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QUELQUES PROBLEMES
DE LA THEORIE DES REPRESENTATIONS
CONTINUES !

PAR

H. Hore¥ (Zurich).

1. — Comme but des recherches topologiques on assigne
souvent 1’étude d’une certaine classe de propriétés concernant
la forme et la position des figures géométriques, propriétés qui sont
invariantes pour les représentations topologiques, c’est-a-dire
biunivoques et continues dans les deux sens. C’est bien la
définition usuelle, mais elle n’est certainement pas compléte.
Car ce sont non seulement les propriétés des figures géomé-
triques qui doivent étre étudiées, mais aussi les propriétés des
représentations topologiques ou, plus généralement, des repré-
sentations univoques et continues elles-mémes. Comme les figures,
ces représentations elles-mémes aussi torment un domaine impor-
tant et fécond pour les recherches des topologues — il suffit de
nous rappeler les conférences intéressantes que nous entendimes
derni¢rement de MM. pe KERERJARTO et NIELSEN, ainsi que
quelques travaux classiques de M. Brouwer. L’indication de
cette distinction de deux parties différentes de la topologie
n’entraine heureusement pas de scission de notre science en
deux branches particulieres qui seraient peu liées entre elles;
tout au contraire, il existe entre elles des rapports étroits: par

1 Conférence faite le 25 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par I’Université de Geneve; série consacrée i
Quelques questions de Géométrie et de Topologie.
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exemple, les propriétés de toutes les représentations d'un
espace P en un autre espace fixe Q — c’est-a-dire les propriétes
de D'« espace (abstrait) des représentations» Q° — sont en
méme temps, comme M. Kurarowskr nous I'a rappelé, des
propriétés de P méme, qui donnent des renseignements impor-
tants sur la forme de P. |

Je voudrais exposer ici ces rapports entre la « topologie des
représentations » et la « topologie de la forme » et cela en traitant
deux catégories de problémes: une premiére catégorie se rappor-
tant a la possibilité de comparer entre elles les formes de deux
espaces 1 P et Q en considérant les représentations de P sur Q
et celles de Q sur P, une seconde concernant les relations entre
la forme d’un espace P et les représentations de P sur lui-méme 2.

2. — Avant d’aborder le premier de ces points, celui de la
comparaison de deux espaces par leurs représentations réci-
proques, j’introduirai une notion qui a fait ses preuves en
ces matiéres: la représentation f de I’espace P sur l'espace Q
sera dite « essentielle » si pour chaque modification continue de la
représentation f, fout ’espace Q reste image de P; en d’autres
termes, §'il est impossible de libérer une partie de Q du recou-
vrement par 'image de P, par une modification continue de la
représentation f.

En faisant des hypothéses trés générales sur P et Q il est
possible de représenter ces espaces I’'un sur ’autre d’une maniére
continue; mais sous quelles conditions existe-t-il une représen-
tation essentielle de P sur Q ? On montre par exemple facilement
que toute surface close peut étre représentée essentiellement
sur la surface sphérique, tandis que chaque représentation d’une
surface sphérique sur une surface close et orientable de genre
supérieur est non-essentielle. Ce dernier fait est un cas parti-
culier du théoréme plus général suivant: P et Q étant des
variétés closes et orientables & n dimensions, une condition

1 Par un «espace » nous entendons toujours un espace métrique.
? Par une «représentation » nous entendons toujours une représentation univoque
et continue. Nous appelons f une représentation de P en Q si I'image f (P) est sous-

ensemble de Q; si 'on a, en particulier, f (P) = Q, alors f sera dite une représentation
de P sur Q. '
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nécessatre pour que I’ soit représentable essentiellement sur Q,
est 'existence des relations suivantes
pr=4q" re= 1, 2 n— 1

9 ees g 5

ou p" et ¢" désignent les r-iemes nombres de Betti de P et Q [13] 1.

