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I de a, à, V). Mais par un phénomène curieux de véritable cécité
j psychique, une différence importante était passée inaperçue.

Le théorème fondamental que nous venons de rappeler et qui
: est relatif à l'équation (4) admet, comme on sait, deux sortes de

démonstrations très différentes. L'une repose sur un développement

en série entière et sur un « Calcul des limites », ou, comme
on dit aujourd'hui, la formation de séries majorantes; l'autre
sur des approximations successives de tout autre nature
(méthode de Cauchy-Lipschitz et méthode de M. Picard). Les

géomètres de la fin du XIXe siècle ne remarquaient pas qu'il y
avait là non seulement deux espèces de démonstrations
différentes, mais deux théorèmes différents, puisque, dans un cas, on
supposait essentiellement le second membre de l'équation (4)
analytique et holomorphe, défini, par conséquent, dans le

champ complexe, au lieu qu'aucune hypothèse de cette nature
n'est postulée dans la seconde catégorie de méthodes, où l'on
peut se borner aux valeurs réelles des variables.

La démonstration de Sophie Kowalewski est l'analogue de la
première méthode dont nous venons de parler: elle procède par
séries entières et suppose essentiellement les données analytiques
tant en ce qui concerne le second membre / de l'équation (1')
qu'en ce qui concerne les données initiales g et h.

On a parfois tenté d'établir le même théorème par des méthodes
analogues à celles de Cauchy-Lipschitz ou de M. Picard; et même
des méthodes de cette espèce se sont montrées fécondes sous
certaines conditions convenablement spécifiées. Dans le cas

j
général, elles ont toujours échoué et, comme on va le voir, sont

I nécessairement vouées à l'échec.

; III
|

j Pendant que l'Analyse envisageait ainsi les données de
j Cauchy comme propres à définir une solution d'une équation
j telle que (1), un autre chapitre de la Science, à savoir l'étude
j des potentiels, c'est-à-dire de l'équation



10 J. HADAMARD

introduisait des données d'un type tout différent, à savoir celles
de Dirichlet. Il est bien connu qu'une fonction harmonique et
régulière à l'intérieur d'un volume donné V est connue dès qu'on
se donne sa valeur numérique en chaque point de la surface
frontière S de V. Entre cette donnée de Dirichlet et les données
de Cauchy, on aperçoit immédiatement une sorte de contradiction

: puisque la connaissance de la valeur de u en chaque point
de S détermine complètement cette fonction du moment qu'elle
doit être solution de (5), il apparaît évidemment qu'on n'a pas
le droit de se donner, le long de S, la valeur de u et celle d'une
de ses dérivées.

La donnée de Dirichlet n'est pas la seule que la Physique
mathématique puisse introduire pour déterminer une fonction
harmonique: au lieu de se donner la valeur de u, on peut se

donner celle de sa dérivée normale (problème de Neumann) ou
(cas de la conductibilité) une de leurs combinaisons linéaires, ou
[4] une dérivée oblique x, ou même [14] une combinaison analogue
contenant des dérivées d'ordre supérieur. On peut aussi — et
c'est le cas en Hydrodynamique, toutes les fois qu'il y a une
surface libre — avoir affaire à des « problèmes mixtes », dans

lesquels les données sont d'une espèce (par exemple, u lui-même)
sur certaines régions de la frontière S et d'une autre (par exemple,
la dérivée normale de u) sur le reste. Mais si variés que soient ces

différents problèmes, ils ont tous un caractère commun: la
donnée est toujours unique en chaque point de S, contrairement
à ce que voudrait l'énoncé de Cauchy-Kowalewski.

Des circonstances tout analogues se présentent pour l'équation
« biharmonique »

AA u 0 (6)

i Ce problème de la dérivée oblique présente une circonstance exceptionnelle dans la
théorie qui nous occupe: il peut être à la fois possible et indéterminé. C'est du moins
ce qui arrive lorsque la direction de dérivation est, en certains points, tangente à la
surface S (cas d'ailleurs exclu par les auteurs cités). Si, par exemple, la quantité dont

du du
on se donne les valeurs le long de S est —, la fonction —, laquelle est elle-meme har-

dx dx
monique, peut être obtenue par la résolution d'un problème de Dirichlet, et la détermination

qui en résulte pour u (par quadrature relative à x), est elle-même harmonique si le
terme additif, fonction de y et de z, que comporte la quadrature est convenablement
choisi. Mais il reste un terme additif complètement arbitraire (une fonction harmonique

du du du
quelconque de y et de z). La donnée, à la frontière, de x h y H z— donne lieu

dx dy dz
à des circonstances analogues (l'origine étant supposée extérieure à V).
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qui se présente dans l'étude de l'équilibre élastique plan ou

spatial. Une solution régulière de cette équation est déterminée,
dans un volume de l'espace ou dans une aire plane, par deux

données — par exemple u et sa dérivée normale — en chaque

point de la frontière au lieu des quatre qu'imposerait, pour cette

équation du quatrième ordre, le théorème de Cauchy-Kowalewski.
On voit à nouveau apparaître la même discordance que pour
l'équation des potentiels (5).

