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LA GÉOMÉTRIE DES DISTANCES

ET SES RELATIONS AVEC LES AUTRES BRANCHES

DES MATHÉMATIQUES1

(Géométrie élémentaire, analytique et axiomatiqiie.
Algèbre et algèbre des vecteurs. — Géométrie

différentielle. — Calcul des variations)

PAR

Karl Menger (Vienne).

Le grand progrès de la Géométrie au commencement de

l'époque moderne est dû à l'introduction des méthodes analytiques

par Descartes et Fermât. Cette méthode consiste en la
construction de modèles arithmétiques pour les entités spatiales.
Les points sont définis par des nombres (coordonnées), les

courbes et les surfaces par des équations et la géométrie analytique

est l'application de l'algèbre et de l'analyse à ces modèles

arithmétiques.
Cette méthode a enrichi d'un nouveau monde le domaine des

entités géométriques étudiées jusqu'alors et n'a cessé de fournir
depuis sa découverte des problèmes sur notre espace. C'est

cette idée encore qui a suggéré la plupart des généralisations
de la conception d'espace: celle de Riemann et d'autres qui
ont trouvé application en géométrie différentielle, par exemple
celle de M. Finsler, de même que celle utilisée dans la géométrie
des nombres par Minkowski. Ces espaces généralisés sont basés

essentiellement sur la représentation de leurs points par des

coordonnées.

i Conférence faite le 25 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Genève; série consacrée à

Quelques questions de Géométrie et de Topologie.
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Malgré son importance historique et ses nombreux avantages
on ne doit cependant pas oublier, me semble-t-il, que d'un point
de vue purement géométrique l'étude des modèles arithmétiques

au moyen de l'analyse n'est qu'un procédé entre plusieurs
possibles; ce procédé impose par ailleurs aux recherches des

restrictions assez considérables qui ne sont pas inhérentes à la
nature des figures spatiales.

J'ai été ainsi conduit depuis quelques années à développer
une géométrie qui se passe des modèles arithmétiques, tout en

s'occupant des problèmes relatifs aux notions classiques:
convexité, courbure, géodésiques, etc. Les points ne sont alors

pas nécessairement définis par des coordonnées, ni les figures

par des équations. La géométrie des distances ou géométrie
métrique est basée sur la donnée d'un ensemble d'éléments
de nature quelconque assujettis à la seule condition qu'à deux
d'entre eux corresponde toujours un certain nombre. Nous

nous plaçons donc dans l'hypothèse d'un de ces espaces
généraux que M. Fréchet a introduits dans les mathématiques

pour les appliquer au calcul fonctionnel et qui, plus
tard, se sont montrés extrêmement féconds pour les recherches
en topologie, en particulier pour les théories de la connexité,
de la dimension, des courbes.

La géométrie des distances ne fait pas partie de la topologie
car elle ne s'occupe pas des transformations homéomorphes, la
distance n'étant pas en général invariante dans une homéo-
morphie. Mais tant par l'étude des espaces généraux que par
ses méthodes elle est assez voisine de la topologie générale
faisant, avec cette dernière, partie de la géométrie « ensembliste »

(mengentheoretische Geometrie).

Bien que récente et peu connue jusqu'à présent, la géométrie
des distances est déjà si développée qu'une simple énumération
de tous ses résultats serait impossible en un temps si limité.
Ce que je me propose ici c'est donc seulement de mettre en
évidence quelques-unes de ses liaisons nombreuses et étroites
avec d'autres branches des mathématiques et j'insiste d'autant
plus sur ce point qu'on fait parfois à la géométrie des ensembles
le reproche de se détacher complètement des mathématiques
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classiques et des problèmes dont s'occupe la plupart des
mathématiciens.

Nous traiterons d'abord brièvement de quelques-uns des

rapports entre la géométrie métrique et la géométrie analytique
élémentaire des espaces ordinaires. Des remarques concernant
l'algèbre et l'algèbre des vecteurs suivront. Nous passerons
ensuite à l'étude de la convexité dont la théorie générale se lie
étroitement à la géométrie axiomatique de l'espace ordinaire.
Puis, toujours du point de vue des distances, nous introduirons
la notion de courbure qui sera qualifiée pour servir de point de

départ vers une géométrie différentielle. Nous terminerons par
l'étude des lignes géodésiques qui nous fournira des résultats
nouveaux très généraux relatifs au Calcul des variations.

I. — Géométrie des distances et géométrie an alytique
ÉLÉMENTAIRE.

En géométrie analytique élémentaire on prend comme point
de départ de la théorie des espaces euclidiens à n dimensions
la représentation de chaque point par n nombres xti x2, xn
réels ou complexes selon qu'il s'agit de 3'espace réel ou de

l'espace complexe Cn. On appelle carré de la distance des points
(xly x2% xn) et (yv 2/2, yn) le nombre 1

(vi — xii2 + (y* — + • • « + (yn — xn)2 (P

en se réservant de prendre comme distance la racine carrée

positive de l'expression précédente dans le cas où celle-ci est

non négative. Nous appellerons espace à carrés de distances

complexes 2 un ensemble d'éléments quelconques tel qu'à tout

1 Pour les espaces unitaires on fixe comme distance le nombre réel

(y1 — %) (Vi —- Xi) N + (Un — xn) (Vn —

en désignant par x le conjugué l —4% du nombre x £ -f i-n- Il est clair que du
point de vue des distances cet espace unitaire à n dimensions est identique à un espace
euclidien réel à 2n dimensions.

2 On peut généraliser cette notion et parler d'un espace à distances empruntées
à un système donné S, par exemple à un corps de nombres au sens de l'algèbre abstraite
ou à un groupe abstrait. Pour des applications au calcul des variations j'ai récemment;
étudié des espaces dont les distances ne satisfont pas à l'axiome de symétrie (â2). On
pourrait appeler les espaces satisfaisant aux axiomes (âx) et (â2) espaces à distances
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couple p, q de deux de ses éléments il corresponde un nombre pq2

(dit carré de la distance de p ci q) assujetti aux conditions:

Ïp2 o (M

m2 Tpz - (*.)

