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IV

Doit-on conclure de ce qui précède que le théorème de Cauchy-

Kowalewski cesse d'être valable dès qu'on ne suppose pas les

données analytiques
La réponse n'est pas aussi simple ni aussi absolue. Au lieu de

l'équation des potentiels, considérons l'équation des ondes

sphériques

^ — a*Au 0, (9)
Ö£2

qui gouverne les petites oscillations d'un milieu homogène

remplissant tout l'espace. De telles oscillations seront parfaitement

déterminées si l'on se donne les conditions initiales

u(x y z 0) g(x y z) ~ (x y z 0) h (x y z) (10)

ce qui revient à se donner, à cet instant initial, les déplacements
(infiniment petits) et les vitesses des différentes molécules. On

voit qu'on est précisément en présence des données de Cauchy.
Or le problème ainsi posé admet une solution bien déterminée,
donnée par la formule classique de Poisson. Etant donnée
l'interprétation du problème, on ne saurait d'ailleurs concevoir qu'il
en soit autrement et que l'existence de la solution soit
subordonnée à l'analyticité des données initiales.

On ne saurait non plus concevoir, dans ce nouveau problème,
l'intervention d'expressions analogues à celle que donne notre
formule (8'), et qui se présenteraient forcément si les valeurs de

la solution étaient profondément liées aux coefficients des

développements de g et de A en séries entières. S'il en était ainsi,
le phénomène de la propagation du son, qui est régi par l'équation

(9), nous paraîtrait régi par le pur hasard et nous n'y pourrions

reconnaître aucune loi, puisqu'il serait totalement bouleversé

lorsque les données subiraient des altérations imperceptibles
à nos moyens d'observation.
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Ainsi, entre les équations (5) et (9), la différence apparaît
totale sous le point de vue qui nous occupe 1.

La signification physique de chacune de ces deux équations
nous fait comprendre cette différence, puisqu'un problème
physique relatif à un milieu régi par l'équation des ondes sphé-
riques se traduit analytiquement par un problème de Gauchy
tandis qu'aucun problème de Cauchy relatif à l'équation (5)
n'est posé par l'application concrète. Celle-ci nous offre donc, et

va continuer à nous offrir un guide sûr pour discerner la vérité au
milieu de discordances aussi paradoxales, au premier abord, que
celles qui précèdent.

Il nous importe cependant de savoir distinguer les unes des

autres, par un critère d'ordre purement mathématique, les équations

aux dérivées partielles qui se comportent de manière si

différente, pour ne pas dire si opposée. C'est à quoi l'on arrive à

l'aide de la forme caractéristique (3). L'examen de cette forme
quadratique conduit à distinguer différents types d'équations
aux dérivées partielles linéaires du second ordre.

I. La forme quadratique (3) peut être définie, c'est-à-dire
comprendre autant de carrés indépendants qu'il y a de variables
indépendantes dans l'équation, ces carrés étant tous du même

i II est même impossible de poser d'une manière analogue le problème de Cauchy
actuel et le problème de Dirichlet pour l'équation (5). Dans ce dernier, nous avons vu
que la fonction g, représentant les valeurs données de la fonction cherchée le long de S,
pouvait, par exemple, avoir des dérivées premières discontinues, et que de telles singularités

s'effacent, se noient en quelque sorte, dès qu'on s'écarte si peu que ce soit de S en
entrant dans le domaine a. Rien de pareil ne se produit pour l'équation des ondes
sphériques: si une solution u de cette équation était continue ainsi que ses dérivées
premières pour t tes 4- *, elle le serait aussi pour t 0. C'est ce que l'on peut voir
en écrivant la formule de Poisson à partir de t « 4- £• Des discontinuités, pour les
équations du type hyperbolique, ne s'effacent pas comme pour l'équation des potentiels :

elles se propagent par ondes.
On ne peut pas, d'autre part, introduire des discontinuités du premier ordre, c'est-à-

dire portant sur les dérivées premières, se produisant sur des hypersurfaces situées
dans la région t ^ 0. Si de pareilles discontinuités étaient admises, les problèmes
perdraient tout sens. Soit, en effet, S une telle hypersurface, à orientation d'espace
(voir plus loin) : des deux côtés de cette surface, on pourrait se poser le problème de
Cauchy, les valeurs de u étant les mêmes de part et d'autre, mais les valeurs de la
dérivée normale étant choisies arbitrairement de chaque côté. Il n'y a évidemment
aucun intérêt à considérer comme une solution unique de l'équation l'ensemble des
deux fonctions différentes ainsi formées dans les deux régions.

