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350 K. MENGER

classiques et des problèmes dont s'occupe la plupart des
mathématiciens.

Nous traiterons d'abord brièvement de quelques-uns des

rapports entre la géométrie métrique et la géométrie analytique
élémentaire des espaces ordinaires. Des remarques concernant
l'algèbre et l'algèbre des vecteurs suivront. Nous passerons
ensuite à l'étude de la convexité dont la théorie générale se lie
étroitement à la géométrie axiomatique de l'espace ordinaire.
Puis, toujours du point de vue des distances, nous introduirons
la notion de courbure qui sera qualifiée pour servir de point de

départ vers une géométrie différentielle. Nous terminerons par
l'étude des lignes géodésiques qui nous fournira des résultats
nouveaux très généraux relatifs au Calcul des variations.

I. — Géométrie des distances et géométrie an alytique
ÉLÉMENTAIRE.

En géométrie analytique élémentaire on prend comme point
de départ de la théorie des espaces euclidiens à n dimensions
la représentation de chaque point par n nombres xti x2, xn
réels ou complexes selon qu'il s'agit de 3'espace réel ou de

l'espace complexe Cn. On appelle carré de la distance des points
(xly x2% xn) et (yv 2/2, yn) le nombre 1

(vi — xii2 + (y* — + • • « + (yn — xn)2 (P

en se réservant de prendre comme distance la racine carrée

positive de l'expression précédente dans le cas où celle-ci est

non négative. Nous appellerons espace à carrés de distances

complexes 2 un ensemble d'éléments quelconques tel qu'à tout

1 Pour les espaces unitaires on fixe comme distance le nombre réel

(y1 — %) (Vi —- Xi) N + (Un — xn) (Vn —

en désignant par x le conjugué l —4% du nombre x £ -f i-n- Il est clair que du
point de vue des distances cet espace unitaire à n dimensions est identique à un espace
euclidien réel à 2n dimensions.

2 On peut généraliser cette notion et parler d'un espace à distances empruntées
à un système donné S, par exemple à un corps de nombres au sens de l'algèbre abstraite
ou à un groupe abstrait. Pour des applications au calcul des variations j'ai récemment;
étudié des espaces dont les distances ne satisfont pas à l'axiome de symétrie (â2). On
pourrait appeler les espaces satisfaisant aux axiomes (âx) et (â2) espaces à distances
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couple p, q de deux de ses éléments il corresponde un nombre pq2

(dit carré de la distance de p ci q) assujetti aux conditions:

Ïp2 o (M

m2 Tpz - (*.)

Dans un espace à carrés de distances complexes tout ensemble

F ne contenant qu'un nombre fini de points, disons k points
Pii P21 ~"> Pki es^ complètement caractérisé par les lê carrés des

distances des points de F entre eux, nombres qui peuvent être

rangés dans une matrice. Il résulte des conditions (A^ et (A2)

que cette matrice est symétrique et que sa diagonale principale
ne contient que des zéros. Une question qui se pose de façon
naturelle est la suivante : Etant donnée une matrice
|| a.. || j 1? 2, k) jouissant des deux propriétés
mentionnées, sous quelles conditions peut-on la réaliser par les

points d'un espace euclidien complexe ou réel, c'est-à-dire
trouver k points al7 a2l ak de cet espace tels que at a) ai?-

(i,j 1, 2, k)?Nous allons donner immédiatement la solution du problème
plus général suivant 1: Etant donné un espace à carrés de
distances complexes G (c'est-à-dire une matrice de nombres en général

infinie), établir les conditions nécessaires et suffisantes pour
qu'on puisse l'appliquer sur un sous-ensemble de l'espace euclidien

à n dimensions, et d'abord de l'espace complexe Cn. De
façon précise, nous établirons les conditions pour qu'on puisse
faire correspondre à chaque point de C un point et un seul de Cn
de sorte que (%, x2, xn) et (yv ?/2, yn) étant les points
de Cn correspondant respectivement aux points p et q de C,

symétriques complexes et réserver le nom d'espace à distances complexes à des
ensembles dont la définition de la distance est assujettie à la condition (z^) seule.

Une étude systématique des espaces à distances non symétriques, par M. Novak,
paraîtra dans le cahier 8 des Ergebnisse e. mathem. Kolloquiums., Wien, 1936.

1 La caractérisation des espaces euclidiens réels et de leurs sous-ensembles au moyen
des conditions (àk) et (&k0) se trouve dans mon mémoire Mathem. Annalen, 100, p. 113.
Pour une nouvelle démonstration voir Amer. Journ. of Math., 53, p. 721. Des remarques
sur C2 et E2,i se trouvent dans Ergebnisse eines mathem. Kolloquiums, 2, p. 34; 4, p.13:
5. p. 10, 16; les critères de Ew>_n dans Tôhoku Math. Journ., 37, p. 475. La caractérisation

générale des sous-ensembles de Gn et Ew>s que nous,allons énoncer est due à M.Wald
et se trouve dans son article, Ergebnisse e. mathem. Kolloquiums, 5, p. 32.
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le nombre pq2 donné avec l'espace C satisfasse toujours à la
condition

pq2 (vi — xi)2 + + (yn — xn)2 •

Appelons déterminant des points /q, /?2, pk le nombre

o 1 1 1 1

^{Pl, P2, - : Pk)

