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LE CAS HYPERBOLIQUE 9

de a, b, b'). Mais par un phénomeéne curieux de véritable cécité
psychique, une différence importante était passée inapercue.
Le théoréme fondamental que nous venons de rappeler et qui
est relatif & I’équation (4) admet, comme on sait, deux sortes de
démonstrations trés différentes. L’une repose sur un développe-
ment en série entiére et sur un « Calcul des limites », ou, comme
on dit aujourd’hui, la formation de séries majorantes; l’autre
sur des approximations successives de tout autre nature (mé-
thode de Cauchy-Lipschitz et méthode de M. Picard). Les
géometres de la fin du XIXe siécle ne remarquaient pas qu’il y
avait la non seulement deux espéces de démonstrations diffé-
rentes, mais deux théorémes différents, puis'que, dans un cas, on
supposait essentiellement le second membre de I’équation (4)
analytique et holomorphe, défini, par conséquent, dans le
champ complexe, au lieu qu’aucune hypothése de cette nature
n’est postulée dans la seconde catégorie de méthodes, ot I'on
peut se borner aux valeurs réelles des variables.

La démonstration de Sophie Kowalewski est 'analogue de la
premiére méthode dont nous venons de parler: elle procéde par
séries entieres et suppose essentiellement les données analytiques
tant en ce qui concerne le second membre f de ’équation (1)
qu’en ce qui concerne les données initiales g et A.

On a parfois tenté d’établir le méme théoréme par des méthodes
analogues a celles de Cauchy-Lipschitz ou de M. Picard ; et méme
des méthodes de cette espéce se sont montrées fécondes sous
certaines conditions convenablement spécifiées. Dans le cas
genéral, elles ont toujours échoué et, comme on va le voir, sont
nécessairement vouées a I’échec.

IT1

Pendant que I’Analyse envisageait ainsi les données de
Cauchy comme propres a définir une solution d’une équation
telle que (1), un autre chapitre de la Science, 4 savoir I’étude
des potentiels, c’est-a-dire de 1’équation
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introduisait des données d’un type tout différent, & savoir celles
de Dirichlet. Il est bien connu qu’une fonction harmonique et
réguliére a I'intérieur d’un volume donné V est connue dés qu’on
se donne sa valeur numérique en chaque point de la surface
frontiére S de V. Entre cette donnée de Dirichlet et les données
de Cauchy, on aper¢oit immédiatement une sorte de contradic-
tion: puisque la connaissance de la valeur de u en chaque point
de S détermine complétement cette fonction du moment qu’elle
doit étre solution de (5), il apparait évidemment qu’on n’a pas
le droit de se donner, le long de S, la valeur de u T celle d’une
de ses dérivées.

La donnée de Dirichlet n’est pas la seule que la Physique
mathématique puisse introduire pour déterminer une fonction
harmonique: au lieu de se donner la valeur de u, on peut se
donner celle de sa dérivée normale (probleme de Neumann) ou
(cas de la conductibilité) une de leurs combinaisons linéaires, ou
[4] une dérivée oblique !, ou méme [14] une combinaison analogue

contenant des dérivées d’ordre supérieur. On peut aussi — et
c’est le cas en Hydrodynamique, toutes les fois qu’il y a une
surface libre — avoir affaire & des « problémes mixtes », dans

lesquels les données sont d’une espéce (par exemple, u lui-méme)
sur certaines régions de la frontiére S et d’une autre (par exemple,
la dérivée normale de u) sur le reste. Mais si variés que solent ces
différents problémes, ils ont tous un caractére commmun: la
donnée est toujours unigue en chaque point de S, contrairement
a ce que voudrait I’énoncé de Cauchy-Kowalewski.

Des circonstances tout analogues se présentent pour I’équation

« bitharmonique » |
Au = 0 (6)

1 Ce probléme de la dérivée oblique présente une circonstance exceptionnelle dans la
théorie qui nous occupe: il peut étre a la fois possible et indéterminé. C’est du moins
ce qui arrive lorsque la direction de dérivation est, en certains points, tangente & la
surface S (cas d’ailleurs exclu par les auteurs cités). Si, par exemple, la quantité dont

ou ou
on se donne les valeurs le long de S est 5_’ la fonction 5—-, laquelle est elle-méme har-
X X

monique, peut étre obtenue par la résolution d’un probléme de Dirichlet, et l1a détermina-
tion qui en résulte pour u (par quadrature relative 4 x), est elle-méme harmonique si le
terme additif, fonction de y et de z, que comporte la quadrature est convenablement
choisi. Mais il reste un terme additif complétement arbitraire (une fonction harmonique

du ou ou
quelconque de y et de z). La donnée, 4 la frontiere, de xo—— + yg— + zb— donne lieu
; X pA

4 des circonstances analogues (I’origine étant Supposée extérieure a V).
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qui se présente dans 1’étude de Péquilibre élastique plan ou
spatial. Une solution réguliére de cette équation est déterminée,
dans un volume de Iespace ou dans une aire plane, par deux
données — par exemple u et sa dérivée normale — en chaque
point de la frontiére au lieu des quatre qu’imposerait, pour cette
équation du quatrieme ordre, le théoréme de Gauchy- Kowalewski.
On voit & nouveau apparaitre la méme discordance que pour
Péquation des potentiels (5).