Ce théoréme, bien entendu, est valable pour des ¢ariétés closes
de la méme dimension ; les exemples suivants montreront qu’il
ne peut pas, sans autre, étre étendu a des paires plus générales
d’espaces P et Q: une circonférence P peut évidemment étre
représentée essentiellement sur une lemniscate (Q, hien qu’on
ait p! = 1, ¢ = 2; il existe aussi des représentations essen-
tielles de la sphére & trois dimensions P sur la sphére & deux
dimensions Q, bien qu’on ait p2 =0, ¢ =1 [16]. Je crois
cependant qu’une loi plus générale se manifeste par le théoréme
précité, une loi dont le contenu exact et le domaine de validité ne
sont pas encore connus, mais qui pourrait s’énoncer a peu preés
de la facon suivante: si ’espace P a, dans un certain sens, une
structure topologique «plus simple» que ’espace Q, alors P
n’est pas représentable essentiellement sur (). Mais la déter-
mination exacte du sens de la notion de « simplicité » qui inter-
vient ici nous manque encore. C’est précisément ici 'un des
problémes principaux que j’ai en vue. Nous indiquerons dans la

r

suite (n° 5, n® 7) d’autres apparitions de la méme loi.

3. — Restons-en pour Pinstant aux variétés closes a n dimen-
sions P et Q; alors le fait qu’une représentation de P sur () est
essentielle équivaut au fait que le degré de cette représentation
n’est pas nul [23; 11]; et 'on peut joindre au théoréeme susmen-
tionné sur les représentations essentielles d’autres théorémes
sur le degré de représentation qui sont, en partie, plus précis:

M. H. KxesEr a démontré la formule suivante pour z = 2,
c’est-a-dire pour les surfaces closes, ou ¢ désigne le degré d’une
représentation de P sur Q et p, ¢ les genres de P, () [24]:

p—1=le|-{¢g—1) (pour p > 0j .

1 Les chiffres entre crochets renvoient & la bibliographie qui se trouve a la fin de
cet exposé,
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D’autre part, comme il existe des représentations pour tout ¢
satisfaisant a Dinégalité de M. Kneser, cette formule donne
d’amples renseignements sur le rapport entre les propriétés
de la forme de P et Q, d’une part, et les représentations possibles
de 'autre.

On ne connait pas de théoréme aussi précis pour les dimensions:
supérieures. On connait cependant certaines propriétés des
variétés closes et orientables & n dimensions, par exemple le
fait que voici: si 'on peut représenter, avec le degré 1, P sur Q,
ainsi que Q sur P, alors tous les invariants d’homologie — les
groupes de Betti et 'anneau d’intersection de M. Alexander —
coincident pour P et Q [13]. Le probléme reste ouvert de savoir
si deux variétés, représentables 'une sur autre avec le degré 1,
sont aussi homéomorphes. Ce probléme est d’ailleurs étroitement
apparenté avec cet autre probléme, posé par MM. KURATOWSKI
et ULam [25] et resté ouvert lui aussi: soient P et Q des variétés
closes et supposons qu’il existe, pour chaque e positif, une
représentation f telle que ’ensemble /! (¢) pour chaque point ¢
de Q ait un diamétre inférieur & e; P et Q sont-elles alors
homéomorphes ?

Le théoréme indiqué plus haut, sur la possibilité des repré-
sentations réciproques avec le degré 1, mérite une attention
particuliére dans le cas ot Q est la sphére S"™ a n dimensions.
On voit aisément que chaque variété (close et orientable) &
n dimensions P peut étre représentée sur 5" avec le degré 1;
Iénoncé du théoréme est alors le suivant: si 'on peut repré-
senter S™ sur P avec le degré 1, alors P a les mémes invariants
d’homologie que la sphére S™; et il est facile de montrer que,
en plus, le groupe fondamental de P disparait lui aussi
[11, théor. VIII]. La fameuse hypothese de Poincarg dit que
la sphére S™ se distingue de toutes les autres variétés closes a
n dimensions par le fait que le groupe fondamental ainsi que tous
les r-1emes groupes de Betti (pour 1 = r = n — 1) disparaissent;
si cette hypothese est exacte, alors P aussi est homéomorphe
a la sphere. On voit que la justesse de ’hypothése de Poincaré
entrainerait aussi celle de I’hypothése suivante, énoncée par
M. KNESER (en rapport avec certaines recherches sur Paxioma-
tique des variétés) [22, p. 10]: « La seule variété close a n dimen-
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sions sur laquelle la sphere a n dimensions peut étre représentée
avec le degré 1, est la sphére elle-méme». Derniérement,
M. Hurewicz a annoncé une démonstration du fait que, inver-
sement, ’hypotheése de Poincaré découle de celle de M. Kneser,
que les deux sont, par conséquent, équivalentes [21].

