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QUELQUES PROBLÈMES

DE LA THÉORIE DES REPRÉSENTATIONS

CONTINUES 1

PAR

H. Hopf (Zurich).

1. — Gomme but des recherches topologiques on assigne
souvent l'étude d'une certaine classe de propriétés concernant
la forme et la position des figures géométriques, propriétés qui sont
invariantes pour les représentations topologiques, c'est-à-dire
biunivoques et continues dans les deux sens. C'est bien la
définition usuelle, mais elle n'est certainement pas complète.
Car ce sont non seulement les propriétés des figures
géométriques qui doivent être étudiées, mais aussi les propriétés des

représentations topologiques ou, plus généralement, des
représentations univoques et continues elles-mêmes. Comme les figures,
ces représentations elles-mêmes aussi forment un domaine important

et fécond pour les recherches des topologues — il suffit de

nous rappeler les conférences intéressantes que nous entendîmes
dernièrement de MM. de Kerékjârtô et Nielsen, ainsi que
quelques travaux classiques de M. Brouwer. L'indication de

cette distinction de deux parties différentes de la topologie
n'entraîne heureusement pas de scission de notre science en

deux branches particulières qui seraient peu liées entre elles;
tout au contraire, il existe entre elles des rapports étroits: par

i Conférence faite le 25 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Genève; série consacrée à

Quelques questions de Géométrie et de Topologie.
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exemple, les propriétés de toutes les représentations d'un

espace P en un autre espace fixe Q — c'est-à-dire les propriétés
de 1'« espace (abstrait) des représentations » Qp — sont en

même temps, comme M. Kuratowski nous l'a rappelé, des

propriétés de P même, qui donnent des renseignements importants

sur la forme de P.

Je voudrais exposer ici ces rapports entre la « topologie des

représentations » et la « topologie de la forme » et cela en traitant
deux catégories de problèmes: une première catégorie se rapportant

à la possibilité de comparer entre elles les formes de deux

espaces
1 P et Q en considérant les représentations de P sur Q

et celles de Q sur P, une seconde concernant les relations entre
la forme d'un espace P et les représentations de P sur lui-même 2.

2. — Avant d'aborder le premier de ces points, celui de la
comparaison de deux espaces par leurs représentations
réciproques, j'introduirai une notion qui a fait ses preuves en

ces matières: la représentation / de l'espace P sur l'espace Q
sera dite « essentielle » si pour chaque modification continue de la
représentation /, tout l'espace Q reste image de P; en d'autres
termes, s'il est impossible de libérer une partie de Q du
recouvrement par l'image de P, par une modification continue de la
représentation /.

En faisant des hypothèses très générales sur P et Q il est
possible de représenter ces espaces l'un sur l'autre d'une manière
continue; mais sous quelles conditions existe-t-il une représentation

essentielle de P sur Q On montre par exemple facilement
que toute surface close peut être représentée essentiellement
sur la surface sphérique, tandis que chaque représentation d'une
surface sphérique sur une surface close et orientable de genre
supérieur est non-essentielle. Ce dernier fait est un cas particulier

du théorème plus général suivant: P et Q étant des
variétés closes et orientables à n dimensions, une condition

1 Par un « espace » nous entendons toujours un espace métrique.
2 Par une «représentation » nous entendons toujours une représentation univoque

et continue. Nous appelons / une représentation de P en Q si l'image f (P) est sous-
ensemble de Q; si l'on a, en particulier, / (P) Q, alors f sera dite une représentation
de P sur Q.
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nécessaire pour que P soit représentable essentiellement sur Q,
est l'existence des relations suivantes

pv — qr r — 1,2,..., n — 1

où pr et qr désignent les r-ièmes nombres de Betti de P et Q [13]1.
Ce théorème, bien entendu, est valable pour des çariétés closes

