le mot angle, en le détournant de son sens habituel,
pour désigner 'un des points qui correspondent a de tels maxima
ou minima. Notre contour sera donc en général un quadrangle
ABCD (fig. 3), mais pourra aussi se réduire & un triangle ABC
(fig. 3bis) ou méme a un biangle AB (fig. 3ter). Dans le premier
cas, les résultats généraux montrent qu’une solution de I’équa-
tion est déterminée si on se donne:

les données de Cauchy sur 'un des arcs partiels, BC, par
exemple; |

une seule donnée sur les deux arcs adjacents AB, CD;

rien sur le quatriéme arc AD.

Une question se pose alors d’elle-méme. Peut-on, le long d’un
tel contour fermé, se poser pour I’équation (11) le probléme qui

intervient dans le cas elliptique, & savoir le probléme de
Dirichlet ?
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Comme I’a remarqué M. Sommerfeld [39¢], ce point a attiré
lattention de Du Bois Reymoxp lui-méme dans le travail
fondamental [12] ou, comme on sait [10, t. II], il reprend et
généralise la méthode d’intégration de Riemann. Les deux
auteurs dont nous venons de parler considerent d’ailleurs comme
probable qu’en effet, de telles données de Dirichlet peuvent étre
encore choisies dans le cas de ’équation hyperbolique (11).

Or la réponse est toute contraire. Pas plus que le probleme de
Cauchy ne convient au type elliptique, le probléme de Dirichlet
ne peut se poser pour le cas hyperbolique.

La maniére la plus immédiate de le constater est de prendre
pour contour portant les données un rectangle parallele aux
axes, c’est-a-dire a cotés caractéristiques. Ainsi qu’il est clas-
sique [10, t. II], une inconnue u, solution de I’équation (11), est
déterminée dans tout ce rectangle si 'on donne ses valeurs le
long de deux cotés adjacents: aucune donnée relative aux deux
autres cotés ne peut donc étre jointe a celles-la.

Considérons les autres formes possibles du contour. La réponse
peut encore étre donnée aisément en ce qui regarde un biangle ou
un triangle. Dans ce dernier cas (fig. 3bis), nous savons que la
connaissance des valeurs de u sur les deux cotés AB, AC suffit &
déterminer cette fonction dans tout le rectangle circonscrit, done
aussl sur le troisieme coté BC.

Le cas du biangle demande un peu plus d’attention. Repre-
nons, pour un instant, la figure 2. Les valeurs de u étant données
le long de AB, AC, le calcul de cette fonction en un point P
conduit [20d] a tracer deux lignes brisées PQ, Q, ..., PR R, ...
a cotés caractéristiques (et tous dirigés dans le sens des x ou des y
décroissants, si les arcs donnés AB, AC sont dans I'angle positif
des paralléles aux axes menées par A), inscrites a ’angle formé
par les deux arcs donnés, lignes polygonales qui tendent évidem-
ment toutes deux vers le point A. La valeur de u en P, ceite
fonction étant assujettie @ étre continue en A, s’exprime par une
somme de termes dont les uns sont proportionnels aux valeurs
données aux sommets des lignes polygonales et les autres sont
des intégrales définies le long des arcs partiels en lesquels ces
sommets décomposent AB ou AC. Tout ceci reste valable lorsque
les extrémités B, C des deux ares issus de A coincident, ¢c’est-a-dire
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Jorsque la figure devient le biangle AB de la figure 3ter. Mais s'il
en est ainsi, expression ainsi formée est discontinue en B: il est
clair, en effet, qu’a deux points P, P’ trés voisins I'un de l'autre
et de B correspondent, par le tracé qui vient d’étre indiqué, deux
lignes polygonales trés différentes entre elles.

On pourrait, de méme, former, pour le méme probléme, une
solution continue en B: mais elle serait alors discontinue en A.

Reste le cas du quadrangle. Nous en avons précédemment [20f]
traité un exemple simple, celui d’une ellipse quelconque, I’équa-
tion aux dérivées partielles étant simplement

2
Tu . (11/)
ox oy

Cette équation, en raison de la forme bien connue de son
intégrale générale, posséde cette propriété que tout rectangle
ABCD paralléle aux axes donne lieu, pour I'une quelconque u
de ses solutions, & la relation

u, + uy, = uy + uy - (12)

Plus généralement, toute ligne polygonale fermée & coOtés
paralléles aux axes donne lieu & une relation de méme forme
entre les sommes de valeurs de u prises 'une aux sommets de
rangs pairs, 'autre aux sommets de rangs impairs.

Des lors, si l’ellipse E a ses axes paralléles aux axes de coordon-
nées, en particulier si elle est un cercle, on peut y inscrire une
infinité de rectangles donnant lieu chacun a la relation (12), ce
qui fait apparaitre immédiatement I'impossibilité de se donner
les valeurs de u en tous les points d’une telle ellipse. Plus géné-
ralement, si I'ellipse E est telle qu’on peut y inscrire une ligne
polygonale fermée & cotés paralleles aux axes, on peut lui en
inscrire une infinité d’autres, d’ou encore une infinité de condi-
tions de possibilité du probléme. Il en sera ainsi si un certain
argument /£ -est commensurable avec =.

Si I’argument £ est incommensurable avec =, les impossibilités
apparaissent sous une autre forme, & savoir par la divergence de
séries trigonométriques susceptibles de représenter la fonction
de z et la fonction de y qui figurent dans I'intégrale générale (ou,
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plus rigoureusement, par le fait que les constantes de Fourier
correspondantes ne sont plus nécessairement bornées).