4. — Je tiens d’ailleurs a faire observer que cette remarque
de M. Hurewicz doit étre placée dans le cadre de ses recherches
systématiques sur les représentations des sphéres S™ en un
espace ): celles-ci forment le noyau de sa nouvelle théorie des
« groupes d’homotopie & un nombre supérieur de dimensions »
[20; 21]; cette théorie semble représenter un progres tres impor-
tant dans le domaine dont je parle ici. Malheureusement, je ne
connais pas encore cette théorie assez a fond pour pouvoir
I’exposer ici; je n'indiqueral par la suite qu’un de ses beaux
théorénies (No 8).

5. — Par contre, depuis quelques années, les représentations
d’un espace P en la sphére S™ ont été employées pour examiner P
lui-méme et cela a donné des résultats satisfaisants dans le cas
ou P est a n dimensions lut aussi. J’ai pu montrer pour commencer
que la condition nécessaire et suffisante pour qu’un polyédre
@ n dimenstons P puisse étre représenté essentiellement sur S"
est qu’il contienne un cycle & n dimensions (d’'un domaine de
coefficients quelconque) différent de zéro [14; 15; 2, p. H14].
Ce théoreme fut étendu par M. ALEXANDROFF & des espaces
compacts arbitraires [1, p. 223]. M. FrEUDENTHAL enfin a
porté ces recherches & leur achévement en démontrant le fait
suivant: les propriétés d’homologie & n dimensions d’un espace
compact a n dimensions P sont équivalentes aux propriétés des
classes d’homotopie des représentations de P en la sphere S";
comme M. Freudenthal 1’a montré, ces classes d’homotopie
peuvent en effet étre concues comme éléments d’un groupe, et
ce groupe, d’'une part, le n-iéme groupe de Betti de P de autre,
se déterminent réciproquement d’une facon univoque [9].

Le théoréme que voici de M. Borsuk mérite aussi d’étre
mentionné dans cet ordre d’idées, et cela autant a cause de son
intuitive simplicité qu’a cause de sa démonstration élémentaire:
P étant un ensemble fermé et borné de l'espace euclidien a
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n + 1 dimensions R**!, il partage R™"! et ne le partage que 8’1l
existe une représentation essentielle de P sur S*[3; 2, p. 405] L.

8. — Ce théoréme dépasse un peu le cadre des théoremes
précités: ici la dimension de P peut étre supérieure & n, & savoir
égale & n + 1 (il est vrai que cette différence s’affaiblit du fait
que P se trouve dans R™"!). En général, on est peu renseigné sur
la signification des représentations d’un espace P, & dimension
supérieure & n, sur la sphére & n dimensions; les efforts pour
caractériser aussi par ces représentations les groupes de Bett
inférieurs de P, sont restés jusqu’a présent sans succes.

C’est uniquement dans le cas n =1 qu’on peut, dans les
théorémes précités, renoncer a I'’hypothése que P aussi est
a n dimensions: j’avais démontré qu’'un polyedre de dimen-
sion arbitraire peut étre représenté essentiellement sur la
circonférence, et ne peut I'étre que si son premier nombre
de Betti est non nul [16, théor. Va; 2, p. 518]. M. Borsuk a
étendu ce théoréme aux espaces compacts arbitraires [4], et en
méme temps M. BRuscHLINSKY a démontré le fait suivant: on
peut déterminer le premier nombre de Betti d’un espace com-
pact P a partir du groupe des classes des représentations de P
en un cercle S' [7] — de la méme maniére que, d’apres le
théoréme de M. Freudenthal, cela peut se faire pour le nombre
de Betti le plus élevé de P par les représentations de P en la
sphére de dimension correspondante.

