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LE CAS HYPERBOLIQUE 15

IV

Doit-on conclure de ce qui précéde que le théoréme de Cauchy-
Kowalewski cesse d’étre valable dés qu’on ne suppose pas les
données analytiques ?

La réponse n’est pas aussi simple ni aussi absolue. Au lieu de
I’équation des potentiels, considérons I’équation des ondes
sphériques

2u

W—GZAMZO, (9)

qui gouverne les petites oscillations d’un milieu homogéne
remplissant tout 1’espace. De telles oscillations seront parfaite-
ment déterminées si Pon se donne les conditions initiales

ou

ulz,y,2,0) =gz, y, 2, a(x,y,z, 0) = hix,y, s (10)

ce qui revient & se donner, & cet instant initial, les déplacements
(infiniment petits) et les vitesses des différentes molécules. On
voit qu’on est précisément en présence des données de Cauchy.
Or le probleme ainsi posé admet une solution bien déterminée,
donnée par la formule classique de Poisson. Etant donnée 'inter-
prétation du probleme, on ne saurait d’ailleurs concevoir qu’il
en soit autrement et que l’existence de la solution soit subor-
donnée a ’analyticité des données initiales.

On ne saurait non plus concevoir, dans ce nouveau probléme,
Pintervention d’expressions analogues & celle que donne notre
formule (8), et qui se présenteraient forcément si les valeurs de
la solution étaient profondément liées aux coefficients des
développements de g et de & en séries entiéres. S’il en était ainsi,
le phénomeéne de la propagation du son, qui est régi par I’équa-
tion (9), nous paraitrait régi par le pur hasard et nous n’y pour-
rions reconnaitre aucune loi, puisqu’il serait totalement boule-
versé lorsque les données subiraient des altérations imperceptibles
& nos moyens d’observation.
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Ainsi, entre les équations (5) et (9), la différence apparait
totale sous le point de vue qui nous occupe 1.

La signification physique de chacune de ces deux équations
nous fait comprendre cette différence, puisqu’un probléme
physique relatif & un milieu régi par I’équation des ondes sphé-
riques se traduit analytiquement par un probléme de Cauchy
tandis qu’aucun probléme de Cauchy relatif & I'équation (5)
n’est posé par I’application concréte. Celle-ci nous offre donc, et
va continuer & nous offrir un guide stir pour discerner la vérité au
milieu de discordances aussi paradoxales, au premier abord, que
celles qui précedent.

I1 nous importe cependant de savoir distinguer les unes des
autres, par un critére d’ordre purement mathématique, les équa-
tions aux dérivées partielles qui se comportent de maniére si
différente, pour ne pas dire si opposée. C’est a quoi 'on arrive a
I’aide de la forme caractéristique (3). L’examen de cette forme
quadratique conduit a distinguer différents types d’équations
aux dérivées partielles linéaires du second ordre.

I. La forme quadratique (3) peut étre définie, c’est-a-dire
comprendre autant de carrés indépendants qu’il y a de variables
indépendantes dans I’équation, ces carrés étant tous du meéme

1 T1 est méme impossible de poser d’une maniére analogue le probléme de Cauchy
actuel et le probléme de Dirichlet pour ’équation (). Dans ce dernier, nous avons vu
que la fonction g, représentant les valeurs données de la fonction cherchée le long de S,
pouvait, par exemple, avoir des dérivées premiéres discontinues, et que de telles singula-
rités s’effacent, se noient en quelque sorte, dés qu’on s’ecarte si peu que ce soit de S en
entrant dans le domaine 2. Rien de pareil ne se produit pour I’équation des ondes
sphériques: si une solution u de cette équation était continue ainsi que ses dérivées
premiéres pour t = -+ =, elle le serait aussi pour t = 0. C’est ce que on peut voir
en écrivant la formule de Poisson a partir de t = + . Les discontinuités, pour les
équations du type hyperbolique, ne s’effacent pas comme pour ’équation des potentiels:
elles se propagent par ondes.

On ne peut pas, d’autre part, introduire des discontinuités du premier ordre, c’est-a-
dire portant sur les dérivées premiéres, se produisant sur des hypersurfaces situées
dans la région t> 0. Si de pareilles discontinuités étaient admises, les problémes
perdraient tout sens. Soit, en effet, S une telle hypersurface, & orientation d’espace
(voir plus loin): des deux cotés de cette surface, on pourrait se poser le probléme de
Cauchy, les valeurs de u é¢tant les mémes de part et d’autre, mais les valeurs de la
dérivée normale étant choisies arbitrairement de chaque coté. Il n’y a évidemment
aucun intérét a4 considérer comme une solution unique de I’égquation ’ensemble des
deux fonctions différentes ainsi formées dans les deux régions.