de la même dimension ; les exemples suivants montreront qu'il
ne peut pas, sans autre, être étendu à des paires plus générales
d'espaces P et Q: une circonférence P peut évidemment être
représentée essentiellement sur une lemniscate Q, bien qu'on
ait p1 1, q1 2; il existe aussi des représentations
essentielles de la sphère à trois dimensions P sur la sphère à deux
dimensions Q, bien qu'on ait p2 — 0, q2 1 [16]. Je crois
cependant qu'une loi plus générale se manifeste par le théorème
précité, une loi dont le contenu exact et le domaine de validité ne
sont pas encore connus, mais qui pourrait s'énoncer à peu près
de la façon suivante: si l'espace P a, dans un certain sens, une
structure topologique « plus simple » que l'espace Q, alors P

n'est pas représentable essentiellement sur Q. Mais la
détermination exacte du sens de la notion de « simplicité » qui intervient

ici nous manque encore. C'est précisément ici l'un des

problèmes principaux que j'ai en vue. Nous indiquerons dans la
suite (n° 5, n° 7) d'autres apparitions de la même loi.

3. — Restons-en pour l'instant aux variétés closes à n dimensions

P et Q; alors le fait qu'une représentation de P sur Q est

essentielle équivaut au fait que lé degré de cette représentation
n'est pas nul [23; 11]; et l'on peut joindre au théorème susmentionné

sur les représentations essentielles d'autres théorèmes

sur le degré de représentation qui sont, en partie, plus précis:
M. H. Kneser a démontré la formule suivante pour n 2,

c'est-à-dire pour les surfaces closes, où c désigne le degré d'une
représentation de P sur Q et p, q les genres de P, Q [24]:

p — i ^ | c | • [q — lj (pour p > 0)

i Les chiffres entre crochets renvoient à la bibliographie qui se trouve à la fin de
cet exposé.
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D'autre part, comme il existe des représentations pour tout c

satisfaisant à l'inégalité de M. Kneser, cette formule donne

d'amples renseignements sur le rapport entre les propriétés
de la forme de P et Q, d'une part, et les représentations possibles

de l'autre.
On ne connaît pas de théorème aussi précis pour les dimensions*

supérieures. On connaît cependant certaines propriétés des

variétés closes et orientables à n dimensions, par exemple le

fait que voici: si l'on peut représenter, avec le degré 1, P sur Q,

ainsi que Q sur P, alors tous les invariants d'homologie — les

groupes de Betti et l'anneau d'intersection de M. Alexander —
coïncident pour P et Q [13]. Le problème reste ouvert de savoir
si deux variétés, représentables l'une sur l'autre avec le degré 1,

sont aussi homéomorphes. Ce problème est d'ailleurs étroitement
apparenté avec cet autre problème, posé par MM. Kuratowski
et Ulam [25] et resté ouvert lui aussi: soient P et Q des variétés
closes et supposons qu'il existe, pour chaque s positif, une

représentation / telle que l'ensemble (q) pour chaque point q
de Q ait un diamètre inférieur à s; P et Q sont-elles alors

homéomorphes
Le théorème indiqué plus haut, sur la possibilité des

représentations réciproques avec le degré 1, mérite une attention
particulière dans le cas où Q est la sphère Sn à n dimensions.
On voit aisément que chaque variété (close et orientable) à

n dimensions P peut être représentée sur Sn avec le degré 1 ;

l'énoncé du théorème est alors le suivant: si l'on peut
représenter Sn sur P avec le degré 1, alors P a les mêmes invariants
d'homologie que la sphère Sn; et il est facile de montrer que,
en plus, le groupe fondamental de P disparaît lui aussi

[11, théor. VIII]. La fameuse hypothèse de Poincaré dit que
la sphère Sn se distingue de toutes les autres variétés closes à

n dimensions par le fait que le groupe fondamental ainsi que tous
les r-ièmes groupes de Betti (pour 1 ^ r ^ ri — 1) disparaissent;
si cette hypothèse est exacte, alors P aussi est homéomorphe
à la sphère. On voit que la justesse de l'hypothèse de Poincaré
entraînerait aussi celle de l'hypothèse suivante, énoncée par
M. Kneser (en rapport avec certaines recherches sur l'axioma-
tique des variétés) [22, p. 10]: « La seule variété close à n dimen-
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sions sur laquelle la sphère à n dimensions peut être représentée
avec le degré 1, est la sphère elle-même ». Dernièrement,
M. Hurewicz a annoncé une démonstration du fait que,
inversement, l'hypothèse de Poincaré découle de celle de M. Kneser,

que les deux sont, par conséquent, équivalentes [21].