Dans un espace à carrés de distances complexes tout ensemble

F ne contenant qu'un nombre fini de points, disons k points
Pii P21 ~"> Pki es^ complètement caractérisé par les lê carrés des

distances des points de F entre eux, nombres qui peuvent être

rangés dans une matrice. Il résulte des conditions (A^ et (A2)

que cette matrice est symétrique et que sa diagonale principale
ne contient que des zéros. Une question qui se pose de façon
naturelle est la suivante : Etant donnée une matrice
|| a.. || j 1? 2, k) jouissant des deux propriétés
mentionnées, sous quelles conditions peut-on la réaliser par les

points d'un espace euclidien complexe ou réel, c'est-à-dire
trouver k points al7 a2l ak de cet espace tels que at a) ai?-

(i,j 1, 2, k)?Nous allons donner immédiatement la solution du problème
plus général suivant 1: Etant donné un espace à carrés de
distances complexes G (c'est-à-dire une matrice de nombres en général

infinie), établir les conditions nécessaires et suffisantes pour
qu'on puisse l'appliquer sur un sous-ensemble de l'espace euclidien

à n dimensions, et d'abord de l'espace complexe Cn. De
façon précise, nous établirons les conditions pour qu'on puisse
faire correspondre à chaque point de C un point et un seul de Cn
de sorte que (%, x2, xn) et (yv ?/2, yn) étant les points
de Cn correspondant respectivement aux points p et q de C,

symétriques complexes et réserver le nom d'espace à distances complexes à des
ensembles dont la définition de la distance est assujettie à la condition (z^) seule.

Une étude systématique des espaces à distances non symétriques, par M. Novak,
paraîtra dans le cahier 8 des Ergebnisse e. mathem. Kolloquiums., Wien, 1936.

1 La caractérisation des espaces euclidiens réels et de leurs sous-ensembles au moyen
des conditions (àk) et (&k0) se trouve dans mon mémoire Mathem. Annalen, 100, p. 113.
Pour une nouvelle démonstration voir Amer. Journ. of Math., 53, p. 721. Des remarques
sur C2 et E2,i se trouvent dans Ergebnisse eines mathem. Kolloquiums, 2, p. 34; 4, p.13:
5. p. 10, 16; les critères de Ew>_n dans Tôhoku Math. Journ., 37, p. 475. La caractérisation

générale des sous-ensembles de Gn et Ew>s que nous,allons énoncer est due à M.Wald
et se trouve dans son article, Ergebnisse e. mathem. Kolloquiums, 5, p. 32.
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le nombre pq2 donné avec l'espace C satisfasse toujours à la
condition

pq2 (vi — xi)2 + + (yn — xn)2 •

Appelons déterminant des points /q, /?2, pk le nombre

o 1 1 1 1

^{Pl, P2, - : Pk)

1 0 Pip\pip\ • • • PiPk

1 p%p\ o p%p\ p2p\

t Pzp\PZP[ 0 • • • PzP\

i Kp'IKP'IKPI

Pour qu'un espace à carrés de distances complexes C puisse être

appliqué sur un sous-ensemble de Cn il est nécessaire et suffisant
que

(Aq+0) A(p1?p2, pn 3) 0 pour tout système de n + 3 points de G

(A?+2) A (pj, p2, ...5 pnA o) 0 pour tout système de n 4" 2 points de G

Appelons En la partie de Cn constituée par les points
(x1: xm, xm+u xn), les nombres %, xm étant réels, les
nombres xmJrl, xn purement imaginaires, m étant égal à

- • Posons x- — ix- (j m 1, m + 2, n), x- réel. Le

nombre (1) devient alors

(Vi — xi)2 + - + (ym — xm)2— (ym+1 - r ^ 2
xm H-1 > (y-n

s est la signature de cette forme quadratique. Le En est un
espace à carrés de distances complexes tel que, pour chaque
couple p, q de points, pq2 soit réel.

Nous dirons que l'ensemble F des k points /q, p2, pk est de

rang r s'il satisfait aux conditions (AJ+2) et (A£+3) sans satisfaire

(A£+1), c'est-à-dire si les déterminants de tous les systèmes
de r -f 2 et de r 4- 3 points de F sont nuls, .mais s'il existe un
système r + 1 points dont le déterminant est différent de 0.
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Pour qu'un espace où pq2 est toujours réel jouisse de la propriété
d'être applicable sur un sous-ensemble de En s il est suffisant

(et évidemment nécessaire) que tout système de n -f~ 3 points
de E jouisse de cette même propriété; et pour qu'un système F

de ft + 3 points pv p2, pn+3 soit applicable sur un système
de ft + 3 points de En s il faut et il suffit, r désignant le rang
de F, 1° que l'on ait r < n et que 2° parmi les systèmes de

r + 1 points p1? p2, pr+i de F pour lesquels A (p1? p2f
pr+i) 0 il en existe un, tel que la suite des nombres

A (Pi) 1
• A (pi, p2), A (p1, p2, Ps) 5 ••• j A (p1, p2, > Pr-j_ 1

ne contienne pas deux zéros consécutifs et que le nombre N des

changements de signes qu'elle présente après la suppression des

zéros éventuels satisfasse à l'inégalité

n + s n s

-y- + (r— n) £M ^ -y-
Pour .v - • ,1-•_ m)l'espace En s est évidemment l'espace

n

euclidien réel à n dimensions, le nombre (F) étant V (y^ — x,-)2

qui est toujours positif ou nul; on peut donc prendre comme
distance (non négative) la racine carrée positive de cette expression.

En n jouit en outre de la propriété que ses points sont
métriquement distingués, c'est-à-dire que

p ^zz q implique pq2 ^ 0 (A3)

Un espace à distances non-négatives et qui distingue
métriquement les points est ce que M. Fréchet avait appelé un
espace E. Voici une conséquence importante de la condition A3) :

Une application d'un espace E sur un autre espace E conservant
les distances est nécessairement biunivoque, c'est, comme nous
dirons, une congruence. Un espace E qui peut être appliqué sur
un sous-ensemble d'un espace E est donc applicable sur celui-ci
au moyen d'une congruence et sera dit congruent à ce sous-
ensemble F

1 C'est ainsi que l'espace unitaire à n dimensions est congruent à l'espace euclidien
réel à 2n dimensions.
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Le résultat énoncé plus haut contient donc comme cas
particulier le théorème suivant concernant l'espace euclidien réel

E„(=
Pour qu'un espace E à distances non négatives et distinguant

métriquement les points, soit congruent à un sous-ensemble de En
il est nécessaire et suffisant que Con ait

(A?+3) A(Pi> p2 pn+ o) 0 pour tout système de n-f 3 points de E

(A0" + 2) A(Pl, p2, Pn^o) 0 pour tout système de n -{- 2 points de E

(Ak) sgn A(Pl, p2 pk) (— l)k+1 ou 0

pour tout système de k points de E, où k 2 3 n | 1

Remarquons qu'un espace E contenant plus de n -f- 3 points
et satisfaisant aux conditions (Aft) pour k 2, 3, n + 1 et
à (A?+2) satisfait eo ipso1 à la condition (A? + 3). Pour qu'un
espace séparable E soit congruent à un sous-ensemble de

l'espace de Hilbert il faut et il suffit que les conditions (Ak) soient
satisfaites pour chaque entier k.

