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SUR LES ESPACES LOCALEMENT HOMOGENES!

PAR

Charles EnreEsmaAnN (Paris).

Les espaces qui formeront ’objet de cette conférence sont
des espaces analogues aux formes spatiales de Clifford-Klein.
Je rappelle qu'une forme spatiale de Clifford-Klein est un
espace de Riemann & courbure constante; suivant que cette
courbure est nulle, positive ou négative, on aura un espace
localement euclidien, localement sphérique ou localement hyper-
bolique. Etant donné un espace localement euclidien, par
exemple, celui-ci est aussi caractérisé par le fait que les déplace-
ments euclidiens voisins de la transformation identique sont
définis dans un voisinage suffisamment petit de chaque point.
Une généralisation immédiate de cette derniere définition
s’obtient en remplacant le groupe des déplacements euclidiens
par un groupe de transformations continu et transitif quelconque,
en particulier par un groupe continu et transitif de Lie. On
définit ainsi les espaces localement homogenes que nous allons
étudier. Bien que les résultats que je pourrai indiquer soient
encore incomplets, il m’a semblé que ce sujet méritait d’étre
traité ici, parce qu’il touche a la fois & la théorie des groupes
et a la topologie et parce qu’il conduit & des relations entre les
propriétés infinitésimales et les propriétés globales d’un espace.

1. — Avant de préciser la notion d’espace localement homo-
géne, il sera utile de rappeler la définition d’'un groupe de trans-

1 Conférence faite le 23 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par 1’Université de Genéve; série consacrée a
Quelques questions de Géométrie et de Topologie.
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formations de Lie au sens local ou au sens global. Soit V une
variété & n dimensions, c’est-d-dire un espace topologique
régulier admettant un systéme de voisinages dont chacun est
homéomorphe a I'intérieur d’un simplexe & » dimensions. Soit G
un ensemble de transformations topologiques dont chacune est
définie pour tout point d’un domaine D de V, les point de D
étant transformés en des points de V qui n’appartiennent pas
forcément & D. L’ensemble G forme un groupe continu a r para-
metres au sens local lorsqu’il satisfait aux conditions suivantes:
a) Les éléments de G peuvent étre mis en correspondance
biunivoque avec les points d’une variété a r dimensions, que
nous désignerons par (G), telle que, s1 M’ = ¢ (M, s) est la
transformation correspondant au point s de (G), la fonction
o (M, s) soit continue par rapport a I'ensemble des points M et s.
b) L’ensemble G contient la transformation identique; soit &
le point correspondant de (G).
¢) Il existe dans (G) un voisinage A du point ¢ tel qu’on ait les
propriétés suivantes: Si a est un point de A, il existe dans D des
points M dont les transformés M’ = ¢ (M, a) appartiennent
a D; pour tout point M de cette espéce et pour tout point b
de A, on a:
M = oloM, a), b] = oM, ¢) .

Le point ¢ de (G) qui correspond ainsi a I’ensemble des
points a et b est défini par une fonction ¢ = ¢ (a, b).

d) Soit @ un point de A et M un point quelconque de D tel
que le point M’ = ¢ (M, a) appartienne a D. Il existe dans (G)
un point a! tel que M = o (M’, a™).

e) La fonction ¢ (a, b) est continue par rapport a I’ensemble
des points a et b; le point a™! est une fonection continue du
point a.

Un groupe G satisfaisant aux conditions précédentes est
appelé groupe de Lie au sens local s'1l existe, dans un voisinage
du point 7, un systeme de coordonnées tel que les coordonnées
du point ¢ = ¢ (a, b) soient des fonctions analytiques par rapport
aux coordonnées des points a et b.

