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362 K. MENGER

un nombre sont garanties si l'ensemble de vecteurs est complet
convexe et extérieurement convexe et jouit des propriétés (Ffe).

Les recherches de MM. Wilson et Blumenthal mentionnées
à la fin du Chapitre II admettent de même une traduction dans
le langage de l'algèbre des vecteurs. En particulier il découle
du théorème de M. Wilson (p. 358), comme l'a remarqué
M. Blumenthal, qu'un ensemble de vecteurs séparable et

complet est isomorphe à un espace vectoriel euclidien ou hilber-
tien si les conditions

F (pj, ç2) 0 pour tout couple c2 de vecteurs (r2)

F (v1 ç2 5
P3) Si 0 pour tout triplet v1, v2, c3 de vecteurs (r3)

sont satisfaites ou, ce qui revient au même, si tout triplet de

vecteurs est isomorphe à un triplet de vecteurs de En, résultat
qui a été obtenu directement par MM. Fréchet, v. Neumann
et Jordan 1.

IV. — La courbure dans la géométrie des distances
et la géométrie différentielle.

Nous avons, dans les chapitres précédents, traité, en nous
plaçant au point de vue de la géométrie des distances, des
problèmes où l'espace et ses sous-ensembles interviennent globalement.

Mais cette géométrie permet aussi l'étude des propriétés
locales des variétés spatiales, et pénètre ainsi dans un domaine
où a triomphé jusqu'alors brillamment et exclusivement la
méthode analytique; cette méthode s'appliquait si bien à cette
étude qu'on a fini par identifier la théorie des propriétés locales
des figures avec la géométrie différentielle : application de

l'analyse, surtout du calcul différentiel, aux modèles arithmétiques

représentant les figures. Et même M. Bouligand qui a

eu le mérite en créant sa Géométrie infinitésimale directe d'introduire

l'analyse moderne, en particulier la théorie des fonctions
de variable réelle, dans l'étude des propriétés géométriques
locales — se borne à l'étude d'espaces où chaque point est (ou

pourrait être) caractérisé par un système de coordonnées.

1 Annals of Mathem., 36, p. 705, p. 719.
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L'idée d'une géométrie différentielle sans coordonnées semble

encore aujourd'hui presque absurde à la plupart des géomètres;

cependant la géométrie des distances a déjà résolu le problème
si important de la courbure d'une façon qui laisse pressentir,
comme nous le disions dans l'introduction, que la méthode

analytique, bien qu'elle ait joué jusqu'alors un rôle prépondérant,

n'est ni la seule possible, ni celle présentant le plus de

généralité, ni peut-être même la plus conforme à la nature
géométrique des problèmes.

Soit D un espace distancié, q, r, s trois de ses points, il
existe trois points q\ r', s' dans le plan euclidien tels que les

triplets q, r, s et q', r', s' sont congruents. Si p désigne le rayon
du cercle circonscrit au triangle q', r', s', — en convenant de

poser p oo si g', r', s' sont en ligne droite — nous appellerons
courbure du triplet q, r, s de l'espace distancié et nous dési-

gnerons par x (q, r, s) l'inverse de ce rayon, c'est-à-dire —. Cette
P

courbure sera nulle quand les trois points seront linéaires (p. 357)
et seulement dans ce cas; et la propriété du segment due à
M. Biedermann (p. 357) peut alors s'énoncer ainsi: Pour qu'un
arc — c'est-à-dire un espace triangulaire homéomorphe à un
segment — soit congruent à un segment, il faut et il suffît que
tout triplet de points lui appartenant ait une courbure nulle.

Cet énoncé ne correspond pas à celui de la géométrie
différentielle concernant les propriétés caractéristiques de la droite,
qui fait intervenir une courbure définie en chaque point. Dans
un espace distancié nous pouvons, cependant, aussi introduire
une courbure locale, et cela de la façon suivante 1

: Nous dirons
que D a la courbure x (p) au point p, si à tout s > 0 donné à

l'avance, il correspond un S > 0 tel que pour tout triplet q, r, s-

de points de D, dont la distance à p est < S, nous ayons
I y- (q, — y (p) | < s.

