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362 K. MENGER

un nombre sont garanties si ’ensemble de vecteurs est complet
convexe et extérieurement convexe et jouit des propriétés (I').

Les recherches de MM. WiLson et BLUMENTHAL mentionnées
a la fin du Chapitre II admettent de méme une traduction dans
le langage de l'algébre des vecteurs. En particulier il découle
du théoreme de M. Wirson (p. 358), comme !’a remarqué
M. BLuMENTHAL, qu'un ensemble de vecteurs séparable et
complet est isomorphe a un espace vectoriel euclidien ou hilber-
tien si les conditions

I' (¢4, ¢5) = 0 pour tout couple ¢, ¢, de vecteurs (I'?)

T' (9105, 95) > 0 pour tout triplet ¢;, v,, 5 de vecteurs (I'3)

sont satisfaites ou, ce qui revient au méme, si tout triplet de
vecteurs est isomorphe & un triplet de vecteurs de E, résultat
qui a été obtenu directement par MM. FrRECHET, v. NEUMANN
et Jorpan 1.

IV. — LA COURBURE DANS LA GEOMETRIE DES DISTANCES
ET LA GEOMETRIE DIFFERENTIELLE.

Nous avons, dans les chapitres précédents, traité, en nous
placant au point de vue de la géométrie des distances, des pro-
blémes ou ’espace et ses sous-ensembles interviennent globale-
ment. Mais cette géométrie permet aussi 'étude des propriéiés
locales des variétés spatiales, et pénetre ainsi dans un domaine
ou a triomphé jusqu’alors brillamment et exclusivement la
méthode analytique; cette méthode s’appliquait si bien a cette
étude qu’on a fini par identifier la théorie des propriétés locales
des figures avec la géométrie différentielle: application de
Panalyse, surtout du calcul différentiel, aux modeles arithmé-
tiques représentant les figures. Et méme M. Bouricanp qui a
eu le mérite en créant sa Géométrie infinitésimale directe d’intro-
duire 'analyse moderne, en particulier la théorie des fonctions
de wvariable réelle, dans ’étude des propriétés géométriques
locales — se borne a I’étude d’espaces ou chaque point est (ou
pourrait étre) caractérisé par un systéme de coordonnées.

1 Annals of Mathem., 36, p. 705, p. 719.
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L’idée d’une géométrie différentielle sans coordonnées semble
encore aujourd’hui presque absurde & la plupart des géometres;
cependant la géométrie des distances a déja résolu le probléme
si important de la courbure d’une facon qui laisse pressentir,
comme nous le disions dans I'introduction, que la méthode
analytique, bien qu’elle ait joué jusqu’alors un role prépondé-
rant, n’est ni la seule possible, ni celle présentant le plus de
généralité, ni peut-étre méme la plus conforme & la nature
géométrique des problémes.

Soit D un espace distancié, ¢, r, s trois de ses points, il
existe trois points ¢’, r’, s’ dans le plan euclidien tels que les
triplets ¢, r, s et ¢, r’, s’ sont congruents. Si p désigne le rayon
du cercle circonscrit au triangle ¢’, r’, s’, — en convenant de
poser p = o siq¢’, 7', s sont en ligne droite — nous appellerons
courbure du triplet ¢, r, s de ’espace distancié et nous dési-

: T
gnerons par x (¢, r, s) 'inverse de cerayon, ¢’est-a-dire . Cette

courbure seranulle quand les trois points seront linéaires (p. 357)
et seulement dans ce cas; et la propriété du segment due &
M. BieperMANN (p. 357) peut alors s’énoncer ainsi: Pour qu’un
arc — c’est-&-dire un espace triangulaire homéomorphe & un
segment — soit congruent & un segment, il faut et il suffit que
tout triplet de points lui appartenant ait une courbure nulle.

Cet énoncé ne correspond pas a celui de la géométrie diffé-
rentielle concernant les propriétés caractéristiques de la droite,
qui fait intervenir une courbure définie en chaque point. Dans
un espace distancié nous pouvons, cependant, aussi introduire
une courbure locale, et cela de la facon suivante 1: Nous dirons
que D a la courbure » (p) au point p, si & tout ¢ > 0 donné a
'avance, il correspond un 8 > 0 tel que pour tout triplet ¢, r, s
de points de D, dont la distance & p est < §, nous ayons
| % (g, 7, 8) —x%(p)| <e.