Le groupe G est dit transitif dans D si tout point M de D
admet un voisinage tel que, M’ étant un point quelconque de ce

AL e M




ESPACES LOCALEMENT HOMOGENES 319

voisinage, il existe au moins une transformation de G qui
transforme M en M’. Si G est un groupe continu transitif de Lie
au sens local, il existe des systémes de coordonnées définis
respectivement dans un voisinage de M, et dans un voisinage
de i tels que les coordonnées du point M = ¢ (M, a) soient
des fonctions analytiques par rapport & l’ensemble des coor-
données de M et de a, en supposant que M et a appartiennent a
des voisinages suffisamment petits de M, et de 1. Deux systemes
de coordonnées qui sont définis dans un voisinage de My et qui
jouissent de la propriété précédente se déduisent 'un de l'autre
par une transformation analytique.

Un ensemble de transformations topologiques, G, forme un
groupe continu d v paramélres au sens global lorsqu’il satisfait
aux conditions a), ..., €), en supposant que dans I’énoncé de
ces conditions D soit remplacé par V et A par (G). L’ensemble G
forme un groupe de Lie au sens global lorsqu’il définit un groupe
continu & r paramétres au sens global et un groupe de Lie au
sens local. Je signale le théoréeme suivant:

Etant donné un groupe continu & r paramétres au sens local
dont les transformations sont défintes pour tous les points de la
variété 'V (c’est-a-dire le domaine D est confondu avec V),
Pensemble des transformations dont chacune est le produit d’un
nombre fini de transformations appartenant au voisinage A de 1
forme un groupe continu @ r paraméires au sens global.

2. — Appelons espace homogéne de Lie une variété a n dimen-
sions dans laquelle est défini un groupe de transformations
continu et transitif de Lie au sens global.

Appelons espace localement homogeéne de Lie (en général nous
dirons simplement espace localement homogéne) une variété E
& n dimensions jouissant des propriétés suivantes:

a) Chaque point M de E appartient & un voisinage V, a
I'imtérieur duquel est défini un groupe continu et transitif de Lie
au sens local qui transforme les points de V,, en des points de E:
le voisinage V, sera appelé voisinage élémentaire.

b) Soit d un domaine commun & deux voisinages élémentaires.
Etant donnés les deux groupes de Lie au sens local attachés a
ces voisinages, il existe dans chacun d’eux un voisinage de la
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transformation identique tel que les transformations de l'un
de ces voisinages solent en correspondance biunivoque avec
celles de I'autre, deux transformations correspondantes opérant
de la méme facon sur les points de d.

Un espace localement homogéne de Lie peut encore étre
défini comme étant une variété E & n dimensions qui jouit des
propriétés suivantes: |

a) Chaque point M de E appartient & un voisinage V, dans
lequel on a défini un systéme de coordonnées et un ensemble
de r transformations infinitésimales linéairement indépendantes
qui engendrent un groupe transitif de Lie au sens local.

b) Soit d un domaine commun & deux voisinages élémentaires
V, et V.. Le changement de coordonnées défini pour les points
de d transforme les r transformations infinitésimales définies
dans V, en r combinaisons linéaires des transformations
mfinitésimales définies dans V..

Remarquons qu’un espace homogeéne de Lie est aussi un espace
localement homogeéne de Lie.

Etant donnés deux points M et M’ d’un voisinage élémentaire,
appelons transformation élémentaire de M en M’ toute transfor-
mation qui transforme M en M’ et qui appartient au groupe
de Lie au sens local attaché a ce voisinage. Si A et B sont deux
points quelconques de E, on montre que A peut étre transformé
en B par la succession d’un nombre fini de transformations
élémentaires. Il en résulte que les groupes de Lie, au sens local,
définis respectivement au voisinage de A et au voisinage de B
sont semblables.

La variété d’un espace localement homogeéne est une variété
analytigue. En effet, dans chaque voisinage élémentaire on peut
introduire un systéme de coordonnées tel que le groupe de Lie,
au sens local correspondant, soit analytique par rapport & ces
coordonnées et par rapport aux parametres. Le changement de
coordonnées qui en résulte pour un domaine commun & deux
voisinages élémentaires est alors également analytique.