4. — Je tiens d'ailleurs à faire observer que cette remarque
de M. Hurewicz doit être placée dans le cadre de ses recherches

systématiques sur les représentations des sphères Sn en un
espace 0: celles-ci forment le noyau de sa nouvelle théorie des

« groupes d'homotopie à un nombre supérieur de dimensions »

[20; 21]; cette théorie semble représenter un progrès très important

dans le domaine dont je parle ici. Malheureusement, je ne
connais pas encore cette théorie assez à fond pour pouvoir
l'exposer ici; je n'indiquerai par la suite qu'un de ses beaux
théorèmes (N° 8).

5. — Par contre, depuis quelques années, les représentations
d'un espace P en la sphère Sn ont été employées pour examiner P
lui-même et cela a donné des résultats satisfaisants dans le cas
où P est à n dimensions lui aussi. J'ai pu montrer pour commencer

que la condition nécessaire et suffisante pour qu'un polyèdre
à n dimensions P puisse être représenté essentiellement sur Sn

est qu'il contienne un cycle à n dimensions (d'un domaine de

coefficients quelconque) différent de zéro [14; 15; 2, p. 514].
Ce théorème fut étendu par M. Alexandroff à des espaces

compacts arbitraires [1, p. 223]. M. Freudenthal enfin a

porté ces recherches à leur achèvement en démontrant le fait
suivant: les propriétés d'homologie à n dimensions d'un espace

compact à n dimensions P sont équivalentes aux propriétés des

classes d'homotopie des représentations de P en la sphère Sn;

comme M. Freudenthal l'a montré, ces classes d'homotopie
peuvent en effet être conçues comme éléments d'un groupe, et

ce groupe, d'une part, le ft-ième groupe de Betti de P de l'autre,
se déterminent réciproquement d'une façon univoque [9].

Le théorème que voici de M. Borsuk mérite aussi d'être
mentionné dans cet ordre d'idées, et cela autant à cause de son

intuitive simplicité qu'à cause de sa démonstration élémentaire :

P étant un ensemble fermé et borné de l'espace euclidien à



REPRÉSENTATIONS CONTINUES 339

n + 1 dimensions Rn+1, il partage Rn 11 et ne le partage que s'il
existe une représentation essentielle de P sur Sn [3; 2, p. 405]1.

6. — Ce théorème dépasse un peu le cadre des théorèmes

précités: ici la dimension de P peut être supérieure à n, à savoir

égale à n + 1 (il est vrai que cette différence s'affaiblit du fait
que P se trouve dans Rn+1). En général, on est peu renseigné sur
la signification des représentations d'un espace P, à dimension

supérieure à n7 sur la sphère à n dimensions; les efforts pour
caractériser aussi par ces représentations les groupes de Betti
inférieurs de P, sont restés jusqu'à présent sans succès.

C'est uniquement dans le cas n 1 qu'on peut, dans les

théorèmes précités, renoncer à l'hypothèse que P aussi est
à n dimensions: j'avais démontré qu'un polyèdre de dimension

arbitraire peut être représenté essentiellement sur la
circonférence, et ne peut l'être que si son premier nombre
de Betti est non nul [16, théor. Va; 2, p. 518]. M. Borsuk a

étendu ce théorème aux espaces compacts arbitraires [4], et en
même temps M. Bruschlinsky a démontré le fait suivant: on

peut déterminer le premier nombre de Betti d'un espace compact

P à partir du groupe des classes des représentations de P

en un cercle S1 [7] — de la même manière que, d'après le
théorème de M. Freudenthal, cela peut se faire pour le nombre
de Betti le plus élevé de P par les représentations de P en la
sphère de dimension correspondante.