II. — La théorie de la convexité et ses relations avec
LA GÉOMÉTRIE AXIOMATIQUE.

Passons à l'étude de propriétés plus géométriques de l'espace
et de ses sous-ensembles. Dans ce but nous considérons un
ensemble d'éléments quelconques tel qu'à tout couple d'éléments
(« points ») p, q il corresponde un nombre réel pq (« distance »

de p et q) qui satisfait à la condition pp 0 pour tout p et à

l'inégalité triangulaire pq + qr > pr pour chaque triplet de

points. Nous appellerons un tel ensemble un espace triangulaire.
Particulièrement importants sont les espaces triangulaires à

distances symétriques, non négatives, et qui distinguent métri-

i Un espace à distances complexes satisfaisant à la condition (AJ • ne satisfait

pas nécessairement à la condition (aJ+3). On trouvera une étude des systèmes de

n + 3 points non congruents à n + 3 points de Ew bien que n -f 2 quelconques de leurs
points soient congruents à n-f 2 points de En dans mon mémoire Mathem. Annalen,
100, p. 124. J'ai appelé de tels systèmes pseudo-euclidiens.
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quement les points, c'est-à-dire tels que pq qp > 0 si p ^ g

et pp 0; ou bien, ce qui revient au même, tels que chaque

triplet de points soit congruent à un triplet de points du plan
(à un triangle euclidien) 1. L'introduction de ces espaces est

due à M. Fréchet. On les appelle espaces métriques ou,
d'après M. Bouligand, espaces distanciés. Comme exemples

d'espaces triangulaires nous avons les espaces euclidiens de

toutes dimensions et l'espace de Hilbert.
Il est bien naturel lorsqu'on a une inégalité d'étudier les cas

où elle devient une égalité. Dans le cas d'un espace euclidien
la relation pq + qr1 ^ & lieu pour trois points p, q, r distincts
deux à deux, lorsque q est situé sur le segment joignant p et r,
donc entre p et r, et seulement dans ce cas. Posons donc comme
définition pour un espace distancié général qu'un point q

est point intermédiaire entre p et r, ou plus simplement est

entre p et r si p ^ q ^ r et pq + qr pr. Cette notion ne jouit
pas, dans les espaces généraux, de toutes les propriétés qu'elle
possède sur la ligne droite. Considérons par exemple l'espace
distancié constitué par quatre points p, g, r, ,9 ayant les

distances pq ~qÉ ^ Sp 1, jjf qS 2. Il est clair
que q est entre p et r, et que r est entre q et 5, sans que q ou r
soient entre p et «9. La relation de point intermédiaire a cependant
assez d'affinités avec la relation bien connue sur la ligne droite
pour que la dénomination de point situé « entre » deux autres
soit justifiée. Elle jouit notamment des propriétés suivantes:
Si q entre p et r, alors q entre r et p, mais r non entre p et q.
Si q entre p et r, et r entre p et s} alors q entre p et «9, et r entre q
et s. L'ensemble constitué par p et q et leurs points intermédiaires
est fermé.

Nous appelons convexe un sous-ensemble d'un, espace
distancié qui contient pour chaque couple de points différents
p et r au moins un point q situé entre p et r. On a alors le théorème
suivant: Un sous-ensemble fermé convexe d'un espace distancié
complet contient pour tout couple de points distincts p et q un
segment qui les joint, c'est-à-dire un sous-ensemble contenant

i Pour un espace à distances non négatives l'inégalité triangulaire équivaut à la
condition (A3).
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p et g et congruent à un segment de la ligne droite au sens
ordinaire du mot dont la longueur est égale à la distance pq 1. On

déduit immédiatement de ce théorème qu'un sous-ensemble
fermé d'un espace euclidien est convexe s'il est convexe au sens

classique de Minkowski et seulement dans ce cas. Remarquons
d'ailleurs que dans un espace distancié convexe général il peut
arriver que deux points puissent être joints par plusieurs
segments. La surface d'une sphère à trois dimensions dans laquelle
nous prenons comme distance la longueur du plus petit arc
du grand cercle qui les joint, nous en fournit un exemple.
C'est un espace convexe et complet, qui contient pour tout
couple de points diamétralement opposés une infinité de
segments qui les joignent.

Du point de vue topologique la notion de convexité est sinon
identique du moins très voisine de celle de connexité et de
connexité locale. Nous n'avons pas résolu la question de savoir
si l'hypothèse — pour un espace distancié compact — d'être
connexe et localement connexe est non seulement nécessaire
mais encore suffisante pour que l'espace soit homéomorphe à

un espace distancié convexe. Indiquons trois conditions qui
sont suffisantes pour qu'un espace distancié soit
homéomorphe à un espace convexe: 1° Deux points quelconques
peuvent être joints par un arc de longueur finie. 2° p et q étant
deux points distincts, la borne inférieure des longueurs de tous
les arcs joignant p et g, est > 0. 3° A tout s > 0 donné à l'avance,
il correspond un S > 0 tel que deux points quelconques dont
la distance est < S. puissent être joints par un arc de

longueur < s. En faisant alors correspondre à tout couple de

points /?, q de D la borne inférieure des longueurs de tous
les arcs joignant p et q ou, comme nous dirons, la distance
interne de p et g, nous obtenons un espace distancié convexe D'
homéomorphe à D. (Les segments de D' correspondent aux
arcs géodésiques de D.)2

1 Les notions de point intermédiaire et de convexité et leurs théories sont
développées dans mon mémoire Mathem. Annalen, 100, p. 75. Une nouvelle démonstration
de l'existence d'un segment sous les conditions mentionnées a été donnée par M. Aron-
szajn, Ergebnisse e. mathem. Kolloquiums, 6, p. 45.

2 Cf. mon mémoire dans le Mathem. Annalen, 100, p. 96. Cf. aussi Hopf und Rinow,
Comment Math. ]lelret.. 3.
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La théorie de la convexité se relie à l'axiomatique de la
géométrie élémentaire, en particulier aux Anordnungsaxiome de

Pasch, Hilbert et de l'école américaine. L'étude des propriétés
découlant de la notion de convexité permet, à partir de l'espace

triangulaire complet, d'obtenir des espaces de plus en plus
particularisés de ce point de vue, et finalement certaines carac-
térisations des espaces linéaires et euclidiens.

Nous dirons, pour esquisser ce chemin, qu'un ensemble dans

un espace distancié est extérieurement convexe s'il contient,
pour chaque couple de points p et <7, au moins un point r tel que
q soit entre p et r. Un ensemble fermé, à la fois convexe et
extérieurement convexe dans un espace complet contient pour
chaque couple de points différents une « droite » qui les joint,
c'est-à-dire un sous-ensemble contenant p et <7, congruent avec
une droite au sens ordinaire du mot. Pour que tout couple de

points distincts d'un espace complet, convexe et extérieurement

convexe détermine une droite et une seule les joignant,
il faut et il suffit que l'espace jouisse de la propriété suivante
que j'ai appelée propriété des deux triplets: Etant donné quatre
points distincts deux à deux, Vexistence de deux triplets linéaires
entraine la linéarité des deux autres triplets. (Nous dirons que le

triplet 7), <7, r est linéaire lorsqu'un de ses points est situé entre
les deux autres.)

