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LA GEOMETRIE DES DISTANCES
ET SES RELATIONS AVEC LES AUTRES BRANCHES
DES MATHEMATIQUES !

(GEOMETRIE ELEMENTAIRE, ANALYTIQUE ET AXIOMATIQUE.

ALGEBRE ET ALGEBRE DES VECTEURS. — GREOMETRIE
DIFFERENTIELLE. — (GALCUL DES VARIATIONS)
PAR

Karl MeEnxGER (Vienne).

Le grand progres de la Géométrie au commencement de
I'époque moderne est dii a 'introduction des méthodes analy-
tiques par DEscARTES et FermaT. Cette méthode consiste en la
construction de modéles arithmétiques pour les entités spatiales.
Les points sont définis par des nombres (coordonnées), les
courbes et les surfaces par des équations et la géométrie analy-
tique est I'application de 1’algébre et de I'analyse & ces modeles
arithmétiques.

Cette méthode a enrichi d’un nouveau monde le domaine des
entités géométriques étudiées jusqu’alors et n’a cessé de fournir
depuis sa découverte des problémes sur notre espace. Clest
cette idée encore qui a suggéré la plupart des généralisations
de la conception d’espace: celle de RiemanNN et d’autres qui
ont trouvé application en géométrie différentielle, par exemple
celle de M. FiNsSLER, de méme que celle utilisée dans la géométrie
des nombres par Minkowski. Ces espaces généralisés sont basés
essentiellement sur la représentation de leurs points par des
coordonnées.

1 Conférence faite le 25 octobre 1935 dans le cycle des Conférences internatlionales
des Sciences mathématiques organisées par 1’Université de Genéve; série consacrée a
Quelques questions de Géométrie et de Topologie.
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Malgré son importance historique et ses nombreux avantages
on ne doit cependant pas oublier, me semble-t-il, que d’un point
de vue purement géométrique I’étude des modéles arithmé-
tiques au moyen de ’analyse n’est qu’un procédé entre plusieurs
possibles; ce procédé impose par ailleurs aux recherches des
restrictions assez considérables qui ne sont pas inhérentes a la
nature des figures spatiales.

J’ai été ainsi conduit depuis quelques années a développer
une géométrie qui se passe des modeéles arithmétiques, tout en
s'occupant des problémes relatifs aux notions -classiques:
convexité, courbure, géodésiques, etc. Les points ne sont alors
pas nécessairement définis par des coordonnées, ni les figures
par des équations. La géométrie des distances ou géométrie
métrique est basée sur la donnée d’un ensemble d’éléments
de nature quelconque assujettis & la seule condition qu’a deux
d’entre eux corresponde toujours un certain nombre. Nous
nous placons donc dans I’hypothése d’un de ces espaces
généraux que M. FrEcHET a introduits dans les mathéma-
tiques pour les appliquer au calcul fonctionnel et qui, plus
tard, se sont montrés extrémement féconds pour les recherches
en topologie, en particulier pour les théories de la connexité,
de la dimension, des courbes.

La géométrie des distances ne fait pas partie de la topologie
car elle ne s’occupe pas des transformations homéomorphes, la
distance n’étant pas en général invariante dans une homéo-
morphie. Mais tant par Pétude des espaces généraux que par
ses méthodes elle est assez voisine de la topologie générale
faisant, avec cette derniére, partie de la géométrie « ensembliste »
(mengentheoretische Geometrie).

Bien que récente et peu connue jusqu’a présent, la géométrie
des distances est déja si développée qu'une simple énumération
de tous ses résultats serait impossible en un temps si limité.
Ce que je me propose ici c’est donc seulement de mettre en
évidence quelques-unes de ses liaisons nombreuses et étroites
avec d’autres branches des mathématiques et j’insiste d’autant
plus sur ce point qu’on fait parfois & la géométrie des ensembles
le reproche de se détacher complétement des mathématiques
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classiques et des problémes dont s’occupe la plupart des mathé-
maticiens.

Nous traiterons d’abord briévement de quelques-uns des
rapports entre la géométrie métrique et la géométrie analytique
élémentaire des espaces ordinaires. Des remarques concernant
Palgeébre et I'algébre des vecteurs suivront. Nous passerons
ensuite & I’étude de la convexité dont la théorie générale se lie
étroitement a la géométrie axiomatique de l'espace ordinaire.
Puis, toujours du point de vue des distances, nous introduirons
la notion de courbure qui sera qualifiée pour servir de point de
départ vers une géométrie différentielle. Nous terminerons par
Iétude des lignes géodésiques qui nous fournira des résultats
nouveaux tres généraux relatifs au Caleul des variations.

I. — GEOMETRIE DES DISTANCES ET GEOMETRIE ANALYTIQUE
ELEMENTAIRE.

En géométrie analytique élémentaire on prend comme point
de départ de la théorie des espaces euclidiens a n dimensions
la représentation de chaque point par n nombres xy, ,, ..., T,
réels ou complexes selon qu’il s’agit de I'espace réel ou de
I’espace complexe C,. On appelle carré de la distance des points

(xh 332, (AR xn) et (?/17 y23 A Z/n) le nombre 1

(yg — 20 + (Yo — x>+ - . . + (yn——xn)z (1)
en se réservant de prendre comme distance la racine carrée
positive de I’expression précédente dans le cas ou celle-ci est
non négative. Nous appellerons espace & carrés de distances
complexes * un ensemble d’éléments quelconques tel qu’a tout

1 Pour les espaces unitaires on fixe comme distance le nombre réel
Wy — %) W —x1) + o+ Wy — ) Yy — Xy)

en désignant par; le conjugué & — in du nomibre x = & -+ in. Il est clair que du
point de vue des distances cet espace unitaire & n dimensions est identique & un espace
euclidien réel & 2n dimensions.

2 On peut généraliser cette notion et parler d’un espace a distances empruntées
A un systéme donné S, par exemple & un corps de nombres au sens de 1’algébre abstraite
ou & un groupe abstrait. Pour des applications au calcul des variations j’ai récemment
étudié des espaces dont les distances ne satisfont pas & 'axiome de symeétrie (3,). On
pourrait appeler les espaces satisfaisant aux axiomes (4,) et (4,) espaces a distances
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couple p, ¢ de deux de ses éléments il corresponde un nombre p¢?
(dit carré de la distance de p d q) assujetti aux conditions:

pp® =0, (Aq)
pg = qp* . (Ag)

Dans un espace a carrés de distances complexes tout ensemble
F ne contenant qu’un nombre fini de points, disons & points
D1, Doy -y Ppy €St complétement caractérisé par les k2 carrés des
distances des points de F entre eux, nombres qui peuvent étre
rangés dans une matrice. Il résulte des conditions (A;) et (A,)
que cette matrice est symétrique et que sa diagonale principale
ne contient que des zéros. Une question qui se pose de facon
naturelle est la suivante: Itant donnée wune matrice
| o |l (5,7 = 1,2, .., k) jouissant des deux propriétés men-
tionnées, sous quelles conditions peut-on la réaliser par les
points d’un espace euclidien complexe ou réel, c’est-a-dire
trouver k points ay, a,, ..., @, de cet espace tels que g; a; = a;;
(t,] = 1,2, ..., k)?