Par contre, le rôle joué par les représentations d'un espace P
à N dimensions sur les sphères des dimensions n — 2, 3, N — 1

est encore totalement obscur, même pour le cas des polyèdres.
D'une part il semble, déjà pour r 2, extrêmement douteux
qu'on puisse représenter essentiellement sur Sr chaque polyèdre
P dont le r-ième nombre de Betti est positif2; d'autre part il est
certain que des représentations essentielles de P sur S2 peuvent

1 On pourrait poser le problème cle caractériser aussi des propriétés plus générales des
ensembles ponctuels de l'espace Rw+r par des représentations sur Sw. M. Kuratowski
m'a indiqué dernièrement que ce problème fut traité avec le plus grand succès par
M. Eilenberg pour le cas n 1 : dans un mémoire à paraître prochainement
M. Eilenberg construit presque toute la topologie des ensembles ponctuels plans sur la
base des représentations sur la circonférence [8'|.

2 Une telle représentation est possible si la dimension de P n'est pas supérieure à
r + 1 [16, théor. VII].
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exister, même si le deuxième nombre de Betti disparaît: cela a
lieu par exemple si P est la sphère à trois dimensions S3 [16].

La question de savoir si la sphère SN peut être représentée
essentiellement sur la sphère Sn pour un couple donné N, n (avec
N > n > 1) est encore ouverte; j'ai pu y répondre pour les

cas particuliers N 4k — 1, n. — 2k, k 1,2,... et cela par
l'affirmative [17]V Je considère, pour ma part, la réponse générale
à cette question comme une tâche des plus importantes et des

plus attrayantes: non seulement en ce qui concerne la théorie,
mais aussi parce que nous devrions connaître complètement et
sous chaque point de vue des figures aussi simples et aussi

importantes que les sphères

7. — Nous venons de parler de la comparaison de l'espace P

avec les sphères; il serait presque plus naturel de considérer
comme espace de comparaison, au lieu des sphères, les figures les

plus simples possibles, les simplexes, et si on le fait on obtient
vraiment un beau succès. Modifions tout d'abord un peu la
notion d'une représentation «essentielle)): la représentation /
d'un espace P sur un simplexe Q sera dite « relativement essentielle

» s'il est impossible de libérer des points de Q du recouvrement

par l'image de P en modifiant d'une manière continue /
à Y intérieur seulement de Q, c'est-à-dire en ne modifiant / en

aucun point dont l'image tombe sur la frontière de Q. Or voici
l'énoncé d'un théorème de M. Alexandroff: La dimension
d'un espace compact P est le plus grand nombre n tel que P

puisse être représenté relativement-essentiellement sur un
simplexe à n dimensions [1; 2, p. 373; 19].

Par ce théorème aussi intuitif qu'important, je terminerai la
partie de ma conférence traitant de la comparaison de deux

espaces à l'aide de leurs représentations réciproques.

8* — Je parlerai maintenant des représentations d'un espace
en lui-même. Déjà en considérant les surfaces finies, on remarque
une relation entre ces représentations et la forme des surfaces:
P étant une surface close, il est —- d'après un théorème connu sur
le degré de représentation — impossible de la déformer, d'une

i M. Pontrjagin a récemment répondu par la négative à cette question pour chaque
N n + 2>4. (Communication de M. Lefsciietz au Congrès intern, des Math,, Oslo,
sept. 1936.)
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façon univoque et continue, en une de ses propres parties; par
contre cela est possible si P admet une frontière. La propriété

par laquelle se caractérisent ici les surfaces closes s'énonce

sous la forme générale suivante: l'espace P sera dit « clos dans

le sens de l'homotopie » ou encore « essentiel sur lui-même» si

l'identité — c'est-à-dire la représentation avec f(x) — x pour
chaque point x de P — est une représentation essentielle.