1 0 Pip\pip\ • • • PiPk

1 p%p\ o p%p\ p2p\

t Pzp\PZP[ 0 • • • PzP\

i Kp'IKP'IKPI

Pour qu'un espace à carrés de distances complexes C puisse être

appliqué sur un sous-ensemble de Cn il est nécessaire et suffisant
que

(Aq+0) A(p1?p2, pn 3) 0 pour tout système de n + 3 points de G

(A?+2) A (pj, p2, ...5 pnA o) 0 pour tout système de n 4" 2 points de G

Appelons En la partie de Cn constituée par les points
(x1: xm, xm+u xn), les nombres %, xm étant réels, les
nombres xmJrl, xn purement imaginaires, m étant égal à

- • Posons x- — ix- (j m 1, m + 2, n), x- réel. Le

nombre (1) devient alors

(Vi — xi)2 + - + (ym — xm)2— (ym+1 - r ^ 2
xm H-1 > (y-n

s est la signature de cette forme quadratique. Le En est un
espace à carrés de distances complexes tel que, pour chaque
couple p, q de points, pq2 soit réel.

Nous dirons que l'ensemble F des k points /q, p2, pk est de

rang r s'il satisfait aux conditions (AJ+2) et (A£+3) sans satisfaire

(A£+1), c'est-à-dire si les déterminants de tous les systèmes
de r -f 2 et de r 4- 3 points de F sont nuls, .mais s'il existe un
système r + 1 points dont le déterminant est différent de 0.
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Pour qu'un espace où pq2 est toujours réel jouisse de la propriété
d'être applicable sur un sous-ensemble de En s il est suffisant

(et évidemment nécessaire) que tout système de n -f~ 3 points
de E jouisse de cette même propriété; et pour qu'un système F

de ft + 3 points pv p2, pn+3 soit applicable sur un système
de ft + 3 points de En s il faut et il suffit, r désignant le rang
de F, 1° que l'on ait r < n et que 2° parmi les systèmes de

r + 1 points p1? p2, pr+i de F pour lesquels A (p1? p2f
pr+i) 0 il en existe un, tel que la suite des nombres

A (Pi) 1
• A (pi, p2), A (p1, p2, Ps) 5 ••• j A (p1, p2, > Pr-j_ 1

ne contienne pas deux zéros consécutifs et que le nombre N des

changements de signes qu'elle présente après la suppression des

zéros éventuels satisfasse à l'inégalité

n + s n s

-y- + (r— n) £M ^ -y-
Pour .v - • ,1-•_ m)l'espace En s est évidemment l'espace

n

euclidien réel à n dimensions, le nombre (F) étant V (y^ — x,-)2

qui est toujours positif ou nul; on peut donc prendre comme
distance (non négative) la racine carrée positive de cette expression.

En n jouit en outre de la propriété que ses points sont
métriquement distingués, c'est-à-dire que

p ^zz q implique pq2 ^ 0 (A3)

Un espace à distances non-négatives et qui distingue
métriquement les points est ce que M. Fréchet avait appelé un
espace E. Voici une conséquence importante de la condition A3) :

Une application d'un espace E sur un autre espace E conservant
les distances est nécessairement biunivoque, c'est, comme nous
dirons, une congruence. Un espace E qui peut être appliqué sur
un sous-ensemble d'un espace E est donc applicable sur celui-ci
au moyen d'une congruence et sera dit congruent à ce sous-
ensemble F

1 C'est ainsi que l'espace unitaire à n dimensions est congruent à l'espace euclidien
réel à 2n dimensions.
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Le résultat énoncé plus haut contient donc comme cas
particulier le théorème suivant concernant l'espace euclidien réel

E„(=
Pour qu'un espace E à distances non négatives et distinguant

métriquement les points, soit congruent à un sous-ensemble de En
il est nécessaire et suffisant que Con ait

(A?+3) A(Pi> p2 pn+ o) 0 pour tout système de n-f 3 points de E

(A0" + 2) A(Pl, p2, Pn^o) 0 pour tout système de n -{- 2 points de E

(Ak) sgn A(Pl, p2 pk) (— l)k+1 ou 0

pour tout système de k points de E, où k 2 3 n | 1

Remarquons qu'un espace E contenant plus de n -f- 3 points
et satisfaisant aux conditions (Aft) pour k 2, 3, n + 1 et
à (A?+2) satisfait eo ipso1 à la condition (A? + 3). Pour qu'un
espace séparable E soit congruent à un sous-ensemble de

l'espace de Hilbert il faut et il suffit que les conditions (Ak) soient
satisfaites pour chaque entier k.

II. — La théorie de la convexité et ses relations avec
LA GÉOMÉTRIE AXIOMATIQUE.

Passons à l'étude de propriétés plus géométriques de l'espace
et de ses sous-ensembles. Dans ce but nous considérons un
ensemble d'éléments quelconques tel qu'à tout couple d'éléments
(« points ») p, q il corresponde un nombre réel pq (« distance »

de p et q) qui satisfait à la condition pp 0 pour tout p et à

l'inégalité triangulaire pq + qr > pr pour chaque triplet de

points. Nous appellerons un tel ensemble un espace triangulaire.
Particulièrement importants sont les espaces triangulaires à

distances symétriques, non négatives, et qui distinguent métri-

i Un espace à distances complexes satisfaisant à la condition (AJ • ne satisfait

pas nécessairement à la condition (aJ+3). On trouvera une étude des systèmes de

n + 3 points non congruents à n + 3 points de Ew bien que n -f 2 quelconques de leurs
points soient congruents à n-f 2 points de En dans mon mémoire Mathem. Annalen,
100, p. 124. J'ai appelé de tels systèmes pseudo-euclidiens.
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