Nous allons donner immédiatement la solution du probléme
plus général suivant !: Etant donné un espace & carrés de dis-
tances complexes (. (¢’est-a-dire une matrice de nombres en géné-
ral infinie), établir les conditions nécessaires et suffisantes pour
qu’on puisse 'appliquer sur un sous-ensemble de I’espace eucli-
dierr & n dimensions, et d’abord de I’espace complexe C,. De
fagon précise, nous établirons les conditions pour qu’on puisse
faire correspondre-a chaque point de C un point et un seul de C,
de sorte que (x4, Xy, ..., ) et (yq, ¥y, ..., ¥,) €tant les points

¢

de C, correspondant respectivement aux points p et ¢ de C,

symélriques complexes el réserver le nom d’espace & distances complexes a des
ensembles dont la définition de la distance est assujettie a la condition (4,) seule.

Une étude systématique des espaces & distances non symétriques, par M. NOVAK,
paraitra dans le cahier 8 des Ergebnisse e. mathem. Kolloguiums., Wien, 1936.

1 La caractérisation des espaces euclidiens réels et de leurs sous-ensembles au moyen
des conditions (Ak) et (Ako) se trouve dans mon mémoire Mathem. Annalen, 100, p. 113.
Pour une nouvelle démonstration voir Amer. Journ. of Math., 53,p.721. Des remargques
sur C, et E,,; se trouvent dans Ergebnisse eines mathem. Kolloguiums, 2, p. 34; 4, p.13:
5, p. 10, 16; les critéres de En,_n dans Téhoku Math. Journ., 37, p. 475. La caractérisa;
tion générale des sous-ensembles de C,, et E,, s que nous.allons énoncer est due 4 M. WaLD
et se trouve dans son article, Frgebnisse e. mathem. Kolloquiums, 5, p. 32.
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le nombre pg* donné avec P'espace C satisfasse toujours a la
condition
P =l — ) Yy — 2,2

Appelons déterminant des points p,, ps, ..., p, le nombre

o 1 1 1 ... 1
P) 2 o2
T 0 pip,ap, - - - P1Pp
1 P—z—l;; 0 PzP; R 29 2
A(pla P2s - pk) - - 9 9 2
T psp,psp, 0 - . . Papy,
2 2 2
v ppp,PpP,Prp, - - - U

Pour qu’'un espace a carrés de distances complexes C puisse étre
appliqué sur un sous-ensemble de C, il est nécessaire et suffisant
que

(A?”) A(pPy1, P2y s Ppog) = O pour tout systeme de n + 3 poinis de G

(A(Y,HQ) A(pq, p'z, ey pn».LQ) = 0 pour tout systéme de n - 2 points de C .

Appelons E, . la partie de C, constituée par les points
(T1y ooy Ty Ty gy ey Z,), les nombres zy, ..., x,, étant réels, les
nombres z,,., ..., 2, purement imaginaires, m étant égal a
n-s

9

=

Posons z; == iz; (j =m + 1, m 4 2, ..., n), x; réel. Le

nombre (1) devient alors
(yp—29) %+ ... + (Y, — %) — (yWH_,1 - xm%_l)zu o= Yy — ) ? - (1)

s est la signature de cette forme quadratique. Le E, , est un
espace a carrés de distances complexes tel que, pour chaque
couple p, ¢ de points, pg? soit réel.

Nous dirons que '’ensemble F des k& points py, p,, ..., p, est de
rang r §’il satisfait aux conditions (A}*%) et (A)*3) sans satis-
faire (A";‘*’i), c’est-a-dire si les déterminants de tous les systemes
de r + 2 et de r -- 3 points de I sont nuls, mais s’l existe un
systéme r -~ 1 points dont le déterminant est différent de O.

b
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Pour qu’un espace ol pg? est toujours réel jouisse de la propriété
d’8tre applicable sur un sous-ensemble de E, . il est suffisant
(et évidemment nécessaire) que fout systéme de n -+ 3 poinis
de E jouisse de cette méme propriété; et pour qu'un systéme F
de n -+ 3 points p;, Pa, -y Pposg S0it applicable sur un systéeme
de n + 3 points de E, il faut et il suffit, r désignant le rang
de F, 10 que on ait »r <n et que 2° parmi les systémes de
r 4+ 1 points py, Pa, .- Prsy de F pour lesquels A(py, po, -y
pry) 7 0 il en existe un, tel que la suite des nombres

Alpy) = —1, A(PuPz): A(p13p2ap3)7 ey A (p1s Pss "'rpr-.L'l)

ne contienne pas deux zéros consécutifs et que le nombre N des
changements de signes qu’elle présente aprés la suppression des
zéros éventuels satisfasse & l'inégalité

4«

n S

+(r~—n)§N<_v

o

Pour s = n (= m) Pespace E, ; est évidemment I'espace
n

euclidien réel & n dimensions, le nombre (1°) étant > (y; — x;)?
=1

qui est toujours positif ou nul; on peut donc prendre comme

distance (non négative) la racine carrée positive de cette expres-

sion. K, , joutt en outre de la propriété que ses points sont

métriquement distingués, c’est-a-dire que
p # g implique pg* 5= 0 . (Ay)

Un espace a distances non-négatives et qui distingue métri-
quement les points est ce que M. FrEcHET avait appelé un
espace E. Voici une conséquence importante de la condition (A;):
Une application d’un espace E sur un autre espace E conservant
les distances est nécessairement biunivoque, c¢’est, comme nous
dirons, une congruence. Un espace E qui peut étre appliqué sur
un sous-ensemble d’un espace E est donc applicable sur celui-ci
au moyen d’une congruence et sera dit congruent & ce sous-
ensemble 1

1 C’est ainsi que I’espace unitaire & n dimensions est conoluent a I’espace euclidien
réel a 7n dimensions.
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Le résultat énoncé plus haut contient donc comme cas parti-
culier le théoreme suivant concernant I’espace euclidien réel
E, (=E

Pour qu'un espace E a distances non négatives et distinguant
métriguement les points, soit congruent & un sous-eisemble de E,,
il est nécessaire et suffisant que l'on aut

n,n)

(A(I)H”3) A(pys P2y - Pyig) = 0 pour tout systéme de n -+ 3 pownts de &,
(A{)1+2) A(py, Pas -y Ppyq) = 0 pourtout systéme den + 2 points de K,

(Ak) sgn A(py, Pa - pk) = 1)k+1 ou 0

pour tout systéme de k points de i, ou k = 2, 3, ..., n + 1.

Remarquons qu’un espace E contenant plus de n + 3 points
et satisfaisant aux conditions (A*) pour &k = 2,3, ..., n 41 et
a (APT?) satisfait eo ipsol a la condition (A?*%). Pour qu'un
espace séparable E soit congruent a un sous-ensemble de 1'es-

pace de Hiuerr il faut et il suffit que les conditions (A*) soient
satisfaites pour chaque entier k.