Par contre, le role joué par les représentations d’un espace P
4 N dimensions sur les sphéres des dimensions n = 2, 3, ..., N —1
est encore totalement obscur, méme pour le cas des polyédres.
D’une part 1l semble, déja pour r = 2, extrémement douteux
qu’on puisse représenter essentiellement sur S” chaque polyédre
P dont le r-itme nombre de Betti est positif2; d’autre part il est
certain que des représentations essentielles de P sur S2 peuvent

1 On pourrait poser le probléme de caractériser aussi des propriétés plus générales des
ensembles ponctuels de I'espace R+ par des représentations sur S” . M. KURATOWSKI
m’a indiqué derniérement que ce probléme fut traité avec le plus grand succés par
M. EILENBERG pour le cas n = 1: dans un mémoire & paraitre prochainement
M. Eilenberg construit presque toute la topologie des ensembles ponctuels plans sur la
base des représentations sur la circonférence [8]. ’

2 Une telle représentation est possible si la dimension de P n’est pas supérieure a
r + 1 [16, théor. VII].
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exister, méme s1 le deuxiéme nombre de Betti disparait: cela a
lieu par exemple si P est la sphére a trois dimensions S3 [16].

La question de savoir si la sphére S™ peut étre représentée
essentiellement sur la sphére S™ pour un couple donné N, n (avec
N > n > 1) est encore ouverte; j’ai pu y répondre pour les
cas particuliers N = 4k — 1, n = 2k, k = 1,2, ... et cela par
Paffirmative [17]1. Je considére, pour ma part, la réponse générale
a cette question comme une tache des plus importantes et des
plus attrayantes: non seulement en ce qui concerne la théorie,
mails aussi parce que nous devrions connaitre complétement et
sous chaque point de vue des figures aussi simples et aussi
mportantes que les spheres !

7. — Nous venons de parler de la comparaison de Pespace P
avec les spheéres; il serait presque plus naturel de considérer
comme espace de comparaison, au lieu des sphéres, les figures les
plus simples possibles, les simplexes, et si on le fait on obtient
vraiment un beau succeés. Modifions tout d’abord un peu la
notion d’une représentation «essentielle »: la représentation f
d’un espace P sur un simplexe Q sera dite « relativement essen-
tielle » s1l est impossible de libérer des points de () durecouvre-
ment par 'image de P en modifiant d’une maniere continue f
é'l"intérieur senlement de (), c’est-a-dire en ne modifiant / en
aucun point dont I'image tombe sur la frontiére de Q. Or voici
I’énoncé d’un théoréme de M. ArLExanprorr: La dimension
d’un espace compact P est le plus grand nombre n tel que P
puisse étre représenté relativement-essentiellement sur wun
simplexe a n dimensions [1; 2, p. 373; 19].

Par ce théoréme aussi intuitif qu'important, je terminerai la
partie de ma conférence traitant de la comparaison de deux
espaces a I'aide de leurs représentations réciproques.

8. — Je parleral maintenant des représentations d’un espace
en lui-méme. Déja en considérant les surfaces finies, on remarque
une relation entre ces représentations et la forme des surfaces:
P étant une surface close, 1l est — d’aprés un théoréeme connu sur
le degré de représentation — impossible de la déformer, d’une

~ 1 M. PONTRJAGIN a récemment répondu par la négativé 4 cette question pour chaque
N =n -+ 2> 4. (Communication de M. LEFscHETZ au Congrés intern. des Math,, Oslo,
sept. 1936.)
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facon univoque et continue, en une de ses propres parties; par
contre cela est possible si P admet une frontiére. La propriété
par laquelle se caractérisent ici les surfaces closes s’énonce
sous la forme générale suivante: 'espace P sera dit « clos dans
le sens de ’homotopie » ou encore « essentiel sur lui-méme » si
lidentité — c’est-a-dire la représentation avec f(r) = z pour
chaque point z de P — est une représentation essentielle.

Cette propriété d’étre «clos» me semble une notion assez
immédiate et naturelle. Si 'on considére par exemple un po-
lyédre P, alors se pose le probléme de décider & partir des pro-
priétés combinatoires de P, si P est «clos» dans ce sens ou ne
I’est pas; mais ce probléme n’est pas résolu, pas méme pour les
polyedres; en particulier, il ne semble pas exister des relations
simples entre le groupe fondamental et les groupes de Betti
d’une part, et le fait d’8tre clos au sens de ’homotopie d’autre
part [18; 2, p. 518 et suiv.].