En ajoutant les conditions d'être complet, convexe et
extérieurement convexe aux conditions qui caractérisent les espaces
distanciés congruents aux sous-ensembles des espaces euclidiens

réels (se reporter au Chapitre I), nous obtenons la caracté-
risation des espaces euclidiens réels eux mêmes parmi les

espaces distanciés. Mentionnons encore que le point de départ de
ces recherches fut un théorème de M. Biedermann 1

que nous
énoncerons ici de la façon suivante: Pour qu'un espace
distancié compact et convexe soit congruent à un segment, il
faut et il suffit qu'il contienne plus d'un point et que tout triplet
de ses points soit linéaire.

Pour parvenir graduellement des espaces convexes et extérieurement

convexes aux espaces linéaires et euclidiens il suffit

1 Cf. Mathem. Annalen, 100, p. 114.



358 K. MENGER

d'exclure l'existence dans l'espace de certaines singularités
simples. Il s'agit des deux figures suivantes qui ne se rencontrent
pas dans les espaces linéaires:

1. La fourchette: somme de trois segments pq, qr1 qs n'ayant
en commun deux à deux que le point q situé à la fois entre

p et r, et entre p et s.

2. Uétrier: somme de quatre segments pq, gr, rs, ps qui n'ont
en commun que des extrémités et tels que s soit entre p et r,
et r entre q et s.

Si les points q et r d'un étrier sont situés entre p et l'étrier
est somme de deux segments de mêmes extrémités (à savoir de

p et s), et nous parlerons d'une lentille, par exemple: la somme
de deux demi-grand-cercles d'une sphère. Notons deux configurations

particulières intéressantes: 1° Le cercle, ensemble

congruent à un cercle au sens ordinaire où l'on a pris comme
distance de deux points la longueur du plus petit arc qui s'y
termine. Le cercle constitue un étrier entre deux quelconques
de ses points, il constitue plus particulièrement une lentille
entre deux de ses points diamétralement opposés. 2° Le trièdre

convexe, somme de trois segments pq, gr, qs n'ayant en commun

deux à deux que le point q situé à la fois entre p et r,.
entre p et s, entre r et s.

Les espaces distanciés sont par définition des espaces E
satisfaisant à la condition (A3), c'est-à-dire des espaces E dont
chaque triplet de points est congruent à un triangle euclidien.
M. W. A. Wilson a récemment étudié1 les espaces E satisfaisant

aux conditions (A3) et (A4), c'est-à-dire des espaces E

dont chaque quadruplet de points est congruent à un tétraèdre
euclidien — par analogie nous pourrons appeler ces espaces:

espaces tétraédrciux — et il a obtenu le résultat intéressant
suivant : Pour qu'un espace séparable et complet soit congruent
à un espace euclidien ou à l'espace de Hilbert il faut et il suffit
qu'il soit convexe, extérieurement convexe et tétraédral.
Renvoyons le lecteur en terminant à un mémoire intéressant sur
la sphère à n dimensions par M. L. M. Blumenthal 2.

1 Amer. Journ. of Math., 54.
2 Amer. Journ. of Math., 57.
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III. — Géométrie des distances et algèbre des vecteurs.

Les conditions (Ak) et (A?) du chapitre I étant de nature

algébrique, les résultats de cette théorie permettent des

applications dans le domaine de l'algèbre. Bornons-nous ici à

mentionner les beaux résultats de M. L. M. Blumenthal sur les

déterminants L Nous allons entrer un peu plus dans le détail

en ce qui concerne l'algèbre des vecteurs 2.

Désignons par ensemble métrique de vecteurs un ensemble V
d'éléments de nature quelconque appelés vecteurs, tel qu'à

tout couple v et w de ses éléments corresponde un nombre

réel (vw) assujetti aux conditions

(F) (vw) (wv)

(r') ç =A w implique (vv) -f (ww) 2 (vw).

Le nombre (vw) sera dit : produit scalaire des vecteurs v et w.

Etant donné k éléments tq, v2, vk de Y, nous introduirons
leur déterminant de Gram F (cq, v2y vk)

K f i) (Cif2) • • («W
(«V'i) (c2C2) • • • (<W

(vkvi) (vkv2) • • (vkvk)

Un exemple d'ensemble métrique de vecteurs nous est fourni
par la famille des vecteurs d'un espace euclidien à un nombre
quelconque de dimensions, en entendant par produit scalaire de

deux vecteurs le produit scalaire au sens habituel.
A quelles conditions un ensemble métrique de vecteurs V

est-il isomorphe à un ensemble de vecteurs d'un espace euclidien
à n dimensions En C'est-à-dire trouver les conditions pour qu'on
puisse faire correspondre à tout élément de Y un vecteur de En
de façon que v' et wr étant les vecteurs homologues à deux

1 Bull. Amer. Math. Soc., 37, 38 et Amer. Journ. Math., 56.
2 On trouve la théorie suivante esquissée dans. ma note: Ergebnisse e. mathem.

Kolloquiums, 5, p. 27.
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éléments v et w quelconques de V, on ait toujours (vw) — (v' w').
Voici un groupe de conditions à la fois nécessaires et suffisantes:

(i?*1) r (Plc2,pb+1) o

pour tout système de n + 1 vecteurs v17 c2, t\n ;
de V.

(r0) r cx, c2,..., pfo) o

pour tout système de k {k 1,2,..., u) vecteurs cl7 e2, de V.

De plus, dans le cas où V consiste en a + 2 vecteurs exactement,

il faut adjoindre aux conditions précédentes la condition

(r?+2) tk, c2, VhS) o

Pour démontrer ce théorème, il suffit de se reporter à ce qui a été

fait dans le chapitre I. Posons comme carré de la distance de deux
éléments v et w de V le nombre me2 (vv) + (ww) — 2 (vw).
Nous définissons ainsi un espace E, soit V'; les conditions
(Ax), (À2) et (A3) auxquelles doit satisfaire vw2 sont en effet
des conséquences immédiates de (T) et (T'). Et la condition
nécessaire et suffisante pour que V soit isomorphe à un
ensemble de vecteurs de l'espace euclidien En (auxquels on a

donné la même origine p0) c'est que V' soit applicable sur
l'ensemble des extrémités de ces vecteurs. On déduira alors
de (P?2-1), (Pk) (k 1, 2, n) les conditions (A?+2) et
(Ak) (k 2, 3, r -j- 1) en tenant compte de la relation

A (p0, Pl,ph)(—2)'{r(p1,
>~

où vi désigne le vecteur pQpt.
Dans un ensemble métrique de vecteurs satisfaisant à la

condition (T2) le carré de la distance de deux vecteurs est

toujours non-négatif 1 et nous pourrons introduire la notion de

i On a

r(^' ^ l (?,£) (£$ I <®1®1><®.®*) ~ <«1®.)«-

La condition (r^) n'est autre que l'inégalité de Schwarz (% rx) (v2 v2) > v2)2.