II. — LA THEORIE DE LA CONVEXITE ET SES RELATIONS AVEC
LA GEOMETRIE AXIOMATIQUE.

Passons & I’étude de propriétés plus géométriques de I'espace
et de ses sous-ensembles. Dans ce but nous considérons un
ensemble d’éléments quelconques tel qu’a tout couple d’éléments
(«points») p, ¢ il corresponde un nombre réel pg (« distance »
de p et ¢g) qui satisfait & la condition pp = 0 pour tout p et &
P'inégalité triangulaire pg + gr = pr pour chaque triplet de
points. Nous appellerons un tel ensemble un espace triangulaire.
Particuliérement importants sont les espaces triangulaires a
distances symétriques, non négatives, et qui distinguent meétri-

e . N ¥ . i 12 & .

1 Un espace a distances complexes satisfaisant & la condition (AZT ) ne satisfait
pas nécessairement a la condition (L\ZL+5). On trouvera une étude des svstémes de
n + 3 points non congruents & n + 3 points de E, bien que n 4 2 quelconques de leurs

points soient congruents &4 n + 2 points de E, dans mon mémoire Mathem. Annalen,
100, p. 124. J’ai appelé de tels systémes pseudo-euclidiens.
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quement les points, c’est-a-dire tels que pg = gp > 0 si p=¢
et pp = 0; ou bien, ce qui revient au méme, tels que chaque
triplet de points soit congruent & un triplet de points du plan
(3 un triangle euclidien) !. L’introduction de ces espaces est
due a M. Fricuer. On les appelle espaces métriques ou,
d’aprés M. Bouricanp, espaces distanciés. Comme exemples
d’espaces triangulaires nous avons les espaces euclidiens de
toutes dimensions et ’espace de Hilbert.

I1 est bien naturel lorsqu’on a une inégalité d’étudier les cas
ou elle devient une égalité. Dans le cas d’un espace euclidien
la relation pg + ¢r = pr a lieu pour trois points p, ¢, r distincts
deux & deux, lorsque ¢ est situé sur le segment joignant p et r,
donc entre p et r, et seulement dans ce cas. Posons donc comme
définition pour un espace distancié général qu’un point ¢
est point intermédiaire entre p et r, ou plus simplement est
entre p et rsi p 3% g~ r et pg + gr = pr. Cette notion ne jouit
pas, dans les espaces généraux, de toutes les propriétés qu’elle
possede sur la ligne droite. Considérons par exemple ’espace
distancié constitué par quatre points p, ¢, r, s ayant les
distances pg = gr =rs = sp = 1, pr = ¢gs = 2. Il est clair
que g est entre p et r, et que r est entre ¢ et s, sans que ¢ ou r
soient entre p et s. La relation de point intermédiaire a cependant
assez d’affinités avec la relation bien connue sur la ligne droite
pour que la dénomination de point situé «entre» deux autres
soit justifiée. Ille jouit notamment des propriétés suivantes:
Si g entre p et 7, alors ¢ entre r et p, mais r non entre p et q.
Si g entre p et r, et r entre p et s, alors ¢ entre p et s, et r entre ¢
et s. L’ensemble constitué par p et ¢ et lears points intermédiaires
est fermé.

Nous appelons convexe un sous-ensemble d’un espace dis-
tancié qui contient pour chaque couple de points différents
p et r au moins un point ¢ situé entre p et r. On a alors le théoréeme
sutvant: Un sous-ensemble fermé convexe d’un espace distancié
complet contient pour tout couple de points distincts p et q un
segment qui les joint, c¢’est-a-dire un sous-ensemble contenant

1 Pour un espace & distances non négatives ’inégalité triangulaire équivaut A - la
condition (a3),
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p ¢t ¢ et congruent & un segment de la ligne droite au sens ordi-
naire du mot dont la longueur est égale 3 la distance pg . On
déduit immeédiatement de ce théoreme qu’un sous-ensemble
fermé d’un espace euclidien est convexe §’il est convexe au sens
classique de Minkowsk1 et seulement dans ce cas. Remarquons
d’ailleurs que dans un espace distancié convexe général il peut
arriver que deux points puissent étre joints par plusieurs seg-
ments. La surface d’une sphére & trois dimensions dans laquelle
nous prenons comme distance la longueur du plus petit arc
du grand cercle qui les joint, nous en fournit un exemple.
(C’est un espace convexe et complet, qui contient pour tout
couple de points diamétralement opposés une infinité de seg-
ments qui les joignent.

Du point de vue topologique la notion de convexité est sinon
identique du moins treés voisine de celle de connexité et de
connexité locale. Nous n’avons pas résolu la question de savoir
si ’hypothese — pour un espace distancié compact — d’étre
connexe et localement connexe est non seulement nécessaire
mais encore suffisante pour que l’espace soit homéomorphe a
un espace distancié convexe. Indiquons trois conditions qui
sont suffisantes pour qu'un espace distancié soit homéo-
morphe & un espace convexe: 1° Deux points quelconques
peuvent étre joints par un arc de longueur finie. 20 p et ¢ étant
deux points distinets, la borne inférieure des longueurs de tous
les ares joignant p et g, est > 0. 39 A tout € > 0 donné a 'avance,
il correspond un & > O tel que deux points quelconques dont
la distance est << 3. puissent étre joints par un arc de lon-
gueur << e. En faisant alors correspondre a tout couple de
points p, ¢ de D la borne inférieure des longueurs de tous
les arcs joignant p et ¢ ou, comme nous dirons, la distance
interne de p et ¢, nous cbtenons un espace distancié convexe D’
homéomorphe a D. (Les segments de D’ correspondent aux
arcs géodésiques de D.)?

1 Les notions de point intermédiaire et de convexité et leurs théories sont déve-
loppées dans mon mémoire Mathem. Annalen, 100, p. 75. Une nouvelle démonstration
de I'existence d’un segment sous les conditions mentionnées a été donnée par M. ARON-
szAIN, Ergebnisse e. mathem. Kolloqguiums, 6, p. 45.

2 Cf. mon mémoire dans le Mathem. Annalen, 100, p. 96. Cf. aussi Horr und RINOW,
Comment Math. Helvet., 3.
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La théorie de la convexité se relie & 'axiomatique de la géo-
métrie élémentaire, en particulier aux Anordnungsaxiome de
Pascu, HiLserT et de I’école américaine. L’étude des propriétés
découlant de la notion de convexité permet, & partir de ’espace
triangulaire complet, d’obtenir des espaces de plus en plus
particularisés de ce point de vue, et finalement certaines carac-
térisations des espaces linéaires et euclidiens.