A cette discordance on voit, il est vrai, une première explication.

Les deux questions ne se posent pas, par ailleurs, de manière

analogue. La solution donnée par le théorème de Cauchy-
Kowalewski ne l'est que localement: on ne prétend pas affirmer
son existence et sa régularité en dehors d'un certain voisinage
plus ou moins immédiat de la surface S; au contraire, la solution
au problème de Dirichlet doit être définie et régulière dans tout le

volume Y considéré, et il est même aisé de voir que si l'on renonce
à cette condition, le problème devient largement indéterminé h

Confrontons donc les deux résultats en nous plaçant dans des

conditions entièrement comparables. Considérons une portion de

surface S — par exemple une portion du plan x 0 — le long
de laquelle nous choisirons arbitrairement (quoique, au besoin,
avec certaines conditions de régularité) des données de Cauchy
et voyons si aux données ainsi assignées correspondra, au moins
dans le voisinage de S, une solution de l'équation (5).

Il faut d'ailleurs encore préciser. Dans les conférences qu'il a

prononcées à l'Université de Paris, en 1913-14, un géomètre
américain dont nous déplorons la perte, Maxime Bêcher, insistait
à juste titre sur la nécessité de bien définir ce qu'on acceptera
comme solutions d'un problème de cette espèce, définition qui
n'a pas toujours été assez nettement spécifiée par les auteurs.
Pour le moment, contentons-nous, à ce point de vue, d'observer
que la région de l'espace voisine de S est divisée par cette surface
en deux régions partielles 1 et 2, de sorte qu'on peut se proposer:

soit de trouver une solution valable dans l'une et dans l'autre
de ces deux régions partielles;

i II suffit, par exemple, pour le voir, d'imaginer que le domaine V soit creusé d'une
cavité V', dont la frontière S' servira également de frontière supplémentaire au domaine
restant Vv Si la fonction harmonique cherchée ne doit être définie que dans Vl5 on peut
se donner arbitrairement, non seulement ses valeurs sur S, mais ses valeurs sur S'.
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soit (par analogie avec ce qui se passe dans le problème de

Dirichlet) de définir une solution d'un côté seulement de S.

La solution peut-elle exister des deux côtés de S Il n'en

peut être ainsi (la surface S étant elle-même analytique) que si
les deux données de Cauchy g et h sont analytiquement distribuées
le long de cette surface. En effet, d'après une remarque de Duhem
[13], les deux solutions partielles définies respectivement dans 1

et dans 2 doivent nécessairement former, par leur ensemble,
une fonction harmonique unique, laquelle est analytique.

L'existence de la solution même d'un côté de la surface exige,
entre les deux fonctions g et Ä, une relation qui, lorsque l'une
d'elles est donnée, définit l'autre à une fonction analytique près h
C'est ce que l'on peut voir en traçant une surface auxiliaire 2
qui, avec S, délimite un volume V dans lequel une fonction
harmonique peut être définie par des données de Dirichlet,
coïncidant avec g le long de S et arbiL ffres le long de 2. La
fonction de Green G (M, P < relative à A étant, d'autre part,
analytique dès que les deux points dont elle dépend ne
s'approchent pas l'un de l'autre, on aura, au voisinage de S,

Wp 4~tt f f^ ^ ^ uu + fonct. analyt. ux + fonct. analyt.*
a

nu

et, par conséquent, on devra avoir, pour la dérivée normale,

h -1 + fonct. analyt. (7')
an

En l'absence d'une relation de cette espèce, le problème de

Cauchy est impossible. Ce n'est pas lui, mais le problème de

Dirichlet ou un problème analogue, qui est ce que nous appellerons

« correctement posé », c'est-à-dire possible et déterminé.
Cette conclusion, lorsque nous l'avons formulée, a étonné

autour de nous plusieurs géomètres. Peu importe, nous a-t-on

1 Lorsque S est plan, ce second problème se ramène au premier, en supposant l'une
des deux données g, h nulle et étendant la solution d'un côté à l'autre par réflexion à
la manière de Schwartz. Mais la méthode indiquée dans le texte a l'avantage de s'étendre
aux surfaces courbes et aussi à toutes les équations (linéaires analytiques) du type
elliptique.
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objecté, que les données g, h ne soient pas analytiques, puisque,
d'après le théorème classique de Weierstrass, on peut les

remplacer par des fonctions analytiques (et même des polynômes)
avec des erreurs aussi petites qu'on le veut.