A cette discordance on voit, il est vrai, une premiere explica-
tion. Les deux questions ne se posent pas, par ailleurs, de maniére
analogue. La solution donnée par le théoréme de Cauchy-
Kowalewski ne l’est que localement: on ne prétend pas affirmer
son existence et sa régularité en dehors d’un certain voisinage
plus ou moins immédiat de la surface S; au contraire, la solution
au probléme de Dirichlet doit étre définie et réguliére dans tout le
volume V considéré, et il est méme aisé de voir que sil’on renonce
a cette condition, le probléme devient largement indéterminé ™.

Confrontons donc les deux résultats en nous placant dans des
conditions entiérement comparables. Considérons une portion de
surface S — par exemple une portion du plan z = 0 — le long
de laquelle nous choisirons arbitrairement (quoique, au besoin,
avec certaines conditions de régularité) des données de Cauchy
et voyons si aux données ainsi assignées correspondra, au moins
dans le voisinage de S, une solution de I’équation (D).

Il faut d’ailleurs encore préciser. Dans les conférences qu’il a
prononcées a l’Université de Paris, en 1913-14, un géometre
américain dont nous déplorons la perte, Maxime Bécher, insistait
a juste titre sur la nécessité de bien définir ce qu’on acceptera
comme solutions d’un probléme de cette espéce, définition qui
n’a pas toujours été assez nettement spécifiée par les auteurs.
Pour le moment, contentons-nous, a ce point de vue, d’observer
que la région de I’espace voisine de S est divisée par cette surface
en deux régions partielles 1 et 2, de sorte qu’on peut se proposer:

soit de trouver une solution valable dans ’une et dans 1’autre
de ces deux régions partielles;

1 11 suffit, par exemple, pour le voir, d’imaginer que le domaine V soit creusé d’une
cavité V', dont 1a frontiére S’ servira également de frontiére supplémentaire au domaine
restant Vy. Sila fonction harmonique cherchée ne doit étre définie que dans Vi, on peut
se donner arbitrairement, non seulement ses valeurs sur S, mais ses valeurs sur S’.
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soit (par analogie avec ce qui se passe dans le probléme de
Dirichlet) de définir une solution d’un co6té seulement de S.

La solution peut-elle exister des deux cotés de S ? Il n’en
peut étre ainsit (la surface S étant elle-méme analytique) que st
les deux données de Cauchy g et h sont analytiquement distribuées
le long de cette surface. En effet, d’aprés une remarque de Duhem
[13], les deux solutions partielles définies respectivement dans 1
et dans 2 doivent nécessairement former, par leur ensemble,
une fonction harmonique unique, laquelle est analytique.

L’existence de la solution méme d’un coté de la surface exige,
entre les deux fonctions g et £, une relation qui, lorsque l'une
d’elles est donnée, définit 'autre & une fonction analytique pres®.
(C’est ce que 'on peut voir en tracant une surface auxiliaire X
qui, avec S, délimite un volume V dans lequel une fonction
harmonique peut étre déiinie par des données de Dirichlet,
coincidant avec g le long de S et arbit: aires le long de X. La
fonction de Green G (M, P relative a \ étant, d’autre part,
analytique dés que les deux points dont elle dépend ne s’ap-
prochent pas 'un de I’autre, on aura, au voisinage de S, '

1
Up = 1o [ /’d—G(dl\g’ P) u, @S + fonct. analyt. = wu; + fonct. analyt.
M
(7)

S

et, par conséquent, on devra avoir, pour la dérivée normale,

h o= d—;—; + fonct. analyt. (7)
En Pabsence d’une relation de cette espece, le probléeme de
Cauchy est impossible. Ce n’est pas lui, mais le probleme de
Dirichlet ou un probléme analogue, qui est ce que nous appelle-
rons « correctement posé », c¢’est-a-dire possible et déterminé.
Cette conclusion, lorsque nous I’avons formulée, a étonné
autour de nous plusieurs géométres. Peu importe, nous a-t-on

1 Lorsque S est plan, ce second probléme se raméne au premier, en supposant I'une
des deux données g, h nulle et étendant la solution d’un c6té i I’autre par réflexion a
la maniére de Schwartz. Mais la méthode indiquée dans le texte a I’avantage de s’étendre
aux surfaces courbes et aussi 4 toutes les équations (linéaires analytiques) du type
elliptique.
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objecté, que les données g, k ne soient pas analytiques, puisque,
d’apres le théoreme classique de Weierstrass, on peut les rem-
placer par des fonctions analytiques (et méme des polynomes) -
avec des erreurs aussi petites qu'on le veut.