Nous dirons, pour esquisser ce chemin, qu'un ensemble dans
un espace distancié est extérienrement convere s’il contient,
pour chaque couple de points p et ¢, au moins un point r tel que
g soit entre p et r. Upn ensemble fermé, a la fois convexe et
extérieurement convexe dans un espace complet contient pour
chaque couple de points différents une «drotte » qui les joint,
c’est-a-dire un sous-ensemble contenant p et g, congruent avec
une droite au sens ordinaire du mot. Pour que tout couple de
points distincts d’un espace complet, convexe et extérieure-
ment convexe détermine une droite et une seule les joignant,
il faut et il suffit que Pespace jouisse de la propriété suivante
que ]’al appelée propriété des deux triplets: Etant donné quatre
points distincts deux & deux, Uexistence de deux triplets linéaires
entraine la linéarité des deux autres triplets. (Nous dirons que le
triplet p, q, r est linéaire lorsqu’un de ses points est situé entre
les deux autres.)

En ajoutant les conditions d’étre complet, convexe et exté-
rieurement convexe aux conditions qui caractérisent les espaces
distanciés congruents aux sous-ensembles des espaces eucli-
diens réels (se reporter au Chapitre I), nous obtenons la caracté-
risation des espaces euclidiens réels eux mémes parmi les
espaces distanciés. Mentionnons encore que le point de départ de
ces recherches fut un théoréme de M. BiepErMANN ! que nous
énoncerons ici de la facon suivante: Pour qu’un espace dis-
tancié compact et convexe soit congruent & un segment, il
faut et il suffit qu’il contienne plus d’un point et que tout triplet
de ses points soit linéaire.

Pour parvenir graduellement des espaces convexes et extérieu-
rement convexes aux espaces linéaires et euclidiens il suffit

1 Cf. Mathem. Annalen, 100, p. 114.
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d’exclure Pexistence dans l'espace de certaines singularités
simples. Il s’agit des deux figures suivantes qui ne se rencontrent
pas dans les espaces linéaires:

1. La fourchette: somme de trois segments pq, qr, gs n’ayant
en commun deux a deux que le point ¢ situé a la fois entre
p et r, et entre p et s.

2. L’étrier: somme de quatre segments pq, qr, rs, ps qui n’ont
en commun que des extrémités et tels que s soit entre p et r,
et r entre ¢ et s.

Si les points ¢ et r d’un étrier sont situés entre p et s, I’étrier
est somme de deux segments de mémes extrémités (a savoir de
p et s), et nous parlerons d’une lentille, par exemple: la somme
de deux demi-grand-cercles d’une sphére. Notons deux configu-
rations particuliéres intéressantes: 19 Le cercle, ensemble
congruent a un cercle au sens ordinaire ou 'on a pris comme
distance de deux points la longueur du plus petit arc qui 8’y
termine. Le cercle constitue un étrier entre deux quelconques
de ses points, il constitue plus particulierement une lentille
entre deux de ses points diamétralement opposés. 20 Le triédre
convexe, somme de trois segments pg, ¢gr, ¢s n’ayant en com-
mun deux & deux que le point ¢ situé a la fois entre p et r,
entre p et s, entre r et s.

Les espaces distanciés sont par définition des espaces E
satisfaisant a la condition (A3), c’est-a-dire des espaces E dont.
chaque triplet de points est congruent a un triangle euclidien.
M. W. A. WiLsoN a récemment étudié?! les espaces I satisfai-
sant aux conditions (A3%) et (A%), c’est-a-dire des espaces E
dont chaque quadruplet de points est congruent & un tétraedre
euclidien — par analogie nous pourrons appeler ces espaces:
espaces tétraédrauxr — et 11 a obtenu le résultat intéressant
suivant: Pour qu'un espace séparable et complet soit congruent
a un espace euclidien ou a I’espace de Hilbert il faut et il suffit
qu’il soit convexe, extérieurement convexe et tétraédral. Ren-
voyons le lecteur en terminant & un mémoire intéressant sur
la sphére a n dimensions par M. L. M. BLUMENTHAL 2.

1 Amer. Journ. of Malth., b54.
2 Amer. Journ. of Math., 57.
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III. — GEOMETRIE DES DISTANCES ET ALGEBRE DES VECTEURS.

Les conditions (A") et (A¥) du chapitre I étant de nature
algébrique, les résultats de cette théorie permettent des appli-
cations dans le domaine de I’algébre. Bornons-nous ici & men-
tionner les beaux résultats de M. L. M. BLUMENTHAL sur les
déterminants *. Nous allons entrer un peu plus dans le détail
en ce qui concerne I’algebre des vecteurs 2.

Désignons par ensemble métrique de vecteurs un ensemble V
d’éléments de nature quelconque appelés vecteurs, tel qu’a
tout couple ¢ et w de ses éléments corresponde un nombre
réel (¢w) assujetti aux conditions

(L) (ow) = (wo)
() o # wimplique (00) + (ww) 2= 2 (ow).

Le nombre (¢w) sera dit : produit scalaire des vectears ¢ et w.
Etant donné k éléments ¢4, ¢,, ..., ¢, de V, nous introduirons
leur déterminant de Gram I’ (¢4, ¢4, ..., ¢3)

(0191) (099q) - - . (91"1;)

(0201) (0200) -« . (020)
I‘(Vla()z: ’ Qk):

(95, 91) (9590) -« - (9p vk)

Un exemple d’ensemble métrique de vecteurs nous est fourni
par la famille des vecteurs d’un espace euclidien & un nombre
quelconque de dimensions, en entendant par produit scalaire de
deux vecteurs le produit scalaire au sens habituel.

A quelles conditions un ensemble métrique de vecteurs V
est-il isomorphe & un ensemble de vecteurs d’un espace euclidien
a n dimensions E, ? C’est-a-dire trouver les conditions pour qu’on
puisse faire correspondre a tout élément de V un vecteur de E,
de facon que ¢’ et w’ étant les vecteurs homologues & deux

1 Bull. Amer. Math. Soc., 37, 38 et Amer. Journ. Math., 56.

2 On trouve la théorie suivante esquissée dans.ma note: Ergebnisse e. mathem.
Kolloquiums, 5, p. 27.
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éléments ¢ et w quelconques de V, on ait toujours (¢w) = (¢" w').
Voici un groupe de conditions a la fois nécessaires et suffisantes:

(T8FY) T (000, 0

s Opig) =

pour tout systéme de n + 1 vecteurs ¢, 05, ..., ¢, de V.
k "
() T ooy, 09, 00y0) 2> 0

pour tout systéme de k (k = 1, 2,..., n) vecteurs ¢;, ¢y, ..., ¢, de V.

De plus, dans le cas ot V consiste en n + 2 vecteurs exacte-
ment, il faut adjoindre aux conditions précédentes la condition

<Fgl+2> F(‘)l‘) (’2, ey O?’HJB) — O .

Pour démontrer ce théoréme, il suffit de se reporter & ce qui a été
fait dans le chapitre 1. Posons comme carré de la distance de deux
éléments ¢ et w de V le nombre w2 = (v¢) + (ww) — 2 (vw).
Nous définissons ainsi un espace E, soit V’; les conditions
(A)), (A,) et (A;) auxquelles doit satisfaire ¢w? sont en effet
des conséquences immeédiates de (I') et (IV). Et la condition
nécessaire et suffisante pour que V soit isomorphe & un en-
semble de vecteurs de l’espace euclidien E, (auxquels on a
donné la méme origine p,) c’est que V' soit applicable sur
Iensemble des extrémités de ces vecteurs. On déduira alors
de (I'™h, (I'y(k = 1,2, ...,n) les conditions (AF"?) et
(A" (k= 2,3, ..., n -~ 1) en tenant compte de la relation

Alpy, Drs woor b)) = (— 215 T (0g, 03, ooy 0p)

——

ou ¢; désigne le vecteur pyp;.