Certaines de ces considérations ont été notablement généra-
lisées dans le travail de M. Huber. Ce que nous avons noté dans
le cas du cercle s’étend de soi-méme & un « deltoide » quelconque,
¢’est-a-dire & tout quadrangle dans lequel on peut inscrire une
infinité de rectangles paralléles aux axes.

On peut évidemment construire un tel deltmde si 'on s’en
donne trois cotés (sans fixer les extrémités libres des cotés ex-
trémes). La ligne qui fermera le del-
toide (fig. 4) sera alors le lieu du qua-
trieme sommet d’un rectangle mscrit
s’appuyant sur les trois cotés donnés.

Pour tout deltoide, il est clair que les
valeurs de u ne peuvent étre choisies
que sur trois cotés seulement, celles qui
sont relatives au quatrieme s’en dédui-
sant par 1’égalité rectangulaire (12).

Fig. 4. Par contre, les données étant ainsi

choisies, le probléme de Dirichlet, qui

devient ainsi possible, devient indéterminé. Ce fait, qui appa-

rait aisément sur le cercle [20g], [24], se constate pour un del-
toide quelconque en remarquant qu’aux

Blx, 4.

Clls“é)\

valeurs de u sur trois cotés on peut B
adjoindre celles de sa dérivée trans-
versale sur le c6té médian 1. E c

Soit maintenant un quadrangle ABCD
qui ne soit pas un deltoide: on peut,
avec M. Huber, transformer le pro- S
bleme de plusieurs facons, en formant
(fig. 5), par la construction précédente,
un deltoide BCEF ayant trois coOtés
communs avec le quadrangle donné. Les valeurs de u le long
de EF étant connues d’aprés ce que nous venons de dire, on est

Fig. 5.

1 On peut encore aisément former une solution de (11’) s’annulant sur tout le péri-
meétre du deltoide de la figure 4 sans étre identiquement nulle, de 1a maniére suivante.
Désignant par A (xq, ¥1), B (x5, ¥5), C (x3, 1), D (x5, yg) les quatre sommets, on choisira
arbitrairement, dans Vintervalle (x,, x,), 1e premier terme <(x) de 1a valeur de u, aprés
quoi le second terme <(y) sera défini, dans I’intervalle (y;, vg), par la condition que
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ramené & un probléme de Dirichlet relatif, suivant la disposition
de la figure, 4 un biangle, & un triangle ou & un quadrangle.
Dans les deux premiers cas, I'impossibi-
lité du probléme (pour des données arbi-
traires) est démontrée 1.

Si ADEF est & nouveau un quadrangle,
’opération pourra étre recommencée. Mais
la discussion devient alors difficile en rai-
son de la multiplicité des cas de figure
possibles et il peut arriver que les opé-
rations se continuent indéfiniment sans Fig. 6.
aboutir 2.

La question n’est donc pas complétement élucidée, en toute
rigueur, pour le cas d’un quadrangle. De plus, tout ce que nous
avons dit concernant ce cas ne vaut que pour I’équation (11'),
la seule qui donne lieu a une égalité rectangulaire de la forme (12).

VIII

Les principes précédents ont déja [25a, 87a, 235, ¢, 43] recu
des généralisations étendues relatives aux équations d’ordre
supérieur lotalement hyperboliques, c¢’est-a-dire, pour le cas des
deux variables indépendantes, telles que I’équation aux coeffi-
cients angulaires des caractéristiques ait toutes ses racines réelles

o (x) + ¥ (y) s’annule sur le c6té AB; puis les conditions analogues relatives aux cotés
BC, CD détermineront ¢ (x) dans I'intervalle (x,, x3), puis ¢ (y) dans I’intervalle (y4, Y1)-
La somme »(x) -+ 4 (y) ainsi formée, nulle, sur AB, BC, CD, le sera aussi sur DA, en
vertu de I’identité rectangulaire.

1 M. Huber conclut & 1a possibilité du probléme dans le cas du biangle et dans ceux
qui s’en déduisent par la transformation indiquée dans le texte. Nous avons dit plus
haut la raison qui nous fournit une conclusion contraire.

2 Rrenons, par exemple, pour notre quadrangle, un parallélogramme ayant ses cotés
a, b symetriquement inclinés sur les axes (fig. 6). Un tel parallélogramme est un deltoide
s’il est un losange. Dans le cas contraire, soit a > b, la construction de M. Huber revient
a tracer, autant de fois que possible, & Vintérieur du parallélogramme donné, des
losanges successifs adjacents les uns aux autres, jusqu’a ce que la bande parall¢logramme
restante, s’il y en a une, ait son coété paralléle & a plus petit que celui qui est paralléle
a b. Opérant de méme (mais avec interversion des roles de a et de b) sur cette bande,
et continuant ainsi, il est aisé de voir que cette suite d’opérations est celle méme qui
determine, par ’algorithme d’Euclide, 1a commune mesure 4 a et 4 b. Elle se termine
donc si cette commune mesure existe (d’olt des conditions de possibilité du probléeme)
et continue indéfiniment dans le cas contraire.

Dans ce dernier cas, une discontinuité devra, en général, se manifester au sommet au
voisinage ducquel les losanges partiels viennent s’accumuler.
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