Cependant, M. Hurewicz a résolu un probléme trés voisin,
4 savoir: quels sont les polyédres qui peuvent étre réduits a uw
seul point par une déformation univoque et continue ? La réponse
est la suivante: une telle réduction du polyédre connexe P est pos-
sible et ne I'est que si tous les r-iémes groupes de Betti pour r>1
ainsi que le groupe fondamental de P disparaissent, ¢’est-a-dire
si P coincide par les invarianis classiques de Poincaré avec un
simplexe [21]. C’est un théoréme surprenant qui jette une vive
lumiére sur la valeur des invariants classiques et aussi sur celle
de la nouvelle théorie de I’homotopie de M. HurEwicz !

Mile PANNwITZ et mol avons considéré avec succes une autre
modification du probleme non résolu de caractériser la propriété
d’étre clos: nous appelons un espace « labile » si des déformations
arbitrairement petites suffisent pour le transformer en une de ses
propres parties; un espace labile n’est done, a fortiori, pas clos

au sens de 'homotopie. Or, la labilité d’un polyédre P qui est

partout & n dimensions peut étre caractérisée par une propriété
purement combinatoire, & savoir par l'existence d’une « fron-
tiere » de P — ou la notion de frontiére employée ici appartient
entierement au domaine classique des notions sur lesquelles
repose la théorie de I’homologie. Mais je ne voudrais pas insister
ici sur la définition exacte de cette notion [18; 2, pp. 285 et 524].
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11 est amusant et instructif de construire des exemples pour
ces théorémes; il existe notamment des polyédres a deux
dimensions qui peuvent étre réduits & un point et qui sont labiles
bien qu’ils ne possédent pas d’aréte libre, ¢’est-a-dire bien que,
dans leurs décompositions en simplexes, chaque aréte appar-
tienne au moins a deux triangles [18].

9. — Parmi les propriétés des représentations d’un espace en
lui-méme, c’est existence ou la non-existence des points fizes
qui a toujours retenu spécialement P'attention. Dans le cadre
de notre mise en problémes nous demanderons: quelles sont les
propriétés de la forme d’un espace P qui permettent de décider
si P peut ou non étre transformé en lui-méme sans points fixes ?
La circonférence est un tel espace, tandis que les simplexes
contiennent, d’aprés le célebre théoreme de M. BrRouwEer, des
points fixes pour toute représentation en eux-mémes. De quelle
facon pourrait-on généraliser cetle différence entre une circon-
férence et un simplexe ? Est-ce qu’un certain aspect « cyclique »
d’une figure pourrait étre caractéristique du fait qu’elle peut
étre transformée en elle-méme sans points fixes ? On a quelques
connaissances sur ce sujet mais, malheureusement, elles ne
sont pas bien nombreuses.

La formule sur les points fixes de M. LEFscHETz [26] est
valable, comme je P’ai montré [12; 2, p. 524], non seulement
pour des variétés mais aussi pour des polyedres arbitraires; de
cette formule découle le fait que le théoréme précité de
M. BrRoUWER sur les points fixes des simplexes se laisse étendre
a tous les polyédres qui ont les mémes nombres de Betti que les
simplexes, qui sont, de ce fait, connexes et dont tous les nombres
de Betti de dimension positive disparaissent [2, p. 532].

M. LEFscHETZ a montré, en cutre, que ce théoréme conserve sa

validité si ’on remplace les polyédres par les espaces compacts
qui sont «localement connexes au sens de M. Alexander»
[27, pp- 90 et 359]. La condition suivante est donc nécessaire pour
Pexistence de représentations en eux-mémes sans points fixes
de ces espaces assez généraux: pour un certain r > 1 le r-iéme
nombre de Betti est différent de zéro.

Un exemple, découvert par M. Borsuk, montrera qu’on n’ose
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pas renoncer & I'’hypothése précitée de la connexité locale: il
existe un continu dont tous les r-iémes nombres de Betti pour
r = 1,2, ... disparaissent et qui peut cependant étre transforme
en lui-méme sans point fixe [5]. D’ailleurs, ce continu se trouve
bien dans Iespace a trois dimensions mais pas dans le plan et
il est douteux qu’'un tel exemple existe déja dans le plan; en
d’autres termes, nous ne savons pas — et cette ignorance est
remarquable | — si Paffirmation suivante est exacte: P étant un
continu plan ne décomposant pas le plan et f une représentation
quelconque de P en lui-méme, alors f possede un point fixe.