Cette condition entraîne l'inégalité (vv) + (ww) > 2 (vw). Pour le montrer il suffit
de prouver l'impossibilité de la relation (vv) + (ww) <c 2 (vw). Or celle-ci élevée au
carré impliquerait (vv)2 + 2 (vv) (ww) + (ww)2 < 4 (vw)'2 < 4 (vv) (ww), d'où
(vv)2 — 2 (vv) (ww) +" (ww)2 < 0, ce qui est évidemment impossible, le premier
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vecteur intermédiaire. Nous dirons que le vecteur est entre

les vecteurs uetwlorsqu'ona:

ou bien

r [u.«') o, r (u,v, w)o, r p) + r (e, «-) r («, »>)

ou bien

r (u, w) o, + w uw '

en entendant par ^ la détermination positive du radical Viî/2-
L'ensemble de vecteurs V peut être appelé convexe et extérieurement

convexe lorsqu'il contient pour tout couple d'éléments u
et w au moins un élément v entre u et w, et au moins un élément x
tel que w soit situé entre u et x. Pour qu'un ensemble de

vecteurs V soit isomorphe à l'ensemble de tous les vecteurs de En
il faut et il suffit qu'il soit complet, convexe et extérieurement
convexe, que les déterminants de Gram soient nuls pour tout
système de n + 1 vecteurs et non négatifs pour tout système
en contenant moins de n + 1, et enfin qu'il existe n vecteurs
dont le déterminant de Gram est ^ 0.

Un corollaire intéressant de notre théorème est que les
opérations d'addition de deux vecteurs et de multiplication d'un
vecteur par un nombre peuvent être définies dans un ensemble

métrique de vecteurs. En d'autres termes, pour développer
Valgèbre des vecteurs il suffit de prendre comme point de départ
la seule notion du produit scalaire au lieu des trois opérations:
addition, multiplication par un nombre et multiplication
scalaire, qui ont servi de bases jusqu'à présent. En effet, étant
donné deux vecteurs u et w et un nombre X nous appellerons \u
le vecteur u' tel que F (u, u') 0 et (uur) X (uu), et nous
appellerons u + ç le vecteur w pour lequel F (u, v, w) 0,

y) " y) " 1" s* r(w> v) ^ o et (ww)

(uw) + (vw) si r (u, v) 0.

L'existence et l'unicité des vecteurs u' et w et les lois
ordinaires de ces opérations d'addition et de multiplication par

membre étant égal à [(w) — (ww)]2. La condition (r*) permet donc "de préciser (ri)
sous la forme

v -w implique (vv) -f (w) > 2 (vw)

L'Enseignement mathém., 35me année, 1936. 24
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un nombre sont garanties si l'ensemble de vecteurs est complet
convexe et extérieurement convexe et jouit des propriétés (Ffe).

Les recherches de MM. Wilson et Blumenthal mentionnées
à la fin du Chapitre II admettent de même une traduction dans
le langage de l'algèbre des vecteurs. En particulier il découle
du théorème de M. Wilson (p. 358), comme l'a remarqué
M. Blumenthal, qu'un ensemble de vecteurs séparable et

complet est isomorphe à un espace vectoriel euclidien ou hilber-
tien si les conditions

F (pj, ç2) 0 pour tout couple c2 de vecteurs (r2)

F (v1 ç2 5
P3) Si 0 pour tout triplet v1, v2, c3 de vecteurs (r3)

sont satisfaites ou, ce qui revient au même, si tout triplet de

vecteurs est isomorphe à un triplet de vecteurs de En, résultat
qui a été obtenu directement par MM. Fréchet, v. Neumann
et Jordan 1.

IV. — La courbure dans la géométrie des distances
et la géométrie différentielle.

Nous avons, dans les chapitres précédents, traité, en nous
plaçant au point de vue de la géométrie des distances, des
problèmes où l'espace et ses sous-ensembles interviennent globalement.

Mais cette géométrie permet aussi l'étude des propriétés
locales des variétés spatiales, et pénètre ainsi dans un domaine
où a triomphé jusqu'alors brillamment et exclusivement la
méthode analytique; cette méthode s'appliquait si bien à cette
étude qu'on a fini par identifier la théorie des propriétés locales
des figures avec la géométrie différentielle : application de

l'analyse, surtout du calcul différentiel, aux modèles arithmétiques

représentant les figures. Et même M. Bouligand qui a

eu le mérite en créant sa Géométrie infinitésimale directe d'introduire

l'analyse moderne, en particulier la théorie des fonctions
de variable réelle, dans l'étude des propriétés géométriques
locales — se borne à l'étude d'espaces où chaque point est (ou

pourrait être) caractérisé par un système de coordonnées.

1 Annals of Mathem., 36, p. 705, p. 719.
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L'idée d'une géométrie différentielle sans coordonnées semble

encore aujourd'hui presque absurde à la plupart des géomètres;

cependant la géométrie des distances a déjà résolu le problème
si important de la courbure d'une façon qui laisse pressentir,
comme nous le disions dans l'introduction, que la méthode

analytique, bien qu'elle ait joué jusqu'alors un rôle prépondérant,

n'est ni la seule possible, ni celle présentant le plus de

généralité, ni peut-être même la plus conforme à la nature
géométrique des problèmes.

Soit D un espace distancié, q, r, s trois de ses points, il
existe trois points q\ r', s' dans le plan euclidien tels que les

triplets q, r, s et q', r', s' sont congruents. Si p désigne le rayon
du cercle circonscrit au triangle q', r', s', — en convenant de

poser p oo si g', r', s' sont en ligne droite — nous appellerons
courbure du triplet q, r, s de l'espace distancié et nous dési-

gnerons par x (q, r, s) l'inverse de ce rayon, c'est-à-dire —. Cette
P

courbure sera nulle quand les trois points seront linéaires (p. 357)
et seulement dans ce cas; et la propriété du segment due à
M. Biedermann (p. 357) peut alors s'énoncer ainsi: Pour qu'un
arc — c'est-à-dire un espace triangulaire homéomorphe à un
segment — soit congruent à un segment, il faut et il suffît que
tout triplet de points lui appartenant ait une courbure nulle.

