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354 K. MENGER

Le résultat énoncé plus haut contient donc comme cas
particulier le théorème suivant concernant l'espace euclidien réel

E„(=
Pour qu'un espace E à distances non négatives et distinguant

métriquement les points, soit congruent à un sous-ensemble de En
il est nécessaire et suffisant que Con ait

(A?+3) A(Pi> p2 pn+ o) 0 pour tout système de n-f 3 points de E

(A0" + 2) A(Pl, p2, Pn^o) 0 pour tout système de n -{- 2 points de E

(Ak) sgn A(Pl, p2 pk) (— l)k+1 ou 0

pour tout système de k points de E, où k 2 3 n | 1

Remarquons qu'un espace E contenant plus de n -f- 3 points
et satisfaisant aux conditions (Aft) pour k 2, 3, n + 1 et
à (A?+2) satisfait eo ipso1 à la condition (A? + 3). Pour qu'un
espace séparable E soit congruent à un sous-ensemble de

l'espace de Hilbert il faut et il suffit que les conditions (Ak) soient
satisfaites pour chaque entier k.

II. — La théorie de la convexité et ses relations avec
LA GÉOMÉTRIE AXIOMATIQUE.

Passons à l'étude de propriétés plus géométriques de l'espace
et de ses sous-ensembles. Dans ce but nous considérons un
ensemble d'éléments quelconques tel qu'à tout couple d'éléments
(« points ») p, q il corresponde un nombre réel pq (« distance »

de p et q) qui satisfait à la condition pp 0 pour tout p et à

l'inégalité triangulaire pq + qr > pr pour chaque triplet de

points. Nous appellerons un tel ensemble un espace triangulaire.
Particulièrement importants sont les espaces triangulaires à

distances symétriques, non négatives, et qui distinguent métri-

i Un espace à distances complexes satisfaisant à la condition (AJ • ne satisfait

pas nécessairement à la condition (aJ+3). On trouvera une étude des systèmes de

n + 3 points non congruents à n + 3 points de Ew bien que n -f 2 quelconques de leurs
points soient congruents à n-f 2 points de En dans mon mémoire Mathem. Annalen,
100, p. 124. J'ai appelé de tels systèmes pseudo-euclidiens.
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quement les points, c'est-à-dire tels que pq qp > 0 si p ^ g

et pp 0; ou bien, ce qui revient au même, tels que chaque

triplet de points soit congruent à un triplet de points du plan
(à un triangle euclidien) 1. L'introduction de ces espaces est

due à M. Fréchet. On les appelle espaces métriques ou,
d'après M. Bouligand, espaces distanciés. Comme exemples

d'espaces triangulaires nous avons les espaces euclidiens de

toutes dimensions et l'espace de Hilbert.
Il est bien naturel lorsqu'on a une inégalité d'étudier les cas

où elle devient une égalité. Dans le cas d'un espace euclidien
la relation pq + qr1 ^ & lieu pour trois points p, q, r distincts
deux à deux, lorsque q est situé sur le segment joignant p et r,
donc entre p et r, et seulement dans ce cas. Posons donc comme
définition pour un espace distancié général qu'un point q

est point intermédiaire entre p et r, ou plus simplement est

entre p et r si p ^ q ^ r et pq + qr pr. Cette notion ne jouit
pas, dans les espaces généraux, de toutes les propriétés qu'elle
possède sur la ligne droite. Considérons par exemple l'espace
distancié constitué par quatre points p, g, r, ,9 ayant les

distances pq ~qÉ ^ Sp 1, jjf qS 2. Il est clair
que q est entre p et r, et que r est entre q et 5, sans que q ou r
soient entre p et «9. La relation de point intermédiaire a cependant
assez d'affinités avec la relation bien connue sur la ligne droite
pour que la dénomination de point situé « entre » deux autres
soit justifiée. Elle jouit notamment des propriétés suivantes:
Si q entre p et r, alors q entre r et p, mais r non entre p et q.
Si q entre p et r, et r entre p et s} alors q entre p et «9, et r entre q
et s. L'ensemble constitué par p et q et leurs points intermédiaires
est fermé.

Nous appelons convexe un sous-ensemble d'un, espace
distancié qui contient pour chaque couple de points différents
p et r au moins un point q situé entre p et r. On a alors le théorème
suivant: Un sous-ensemble fermé convexe d'un espace distancié
complet contient pour tout couple de points distincts p et q un
segment qui les joint, c'est-à-dire un sous-ensemble contenant

i Pour un espace à distances non négatives l'inégalité triangulaire équivaut à la
condition (A3).
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p et g et congruent à un segment de la ligne droite au sens
ordinaire du mot dont la longueur est égale à la distance pq 1. On

déduit immédiatement de ce théorème qu'un sous-ensemble
fermé d'un espace euclidien est convexe s'il est convexe au sens

classique de Minkowski et seulement dans ce cas. Remarquons
d'ailleurs que dans un espace distancié convexe général il peut
arriver que deux points puissent être joints par plusieurs
segments. La surface d'une sphère à trois dimensions dans laquelle
nous prenons comme distance la longueur du plus petit arc
du grand cercle qui les joint, nous en fournit un exemple.
C'est un espace convexe et complet, qui contient pour tout
couple de points diamétralement opposés une infinité de
segments qui les joignent.