La réponse a cette objection met en évidence un aspect
remarquable du probléme. La question n’est évidemment pas
de savoir si I’on commet une erreur trés petite sur des données,
mais si I'on commet une erreur tres petite sur la solution. Or, ici,
les deux sont loin de revenir au méme, comme le montre '’exemple
de ’équation & deux variables indépendantes

2 2
E_u b_iL =0, (5’)
o0x%  dy?
avec les données initiales
u(0,y) =0,

(8)

ou .
B—x({), y) = Asinny .

La fonction A ainsi définie est nécessairement trés petite en
méme temps que le coefficient A. Or la solution, savoir

% sin ny Sh nx , (8})

prend, si petit que soit x (du moment qu’il n’est pas nul) et si petit
que soit A, des valeurs énormes, du moment que 7 est trés grand,
c’est-a-dire du moment que la fonction A est oscillatoire a
période trés courte ™.

1 Lia recherche des surfaces minima se rameéne, comme on sait, & ’intégration de
I’équation (5'), les coordonnées cartésiennes x, y, z étant fonctions harmoniques de deux
parameétres &, 1. Les formules de Schwarz qui déterminent 1a surface S passant par une

ligne donnée L et inscrite le long de cette ligne a une développable donnée JD, sous la

supposition que L et @ soient analytiques, résolvent un probléme de Cauchy relatif a
I’équation (5%). On voit que de trés petites altérations sur la distribution des plans

tangents & Q) le long de la ligne 1. peuvent modifier du tout au tout la forme de la sur-
face cherchée au voisinage, si immeédiat qu’il soit, de L.

Le méme probléme avait, comme on sait [10] été résolu auparavant par O. BONNET
et par BsorLING [3]. Ces travaux — particuliérement les deux Notes d’Ossian Bonnet —
manifestent nettement le point de vue adopté, en la matiére, pendant le siécle dernier.
Il n’y est fait aucune distinction entre une fonction donnée pour des valeurs réelles
de la variable et une fonction définie dans le champ complexe.
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Avant de quitter le probleme de Dirichlet, lequel sera repris
dans les conférences suivantes, rappelons que son exemple est
un de ceux qui illustrent le mieux le précepte rappelé par Bocher.
Il faut définir avec précision chacune des deux propriétés que
Pon impose & la solution cherchée. C’est PaiNLEVE qui, le
premier [31], a précisé ce que ’on doit entendre en disant
qu'une fonction « prend », sur une ligne ou une surface donnée,
des valeurs données. P étant un point déterminé quelconque de
la ligne ou de la surface S en question, M un point du domaine Q
qu’elle limite, il faut que u, tende vers u, lorsque M tend vers P
le long d’un chemin quelconque intérieur a Q.

D’autre part, u doit satisfaire aux équations aux dérivées
partielles. Ceci implique, en principe, Pexistence des dérivées
secondes (au moins celles qui figurent dans I’équation) et, par
conséquent, la continuité des dérivées premieres. On a pu
d’ailleurs remplacer ces conditions par d’autres moins restrictives
dont I’énonciation ne rentre pas dans ’exposé actuel (sauf en un
point dont il sera parlé plus loin). Mais une circonstance remar-
quable est Dapparente contradiction qui existe entre cette
condition et la nature des données de Dirichlet, lesquelles ne sont
nullement assujetties & étre dérivables méme une fois. Il en
résulte que la surface S sur laquelle ont été prises les données de
Dirichlet est en général, pour la solution, une surface singuliére,
la solution ainsi engendrée étant, au contraire, analytique et
holomorphe des qu’'on s’éloigne de cette surface.

Sil’on renonce a cette précision, on peut changer complétement

le caractére du probléme, et celui-ci peut devenir indéterminé.
x

x2 + yz 4 Zz?

harmonique et réguliére dans tout I'intérieur de la sphére

S (22 + y? + 22 — 2ax = 0) et qui, sur toute la surface de cette

Un exemple classique est celui de la fonction u =

\ 1 .
sphére, prend la valeur constante 5—, cect cessant seulement

d’avoir lieu au sens précisé par Painlevé pour lorigine des
coordonnées, non sans qu’il n’y ait encore des chemins intérieurs
a S et aboutissant en O (tous ceux qui ont un contact du second

I
ordre avec S) avec la valeur limite o— pour u.
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