La réponse à cette objection met en évidence un aspect
remarquable du problème. La question n'est évidemment pas
de savoir si l'on commet une erreur très petite sur des données,
mais si l'on commet une erreur très petite sur la solution. Or, ici,
les deux sont loin de revenir au même, comme le montre l'exemple
de l'équation à deux variables indépendantes

^ ^ o (5'\

avec les données initiales

u(0, y) 0

^U lf\ \ A— (0, y) Asm ny

La fonction h ainsi définie est nécessairement très petite en
même temps que le coefficient A. Or la solution, savoir

A
— sin ny Sh nx (8')

prend, si petit que soit x (du moment qu'il n'est pas nul) et si petit
que soit A, des valeurs énormes, du moment que n est très grand,
c'est-à-dire du moment que la fonction h est oscillatoire à

période très courte 1.

i La recherche des surfaces minima se ramène, comme on sait, à l'intégration de
l'équation (5'), les coordonnées cartésiennes x, y, z étant fonctions harmoniques de deux
paramètres v Les formules de Schwarz qui déterminent la surface S passant par une
ligne donnée L et inscrite le long de cette ligne a une développable donnée CD, sous la
supposition que h et CD soient analytiques, résolvent un problème de Cauchy relatif à
l'équation (50. On voit que de très petites altérations sur la distribution des plans
tangents à CD le long de la ligne L peuvent modifier du tout au tout la forme de la
surface cherchée au voisinage, si immédiat qu'il soit, de L.

Le même problème avait, comme on sait [10] été résolu auparavant par 0. Bonnetet par Björlino [3]. Ces travaux — particulièrement les deux Notes d'Ossian Bonnet —manifestent nettement le point de vue adopté, en la matière, pendant le siècle dernier.Il n'y est fait aucune distinction entre une fonction donnée pour des valeurs réellesde la variable et une fonction définie dans le champ complexe.
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Avant de quitter le problème de Dirichlet, lequel sera repris
dans les conférences suivantes, rappelons que son exemple est

un de ceux qui illustrent le mieux le précepte rappelé par Bôcher.
Il faut définir avec précision chacune des deux propriétés que
l'on impose à la solution cherchée. C'est Painlevé qui, le

premier [31], a précisé ce que l'on doit entendre en disant
qu'une fonction « prend », sur une ligne ou une surface donnée,
des valeurs données. P étant un point déterminé quelconque de

la ligne ou de la surface S en question, M un point du domaine fi
qu'elle limite, il faut que uM tende vers up lorsque M tend vers P
le long d'un chemin quelconque intérieur à fi.

D'autre part, u doit satisfaire aux équations aux dérivées

partielles. Ceci implique, en principe, l'existence des dérivées
secondes (au moins celles qui figurent dans l'équation) et, par
conséquent, la continuité des dérivées premières. On a pu
d'ailleurs remplacer ces conditions par d'autres moins restrictives
dont l'énonciation ne rentre pas dans l'exposé actuel (sauf en un
point dont il sera parlé plus loin). Mais une circonstance
remarquable est l'apparente contradiction qui existe entre cette
condition et la nature des données de Dirichlet, lesquelles ne sont
nullement assujetties à être dérivables même une fois. Il en
résulte que îa surface S sur laquelle ont été prises les données de

Dirichlet est en général, pour la solution, une surface singulière,
la solution ainsi engendrée étant, au contraire, analytique et

holomorphe dès qu'on s'éloigne de cette surface.
Si l'on renonce à cette précision, on peut changer complètement

le caractère du problème, et celui-ci peut devenir indéterminé.

Un exemple classique est celui de la fonction u ^
x2

+ ^,
harmonique et régulière dans tout l'intérieur de la sphère
S (x2 -f- y2 + z2 — 2ax =- 0) et qui, sur toute la surface de cette

sphère, prend la valeur constante — ceci cessant seulement

d'avoir lieu au sens précisé par Painlevé pour l'origine des

coordonnées, non sans qu'il n'y ait encore des chemins intérieurs
à S et aboutissant en 0 (tous ceux qui ont un contact du second

1
ordre avec S) avec la valeur limite pour u.
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