Cet énoncé ne correspond pas à celui de la géométrie
différentielle concernant les propriétés caractéristiques de la droite,
qui fait intervenir une courbure définie en chaque point. Dans
un espace distancié nous pouvons, cependant, aussi introduire
une courbure locale, et cela de la façon suivante 1

: Nous dirons
que D a la courbure x (p) au point p, si à tout s > 0 donné à

l'avance, il correspond un S > 0 tel que pour tout triplet q, r, s-

de points de D, dont la distance à p est < S, nous ayons
I y- (q, — y (p) | < s.

On peut alors se demander si un arc dont la courbure est
nulle en chaque point est congruent à un segment. Il n'en est
pas nécessairement ainsi: Prenons pour D l'ensemble des points x

i Cette notion de courbure et sa théorie est développée dans mon mémoire: Math -mAnnalen, 103.
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de l'intervalle — 1 < x < 1 et comme distance des points x
et y le nombre

I x — y I si x et y ont le même signe,

1^1 + I V I x2V2 si x et y sont de signes contraires.

D est alors un espace distancié homéomorphe au segment
— 1 x 1 de la droite euclidienne, dont la courbure est
nulle en chaque point. Cependant cet arc n'est pas congruent
à un segment, comme le montre la considération du triplet
— 1, 0, 1 dont les points ont deux à deux la même distance.

J'ai néanmoins démontré par des méthodes purement
métriques qu'zm arc appartenant à un espace euclidien dont la
courbure est partout nulle est un segment, et ainsi fut établi un
théorème de géométrie différentielle sans l'usage du calcul
différentiel.

Comparé avec la définition classique de la courbure, la
définition métrique est plus générale dans ce sens qu'elle s'applique
aux espaces distanciés généraux. Mais dans le cas des espaces
euclidiens MM. Haupt et Alt ont remarqué 1 que ma définition
de la courbure était plus restrictive que la définition classique.
Si l'arc y y (x) du plan euclidien admet au point p0 (#0, y0)

une courbure x (p0) au sens précédemment mentionné — disons

une courbure métrique — la dérivée seconde y" (x0) existe et

la courbure classique y est égale à x (p0). Inversement,
[1 -f y'2 (x0)] 12

un arc peut posséder au point p0 (x0, y0) une courbure au sens

classique -—y ^—jr sans posséder une courbure métrique;
[1 -f yf2{xo)] 2

celle-ci est en effet une fonction continue du point ce qui n'est

pas nécessairement le cas pour la courbure classique, comme
1

le montre l'exemple de la courbe y x4 sin — pour le point

P (0,0).
M. Alt a modifié 2 de la façon suivante la notion de la courbure

métrique: au lieu de considérer des triplets q1 r, s où les trois
points sont variables, il se borne à la considération des triplets

1 Cf. Ergebnisse e. mathem. Kolloquiums, 3, p. 4.
2 Dans sa thèse présentée à Vienne. Voir aussi: Ergebnisse e. mathem. Kolloquiums,

3, p. 5 et 4, p. 4.
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p, q, r où deux points seuls sont variables. Il dit que D a la
courbure x (p) au point p, x (p) étant un nombre fini, si à tout
s > 0 donné à l'avance, il correspond un S > 0 tel que, pour
tout couple de points g, r, dont la distance à p est < S, nous

ayons | x(/>, q1 r) — x(p) j< s. Cette définition (valable dans

tout espace distancié) appliquée aux courbes d'un espace euclidien

est un peu plus générale que la définition classique1.
M. Alt a montré que la condition nécessaire et suffisante pour
que la courbe y j(x) — où / est une fonction définie dans

un voisinage de x0 qui n'admet pas une dérivée infinie pour
x x0 — possède au point (x0, y0 f(x0)) une courbure, à son

sens, c'est que /' (x0) existe et que les deux expressions

7 m - rM et /(*) — /' (*o)

x — x0 x — x0

tendent toutes deux vers une limite finie, ces deux limites étant
égales 2, quand x tend vers x0 ; f et f_ désignent respectivement
la dérivée supérieure et inférieure de la fonction / (celles-ci
pouvant prendre les valeurs -j- oo et — oo

M. Pauc a montré récemment qu'en prenant comme définition
de la dérivée seconde pour la valeur x x0, la limite finie, si
elle existe, de l'expression

/ (x0 + h) — / (x0) _ / (x0 + k) — f (x0)

2

quand h et k tendent indépendamment l'un de l'autre vers 0,
cette nouvelle définition coïncide avec la définition classique
lorsque f (x) existe dans un voisinage de x0. L'existence de

1 M. Oödel a proposé la définition suivante qui est encore plus générale: Disons
que l'arc D a la courbure * (p) au point p, si à tout e > 0 donné à l'avance, il correspond
un S > 0 tel que, pour tout couple de points q,r, de part et d'autre de p, dont la distance
à p est < I, nous ayons | -x (p, q, r) — * (p) | < e.

2 M. Pauc a remarqué que quand f'(xo) et les limites des deux expressions
mentionnées existent, ces deux limites sont nécessairement égales; si A désigne leur valeur
commune, la courbure de M. Alt a comme valeur ^

[1 + n (X0)]3/2
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f" (Xq) dans ce sens entraîne l'existence de /' (^0) et celle de la

courbure de M. Alt qui a alors comme expression —^ ^ ^ ^

».

1

[i + r*(x0)]8/a

M. Pauc a démontré par ailleurs que dans un espace euclidien,
si un continu k quelconque admet en un point p0 une courbure
de Alt, un voisinage de p0 sur k est un arc rectifiable; ce qui
permet l'énoncé suivant qui nous rapproche de la définition
classique: Pour qu'un continu k d'un espace euclidien possède en
un point p0 une courbure de Alt — x-(Po) il faut et il suffit
qu'un voisinage de p0 sur k soit un arc rectifiable, admettant
une tangente t0 en p0l et qu'en se limitant aux points p où la
tangente t existe, l'expression A oc: As(Aol angle tt0, As

longueur de l'arc pp0) ait une limite égale à x (p0) lorsque p tend
vers p0.

Donnons un exemple d'un arc possédant en un point une
courbure de Alt sans posséder une courbure classique. Il suffit de

considérer les points pn (A, Ejet n 1,2,...
ad inf.) (situés sur la parabole y x2) et la somme de deux lignes
polygonales pu p2, p3,pn,pn+1,et qx, q2, qn,

complétée par le point 0. L'arc obtenu possède en ce dernier point
une courbure au sens de M. Alt, égale à 2; il ne peut posséder
une courbure classique dans ce point, car la fonction y f (x)
représentant cet arc possède dans tout voisinage de 0, des points
où f (x) n'existe pas. La dérivée seconde au sens classique n'est

pas définie pour x 0, tandis qu'elle l'est au sens plus large
mentionné plus haut.