La condition qu’un nombre de Betti de dimension positive
est différent de zéro n’est pas suffisante pour 'existence de
représentations sans points fixes: par exemple, la variété a
quatre dimensions des points complexes du plan projectif
posséde, pour toute représentation en elle-méme un point fixe,
bien que son deuxiéme et son quatriéme nombre de Betti soient
égaux a un [13]. C’est pour cette raison que les faits suivants,
établis par M. Borsuk, sont trés remarquables: tout polyedre
— et méme, plus généralement, tout espace compact et locale-
ment connexe — dont le premier nombre de Betti ne s’annule
pas peut étre représenté en lui-méme sans point fixe [4]; et la
méme affirmation est vraie aussi pour les polyédres qui sont
situés dans Uespace euclidien o trois dimensions et dont le
deuzriéme nombre de Betti est différent de zéro [6]. Mais si nous
considérons des polyédres arbitraires, alors on ne connait pas
de critére nécessaire et suffisant pour Pexistence de représenta-
tions sans points fixes et cela méme pas si I'on se restreint aux
variétés closes.

10. — On obtient cependant de meilleurs résultats si ’on ne
considere pas des représentations arbitraires de P en lui-méme,
mais — comme dans le probléme de la propriété d’étre « clos »
indiqué plus haut — des « petites transformations », ¢’est-a-dire
des représentations o les distances entre le point et le point-
image sont petites. En premier lieu, on déduit de la formule
généralisée de M. LEFscHETZ que nous venons d’employer, que
seuls les polyédres & caractéristique eulérienne nulle admettent
des transformations arbitrairement petites sans point fixe
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[2, p. 532]. Dans le cas des variétés closes la réciproque de cette
affirmation est aussi vraie, le théoréme suivant est donc valable:
Une variété close admet et n’admet de transformation arbitraire-
ment petite en elle-méme sans point fixe que si sa caractéristique
eulérienne est nulle [10; 2, p. 552]. On sait que cette condition
est satisfaite pour toute variété de dimension impaire, tandis
que parmi les variétés de dimension paire il n’y en a que quelques-
unes qui la remplissent.

Dans une variété (dérivable ') la notion de « petite transforma-
tion sans point fixe » coincide au fond avee la notion de « champ
de directions »; nous pouvons donc énoncer pour les champs
de directions le théoréme formulé plus haut pour les petites
transformations. On obtient alors une généralisation de théo-
remes connus de PoiNcArRE et de M. BRouwgR sur des surfaces
et des spheéres a n dimensions.

11. — Le théoreme sur l'existence de petites transformations
sans point fixe joue un certain role dans les recherches sur les
variéiés de groupes: un espace de groupe admettant des trans-
formations infinitésimales sans points fixes, sa caractéristique
est de ce fait nécessairement nulle. La question de savoir quels
espaces sont des espaces de groupes appartient en principe au
cercle des probléemes que nous traitons ici; car, pour un espace,
le fait de représenter un groupe est une propriété des trans-
formations de I’espace sur lui-méme, et seuls certains espaces
la possedent. Cependant, la théorie que nous exposa M. CARTAN
dans sa conférence ne peut étre appelée une théorie «topolo-
gique »; elle emploie en effet des moyens beaucoup plus difficiles
et beaucoup plus profonds que ceux dont il a fallu se servir pour
les problemes dont j’a1 parlé. La démonstration, par exemple, du
théoréme que, parmi toutes les sphéres, seules celles de dimen-
sions 1 et 3 sont des espaces de groupes, exige presque tout
Pappareil moderne des théories de MM. Cartan et WEYL. Ce
serait une tache extrémement attrayante que de déduire le méme
fait par des moyens «élémentaires», c’est-a-dire purement
topologiques. Nous sommes encore tres loin de la résolution de

1 Dés ici, les variétés que nous considérons doivent satisfaire & certaines conditions
de dérivabilité que nous ne voulons d’ailleurs pas préciser.
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ce probléme; je voudrais cependant indiquer ici quelques
nouveaux résultats de M. STiEFEL qui nous rapprochent, peut-
étre, de la solution de problémes de cet ordre [28, 29].