Dans un ensemble métrique de vecteurs satisfaisant a la
condition (I'?) le carré de la distance de deux vecteurs est
toujours non-négatif ! et nous pourrons introduire la notion de

1 0n a
V4 U V4 T
e B
La condition (I'2) n’est autre que l’inégalité de Schwarz (v, v,) (vy vg) > (v; V)2,
Cette condition entraine l’inégalité (vv) + (ww) > 2 (vw). Pour le montrer il suffit
de prouver I’impossibilité de la relation (vv) + (ww) <_2 (vw). Or celle-ci élevée au
carré impliquerait (vv)2 + 2 (vv) (ww) -+ (ww)2 < 4 (vw)2 < & (vv) (ww), d’oul
(v0)2 — 2 (vv) (ww) -+ (ww)2 < 0, ce qui est évidemment impossible, le premier

'(vy, vy) = = (v5 vy) (Vg Vy) — (v Vs)2.
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vecteur intermédiaire. Nous dirons que le vecteur ¢ est entre
les vecteurs u et w lorsqu’on a:
ou bien

Tu,w 20, Tu,e,w) =0, T'u,9)+T(,o)=1TI(@,w)

ou bien

T(u, w) = 0, uo + ow = uw>

en entendant par zy la détermination positive du radical 4/

L’ensemble de vecteurs V peut étre appelé convexe et extérienre-
ment convexe lorsqu’il contient pour tout couple d’éléments u
et w au moins un élément ¢ entre u et w, et au moins un élément x
tel que w soit situé entre u et x. Pour qu’'un ensemble de vec-
teurs V soit isomorphe & ’ensemble de tous les vecteurs de E,,
il faut et il suffit qu’il soit complet, convexe et extérieurement
convexe, que les déterminants de Gram soient nuls pour tout
systéeme de n 4 1 vecteurs et non négatifs pour tout systéme
en contenant moins de n + 1, et enfin qu’il existe n vecteurs
dont le déterminant de Gram est === 0.

Un corollaire intéressant de notre théoréme est que les opé-
rations d’addition de deux vecteurs et de multiplication d’un -
vecteur par un nombre peuvent étre définies dans un ensemble
métrique de vecteurs. En d’autres termes, pour développer
Palgebre des vecteurs il suffit de prendre comme point de départ
la seule notion du produit scalaire au lieu des trois opérations:
addition, multiplication par un nombre et multiplication
scalaire, qui ont servi de bases jusqu’a présent. En effet, étant
donné deux vecteurs u et w et un nombre A nous appellerons Au
le vecteur u' tel que I' (u, u’) = 0 et (uu’) = A (uu), et nous
appellerons u -+ ¢ le vecteur w pour lequel T (u, ¢, w) = 0,
I‘(u, %) = I‘(a, %) :% I'(u, 0) s1 I'(u, ¢) £ 0 et (ww) =
(uw) + (¢ew) st I' (u, v) = O.

L’existence et 'unicité des vecteurs u’ et w et les lois ordi-
naires de ces opérations d’addition et de multiplication par

membre étant egal & [(vv) — (ww)]2. La condition (I'2) permet donc -de préciser (I'1)
sous la forme

v # w implique (v) 4 (ww) > 2 (vw) .

L’Enseignement mathém., 35me année, 1936. d W
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un nombre sont garanties si ’ensemble de vecteurs est complet
convexe et extérieurement convexe et jouit des propriétés (I').

Les recherches de MM. WiLson et BLUMENTHAL mentionnées
a la fin du Chapitre II admettent de méme une traduction dans
le langage de l'algébre des vecteurs. En particulier il découle
du théoreme de M. Wirson (p. 358), comme !’a remarqué
M. BLuMENTHAL, qu'un ensemble de vecteurs séparable et
complet est isomorphe a un espace vectoriel euclidien ou hilber-
tien si les conditions

I' (¢4, ¢5) = 0 pour tout couple ¢, ¢, de vecteurs (I'?)

T' (9105, 95) > 0 pour tout triplet ¢;, v,, 5 de vecteurs (I'3)

sont satisfaites ou, ce qui revient au méme, si tout triplet de
vecteurs est isomorphe & un triplet de vecteurs de E, résultat
qui a été obtenu directement par MM. FrRECHET, v. NEUMANN
et Jorpan 1.

IV. — LA COURBURE DANS LA GEOMETRIE DES DISTANCES
ET LA GEOMETRIE DIFFERENTIELLE.

Nous avons, dans les chapitres précédents, traité, en nous
placant au point de vue de la géométrie des distances, des pro-
blémes ou ’espace et ses sous-ensembles interviennent globale-
ment. Mais cette géométrie permet aussi 'étude des propriéiés
locales des variétés spatiales, et pénetre ainsi dans un domaine
ou a triomphé jusqu’alors brillamment et exclusivement la
méthode analytique; cette méthode s’appliquait si bien a cette
étude qu’on a fini par identifier la théorie des propriétés locales
des figures avec la géométrie différentielle: application de
Panalyse, surtout du calcul différentiel, aux modeles arithmé-
tiques représentant les figures. Et méme M. Bouricanp qui a
eu le mérite en créant sa Géométrie infinitésimale directe d’intro-
duire 'analyse moderne, en particulier la théorie des fonctions
de wvariable réelle, dans ’étude des propriétés géométriques
locales — se borne a I’étude d’espaces ou chaque point est (ou
pourrait étre) caractérisé par un systéme de coordonnées.

1 Annals of Mathem., 36, p. 705, p. 719.
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L’idée d’une géométrie différentielle sans coordonnées semble
encore aujourd’hui presque absurde & la plupart des géometres;
cependant la géométrie des distances a déja résolu le probléme
si important de la courbure d’une facon qui laisse pressentir,
comme nous le disions dans I'introduction, que la méthode
analytique, bien qu’elle ait joué jusqu’alors un role prépondé-
rant, n’est ni la seule possible, ni celle présentant le plus de
généralité, ni peut-étre méme la plus conforme & la nature
géométrique des problémes.

Soit D un espace distancié, ¢, r, s trois de ses points, il
existe trois points ¢’, r’, s’ dans le plan euclidien tels que les
triplets ¢, r, s et ¢, r’, s’ sont congruents. Si p désigne le rayon
du cercle circonscrit au triangle ¢’, r’, s’, — en convenant de
poser p = o siq¢’, 7', s sont en ligne droite — nous appellerons
courbure du triplet ¢, r, s de ’espace distancié et nous dési-

: T
gnerons par x (¢, r, s) 'inverse de cerayon, ¢’est-a-dire . Cette

courbure seranulle quand les trois points seront linéaires (p. 357)
et seulement dans ce cas; et la propriété du segment due &
M. BieperMANN (p. 357) peut alors s’énoncer ainsi: Pour qu’un
arc — c’est-&-dire un espace triangulaire homéomorphe & un
segment — soit congruent & un segment, il faut et il suffit que
tout triplet de points lui appartenant ait une courbure nulle.