Du point de vue topologique la notion de convexité est sinon
identique du moins très voisine de celle de connexité et de
connexité locale. Nous n'avons pas résolu la question de savoir
si l'hypothèse — pour un espace distancié compact — d'être
connexe et localement connexe est non seulement nécessaire
mais encore suffisante pour que l'espace soit homéomorphe à

un espace distancié convexe. Indiquons trois conditions qui
sont suffisantes pour qu'un espace distancié soit
homéomorphe à un espace convexe: 1° Deux points quelconques
peuvent être joints par un arc de longueur finie. 2° p et q étant
deux points distincts, la borne inférieure des longueurs de tous
les arcs joignant p et g, est > 0. 3° A tout s > 0 donné à l'avance,
il correspond un S > 0 tel que deux points quelconques dont
la distance est < S. puissent être joints par un arc de

longueur < s. En faisant alors correspondre à tout couple de

points /?, q de D la borne inférieure des longueurs de tous
les arcs joignant p et q ou, comme nous dirons, la distance
interne de p et g, nous obtenons un espace distancié convexe D'
homéomorphe à D. (Les segments de D' correspondent aux
arcs géodésiques de D.)2

1 Les notions de point intermédiaire et de convexité et leurs théories sont
développées dans mon mémoire Mathem. Annalen, 100, p. 75. Une nouvelle démonstration
de l'existence d'un segment sous les conditions mentionnées a été donnée par M. Aron-
szajn, Ergebnisse e. mathem. Kolloquiums, 6, p. 45.

2 Cf. mon mémoire dans le Mathem. Annalen, 100, p. 96. Cf. aussi Hopf und Rinow,
Comment Math. ]lelret.. 3.
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La théorie de la convexité se relie à l'axiomatique de la
géométrie élémentaire, en particulier aux Anordnungsaxiome de

Pasch, Hilbert et de l'école américaine. L'étude des propriétés
découlant de la notion de convexité permet, à partir de l'espace

triangulaire complet, d'obtenir des espaces de plus en plus
particularisés de ce point de vue, et finalement certaines carac-
térisations des espaces linéaires et euclidiens.

Nous dirons, pour esquisser ce chemin, qu'un ensemble dans

un espace distancié est extérieurement convexe s'il contient,
pour chaque couple de points p et <7, au moins un point r tel que
q soit entre p et r. Un ensemble fermé, à la fois convexe et
extérieurement convexe dans un espace complet contient pour
chaque couple de points différents une « droite » qui les joint,
c'est-à-dire un sous-ensemble contenant p et <7, congruent avec
une droite au sens ordinaire du mot. Pour que tout couple de

points distincts d'un espace complet, convexe et extérieurement

convexe détermine une droite et une seule les joignant,
il faut et il suffit que l'espace jouisse de la propriété suivante
que j'ai appelée propriété des deux triplets: Etant donné quatre
points distincts deux à deux, Vexistence de deux triplets linéaires
entraine la linéarité des deux autres triplets. (Nous dirons que le

triplet 7), <7, r est linéaire lorsqu'un de ses points est situé entre
les deux autres.)

En ajoutant les conditions d'être complet, convexe et
extérieurement convexe aux conditions qui caractérisent les espaces
distanciés congruents aux sous-ensembles des espaces euclidiens

réels (se reporter au Chapitre I), nous obtenons la caracté-
risation des espaces euclidiens réels eux mêmes parmi les

espaces distanciés. Mentionnons encore que le point de départ de
ces recherches fut un théorème de M. Biedermann 1

que nous
énoncerons ici de la façon suivante: Pour qu'un espace
distancié compact et convexe soit congruent à un segment, il
faut et il suffit qu'il contienne plus d'un point et que tout triplet
de ses points soit linéaire.

Pour parvenir graduellement des espaces convexes et extérieurement

convexes aux espaces linéaires et euclidiens il suffit

1 Cf. Mathem. Annalen, 100, p. 114.
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d'exclure l'existence dans l'espace de certaines singularités
simples. Il s'agit des deux figures suivantes qui ne se rencontrent
pas dans les espaces linéaires:

1. La fourchette: somme de trois segments pq, qr1 qs n'ayant
en commun deux à deux que le point q situé à la fois entre

p et r, et entre p et s.

2. Uétrier: somme de quatre segments pq, gr, rs, ps qui n'ont
en commun que des extrémités et tels que s soit entre p et r,
et r entre q et s.

Si les points q et r d'un étrier sont situés entre p et l'étrier
est somme de deux segments de mêmes extrémités (à savoir de

p et s), et nous parlerons d'une lentille, par exemple: la somme
de deux demi-grand-cercles d'une sphère. Notons deux configurations

particulières intéressantes: 1° Le cercle, ensemble

congruent à un cercle au sens ordinaire où l'on a pris comme
distance de deux points la longueur du plus petit arc qui s'y
termine. Le cercle constitue un étrier entre deux quelconques
de ses points, il constitue plus particulièrement une lentille
entre deux de ses points diamétralement opposés. 2° Le trièdre

convexe, somme de trois segments pq, gr, qs n'ayant en commun

deux à deux que le point q situé à la fois entre p et r,.
entre p et s, entre r et s.

Les espaces distanciés sont par définition des espaces E
satisfaisant à la condition (A3), c'est-à-dire des espaces E dont
chaque triplet de points est congruent à un triangle euclidien.
M. W. A. Wilson a récemment étudié1 les espaces E satisfaisant

aux conditions (A3) et (A4), c'est-à-dire des espaces E

dont chaque quadruplet de points est congruent à un tétraèdre
euclidien — par analogie nous pourrons appeler ces espaces:

espaces tétraédrciux — et il a obtenu le résultat intéressant
suivant : Pour qu'un espace séparable et complet soit congruent
à un espace euclidien ou à l'espace de Hilbert il faut et il suffit
qu'il soit convexe, extérieurement convexe et tétraédral.
Renvoyons le lecteur en terminant à un mémoire intéressant sur
la sphère à n dimensions par M. L. M. Blumenthal 2.

1 Amer. Journ. of Math., 54.
2 Amer. Journ. of Math., 57.
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