On voit aisément qu’une variété de groupes & n dimensions
admet non seulement un champ continu de directions, mais
'n champs de ce genre qui sont, en chaque point, linéairement
indépendants; cette circonstance est équivalente au fait suivant:
la variété est « parallélisable », ¢’est-a-dire que 1’on peut introduire
un « parallélisme » des directions, qui satisfait aux exigences
naturelles imposées & une telle notion. La question subsiste de
savoir si la possibilité de ce parallélisme découle déja de I'exis-
tence d’un unique champ de directions, ¢’est-a-dire de la dispari-
tion de la caractéristique. M. StiereL a découvert le fait trés
surprenant que chaque variété orientable a trois dimensions est
parallélisable; mais il pit montrer, d’autre part, par des exemples,
qu’il faut répondre par la négation a la question que je viens
d’énoncer; M. Stiefel démontre en particulier — dans le cadre
de théorémes plus généraux et plus précis — le fait suivant:
Parmi les espaces projectifs réels a n dimensions pour lesquels
onan -+ 1z=0 mod. 16, seuls les espaces des dimensions 1, 3, 7
sont parallélisables 1. Cette méme méthode n’a pas réussi jusqu’a
présent en ce qui concerne le probléeme de la possibilité du
parallélisme des spheres.

Il est donc démontré de fagon purement topologique que,
parmi tous les espaces projectifs, seuls ceux des dimensions
n=1,3,7et 16k —1 avec k =1, 2, ... peuvent éventuellement
étre envisagés comme des espaces de groupes. La théorie de
M. CGarran décide qu’ils doivent étre éliminés tous & I’exception
de n =1 et n == 3. Nous ne savons pas encore s’il existe des
espaces projectifs parallélisables pour n = 16k — 1; Pespace
projectif & sept dimensions, comme d’ailleurs aussi Ia sphére &
sept dimensions, sont parallélisables sans étre cependant espaces
de groupes. On ne sait pas s’il y a, en dehors de 7, encore un
autre nombre de dimensions jouissant de cette propriété.

1 M. EHRESMANN m’a indiqué derniérement qu’il a fait, Iui aussi, — dans un mémoire
qui sera publié prochainement — des recherches sur la possibilité du parallélisme des
espaces réels projectifs et qu’il a obtenu les mémes résultats que M. Stiefel. Sa méthode,
enticrement différente de celle de M. Stiefel, n’embrasse pas non plus les nombres de
dimensions n = 16k — 1. : .

L’Enseignement mathém., 35me année, 1936.
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Le fait que voicl est facile & montrer: pour une sphére S™ ainsi
que pour un espace projectif P" la possibilité de parallélisme est
équivalente a I’existence d’un ensemble % de représentations
topologiques de S™ ou P" sur eux-mémes, ensemble qui est
simplement transitif pour un point (plus exactement: § est un
ensemble de représentations topologiques de S™ ou P" sur
eux-mémes et jouissant de la propriété suivante: il existe un
point e tel que pour chaque point z il y ait dans § une et une
seule représentation /. avec f,.(e) = z; en plus, f, dépend d’une
maniere continue de z et les f, doivent avoir certaines propriétés
de dérivabilité). I’existence d’un tel ensemble de représentations
topologiques d’un espace est un affaiblissement de la propriété
d’étre espace de groupe; c’est méme un affaiblissement considé-
rable; la loi associative notamment ne joue pas de role icl.
Malgré cela, les recherches sur les espaces de groupes « affaiblis »
de cette facon — et peut-étre encore d’autre facon — se révéle-
ront utiles pour le maniement purement topologique des vrais
espaces de groupes.

En tous cas, la question de savoir quelles spheres et quels
espaces projectifs sont parallélisables me semble extrémement
intéressante. Les nombres les plus petits de dimensions pour
lesquels cette question est encore ouverte, sont n = 5 dans le
cas des sphéres, n == 15 dans le cas des espaces projectifs. On
devrait donc s’occuper notamment de S5 et P5. C’est un pro-
bléme tres particulier, mais je ne trouve pas qu’en mathéma-
tiques la « généralité » soit le seul critere pour la valeur d’un
probléme ou d’un théoreme.
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