Au point de vue de la métrique interne (p. 362) les arcs ne

présentent qu'un intérêt assez faible. Un arc D satisfait aux
trois conditions mentionnées (p. 363) s'il est rectifiable et dans

ce cas seulement. Or, en faisant correspondre aux couples de

points d'un arc rectifiable quelconque leur distance interne,
nous obtenons un espace Dr congruent à un segment dont la
longueur est égale à celle de l'arc, donc un espace dont la courbure
est 0 en chaque point.

Par contre, l'intérêt de la métrique interne devient prépondérant

pour les espaces de dimension supérieure, et déjà pour

i H s'ensuit que la valeur A, rencontrée plus haut, n'est autre que |/"(x0)|
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les surfaces. Si D est une surface comme celles que l'on considère

dans la géométrie différentielle, il correspond à chaque point p
de D un nombre k (p) appelé la courbure totale de D au point p,
à savoir le produit des deux courbures principales des sections

planes de D. Ce nombre, d'après un résultat célèbre de Gauss,
ne dépend que de la métrique interne de D ; si Dx et D2 sont deux
surfaces telles que les espaces convexes D* et D2, portant les

métriques internes de Dx et D2, soient congruents, alors les

nombres k (px) et k (p2) sont toujours égaux pour deux points
px de Dx et p2 de D2 qui se correspondent par cette congruence.
On connaît, d'ailleurs, les nombreuses définitions de k (p) se

basant sur la métrique interne de D, dues à Gauss et à ses

successeurs. Mais n'est-il pas possible, demandais-je, de définir
cette courbure par la simple considération des quadruplets de

points de D, comme nous venons de faire pour la courbure des

courbes
La plus simple généralisation de cette dernière qui se présente,

ne mène pas à la solution du problème, même dans le cas où D
est un sous-ensemble d'un espace euclidien; car si l'on fait alors

correspondre à quatre points de D le rayon de la sphère
circonscrite et si l'on fait un passage à la limite analogue à celui

que nous avons employé pour les courbes, on obtient un
nombre qui ne dépend pas uniquement de la métrique interne
de D.

M. Wald a cependant réussi récemment à résoudre le
problème au moyen de l'idée suivante1: Il dit que l'espace dis-
tancié D' a la courbure de surface x(p) au point p, lorsqu'aucun
voisinage de p n'est linéaire et lorsqu'à tout s > 0 il correspond

un S > 0 tel que tout quadruplet de points g, r, s, t de

D', dont les distances à p sont < S, soit congruent à un
quadruplet de points de Sk avec | k — x (p) | < s ; Sk désigne la
surface d'une sphère à trois dimensions de courbure totale
k (r rayon réel ou imaginaire) portant la métrique interne,
donc où l'on a pris comme distance de deux points p' et p"
la longueur du plus petit arc de grand cercle passant par p'

1 Cf. C. R., 201, p. 918. Voir aussi: Ergebnisse e. mathem. Kolloquiums, 6, p. 29 et
cahier 7, p. 24.
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et p". Si D' est une surface comme celles que l'on considère
en géométrie différentielle, la courbure totale k (p) en tout
point p est égale à la courbure de surface x (p) de D' au point p.
La définition de Wald qui ne nécessite pas la représentation des

points par des coordonnées, peut donc servir à introduire de

façon bien naturelle et extrêmement simple la notion importante
de courbure.

Les surfaces de Gauss sont donc des espaces compacts et
convexes admettant en chaque point une courbure de surface

x (p) au sens de M. Wald. Mais encore plus important et plus
remarquable est, me semble-t-il, le théorème inverse démontré

par M. Wald.
Tout espace distancié compact et convexe qui admet une

courbure de surface en chaque point, est une surface de Gauss.
En se basant sur la seule hypothèse qu'un espace distancié
général est compact, convexe et admet en chaque point une
courbure de surface au sens de M. Wald, celui-ci peut démontrer

que l'espace est localement homéomorphe à l'intérieur d'un cercle,

que deux points assez voisins peuvent toujours être joints par
un seul segment, qu'on peut introduire des angles et des
coordonnées polaires p, 9, et que la longueur d'un petit arc

p p(t) <p cp(t) (0 g tg 1)

p (t) et 9 (t) étant deux fonctions dérivables de t, est égale à

1

f[p'2(t) + G*(p,ç) cp'2 (i) ]
2 dt,

0

où G (p, 9) est la solution de l'équation différentielle

y^ — x (p, 9) G (p, 9)

ô2G
satisfaisant aux conditions G (0, 9) 0, -y- (0, 9) 1 et où

x (p, 9) désigne la courbure de surface de D' au point (p, 9).
On a donc le théorème fondamental suivant:

Pour qu'un espace distancié compact soit une surface de
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Gauss, il est nécessaire et sufßsant qu'il soit convexe et admette une

courbure de surface en chaque point.

Ce théorème montre que la géométrie des distances fournit
une nouvelle base à l'étude des propriétés métriques locales des

surfaces.

V. — Géométrie des distances et calcul des variations.

Soit donné un espace distancié. Un ensemble fini ordonné
de points pl7 p2, pk est appelé polygone (et polygone fermé
si px — ph). Nous considérons des courbes continues dans

l'espace donné. C étant l'image continue d'un intervalle
a < t < ß, nous appelons sous-polygone de C l'image
P ~ {Pii P21 Pk} (Par mame représentation) d'un
ensemble fini ordonné de nombres y1 < y2 < < y& de [a, ß].
Par v (P) nous désignons le plus grand des nombres ji+i — y^.

Soit donnée une fonction F (p; g, r) des triplets de points
(q Ar). Cette fonction permet l'introduction d'une nouvelle
métrique si nous prenons pour chaque couple de points q, r,
au lieu de la distance qr qu'ils ont dans D, le nombre
d (q, r) F (g; g, r) ^ si qA r, et d (g, q) 0. Soit D (F)
l'espace à distances réelles qu'on obtient ainsi. En attribuant,
étant donné un point p, à g et r la distance dp (g, r) F (p ; g, r)
si g r, et dp(g, g) 0 nous obtenons un autre espace à
distances réelles que nous appellerons l'espace tangent Dp(F) de
D (F) au point p. Pour le polygone P nous considérerons outre
sa longueur l(P) llpipi+i dans D, ses longueurs dans D(F)
et dans Dp(F), à savoir les nombres

k-i
À(P, F) y F (p.-Pi,. PÏPÎIi

i=1

et
k-i

xP(p> F) 2 F (P ; pi+i)PiPi+i
i=1

La borne supérieure finie ou infinie des nombres l(P) pour
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tous les sous-polygones de C est appelée la longueur 1(C)
de C. On dit que G est rectifiable si 1(C) est fini.

Imposons à la fonction F les conditions suivantes pour chaque
courbe rectifiable C:

1. F (p; q, r) est bornée pour tous les triplets p, q, r d'un voisinage

de C.