On peut alors se demander si un arc dont la courbure est
nulle en chaque point est congruent & un segment. Il n’en est
pas nécessairement ainsi: Prenons pour D Pensemble des points z

1 Cette notion de courbure et sa théorie est dévefoppée dans mon mémoire: Mathem..
Annalen, 103.
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de I'intervalle —1 <z <1 et comme distance des points z
et y le nombre

| x — y | si z et y ont le méme signe,

|z | + |y | — 2%y? si x et y sont de signes contraires.

D est alors un espace distancié homéomorphe au segment
— 1 = 2 = 1 de la droite euclidienne, dont la courbure est
nulle en chaque point. Cependant cet arc n’est pas congruent
& un segment, comme le montre la considération du triplet
— 1, 0, 1 dont les points ont deux a deux la méme distance.

J’ai néanmoins démontré par des méthodes purement mé-
triques qu'un arc appartenant @ un espace euclidien dont la
courbure est partout nulle est un segment, et ainsi fut établi un
théoréme de géométrie différentielle sans I'usage du calcul
différentiel.

Comparé avec la définition classique de la courbure, la défi-
nition métrique est plus générale dans ce sens qu’elle s’applique
aux espaces distanciés généraux. Mais dans le cas des espaces
euclidiens MM. HaupT et ALt ont remarqué ' que ma définition
de la courbure était plus restrictive que la définition classique.
Si ’arc y = y (x) du plan euclidien admet au point p, = (x,, ¥,)
une courbure % (p,) au sens précédemment mentionné — disons
une courbure métrique la dérivée seconde y”(z,) existe et

y” (%)

la courbure classique — est égale a x(p,). Inversement,
[1 4 y"2(zo) ]

un arc peut posséder au point p, = (x,, y,) une courbure au sens

classique —2 ,(x") 5, sans posséder une courbure métrique;
) [1 -+ y'2(xg) ] ) ) . '
celle-ci est en effet une fonction continue du point ce qui n’est

pas nécessairement le cas pour la courbure classique, comme

le montre ’exemple de la courbe y = x* sin ~%pour le point
M. Avt a modifié 2 de la facon suivante la notion de la courbure

métrique: au lieu de considérer des triplets ¢, r, s ou les trois
points sont variables, il se borne a la considération des triplets

1 Cf. Ergebnisse e. mathem. Kolloquiums, 3, p. 4.
2 Dans sa thése présentée 4 Vienne. Voir aussi: Ergebnisse e. mathem. Kolloquiums,

3, p. 5 et &, p. 4.
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p, ¢, r ou deux points seuls sont variables. Il dit que D a la
courbure x (p) au point p, »(p) étant un nombre fini, si1 & tout
¢ > 0 donné & 'avance, il correspond un 3 > O tel que, pour
tout couple de points ¢, r, dont la distance & p est < 3, nous
ayons | »(p, ¢, r) — »(p) | < e. Cette définition (valable dans
~ tout espace distancié) appliquée aux courbes d’un espace eucli-
dien est un peu plus générale que la définition classique ®.
M. ALT a montré que la condition nécessaire et suffisante pour
que la courbe y = f(x) — ou f est une fonction définie dans
un voisinage de x, qui n’admet pas une dérivée infinie pour
x = x, — possede au point (z,, ¥, = f(x,)) une courbure, & son
sens, c’est que f'(xz,) existe et que les deux expressions

T =1 w) L@ =T

tendent toutes deux vers une limite finie, ces deux limites étant
eégales 2, quand x tend vers x,; f et | désignent respectivement
la dérivée supérieure et inférieure de la fonction f (celles-ci
pouvant prendre les valeurs + oo et — o).

M. Pauc a montré récemment qu’en prenant comme définition
de la dérivée seconde pour la valeur z = z,, la limite finie, si
elle existe, de I’expression

flzg + B) — flz)  flzo + k) — f (%)
h k
(h — k)
2

quand % et k£ tendent indépendamment I'un de I’autre vers 0,
cette nouvelle définition coincide avec la définition classique
lorsque f'(z) existe dans un voisinage de z, L’existence de

I M. GODEL a proposé la définition suivante qui est encore plus générale: Disons
que I’arc D a la courbure « (p) au point p, si & tout - > 0 donné & I’avance, il correspond
un 3 > 0 tel que, pour tout couple de points q,r, de part et d’autre de p, dont la distance
a p est <$§, nous ayons |z (p, ¢, 7) — x (p) | < -.