On peut alors se demander si un arc dont la courbure est
nulle en chaque point est congruent à un segment. Il n'en est
pas nécessairement ainsi: Prenons pour D l'ensemble des points x

i Cette notion de courbure et sa théorie est développée dans mon mémoire: Math -mAnnalen, 103.
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de l'intervalle — 1 < x < 1 et comme distance des points x
et y le nombre

I x — y I si x et y ont le même signe,

1^1 + I V I x2V2 si x et y sont de signes contraires.

D est alors un espace distancié homéomorphe au segment
— 1 x 1 de la droite euclidienne, dont la courbure est
nulle en chaque point. Cependant cet arc n'est pas congruent
à un segment, comme le montre la considération du triplet
— 1, 0, 1 dont les points ont deux à deux la même distance.

J'ai néanmoins démontré par des méthodes purement
métriques qu'zm arc appartenant à un espace euclidien dont la
courbure est partout nulle est un segment, et ainsi fut établi un
théorème de géométrie différentielle sans l'usage du calcul
différentiel.

Comparé avec la définition classique de la courbure, la
définition métrique est plus générale dans ce sens qu'elle s'applique
aux espaces distanciés généraux. Mais dans le cas des espaces
euclidiens MM. Haupt et Alt ont remarqué 1 que ma définition
de la courbure était plus restrictive que la définition classique.
Si l'arc y y (x) du plan euclidien admet au point p0 (#0, y0)

une courbure x (p0) au sens précédemment mentionné — disons

une courbure métrique — la dérivée seconde y" (x0) existe et

la courbure classique y est égale à x (p0). Inversement,
[1 -f y'2 (x0)] 12

un arc peut posséder au point p0 (x0, y0) une courbure au sens

classique -—y ^—jr sans posséder une courbure métrique;
[1 -f yf2{xo)] 2

celle-ci est en effet une fonction continue du point ce qui n'est

pas nécessairement le cas pour la courbure classique, comme
1

le montre l'exemple de la courbe y x4 sin — pour le point

P (0,0).
M. Alt a modifié 2 de la façon suivante la notion de la courbure

métrique: au lieu de considérer des triplets q1 r, s où les trois
points sont variables, il se borne à la considération des triplets

1 Cf. Ergebnisse e. mathem. Kolloquiums, 3, p. 4.
2 Dans sa thèse présentée à Vienne. Voir aussi: Ergebnisse e. mathem. Kolloquiums,

3, p. 5 et 4, p. 4.



LA GÉOMÉTRIE DES DISTANCES 365

p, q, r où deux points seuls sont variables. Il dit que D a la
courbure x (p) au point p, x (p) étant un nombre fini, si à tout
s > 0 donné à l'avance, il correspond un S > 0 tel que, pour
tout couple de points g, r, dont la distance à p est < S, nous

ayons | x(/>, q1 r) — x(p) j< s. Cette définition (valable dans

tout espace distancié) appliquée aux courbes d'un espace euclidien

est un peu plus générale que la définition classique1.
M. Alt a montré que la condition nécessaire et suffisante pour
que la courbe y j(x) — où / est une fonction définie dans

un voisinage de x0 qui n'admet pas une dérivée infinie pour
x x0 — possède au point (x0, y0 f(x0)) une courbure, à son

sens, c'est que /' (x0) existe et que les deux expressions

7 m - rM et /(*) — /' (*o)

x — x0 x — x0

tendent toutes deux vers une limite finie, ces deux limites étant
égales 2, quand x tend vers x0 ; f et f_ désignent respectivement
la dérivée supérieure et inférieure de la fonction / (celles-ci
pouvant prendre les valeurs -j- oo et — oo

M. Pauc a montré récemment qu'en prenant comme définition
de la dérivée seconde pour la valeur x x0, la limite finie, si
elle existe, de l'expression

/ (x0 + h) — / (x0) _ / (x0 + k) — f (x0)

2

quand h et k tendent indépendamment l'un de l'autre vers 0,
cette nouvelle définition coïncide avec la définition classique
lorsque f (x) existe dans un voisinage de x0. L'existence de

1 M. Oödel a proposé la définition suivante qui est encore plus générale: Disons
que l'arc D a la courbure * (p) au point p, si à tout e > 0 donné à l'avance, il correspond
un S > 0 tel que, pour tout couple de points q,r, de part et d'autre de p, dont la distance
à p est < I, nous ayons | -x (p, q, r) — * (p) | < e.