Les phénomeénes qui obéissent a des équations telles que (9) peuvent donner lieu & des
«ondes de choc» ou discontinuités du premier ordre. Mais les lois qui régissent cette
sorte de discontinuités ne peuvent plus se déduire des seules proprié¢tés mathématiques
de Péquation: un appel direct aux principes dynamiques ou physiques qui régissent le
phénomeéne est nécessaire pour les établir.
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signe. L’équation aux dérivées partielles est alors dite du type
elliptique.

1. Si le discriminant de la forme caractéristique est nul?,
¢’est-a-dire si celle-ci ne comprend pas son nombre normal de
carrés indépendants, ’équation est du type paraboligue.

ITI. Enfin, s1, le discriminant étant diftérent de zéro, la forme
caractéristique est indéfinie, autrement dit si elle est susceptible
de valeurs tant positives que négatives, les carrés dont elle se
compose n’étant pas tous de méme signe, on a affaire au type
hyperboligue.

Toutefois, eu égard & ce dernier, une distinction est nécessaire.
Toutes les équations aux dérivées partielles hyperboliques intro-
duites par des applications dynamiques ou physiques appar-
tiennent au type hyperbolique que nous appellerons normal,
dans lequel la forme caractéristique a tous ses carrés de méme
signe & I’exception d’un seul. Dans ce cas, le cone caractéristique
(ainsi qu’il arrive pour un cone du second degré dans ['espace
ordinaire) se compose de deux nappes distinctes et divise ’espace
en trois régions, deux intérieures et une extérieure, au lieu que,
pour une équation hyperbolique non normale [9], le cone carac-
téristique ne se compase que d’une seule nappe et divise I'espace
en deux régions seulement, aucune des deux ne méritant d’ailleurs
plus que l'autre d’étre dénommée intérieure 2. |

Pour une équation hyperbolique normale, il y a, en chaque point,
indépendamment des plans caractéristiques (c¢’est-a-dire tangents
au cone caractéristique) deux sortes d’orientation de plans: ceux
que, en s’inspirant de la Théorie de la Relativité, on peut appeler
«orientés dans I’espace », ¢’est-a-dire qui sont extérieurs au cone
caractéristique (un plan paralléle infiniment voisin coupant ce
cone suivant une ellipse ou une surface fermée du genre ellip-

t En fait, on n’a jamais eu a considérer d’autres équations paraboliques que celles
pour lesquelles la forme caractéristique est semi-définie, et qui correspondent aux equa-
tions du type hyperbolique que nous appelons normal.

2 Certaines équations du type hyperbolique non normal ont été eétudices par

02u 02u
Y0y 5z0% par M. HAMEL [21],

cette flerniére a propos d’un probléme de Géométrie. Pour aucune d’entre elles, on ne
connail de probléme correctement posé, au sens adopté dans ce qui préceéde. ’

M. Couron [9] et la plus simple d’entre elles, savoir

I’Enseignement mathém., 35me année, 1936.
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soide) et ceux qui sont « orientés dans le temps », ¢’est-a-dire qui
coupent le cone caractéristique suivant deux génératrices. Une
surface ou hypersurface S non caractéristique peut donc étre
elle-méme, suivant la situation de son plan tangent en un quel-
conque de ses points, orientée dans l’espace ou orientée dans
le temps.

Toutes les équations linéaires du type elliptique donnent lieu
aux mémes conclusions que I’équation des potentiels. Tout au
moins, c’est ce que 'on peut démontrer par les mémes méthodes
lorsque I'équation est & coefficients analytiques, en formant
d’abord une «solution élémentaire » analytique et holomorphe
tant que les deux points dont elle dépend ne s’approchent pas
I'un de lautre. Il en sera de méme pour la fonction de Green
correspondant & un domaine quelconque, par exemple a celui
qui est formé par la surface S et une portion de surface auxiliaire
2, de sorte que le raisonnement présenté plus haut s’appliquera
de nouveau. Il permettra encore de montrer que, la surface S
qui porte les données étant analytique et la premiére donnée g
étant choisie, la condition que le probleme de Cauchy soit
possible détermine la seconde donnée £ & une fonction analy-
tique pres, c’est-a-dire qu’on devra avoir

ho=1h+H, .

h, pouvant étre calculé a I'aide de g et H étant nécessairement
analytique. En particulier, s1 g est identiquement nul (ou ana-
lytique), A devra lui-méme étre analytique pour que le probleme
soit possible.

IT en est tout autrement pour les équations hyperboliques ou,
plus exactement, du type hyperbolique normal. Pour toute
équation de cette nature, une surface S & orientation d’espace
en chacun de ses points permet de se poser un probléme de
Cauchy dans lequel les données ne sont assujetties a aucune
condition d’analyticité.