2. L'ensemble de tous les points p de C pour lesquels Voscillation
de F est > 0, est de mesure linéaire 0, c'est-à-dire il peut être
couvert par des sphères, en nombre fini ou infini, dont la somme
des diamètres soit aussi petite que l'on voudra. Par l'oscillation
g (p) de F au point p nous entendrons la borne supérieure de

tous les nombres g pour lesquels il existe dans tout voisinage de p
quatre points pf p", g, r tels que | F (p'm,q,r) — F (p" ; y, r) j > <7.

Les points pour lesquels g (p) > 0, sont les points de discontinuité

de F par rapport à la première des trois variables.

3. L'ensemble des points p de C pour lesquels Tc(p) est > 0 est

de mesure linéaire 0. Par tG(p) nous entendons la limite pour
p —>- 0 de la borne supérieure des nombres i(q) pour les points q

dont la distance à p est < p. Nous désignons ici par t (q) la
borne supérieure des nombres t pour lesquels il existe un polygone

P «a {px, p2, pn} avec pi — q et tel qu'on ait

yp, F) ^ d(pl9 Pn) — T I d(Pl, Pn) I

On a t (p) 22. 0 pour tout point p et t (p) 0 dans le cas et
seulement dans le cas où

F (p; P, q) pq + F (p ; q, r) qr S F (p ; q, r) pr

pour tout couple </, r.

4. tG(p) est fini en tout point p de C.

5. Pour tout polygone fermé P qui est assez voisin d'un point p
de discontinuité de F, on a X (P, F) > 0.

Ces hypothèses sur la fonction F étant admises on a le théorème

suivant:

Pour chaque suite Px, P2, de sous-polygones d'une courbe

continue rectifiable pour laquelle on a lim v (Pn) — 0, les nombres
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X(Pn, F) convergent vers un nombre fini. Cette limite est la même

pour toutes les suites de sous-polygones de C assujetties à la
condition que v —0. Nous la désignerons par X(C, F). Pour
chaque X > 0 donné, X (C, F) est une fonctionnelle semicontinue

inférieurement sur Vensemble de toutes les courbes de longueur < X.

Si, d'ailleurs, pour chaque X > 0 donné, les longueurs de toutes
les courbes C pour lesquelles X (C, F) X, sont bornées, chaque
classe complète de courbes rectifiables contient une courbe pour
laquelle la fonctionnelle X(C, F) atteint son minimum.

Quel est l'avantage de cette généralisation des théorèmes
d'existence du calcul des variations Tout d'abord, la forme
métrique met en évidence que l'hypothèse de la nature
cartésienne de l'espace (à savoir la représentation des points par un
groupe de coordonnées), hypothèse considérée jusqu'alors
comme base des problèmes du calcul des variations, n'est pas
liée à l'essence du problème. Dans tous les espaces distanciés
se posent des questions concernant l'extremum des fonctionnelles
de courbes, données par des intégrales curvilignes. Mais même en
l'appliquant aux espaces euclidiens, donc au cas classique, notre
théorème, outre une grande simplicité dans les démonstrations,
semble apporter un progrès \ car les conditions imposées à F
même dans les profonds théorèmes de M. Tonelli sont plus
restrictives que les nôtres. Considérons, pour nous en rendre
compte, nos cinq hypothèses sur F dans le cas où l'espace
distancié donné est un espace euclidien à n dimensions 2.

Dans les problèmes classiques, il correspond à chaque point
p (%, x2, xn) de cet espace (ou d'un certain domaine)
et à chaque direction S (x[ : x2 : ...:xn) un nombre

F(p,8) F (x1 xn\x[,...,xn)=Ef(«1s

pour k > 0

1 Je viens d'apprendre que dans le cas euclidien M. Boulioand a récemment (Mem.
de la Soc. Roy. des Se. de Liège, 3me sér., t. 19) considéré, pour les fonctions continues
et quasi-régulières partout, des sommes riemaniennes ainsi que nous venons de le faire
dans le cas général, et a ainsi obtenu une démonstration très élégante d'un théorème
d'existence. M. Bouligand, tout en se bornant aux fonctions positivement définies,
s'est bien aperçu de la portée de sa méthode. La nôtre était en germe dans des recherches
sur la longueur des arcs Mathem. Annalen, 103) et nous l'avons exposée dans un article
de Fundam. Mathem., '25, et dans une note aux C. R. Paris, 21.X.1935.

2 Cf. ma note, C. R., 200, p. 705.
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Pour appliquer notre théorie posons pour trois points p, q, r
donnés (q ^ r) F (g ; g, r) F (p, Sgr) où 8gr désigne la
direction de la demi-droite partant de q et passant par r. Les

hypothèses 1 et 2 sont réalisées si, pour chaque courbe recti-
fiable C, la fonction F (p, 8gr) est bornée dans un voisinage
de C et continue sur C sauf pour les points d'un ensemble de mesure
linéaire 0, c'est-à-dire d'un ensemble qu'on peut recouvrir au

moyen d'une suite dénombrable de sphères dont la somme des

diamètres est arbitrairement petite. La quasi-régularité t (p) 0

de la fonction F au point p (qui par la condition 3 est postulée

pour presque tous les points p) s'exprime maintenant par
l'inégalité suivante valable pour chaque triplet de points p, g, r:

F (P spa) PI + F (p sgr) qr > F (p spr) pr

Pour voir la signification de cette propriété, nous désignons,

pour chaque droite orientée 8 passant par p, par le point
de 8 dont la distance à p est égale à

—âj~[
es^ S1^u^

sur le rayon positif ou négatif de 8 suivant le signe de F (p, 8),
c'est-à-dire nous construisons Vindicatrice E de F au point p dans
le sens où, pour des fonctions définies, M. Carathéodory l'a
introduite. Pour que F soit quasi-régulière au point p, il faut et il
suffit alors, comme l'a démontré M. Alt, qu'il existe une collinéa-
tion tu qui transforme l'hypersurface indicatrice E du point p,
c'est-à-dire l'ensemble de tous les points en une surface convexe
à n — 1 dimensions iz (E) telle que iz (p) soit situé à l'intérieur
de tu (E) et que tu {e§) soit situé sur le semi-rayon positif de

tu (S) par rapport à iz (p). Il est clair que la régularité de F au
point p signifie la convexité projective de l'hypersurface
indicatrice E du point p. Si F (p, S) est non négative pour chaque
droite 8 passant par p, la convexité projective n'est rien d'autre

que la convexité au sens ordinaire.
Remarquons en terminant que la méthode exposée permet

aussi1 d'étendre le champ des courbes de comparaison et
l'introduction des courbes non rectifiables dans le calcul des variations2.

1 Cf. ma Note C.'R. Paris, t. 202, p. 1648.
2 Je tiens à remercier M. Pauc de son aide dans la rédaction de cet article et pour

plusieurs remarques qu'il m'a communiquées à ce sujet.
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