2 M. Pauc a remarqué que quand f'(xo) et les limites des deux expressions
mentionnées existent, ces deux limites sont nécessairement égales; si A désigne leur valeur
commune, la courbure de M. Alt a comme valeur ^

[1 + n (X0)]3/2
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f" (Xq) dans ce sens entraîne l'existence de /' (^0) et celle de la

courbure de M. Alt qui a alors comme expression —^ ^ ^ ^

».

1

[i + r*(x0)]8/a

M. Pauc a démontré par ailleurs que dans un espace euclidien,
si un continu k quelconque admet en un point p0 une courbure
de Alt, un voisinage de p0 sur k est un arc rectifiable; ce qui
permet l'énoncé suivant qui nous rapproche de la définition
classique: Pour qu'un continu k d'un espace euclidien possède en
un point p0 une courbure de Alt — x-(Po) il faut et il suffit
qu'un voisinage de p0 sur k soit un arc rectifiable, admettant
une tangente t0 en p0l et qu'en se limitant aux points p où la
tangente t existe, l'expression A oc: As(Aol angle tt0, As

longueur de l'arc pp0) ait une limite égale à x (p0) lorsque p tend
vers p0.

Donnons un exemple d'un arc possédant en un point une
courbure de Alt sans posséder une courbure classique. Il suffit de

considérer les points pn (A, Ejet n 1,2,...
ad inf.) (situés sur la parabole y x2) et la somme de deux lignes
polygonales pu p2, p3,pn,pn+1,et qx, q2, qn,

complétée par le point 0. L'arc obtenu possède en ce dernier point
une courbure au sens de M. Alt, égale à 2; il ne peut posséder
une courbure classique dans ce point, car la fonction y f (x)
représentant cet arc possède dans tout voisinage de 0, des points
où f (x) n'existe pas. La dérivée seconde au sens classique n'est

pas définie pour x 0, tandis qu'elle l'est au sens plus large
mentionné plus haut.

Au point de vue de la métrique interne (p. 362) les arcs ne

présentent qu'un intérêt assez faible. Un arc D satisfait aux
trois conditions mentionnées (p. 363) s'il est rectifiable et dans

ce cas seulement. Or, en faisant correspondre aux couples de

points d'un arc rectifiable quelconque leur distance interne,
nous obtenons un espace Dr congruent à un segment dont la
longueur est égale à celle de l'arc, donc un espace dont la courbure
est 0 en chaque point.

Par contre, l'intérêt de la métrique interne devient prépondérant

pour les espaces de dimension supérieure, et déjà pour

i H s'ensuit que la valeur A, rencontrée plus haut, n'est autre que |/"(x0)|
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les surfaces. Si D est une surface comme celles que l'on considère

dans la géométrie différentielle, il correspond à chaque point p
de D un nombre k (p) appelé la courbure totale de D au point p,
à savoir le produit des deux courbures principales des sections

planes de D. Ce nombre, d'après un résultat célèbre de Gauss,
ne dépend que de la métrique interne de D ; si Dx et D2 sont deux
surfaces telles que les espaces convexes D* et D2, portant les

métriques internes de Dx et D2, soient congruents, alors les

nombres k (px) et k (p2) sont toujours égaux pour deux points
px de Dx et p2 de D2 qui se correspondent par cette congruence.
On connaît, d'ailleurs, les nombreuses définitions de k (p) se

basant sur la métrique interne de D, dues à Gauss et à ses

successeurs. Mais n'est-il pas possible, demandais-je, de définir
cette courbure par la simple considération des quadruplets de

points de D, comme nous venons de faire pour la courbure des

courbes
La plus simple généralisation de cette dernière qui se présente,

ne mène pas à la solution du problème, même dans le cas où D
est un sous-ensemble d'un espace euclidien; car si l'on fait alors

correspondre à quatre points de D le rayon de la sphère
circonscrite et si l'on fait un passage à la limite analogue à celui

que nous avons employé pour les courbes, on obtient un
nombre qui ne dépend pas uniquement de la métrique interne
de D.