Une circonstance curieuse se présente toutefois lorsque le
nombre n 4+ 1 des variables indépendantes augmente. Les

formules de résolution du probléeme de Cauchy introduisent en
n

5 ! (si n est impair)

effet les dérivées partielles jusqu’a I'ordre
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B =1
2
suffit pas pour démontrer que les fonctions g, A doivent étre

dérivables jusqu’a I'ordre en question pour que le probléme soit
possible; mais on peut démontrer en toute rigueur une conclusion
trés voisine de celle-la: par exemple, pour I’équation, &
n -+ 1 = 2 n, variables, analogue a celle des ondes sphériques,
la fonction g étant supposée identiquement nulle, si I'on prend
la. moyenne des valeurs de %~ sur une sphére quelconque de
Pespace a n dimensions défini par x = 0, il faudra, pour la
possibilité du probléme, que cette quantité soit dérivable jusqu’a
’ordre n, -par rapport au rayon de la sphére. Cette condition de
possibilité assez inattendue établit une sorte de passage entre
une équation de type hyperbolique normal, dont la forme carac-
téristique comprend un grand nombre de carrés d’un méme signe
contre un seul du signe contraire, et une équation du type ellip-
tique dont la forme caractéristique a tous ses carrés du méme
signe et pour laquelle, 'une des données étant nulle, nous savons
que autre doit étre analytique.

Mais un autre correctif beaucoup plus important doit étre
apporté a notre constatation précédente. Comme nous ’avons
dit, le probléme de Cauchy relatif a I’équation (9) et a la multi-
plicité ¢ = O permet de déterminer, en fonction des conditions
initiales, les oscillations d’un milieu homogéne remplissant
U'espace entier. Si ce milieu — un gaz, pour fixer les idées — est
au contraire limité par des parois solides — soit, par exemple,
qu’il soit contenu dans un récipient soit, au contraire [13], que
Pespace renferme une sphére solide pulsante—, le probléme est
autre. A la paroi solide considérée dans I’espace ordinaire corres-
pond, dans ’espace-temps, un hypercylindre S,, et nous avons a
déterminer I'inconnue u dans une région Q de I’espace-temps
limitée d’une part par S,, de 'autre par notre portion S, d’espace
ordinaire considérée pour ¢ = 0. Les conditions propres a déter-
miner u seront alors:

pour g et jusqu’a 'ordre pour k. Ceci, en toute rigueur, ne

les données de Cauchy sur la portion d’espace ordinaire S;;

sur Sy, des données analogues a celle de Dirichlet, nous voulons
dire une seule donnée (la valeur de u ou celle de sa dérivée
normale ou une de leurs combinaisons linéaires, etc.) en chaque
point.
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Autrement dit, nous sommes ici en présence d’un probléme
mixte 1. 1l en sera ainsi toutes les fois que, parmi les frontieres
limitant la région de définition de P'inconnue u, il y en aura
d’orientées dans le temps, comme c’est le cas pour S,.

Les équations du type elliptique gouvernent les phénoménes
d’équilibre (équilibre électrique, élastique, calorifique, ete.). Les
équations du type hyperbolique normal gouvernent les phéno-
meénes du mouvement ou, plus généralement, d’état variable avec
intervention d’inertie ou de phénomeéne équivalent (inertie
électro-magnétique), inertie grace a laquelle les perturbations
introduites dans le mouvement se propagent en général par ondes,
c’est-a-dire, en langage mathématique, par caractéristiques.

Une seule exception & cet égard: les liquides parfaits. Dans ce
cas, entierement théorique d’ailleurs, le mouvement obéit a
I’équation des potentiels (5), 'absence de caractéristiques réelles
correspondant au fait que toute perturbation se propage de
maniere instantanée dans toute la masse, et non par ondes.

Mais, méme dans ce cas du liquide incompressible parfait,
I'influence de I'inertie sur le caractére du phénomeéne se mani-
feste des qu’il y a une surface libre, surface dont on a a étudier
le mouvement. Un beau et important Mémoire de M. Volterra [42]
montre (du moins en ce qui concerne les petites oscillations) qu’on
a alors affaire & un probléeme mixte: les parois mouillées intro-
duisent des conditions aux limites analogues a celles de Dirichlet
— d’une manieére précise, des conditions de Neumann —, mais,
a la surface libre, on a des conditions initiales (relatives a I'origine
des temps) qui sont du type de Cauchy 2.

v

Le cas parabolique est celui qui se présente pour I’état variable
de la propagation de la chaleur, laquelle se fait sans inertie, et

1 Cette catégorie de « problémes mixtes » est complétement différente de celle dont
nous avons vu 'intervention dans le cas elliptique. Il serait utile d’introduire, pour deux
idées aussi nettement distinctes, deux dénominations différentes.

2 L’équation des potentiels s’applique au mouvement considére dans toute la masse
du liquide. Mais si, comme il est naturel de le faire en I’espéce, on porte son attention
sur ce (qui se passe a la surface libre, en prenant pour inconnue par conséquent I’altitude 2z
de cette surface en fonction de x, y, t, on est conduit, comme nous ’avons fait voir
précéedemment [20¢e], & une équation intégro-différentielle, que ses propriétés rapprochent
visiblement du type hyperbolique.
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