Cet énoncé ne correspond pas a celui de la géométrie diffé-
rentielle concernant les propriétés caractéristiques de la droite,
qui fait intervenir une courbure définie en chaque point. Dans
un espace distancié nous pouvons, cependant, aussi introduire
une courbure locale, et cela de la facon suivante 1: Nous dirons
que D a la courbure » (p) au point p, si & tout ¢ > 0 donné a
'avance, il correspond un 8 > 0 tel que pour tout triplet ¢, r, s
de points de D, dont la distance & p est < §, nous ayons
| % (g, 7, 8) —x%(p)| <e.

On peut alors se demander si un arc dont la courbure est
nulle en chaque point est congruent & un segment. Il n’en est
pas nécessairement ainsi: Prenons pour D Pensemble des points z

1 Cette notion de courbure et sa théorie est dévefoppée dans mon mémoire: Mathem..
Annalen, 103.
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de I'intervalle —1 <z <1 et comme distance des points z
et y le nombre

| x — y | si z et y ont le méme signe,

|z | + |y | — 2%y? si x et y sont de signes contraires.

D est alors un espace distancié homéomorphe au segment
— 1 = 2 = 1 de la droite euclidienne, dont la courbure est
nulle en chaque point. Cependant cet arc n’est pas congruent
& un segment, comme le montre la considération du triplet
— 1, 0, 1 dont les points ont deux a deux la méme distance.

J’ai néanmoins démontré par des méthodes purement mé-
triques qu'un arc appartenant @ un espace euclidien dont la
courbure est partout nulle est un segment, et ainsi fut établi un
théoréme de géométrie différentielle sans I'usage du calcul
différentiel.

Comparé avec la définition classique de la courbure, la défi-
nition métrique est plus générale dans ce sens qu’elle s’applique
aux espaces distanciés généraux. Mais dans le cas des espaces
euclidiens MM. HaupT et ALt ont remarqué ' que ma définition
de la courbure était plus restrictive que la définition classique.
Si ’arc y = y (x) du plan euclidien admet au point p, = (x,, ¥,)
une courbure % (p,) au sens précédemment mentionné — disons
une courbure métrique la dérivée seconde y”(z,) existe et

y” (%)

la courbure classique — est égale a x(p,). Inversement,
[1 4 y"2(zo) ]

un arc peut posséder au point p, = (x,, y,) une courbure au sens

classique —2 ,(x") 5, sans posséder une courbure métrique;
) [1 -+ y'2(xg) ] ) ) . '
celle-ci est en effet une fonction continue du point ce qui n’est

pas nécessairement le cas pour la courbure classique, comme

le montre ’exemple de la courbe y = x* sin ~%pour le point
M. Avt a modifié 2 de la facon suivante la notion de la courbure

métrique: au lieu de considérer des triplets ¢, r, s ou les trois
points sont variables, il se borne a la considération des triplets

1 Cf. Ergebnisse e. mathem. Kolloquiums, 3, p. 4.
2 Dans sa thése présentée 4 Vienne. Voir aussi: Ergebnisse e. mathem. Kolloquiums,

3, p. 5 et &, p. 4.
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p, ¢, r ou deux points seuls sont variables. Il dit que D a la
courbure x (p) au point p, »(p) étant un nombre fini, si1 & tout
¢ > 0 donné & 'avance, il correspond un 3 > O tel que, pour
tout couple de points ¢, r, dont la distance & p est < 3, nous
ayons | »(p, ¢, r) — »(p) | < e. Cette définition (valable dans
~ tout espace distancié) appliquée aux courbes d’un espace eucli-
dien est un peu plus générale que la définition classique ®.
M. ALT a montré que la condition nécessaire et suffisante pour
que la courbe y = f(x) — ou f est une fonction définie dans
un voisinage de x, qui n’admet pas une dérivée infinie pour
x = x, — possede au point (z,, ¥, = f(x,)) une courbure, & son
sens, c’est que f'(xz,) existe et que les deux expressions

T =1 w) L@ =T

tendent toutes deux vers une limite finie, ces deux limites étant
eégales 2, quand x tend vers x,; f et | désignent respectivement
la dérivée supérieure et inférieure de la fonction f (celles-ci
pouvant prendre les valeurs + oo et — o).

M. Pauc a montré récemment qu’en prenant comme définition
de la dérivée seconde pour la valeur z = z,, la limite finie, si
elle existe, de I’expression

flzg + B) — flz)  flzo + k) — f (%)
h k
(h — k)
2

quand % et k£ tendent indépendamment I'un de I’autre vers 0,
cette nouvelle définition coincide avec la définition classique
lorsque f'(z) existe dans un voisinage de z, L’existence de

I M. GODEL a proposé la définition suivante qui est encore plus générale: Disons
que I’arc D a la courbure « (p) au point p, si & tout - > 0 donné & I’avance, il correspond
un 3 > 0 tel que, pour tout couple de points q,r, de part et d’autre de p, dont la distance
a p est <$§, nous ayons |z (p, ¢, 7) — x (p) | < -.

2 M. Pauc a remarqué que quand f’(xo) et les limites des deux expressions men-
tionnees existent, ces deux limites sont nécessairement égales; si A désigne leur valeut
1A

commune, la courbure de M. Alt a comme valeur — .
1+ £2 (x0)%/2
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/" (x,) dans ce sens entraine ’existence de f' (x,) et celle de la
a1

[1+ 2 ()]

M. Pauc a démontré par ailleurs que dans un espace euclidien,

s1 un continu £ quelconque admet en un point p, une courbure
de Avrt, un voisinage de p, sur k est un arc rectifiable; ce qui
permet 1’énoncé suivant qui nous rapproche de la définition
classique: Pour qu’un continu k& d’un espace euclidien posséde en
un point p, une courbure de ALT = x(p,) il faut et il suffit
qu'un voisinage de p, sur k soit un arc rectifiable, admettant
-une tangente ¢, en p,, et qu’en se limitant aux points p ou la
tangente ¢ existe, 'expression Aw: As(Aa = angle tt,, As = lon-
gueur de 1’arc pp,) ait une limite égale a » (p,) lorsque p tend
Vers po.

Donnons un exemple d’un arc possédant en un point une
courbure de ALT sans posséder une courbure classique. 11 suffit de

courbure de M. Alt qui a alors comme expression

considérer les points p, = (% : %> etq, = (:ni ,% >, n=1,2,..
ad mnf.) (situés sur la parabole y = 22) et la somme de deux lignes
polygonales P1y P2y P3s -y Pns Pntty -+ et 91y 92y -y Gns Int1s -
complétée par le point 0. L’arc obtenu posséde en ce dernier point
une courbure au sens de M. Alt, égale a 2; il ne peut posséder
une courbure classique dans ce point, car la fonction y = f ()
représentant cet arc posseéde dans tout voisinage de 0, des points
ou f’ () n’existe pas. La dérivée seconde au sens classique n’est
pas définie pour x = 0, tandis qu’elle I’est au sens plus large
mentionné plus haut.