Cette propriété d'être « clos » me semble une notion assez

immédiate et naturelle. Si l'on considère par exemple un
polyèdre P, alors se pose le problème de décider à partir des

propriétés combinatoires de P, si P est « clos » dans ce sens ou ne

l'est pas; mais ce problème n'est pas résolu, pas même pour les

polyèdres; en particulier, il ne semble pas exister des relations

simples entre le groupe fondamental et les groupes de Betti
d'une part, et le fait d'être clos au sens de l'homotopie d'autre

part [18; 2, p. 518 et suiv.].
Cependant, M. Hurewicz a résolu un problème très voisin,

à savoir: quels sont les polyèdres qui peuvent être réduits à un
seul point par une déformation univoque et continue La réponse
est la suivante : une telle réduction du polyèdre connexe P est
possible et ne l'est que si tous les r-ièmes groupes de Betti pour r^ i
ainsi que le groupe fondamental de P disparaissent, c'est-à-dire
si P coïncide par les invariants classiques de Poincaré avec un
simplexe [21]. C'est un théorème surprenant qui jette une vive
lumière sur la valeur des invariants classiques et aussi sur celle
de la nouvelle théorie de l'homotopie de M. Hurewicz i

Mlle Pannwitz et moi avons considéré avec succès une autre
modification du problème non résolu de caractériser la propriété
d'être clos: nous appelons un espace « labile » si des déformations
arbitrairement petites suffisent pour le transformer en une de ses

propres parties; un espace labile n'est donc, a fortiori, pas clos

au sens de l'homotopie. Or, la labilité d'un polyèdre P qui est

partout à n dimensions peut être caractérisée par une propriété
purement combinatoire, à savoir par l'existence d'une « frontière

» de P — où la notion de frontière employée ici appartient
entièrement au domaine classique des notions sur lesquelles
repose la théorie de l'homologie. Mais je ne voudrais pas insister
ici sur la définition exacte de cette notion [18; 2, pp. 285 et 524].
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11 est amusant et instructif de construire des exemples pour
ces théorèmes; il existe notamment des polyèdres à deux
dimensions qui peuvent être réduits à un point et qui sont labiles
bien qu'ils ne possèdent pas d'arête libre, c'est-à-dire bien que,
dans leurs décompositions en simplexes, chaque arête appartienne

au moins à deux triangles [18].

9. — Parmi les propriétés des représentations d'un espace en

lui-même, c'est l'existence ou la non-existence des points fixes
qui a toujours retenu spécialement l'attention. Dans le cadre
de notre mise en problèmes nous demanderons: quelles sont les

propriétés de la forme d'un espace P qui permettent de décider
si P peut ou non être transformé en lui-même sans points fixes
La circonférence est un tel espace, tandis que les simplexes
contiennent, d'après le célèbre théorème de M. Brouwer, des

points fixes pour toute représentation en eux-mêmes. De quelle
façon pourrait-on généraliser cette différence entre une
circonférence et un simplexe Est-ce qu'un certain aspect « cyclique »

d'une figure pourrait être caractéristique du fait qu'elle peut
être transformée en elle-même sans points fixes On a quelques
connaissances sur ce sujet mais, malheureusement, elles ne
sont pas bien nombreuses.

La formule sur les points fixes de M. Lefschetz [26] est

valable, comme je l'ai montré [12; 2, p. 524], non seulement

pour des variétés mais aussi pour des polyèdres arbitraires; de

cette formule découle le fait que le théorème précité de

M. Brouwer sur les points fixes des simplexes se laisse étendre
à tous les polyèdres qui ont les mêmes nombres de Betti que les

simplexes, qui sont, de ce fait, connexes et dont tous les nombres
de Betti de dimension positive disparaissent [2, p. 532].
M. Lefschetz a montré, en outre, que ce théorème conserve sa

validité si l'on remplace les polyèdres par les espaces compacts
qui sont « localement connexes au sens de M. Alexander »

[27, pp. 90 et 359]. La condition suivante est donc nécessaire pour
l'existence de représentations en eux-mêmes sans points fixes
de ces espaces assez généraux: pour un certain r ^ 1 le r-ième
nombre de Betti est différent de zéro.

Un exemple, découvert par M. Borsuk, montrera qu'on n'ose
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pas renoncer à l'hypothèse précitée de la connexité locale: il
existe un continu dont tous les r-ièmes nombres de Betti pour
r 1, 2, disparaissent et qui peut cependant être transformé
en lui-même sans point fixe [5]. D'ailleurs, ce continu se trouve
bien dans l'espace à trois dimensions mais pas dans le plan et

il est douteux qu'un tel exemple existe déjà dans le plan; en

d'autres termes, nous ne savons pas — et cette ignorance est

remarquable — si l'affirmation suivante est exacte: P étant un
continu plan ne décomposant pas le plan et / une représentation
quelconque de P en lui-même, alors / possède un point fixe.