2 M. Pauc a remarqué que quand f’(xo) et les limites des deux expressions men-
tionnees existent, ces deux limites sont nécessairement égales; si A désigne leur valeut
1A

commune, la courbure de M. Alt a comme valeur — .
1+ £2 (x0)%/2
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/" (x,) dans ce sens entraine ’existence de f' (x,) et celle de la
a1

[1+ 2 ()]

M. Pauc a démontré par ailleurs que dans un espace euclidien,

s1 un continu £ quelconque admet en un point p, une courbure
de Avrt, un voisinage de p, sur k est un arc rectifiable; ce qui
permet 1’énoncé suivant qui nous rapproche de la définition
classique: Pour qu’un continu k& d’un espace euclidien posséde en
un point p, une courbure de ALT = x(p,) il faut et il suffit
qu'un voisinage de p, sur k soit un arc rectifiable, admettant
-une tangente ¢, en p,, et qu’en se limitant aux points p ou la
tangente ¢ existe, 'expression Aw: As(Aa = angle tt,, As = lon-
gueur de 1’arc pp,) ait une limite égale a » (p,) lorsque p tend
Vers po.

Donnons un exemple d’un arc possédant en un point une
courbure de ALT sans posséder une courbure classique. 11 suffit de

courbure de M. Alt qui a alors comme expression

considérer les points p, = (% : %> etq, = (:ni ,% >, n=1,2,..
ad mnf.) (situés sur la parabole y = 22) et la somme de deux lignes
polygonales P1y P2y P3s -y Pns Pntty -+ et 91y 92y -y Gns Int1s -
complétée par le point 0. L’arc obtenu posséde en ce dernier point
une courbure au sens de M. Alt, égale a 2; il ne peut posséder
une courbure classique dans ce point, car la fonction y = f ()
représentant cet arc posseéde dans tout voisinage de 0, des points
ou f’ () n’existe pas. La dérivée seconde au sens classique n’est
pas définie pour x = 0, tandis qu’elle I’est au sens plus large
mentionné plus haut.

Au point de vue de la métrique interne (p. 362) les arcs ne
présentent qu’un intérét assez faible. Un arc D satisfait aux
trois conditions mentionnées (p. 363) «’1l est rectifiable et dans
ce cas seulement. Or, en faisant correspondre aux couples de
points d’un arc rectifiable quelconque leur distance interne,
nous obtenons un espace D’ congruent a un segment dont la
longueur est égale a celle de I’arc, donc un espace dont la courbure
est 0 en chaque point.

Par contre, 'intérét de la métrique interne devient prépon-
dérant pour les espaces de dimension supérieure, et déja pour

1 Il s’ensuit que la valeur A, rencontrée plus haut, n’est autre que [f” (xo)].
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les surfaces. Si D est une surface comme celles que 1’on considére
dans la géométrie différentielle, il correspond & chaque point p
de D un nombre % (p) appelé la courbure totale de D au point p,
a savoir le produit des deux courbures principales des sections
planes de D. Ce nombre, d’aprés un résultat célebre de Gauss,
ne dépend que de la métrique interne de D; si D; et D, sont deux
surfaces telles que les espaces convexes D; et D,, portant les
métriques internes de D; et D,, soient congruents, alors les
nombres & (p;) et k (p,) sont toujours égaux pour deux points
p; de Dy et p, de D, qui se correspondent par cette congruence.
On connait, d’ailleurs, les nombreuses définitions de k& (p) se
basant sur la métrique interne de D, dues & Gauss et & ses
successeurs. Mais n’est-il pas possible, demandais-je, de définir
cette courbure par la simple considération des quadruplets de
points de D, comme nous venons de faire pour la courbure des
courbes ?

La plus simple généralisation de cette derniére qui se présente,
ne méne pas a la solution du probléeme, méme dans le cas ou D
est un sous-ensemble d’un espace euclidien; car si I’on fait alors
correspondre & quatre points de D le rayon de la sphere cir-
conscrite et si 'on fait un passage & la limite analogue a celui
que nous avons employé pour les courbes, on obtient un
nombre qui ne dépend pas uniquement de la métrique interne
de D.