Au point de vue de la métrique interne (p. 362) les arcs ne
présentent qu’un intérét assez faible. Un arc D satisfait aux
trois conditions mentionnées (p. 363) «’1l est rectifiable et dans
ce cas seulement. Or, en faisant correspondre aux couples de
points d’un arc rectifiable quelconque leur distance interne,
nous obtenons un espace D’ congruent a un segment dont la
longueur est égale a celle de I’arc, donc un espace dont la courbure
est 0 en chaque point.

Par contre, 'intérét de la métrique interne devient prépon-
dérant pour les espaces de dimension supérieure, et déja pour

1 Il s’ensuit que la valeur A, rencontrée plus haut, n’est autre que [f” (xo)].
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les surfaces. Si D est une surface comme celles que 1’on considére
dans la géométrie différentielle, il correspond & chaque point p
de D un nombre % (p) appelé la courbure totale de D au point p,
a savoir le produit des deux courbures principales des sections
planes de D. Ce nombre, d’aprés un résultat célebre de Gauss,
ne dépend que de la métrique interne de D; si D; et D, sont deux
surfaces telles que les espaces convexes D; et D,, portant les
métriques internes de D; et D,, soient congruents, alors les
nombres & (p;) et k (p,) sont toujours égaux pour deux points
p; de Dy et p, de D, qui se correspondent par cette congruence.
On connait, d’ailleurs, les nombreuses définitions de k& (p) se
basant sur la métrique interne de D, dues & Gauss et & ses
successeurs. Mais n’est-il pas possible, demandais-je, de définir
cette courbure par la simple considération des quadruplets de
points de D, comme nous venons de faire pour la courbure des
courbes ?

La plus simple généralisation de cette derniére qui se présente,
ne méne pas a la solution du probléeme, méme dans le cas ou D
est un sous-ensemble d’un espace euclidien; car si I’on fait alors
correspondre & quatre points de D le rayon de la sphere cir-
conscrite et si 'on fait un passage & la limite analogue a celui
que nous avons employé pour les courbes, on obtient un
nombre qui ne dépend pas uniquement de la métrique interne
de D.

M. WaLp a cependant réussi récemment a résoudre le pro-
bléeme au moyen de l'idée suivante ': Il dit que l’espace dis-
tancié D" a la courbure de surface »(p) au point p, lorsqu’aucun
voisinage de p n’est linéaire et lorsqu’a tout e > 0 il corres-
pond un & > 0 tel que tout quadruplet de points ¢, r, s, ¢ de
D’, dont les distances & p sont < 3, soit congruent & un qua-
druplet de points de S, avec [k— x(p)| << ; S, désigne la
surface d’une sphére a trois dimensions de courbure totale

k = —3 (r rayon réel ou imaginaire) portant la métrique interne,

donc ou l'on a pris comme distance de deux points p’ et p”
la longueur du plus petit arc de grand cercle passant par p’

L Cf. C. R., 201, p. 918. Voir aussi: Ergebnisse e. mathem. Kolloquiums, 6, p. 29 et
cahier 7, p. 24.
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et p”. St D’ est une surface comme celles que 1’on considére
en géométrie différentielle, la courbure totale & (p) en tout
point p est égale a la courbure de surface » (p) de D’ au point p.
La définition de WALD qui ne nécessite pas la représentation des
points par des coordonnées, peut donc servir a introduire de
facon bien naturelle et extrémement simple la notion importante
de courbure.

Les surfaces de Gauss sont donc des espaces compacts et
convexes admettant en chaque point une courbure de surface
% (p) au sens de M. WaLp. Mais encore plus important et plus
remarquable est, me semble-t-il, le théoréme inverse démontré
par M. WaLp.

Tout espace distancié compact et convexe qui admet une
courbure de surface en chaque point, est une surface de Gauss.
En se basant sur la seule hypothése qu'un espace distancié
général est compact, convexe et admet en chaque point une
courbure de surface au sens de M. WaLD, celui-ci peut démontrer
que ’espace est localement homéomorphe a 'intérieur d’un cercle,
que deux points assez voisins peuvent toujours étre joints par
un seul segment, qu’on peut introduire des angles et des coor-
données polaires p, ¢, et que la longueur d’un petit arc

e =rp(t), o= o) 0=1=1)
o (t) et ¢ (¢t) étant deux fonctions dérivables de ¢, est égale a 1

1 1

o0 + 62 e, 00 92(0)]* dt,
0

ou G (p, @) est la solution de I’équation différentielle

02G
d o2 = —x(p, 9 . Gle, 9

2
satisfaisant aux conditions G (0, ¢) = 0, %—g (0, 9) =1 et on

% (p, ©) désigne la courbure de surface de D’ au point (p, o).
On a donc le théoréme fondamental suivant:

Pour qu’un espace distancié compact soit une surface de
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Gauss, il est nécessaire et suffisant qu’il soit convexe et admetie une
courbure de surface en chaque point. '

Ce théoréme montre que la géométrie des distances fournit
une nouvelle base a I’étude des propriétés métriques locales des
surfaces.

V. — GEOMETRIE DES DISTANCES ET CALCUL DES VARIATIONS.

Soit donné un espace distancié. Un ensemble fini ordonné
de points py, ps, -.., p, est appelé polygone (et polygone fermé
si p; = p).- Nous considérons des courbes continues dans
I’espace donné. C étant I'image continue d’un intervalle
« <t < B, nous appelons sous-polygone de C I'image
P = {py, psy .., P} (par la méme représentation) d’un en-
semble fini ordonné de nombres v; < v, < ... < vy, de [« B].
Par v (P) nous désignons le plus grand des nombres v; ., — v;.

Soit donnée une fonction F (p; ¢, r) des triplets de points
(¢ = r). Cette fonction permet l’introduction d’une nouvelle
métrique si nous prenons pour chaque couple de points ¢, r,
au lieu de la distance ¢ qu’ils ont dans D, le nombre
d(g,r) =F(q;q,7).qr 8i g==r, et d(q,q) = 0. Soit D (F)
Pespace a distances réelles qu’on obtient ainsi. En attribuant,
étant donné un point p, & g et rla distance d, (¢, 7) = F (p; ¢, r)gr
si ¢ #r, et d,(q, g = 0 nous obtenons un autre espace a dis-
tances reelles que nous appellerons I'espace tangent D_(F) de
D (F) au point p. Pour le polygone P nous considérerons outre
sa longueur [(P) = X p;p;., dans D, ses longueurs dans D (F)
et dans D, (F), & savoir les nombres
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tous les sous-polygones de C est appelée la longueur [(C)
de C. On dit que C est rectifiable si [(C) est fini.