La condition qu'un nombre de Betti de dimension positive
est différent de zéro n'est pas suffisante pour l'existence de

représentations sans points fixes: par exemple, la variété à

quatre dimensions des points complexes du plan projectif
possède, pour toute représentation en elle-même un point fixe,
bien que son deuxième et son quatrième nombre de Betti soient

égaux à un [13]. C'est pour cette raison que les faits suivants,
établis par M. Borsuk, sont très remarquables: tout polyèdre
— et même, plus généralement, tout espace compact et localement

connexe — dont le premier nombre de Betti ne s'annule

pas peut être représenté en lui-même sans point fixe [4]; et la
même affirmation est vraie aussi pour les polyèdres qui sont
situés dans Vespace euclidien à trois dimensions et dont le
deuxième nombre de Betti est différent de zéro [6]. Mais si nous
considérons des polyèdres arbitraires, alors on ne connaît pas
de critère nécessaire et suffisant pour l'existence de représentations

sans points fixes et cela même pas si l'on se restreint aux
variétés closes.

10. — On obtient cependant de meilleurs résultats si l'on ne
considère pas des représentations arbitraires de P en lui-même,
mais — comme dans le problème de la propriété d'être « clos »

indiqué plus haut — des « petites transformations », c'est-à-dire
des représentations où les distances entre le point et le point-
image sont petites. En premier lieu, on déduit de la formule
généralisée de M. Lefschetz que nous venons d'employer, que
seuls les polyèdres à caractéristique eulérienne nulle admettent
des transformations arbitrairement petites sans point fixe
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[2, p. 532]. Dans le cas des variétés closes la réciproque de cette
affirmation est aussi vraie, le théorème suivant est donc valable:
Une variété close admet et n'admet de transformation arbitrairement

petite en elle-même sans point fixe que si sa caractéristique
eulérienne est nulle [10; 2, p. 552]. On sait que cette condition
est satisfaite pour toute variété de dimension impaire, tandis
que parmi les variétés de dimension paire il n'y en a que quelques-
unes qui la remplissent.

Dans une variété (dérivable x) la notion de « petite transformation

sans point fixe » coïncide au fond avec la notion de « champ
de directions)); nous pouvons donc énoncer pour les champs
de directions le théorème formulé plus haut pour les petites
transformations. On obtient alors une généralisation de
théorèmes connus de Poincaré et de M. Brouwer sur des surfaces

et des sphères à n dimensions.

11. — Le théorème sur l'existence de petites transformations
sans point fixe joue un certain rôle dans les recherches sur les

variétés de groupes: un espace de groupe admettant des

transformations infinitésimales sans points fixes, sa caractéristique
est de ce fait nécessairement nulle. La question de savoir quels

espaces sont des espaces de groupes appartient en principe au
cercle des problèmes que nous traitons ici; car, pour un espace,
le fait de représenter un groupe est une propriété des

transformations de l'espace sur lui-même, et seuls certains espaces
la possèdent. Cependant, la théorie que nous exposa M. Cartan
dans sa conférence ne peut être appelée une théorie « topologique

»; elle emploie en effet des moyens beaucoup plus difficiles
et beaucoup plus profonds que ceux dont il a fallu se servir pour
les problèmes dont j'ai parlé. La démonstration, par exemple, du
théorème que, parmi toutes les sphères, seules celles de dimensions

1 et 3 sont des espaces de groupes, exige presque tout
l'appareil moderne des théories de MM. Cartan et Weyl. Ce

serait une tâche extrêmement attrayante que de déduire le même

fait par des moyens « élémentaires », c'est-à-dire purement
topologiques. Nous sommes encore très loin de la résolution de

i Dès ici, les variétés que nous considérons doivent satisfaire à certaines conditions
de dérivabilité que nous ne voulons d'ailleurs pas préciser.
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ce problème; je voudrais cependant indiquer ici quelques

nouveaux résultats de M. Stiefel qui nous rapprochent, peut-
être, de la solution de problèmes de cet ordre [28, 29].