Les phénomènes qui obéissent à des équations telles que (9) peuvent donner lieu à des
« ondes de choc » ou discontinuités du premier ordre. Mais les lois qui régissent cette
sorte de discontinuités ne peuvent plus se dédjuire des seules propriétés mathématiques
de l'équation: un appel direct aux principes dynamiques ou physiques qui régissent le
phénomène est nécessaire pour les établir.
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signe. L'équation aux dérivées partielles est alors dite du type
elliptique.

IL Si le discriminant de la forme caractéristique est nul x,

c'est-à-dire si celle-ci ne comprend pas son nombre normal de

carrés indépendants, l'équation est du type parabolique.

III. Enfin, si, le discriminant étant différent de zéro, la forme

caractéristique est indéfinie, autrement dit si elle est susceptible
de valeurs tant positives que négatives, les carrés dont elle se

compose n'étant pas tous de même signe, on a affaire au type
hyperbolique.

Toutefois, eu égard à ce dernier, une distinction est nécessaire.

Toutes les équations aux dérivées partielles hyperboliques
introduites par des applications dynamiques ou physiques
appartiennent au type hyperbolique que nous appellerons normal,
dans lequel la forme caractéristique a tous ses carrés de même

signe à l'exception d'un seul. Dans ce cas, le cône caractéristique
(ainsi qu'il arrive pour un cône du second degré dans l'espace
ordinaire) se compose de deux nappes distinctes et divise l'espace
en trois régions, deux intérieures et une extérieure, au lieu que,
pour une équation hyperbolique non normale [9], le cône
caractéristique ne se compose que d'une seule nappe et divise l'espace
en deux régions seulement, aucune des deux ne méritant d'ailleurs
plus que l'autre d'être dénommée intérieure 2.

Pour une équation hyperbolique normale, il y a, en chaque point,
indépendamment des plans caractéristiques (c'est-à-dire tangents
au cône caractéristique) deux sortes d'orientation de plans: ceux
que, en s'inspirant de la Théorie de la Relativité, on peut appeler
« orientés dans l'espace », c'est-à-dire qui sont extérieurs au cône
caractéristique (un plan parallèle infiniment voisin coupant ce
cône suivant une ellipse ou une surface fermée du genre ellip-

1 En fait, on n'a jamais eu à considérer d'autres équations paraboliques que celles
pour lesquelles la forme caractéristique est semi-définie, et qui correspondent aux équations

du type hyperbolique que nous appelons normal.
2 Certaines équations du type hyperbolique non normal ont été étudiées par

M. Coulon [9] et la plus simple d'entre elles, savoir
^ U -EAU par M hamel 1211

5x0 y ö z ö t ' '
cette dernière à propos d'un problème de Géométrie. Pour aucune d'entre elles, on neconnaît de problème correctement posé, au sens adopté dans ce qui précède.

L'Enseignement mathém., 35 me année, 1936. 2
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soïde) et ceux qui sont « orientés dans le temps », c'est-à-dire qui
coupent le cône caractéristique suivant deux génératrices. Une
surface ou hypersurface S non caractéristique peut donc être
elle-même, suivant la situation de son plan tangent en un
quelconque de ses points, orientée dans l'espace ou orientée dans
le temps.

Toutes les équations linéaires du type elliptique donnent lieu
aux mêmes conclusions que l'équation des potentiels. Tout au
moins, c'est ce que l'on peut démontrer par les mêmes méthodes
lorsque l'équation est à coefficients analytiques, en formant
d'abord une « solution élémentaire » analytique et holomorphe
tant que les deux points dont elle dépend ne s'approchent pas
l'un de l'autre. Il en sera de même pour la fonction de Green

correspondant à un domaine quelconque, par exemple à celui
qui est formé par la surface S et une portion de surface auxiliaire
S, de sorte que le raisonnement présenté plus haut s'appliquera
de nouveau. Il permettra encore de montrer que, la surface S

qui porte les données étant analytique et la première donnée g
étant choisie, la condition que le problème de Cauchy soit
possible détermine la seconde donnée h à une fonction analytique

près, c'est-à-dire qu'on devra avoir

h h-y -j- H *

hx pouvant être calculé à l'aide de g et H étant nécessairement

analytique. En particulier, si g est identiquement nul (ou
analytique), h devra lui-même être analytique pour que le problème
soit possible.

Il en est tout autrement pour les équations hyperboliques ou,
plus exactement, du type hyperbolique normal. Pour toute
équation de cette nature, une surface S à orientation d'espace
en chacun de ses points permet de se poser un problème de

Cauchy dans lequel les données ne sont assujetties à aucune
condition d'analyticité.