Imposons a la fonction IF les conditions suivantes pour chaque
courbe rectifiable C:

1. F (p; q, r) est bornée pour tous les triplets p, q, r d’un voisi-
nage de C.

2. L’ensemble de tous les points p de C pour lesquels ’oscillation
de I’ est > 0, est de mesure linéaire 0, ¢’est-a-dire il peut étre
couvert par des sphéres, en nombre fini ou infini, dont la somme

‘des diametres soit aussi petite que 'on voudra. Par I'oscillation

o (p) de F au point p nous entendrons la borne supérieure de
tous les nombres ¢ pour lesquels il existe dans tout voisinage de p
quatre points p’, p”’, q, r tels que 1 F(p';59,1)—F(p"; q,7) ] = o.
Les points pour lesquels ¢ (p) > 0, sont les points de disconti-
nuité de F par rapport a la premiere des trois variables.

3. L’ensemble des points p de C pour lesquels t.(p) est > 0 est
de mesure linéaire 0. Par 7. (p) nous entendons la limite pour
o — 0 de la borne supérieure des nombres t(g) pour les points ¢
dont la distance & p est < p. Nous désignons ici par t(g) la
borne supérieure des nombres t pour lesquels il existe un poly-
gone P = { py, py, ..., pn } avec p; = ¢ et tel qu’on ait

AP, F) < dipy, py) — 71d(prs Pyl |-

On a 7 (p) = 0 pour tout point p et =(p) =0 dans le cas et
seulement dans le cas ou

Flip;p,9pg+Flp; ¢, Ngr SF(p; q, r)pr

pour tout couple g, r.

4. z.(p) est fint en tout point p de C.

b. Pour tout polygone fermé P qui est assez voisin d’un point p
de discontinuité de ¥, on a 1 (P, F) = 0.

Ces hypotheéses sur la fonction F étant admises on a le théo-
réeme suivant:

Pour chaque suite Py, P,, ... de sous-polygones d’une courbe
continue rectifiable pour laquelle on a lim v (P,) = 0, les nombres
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A (P, F) convergent vers un nombre fini. Cetie limite est la méme
pour toutes les suites de sous-polygones de C assujelties & la
condition que v — 0. Nous la désignerons par i (C, F). Pour
chaque » > 0 donné, n (C, F) est une fonctionnelle semicontinue
inférieurement sur ’ensemble de toutes les courbes de longueur =< .
Si, d’ailleurs, pour chaque A > 0 donné, les longueurs de toutes
les courbes C pour lesquelles ) (C, F) =< A, sont bornées, chaque
classe compléte de courbes rectifiables contient une courbe pour
laguelle la fonctionnelle A (C, F) atteint son minimum.

Quel est l'avantage de cette généralisation des théorémes
d’existence du calcul des variations ? Tout d’abord, la forme
métrique met en évidence que I’hypothése de la nature carté-
sienne de I’espace (& savoir la représentation des points par un
groupe de coordonnées), hypotheése considérée jusqu’alors
comme base des problémes du calcul des variations, n’est pas
liée & I’essence du probléme. Dans tous les espaces distanciés
se posent des questions concernant I’extremum des fonctionnelles
de courbes, données par des intégrales curvilignes. Mais méme en
Pappliquant aux espaces euclidiens, donc au cas classique, notre
théoreme, outre une grande simplicité dans les démonstrations,
semble apporter un progres !, car les conditions imposées & F
méme dans les profonds théoréemes de M. ToNrLLi sont plus
restrictives que les notres. Considérons, pour nous en rendre
compte, nos cing hypothéses sur F dans le cas ou I’espace
distancié donné est un espace euclidien & n dimensions 2.

Dans les problémes classiques, il correspond a chaque point
p = (1, &y, ..., x,) de cet espace (ou d’un certain domaine)
et a chaque direction 8 = (z;:2:...:2,) un nombre
F(p,8) = Flay, ..., zy;2,...,2,) :%F(xl, s @ik, L k)

~ pour E> 0.

1 Je viens d’apprendre que dans le cas euclidien M. BOULIGAND a récemment (Mém.
de la Soc. Roy. des Sc. de Liége, 3me sér., t. 19) considéré, pour les fonctions continues
et quasi-régulicres partout, des sommes riemaniennes ainsi que nous venons de le faire
dans le cas général, et a ainsi obtenu une démonstration tres élégante d’un théoréme
d’existence. M. BouLicaND, tout en se bornant aux fonctions positivement définies,
s’est bien apercu de la portée de sa méthode. La ndtre était en germe dans des recherches
sur la longueur des arcs (Mathem. Annalen, 103) et nous I’avons exposée dans un article
de Fundam. Mathem., 25, et dans une note aux C. R. Paris, 21.X.1935.

2 Cf. ma note, C. R., 200, p. 705. ‘
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Pour appliquer notre théorie posons pour trois points p, g, r
donnés (q = r) F(g;q, r) = F(p, 3, ou 3, désigne la
direction de la demi-droite partant de ¢ et passant par r. Les
hypotheses 1 et 2 sont réalisées si, pour chaque courbe recti-
fiable C, la fonction F(p, 8,) est bornée dans un voisinage
de C et continue sur C sauf pour les points d’un ensemble de mesure
linéaire 0, c’est-a-dire d’un ensemble qu’on peut recouvrir au
moyen d’une suite dénombrable de sphéres dont la somme des
diameétres est arbitrairement petite. La quasi-régularité = (p) =
de la fonction F au point p (qui par la condition 3 est postulée
pour presque tous les points p) s’exprime maintenant par
Pimégalité suivante valable pour chaque triplet de points p, ¢, r:

F(p, 8y pg + Flp, 30 ar 2 F (p, 3,) pr .

Pour voir la signification de cette propriété, nous désignons,
pour chaque droite orientée & passant par p, par es le point

de 3 dont la distance & p est égale a et qui est situé

1
o | F(p, 9) |
sur le rayon positif ou négatif de § suivant le signe de F(p, 3),

c’est-a-dire nous construisons I'indicatrice E de F au point p dans
le sens ou, pour des fonctions définies, M. CARATHEODORY l'a
introduite. Pour que F soit quasi-réguliére au point p, il faut et 1l
suffit alors, comme I’a démontré M. Avt, qu’il existe une collinéa-
tion © qui transforme I’hypersurface indicatrice E du point p,
c¢’est-a-dire I’ensemble de tous les points eg, en une surface convexe
a n — 1 dimensions = (E) telle que m (p) soit situé a I'intérieur
de = (E) et que w (es) soit situé sur le semi-rayon positif de
7 {3) par rapport a = (p). Il est clair que la régularité de I au
noint p signifie la convexité projective de I'’hypersurface indi-
catrice E du point p. Si F (p, §) est non négative pour chaque
droite & passant par p, la convexité projective n’est rien d’autre
que la convexité au sens ordinaire.

Remarquons en terminant que la méthode exposée permet
aussi® d’étendre le champ des courbes de comparaison et 'intro-
duction des courbes non rectifiables dans le calcul des variations2.

1 Cf. ma Note C."R. Paris, t. 202, p. 1648,
2 Je tiens & remercier M. Pauc de son aide dans la rédaction de cet article et pour
plusieurs remarques qu’il m’a communiquées a ce sujet.
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