M. Wald a cependant réussi récemment à résoudre le
problème au moyen de l'idée suivante1: Il dit que l'espace dis-
tancié D' a la courbure de surface x(p) au point p, lorsqu'aucun
voisinage de p n'est linéaire et lorsqu'à tout s > 0 il correspond

un S > 0 tel que tout quadruplet de points g, r, s, t de

D', dont les distances à p sont < S, soit congruent à un
quadruplet de points de Sk avec | k — x (p) | < s ; Sk désigne la
surface d'une sphère à trois dimensions de courbure totale
k (r rayon réel ou imaginaire) portant la métrique interne,
donc où l'on a pris comme distance de deux points p' et p"
la longueur du plus petit arc de grand cercle passant par p'

1 Cf. C. R., 201, p. 918. Voir aussi: Ergebnisse e. mathem. Kolloquiums, 6, p. 29 et
cahier 7, p. 24.
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et p". Si D' est une surface comme celles que l'on considère
en géométrie différentielle, la courbure totale k (p) en tout
point p est égale à la courbure de surface x (p) de D' au point p.
La définition de Wald qui ne nécessite pas la représentation des

points par des coordonnées, peut donc servir à introduire de

façon bien naturelle et extrêmement simple la notion importante
de courbure.

Les surfaces de Gauss sont donc des espaces compacts et
convexes admettant en chaque point une courbure de surface

x (p) au sens de M. Wald. Mais encore plus important et plus
remarquable est, me semble-t-il, le théorème inverse démontré

par M. Wald.
Tout espace distancié compact et convexe qui admet une

courbure de surface en chaque point, est une surface de Gauss.
En se basant sur la seule hypothèse qu'un espace distancié
général est compact, convexe et admet en chaque point une
courbure de surface au sens de M. Wald, celui-ci peut démontrer

que l'espace est localement homéomorphe à l'intérieur d'un cercle,

que deux points assez voisins peuvent toujours être joints par
un seul segment, qu'on peut introduire des angles et des
coordonnées polaires p, 9, et que la longueur d'un petit arc

p p(t) <p cp(t) (0 g tg 1)

p (t) et 9 (t) étant deux fonctions dérivables de t, est égale à

1

f[p'2(t) + G*(p,ç) cp'2 (i) ]
2 dt,

0

où G (p, 9) est la solution de l'équation différentielle

y^ — x (p, 9) G (p, 9)

ô2G
satisfaisant aux conditions G (0, 9) 0, -y- (0, 9) 1 et où

x (p, 9) désigne la courbure de surface de D' au point (p, 9).
On a donc le théorème fondamental suivant:

Pour qu'un espace distancié compact soit une surface de
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Gauss, il est nécessaire et sufßsant qu'il soit convexe et admette une

courbure de surface en chaque point.

Ce théorème montre que la géométrie des distances fournit
une nouvelle base à l'étude des propriétés métriques locales des

surfaces.

V. — Géométrie des distances et calcul des variations.

Soit donné un espace distancié. Un ensemble fini ordonné
de points pl7 p2, pk est appelé polygone (et polygone fermé
si px — ph). Nous considérons des courbes continues dans

l'espace donné. C étant l'image continue d'un intervalle
a < t < ß, nous appelons sous-polygone de C l'image
P ~ {Pii P21 Pk} (Par mame représentation) d'un
ensemble fini ordonné de nombres y1 < y2 < < y& de [a, ß].
Par v (P) nous désignons le plus grand des nombres ji+i — y^.

Soit donnée une fonction F (p; g, r) des triplets de points
(q Ar). Cette fonction permet l'introduction d'une nouvelle
métrique si nous prenons pour chaque couple de points q, r,
au lieu de la distance qr qu'ils ont dans D, le nombre
d (q, r) F (g; g, r) ^ si qA r, et d (g, q) 0. Soit D (F)
l'espace à distances réelles qu'on obtient ainsi. En attribuant,
étant donné un point p, à g et r la distance dp (g, r) F (p ; g, r)
si g r, et dp(g, g) 0 nous obtenons un autre espace à
distances réelles que nous appellerons l'espace tangent Dp(F) de
D (F) au point p. Pour le polygone P nous considérerons outre
sa longueur l(P) llpipi+i dans D, ses longueurs dans D(F)
et dans Dp(F), à savoir les nombres

k-i
À(P, F) y F (p.-Pi,. PÏPÎIi

i=1

et
k-i

xP(p> F) 2 F (P ; pi+i)PiPi+i
i=1

La borne supérieure finie ou infinie des nombres l(P) pour
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