On voit aisément qu'une variété de groupes à n dimensions
admet non seulement un champ continu de directions, mais

n champs de ce genre qui sont, en chaque point, linéairement
indépendants; cette circonstance est équivalente au fait suivant:
la variété est « parallélisable », c'est-à-dire que l'on peut introduire
un « parallélisme » des directions, qui satisfait aux exigences
naturelles imposées à une telle notion. La question subsiste de

savoir si la possibilité de ce parallélisme découle déjà de l'existence

d'un unique champ de directions, c'est-à-dire de la disparition

de la caractéristique. M. Stiefel a découvert le fait très

surprenant que chaque variété orientable à trois dimensions est

parallélisable; mais il pût montrer, d'autre part, par des exemples,
qu'il faut répondre par la négation à la question que je viens
d'énoncer; M. Stiefel démontre en particulier — dans le cadre
de théorèmes plus généraux et plus précis — le fait suivant:
Parmi les espaces projectifs réels à n dimensions pour lesquels
on a n -f~ 1 0 mod. 16, seuls les espaces des dimensions 1, 3, 7

sont parallélisables 1. Cette même méthode n'a pas réussi jusqu'à
présent en ce qui concerne le problème de la possibilité du
parallélisme des sphères.

Il est donc démontré de façon purement topologique que,
parmi tous les espaces projectifs, seuls ceux des dimensions
n 1, 3, 7 et 16Ä: —1 avec k — 1, 2, peuvent éventuellement
être envisagés comme des espaces de groupes. La théorie de
M. Cartan décide qu'ils doivent être éliminés tous à l'exception
de n 1 et n =----- 3. f^ous ne savons pas encore s'il existe des

espaces projectifs parallélisables pour n 16& — 1; l'espace
projectif à sept dimensions, comme d'ailleurs aussi la sphère à

sept dimensions, sont parallélisables sans être cependant espaces
de groupes. On ne sait pas s'il y a, en dehors de 7, encore un
autre nombre de dimensions jouissant de cette propriété.

1 M. Ehresmann m'a indiqué dernièrement qu'il a fait, lui aussi, — dans un mémoire
qui sera publié prochainement — des recherches sur la possibilité du parallélisme des
espaces réels projectifs et qu'il a obtenu les mêmes résultats que M. Stiefel. Sa méthode,entièrement différente de celle de M. Stiefel, n'embrasse pas non plus les nombres de
dimensions n 16k — 1.
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Le fait que voici est facile à montrer: pour une sphère Sn ainsi

que pour un espace projectif Pn la possibilité de parallélisme est

équivalente à l'existence d'un ensemble $ de représentations
topologiques de Sn ou Pn sur eux-mêmes, ensemble qui est

simplement transitif pour un point (plus exactement: % est un
ensemble de représentations topologiques de Sn ou Pn sur
eux-mêmes et jouissant de la propriété suivante: il existe un
point e tel que pour chaque point x il y ait dans % une et une
seule représentation jx avec fx(e) x; en plus, fx dépend d'une
manière continue de x et les fx doivent avoir certaines propriétés
de dérivabilité). L'existence d'un tel ensemble de représentations
topologiques d'un espace est un affaiblissement de la propriété
d'être espace de groupe; c'est même un affaiblissement considérable;

la loi associative notamment ne joue pas de rôle ici.
Malgré cela, les recherches sur les espaces de groupes « affaiblis »

de cette façon -— et peut-être encore d'autre façon — se révéleront

utiles pour le maniement purement topologique des vrais

espaces de groupes.
En tous cas, la question de savoir quelles sphères et quels

espaces projectifs sont parallélisables me semble extrêmement
intéressante. Les nombres les plus petits de dimensions pour
lesquels cette question est encore ouverte, sont n 5 dans le

cas des sphères, n — 15 dans le cas des espaces projectifs. On
devrait donc s'occuper notamment de S5 et P15. C'est un
problème très particulier, mais je ne trouve pas qu'en mathématiques

la « généralité » soit le seul critère pour la valeur d'un
problème ou d'un théorème.
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