Une circonstance curieuse se présente toutefois lorsque le

nombre n + 1 des variables indépendantes augmente. Les

formules de résolution du problème de Cauchy introduisent en
Tb I \ • • •

effet les dérivées partielles jusqu'à l'ordre —-— (si n est impair)
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n |
pour g et jusqu'à l'ordre —^— pour h. Ceci, en toute rigueur, ne

suffît pas pour démontrer que les fonctions g, h doivent être

dérivables jusqu'à l'ordre en question pour que le problème soit

possible; mais on peut démontrer en toute rigueur une conclusion
très voisine de celle-là: par exemple, pour l'équation, à

n -f 1 2 Wj variables, analogue à celle des ondes sphériques,
la fonction g étant supposée identiquement nulle, si l'on prend
la moyenne des valeurs de h sur une sphère quelconque de

l'espace à n dimensions défini par x 0, il faudra, pour la

possibilité du problème, que cette quantité soit dérivable jusqu'à
l'ordre nx -par rapport au rayon de la sphère. Cette condition de

possibilité assez inattendue établit une sorte de passage entre
une équation de type hyperbolique normal, dont la forme
caractéristique comprend un grand nombre de carrés d'un même signe
contre un seul du signe contraire, et une équation du type
elliptique dont la forme caractéristique a tous ses carrés du même

signe et pour laquelle, l'une des données étant nulle, nous savons

que l'autre doit être analytique.
Mais un autre correctif beaucoup plus important doit être

apporté à notre constatation précédente. Comme nous l'avons
dit, le problème de Cauchy relatif à l'équation (9) et à la multiplicité

t 0 permet de déterminer, en fonction des conditions
initiales, les oscillations d'un milieu homogène remplissant
Vespace entier. Si ce milieu — un gaz, pour fixer les idées — est

au contraire limité par des parois solides — soit, par exemple,
qu'il soit contenu dans un récipient soit, au contraire [13], que
l'espace renferme une sphère solide puisante—, le problème est
autre. A la paroi solide considérée dans l'espace ordinaire correspond,

dans l'espaee-temps, un hypercylindre S2, et nous avons à

déterminer l'inconnue u dans une région Q de l'espace-temps
limitée d'une part par S2, de l'autre par notre portion Sj d'espace
ordinaire considérée pour t 0. Les conditions propres à déterminer

u seront alors:

les données de Cauchy sur la portion d'espace ordinaire Sx;
sur S2, des données analogues à celle de Dirichlet, nous voulons

dire une seule donnée (la valeur de u ou celle de sa dérivée
normale ou une de leurs combinaisons linéaires, etc.) en chaque
point.
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Autrement dit, nous sommes ici en présence d'un problème
mixte 1. 11 en sera ainsi toutes les fois que, parmi les frontières
limitant la région de définition de l'inconnue zi, il y en aura
d'orientées dans le temps, comme c'est le cas pour S2.

Les équations du type elliptique gouvernent les phénomènes
d'équilibre (équilibre électrique, élastique, calorifique, etc.). Les

équations du type hyperbolique normal gouvernent les phénomènes

du mouvement ou, plus généralement, d'état variable avec
intervention d'inertie ou de phénomène équivalent (inertie
électro-magnétique), inertie grâce à laquelle les perturbations
introduites dans le mouvement se propagent en général par ondes,
c'est-à-dire, en langage mathématique, par caractéristiques.

Une seule exception à cet égard : les liquides parfaits. Dans ce

cas, entièrement théorique d'ailleurs, le mouvement obéit à

l'équation des potentiels (5), l'absence de caractéristiques réelles

correspondant au fait que toute perturbation se propage de

manière instantanée dans toute la masse, et non par ondes.

Mais, même dans ce cas du liquide incompressible parfait,
l'influence de l'inertie sur le caractère du phénomène se manifeste

dès qu'il y a une surface libre, surface dont on a à étudier
le mouvement. Un beau et important Mémoire de M. Yolterra [42]
montre (du moins en ce qui concerne les petites oscillations) qu'on
a alors affaire à un problème mixte: les parois mouillées
introduisent des conditions aux limites analogues à celles de Dirichlet
—- d'une manière précise, des conditions de Neumann —, mais,
à la surface libre, on a des conditions initiales (relatives à l'origine
des temps) qui sont du type de Cauchy 2.

Y

Le cas parabolique est celui qui se présente pour l'état variable
de la propagation de la chaleur, laquelle se fait sans inertie, et

1 Cette catégorie de «problèmes mixtes « est complètement différente de celle dont
nous avons vu l'intervention dans le cas elliptique. Il serait utile d'introduire, pour deux
idées aussi nettement distinctes, deux dénominations différentes.

2 L'équation des potentiels s'applique au mouvement considéré dans toute la masse
du liquide. Mais si, comme il est naturel de le faire en l'espèce, on porte son attention
sur ce qui se passe à la surface libre, en prenant pour inconnue par conséquent l'altitude 2

de cette surface en fonction de x, y, t, on est conduit, comme nous l'avons fait voir
précédemment [20e], à une équation intégro-différentielle, que ses propriétés rapprochent
visiblement du type hyperbolique.


	IV