M. WaLp a cependant réussi récemment a résoudre le pro-
bléeme au moyen de l'idée suivante ': Il dit que l’espace dis-
tancié D" a la courbure de surface »(p) au point p, lorsqu’aucun
voisinage de p n’est linéaire et lorsqu’a tout e > 0 il corres-
pond un & > 0 tel que tout quadruplet de points ¢, r, s, ¢ de
D’, dont les distances & p sont < 3, soit congruent & un qua-
druplet de points de S, avec [k— x(p)| << ; S, désigne la
surface d’une sphére a trois dimensions de courbure totale

k = —3 (r rayon réel ou imaginaire) portant la métrique interne,

donc ou l'on a pris comme distance de deux points p’ et p”
la longueur du plus petit arc de grand cercle passant par p’

L Cf. C. R., 201, p. 918. Voir aussi: Ergebnisse e. mathem. Kolloquiums, 6, p. 29 et
cahier 7, p. 24.
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et p”. St D’ est une surface comme celles que 1’on considére
en géométrie différentielle, la courbure totale & (p) en tout
point p est égale a la courbure de surface » (p) de D’ au point p.
La définition de WALD qui ne nécessite pas la représentation des
points par des coordonnées, peut donc servir a introduire de
facon bien naturelle et extrémement simple la notion importante
de courbure.

Les surfaces de Gauss sont donc des espaces compacts et
convexes admettant en chaque point une courbure de surface
% (p) au sens de M. WaLp. Mais encore plus important et plus
remarquable est, me semble-t-il, le théoréme inverse démontré
par M. WaLp.

Tout espace distancié compact et convexe qui admet une
courbure de surface en chaque point, est une surface de Gauss.
En se basant sur la seule hypothése qu'un espace distancié
général est compact, convexe et admet en chaque point une
courbure de surface au sens de M. WaLD, celui-ci peut démontrer
que ’espace est localement homéomorphe a 'intérieur d’un cercle,
que deux points assez voisins peuvent toujours étre joints par
un seul segment, qu’on peut introduire des angles et des coor-
données polaires p, ¢, et que la longueur d’un petit arc

e =rp(t), o= o) 0=1=1)
o (t) et ¢ (¢t) étant deux fonctions dérivables de ¢, est égale a 1

1 1

o0 + 62 e, 00 92(0)]* dt,
0

ou G (p, @) est la solution de I’équation différentielle

02G
d o2 = —x(p, 9 . Gle, 9

2
satisfaisant aux conditions G (0, ¢) = 0, %—g (0, 9) =1 et on

% (p, ©) désigne la courbure de surface de D’ au point (p, o).
On a donc le théoréme fondamental suivant:

Pour qu’un espace distancié compact soit une surface de
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Gauss, il est nécessaire et suffisant qu’il soit convexe et admetie une
courbure de surface en chaque point. '

Ce théoréme montre que la géométrie des distances fournit
une nouvelle base a I’étude des propriétés métriques locales des
surfaces.

V. — GEOMETRIE DES DISTANCES ET CALCUL DES VARIATIONS.

Soit donné un espace distancié. Un ensemble fini ordonné
de points py, ps, -.., p, est appelé polygone (et polygone fermé
si p; = p).- Nous considérons des courbes continues dans
I’espace donné. C étant I'image continue d’un intervalle
« <t < B, nous appelons sous-polygone de C I'image
P = {py, psy .., P} (par la méme représentation) d’un en-
semble fini ordonné de nombres v; < v, < ... < vy, de [« B].
Par v (P) nous désignons le plus grand des nombres v; ., — v;.

Soit donnée une fonction F (p; ¢, r) des triplets de points
(¢ = r). Cette fonction permet l’introduction d’une nouvelle
métrique si nous prenons pour chaque couple de points ¢, r,
au lieu de la distance ¢ qu’ils ont dans D, le nombre
d(g,r) =F(q;q,7).qr 8i g==r, et d(q,q) = 0. Soit D (F)
Pespace a distances réelles qu’on obtient ainsi. En attribuant,
étant donné un point p, & g et rla distance d, (¢, 7) = F (p; ¢, r)gr
si ¢ #r, et d,(q, g = 0 nous obtenons un autre espace a dis-
tances reelles que nous appellerons I'espace tangent D_(F) de
D (F) au point p. Pour le polygone P nous considérerons outre
sa longueur [(P) = X p;p;., dans D, ses longueurs dans D (F)
et dans D, (F), & savoir les nombres

h—1
AP, F} = Sj F,(Pﬁ? P;» pi+1) - PiPijyq -

i=1

et
h

|
o

A (P F) = F(p; Pi» Pipy) PiPyyy -

1M

I
=N

1

La borne supérieure finie ou infinie des nombres I(P) pour
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