3. — Deux espaces localement homogénes E et E’ sont dits
équivalents lorsqu’il existe une transformation topologique de E
en E’ telle que, M et M’ étant deux points correspondants, les
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transformations infinitésimales définies au voisinage de M soient
transformées en les transformations infinitésimales définies au
voisinage de M’. Les deux espaces E et E’ sont dits localement
équivalents lorsqu’il existe un voisinage élémentaire dans E qui
soit équivalent & un voisinage élémentaire dans E’. Le probleme
général que nous nous proposons d’étudier s’énonce maintenant
de la facon suivante:

Trouver tous les espaces localement homogénes qui soient locale-
ment équivalents @ un espace localement homogéne donné: en
d’autres termes, trouver tous les espaces localement homogeénes qui
sotent le prolongement d’un élément d’espace localement homogéne
donné. :

Une question intéressante qui se pose aussitot est la suivante:
Existe-t-il toujours un espace homogéne qut soit localement équi-
valent @ un espace localement homogéne donné ?

Pour répondre a cette question, je rappelle les propriétés
suivantes: Soit H un espace homogene de Lie et G le groupe
de Lie correspondant. Soit g le sous-groupe formé par I’ensemble
des transformations de G qui laissent invariant un point O
de H. Le sous-groupe g est fermé dans G et n’admet aucun
sous-groupe invariant dans G. Réciproquement étant donnés
un groupe abstrait de Lie, G, et un sous-groupe g qui est fermé
dans G et qui ne contient aucun sous-groupe invariant dans G,
on peut définir un espace homogéne H dont le groupe de trans-
formations G, est isomorphe & G, le sous-groupe de G; qui
correspond a g étant le plus grand sous-groupe dont les trans-
formations laissent invariant un point O de H.

S1 G est un groupe transitif de Lie au sens local, il existe dans G
un voisinage A de la transformation identique tel que les trans-
formations qui appartiennent & A et qui laissent invariant un
point O forment un sous-groupe continu de Lie au sens local.
Réciproquement soit (G) un groupe abstrait de Lie au sens
local et soit (g) un sous-groupe continu de Lie au sens local.
Si (g) n’admet aucun sous-groupe continu invariant dans (G),
1l existe un groupe de transformations continu et transitif de Lie
au sens local, que nous désignerons par G,, tel que ce groupe soit
localement isomorphe & (G), son sous-groupe qui correspond
par cette isomorphie a (g) étant le plus grand sous-groupe continu
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qui laisse invariant un certain point. D’aprés le troisieme théo-
réeme fondamental de Lie démontré du point de vue global par
M. E. Cartan, la variété (G) peut étre considérée comme un
voisinage de I’élément unité d’un groupe abstrait de Lie au sens
global. Désignons ce groupe par (G’); on peut le supposer
simplement connexe; sinon on le remplacerait par son groupe
de recouvrement simplement connexe. Le sous-groupe (g) au
sens local se prolonge dans (G’) en un sous-groupe continu de Lie
au sens global; soit (g') ce prolongement. Pour que le groupe G,
puisse étre prolongé en un groupe transitif de Lie au sens global,
il faut et il suffit que (g’) soit fermé dans (G’). Or on sait qu’un
groupe de Lie (G') simplement connexe peut avoir des sous-groupes
continus qui ne sont pas fermés dans (G'). Par exemple, un groupe
simple clos, simplement connexe et de rang supérieur & 1 admet
des sous-groupes ouverts a un parametre; un tel sous-groupe
n’admet évidemment aucun sous-groupe continu invariant dans
le groupe simple donné. Donc il existe effectivement des espaces
localement homogénes qui ne sont localement équivalents a aucun
espace homogene.

Pratiquement il est difficile de reconnaitre si un groupe
transitif de Lie au sens local défini dans un certain domaine
par r transformations infinitésimales données peut étre prolongé
en un groupe de Lie au sens global. Remarquons seulement
qu’une condition suffisante pour que ce prolongement existe
est que le plus grand sous-groupe au sens local qui laisse invariant
un point O ne laisse invariant aucun autre point dans un voisi-
nage suffisamment petit de O. M. E. Cartan a déterminé tous
les espaces homogénes de Lie a deux dimensions. On constate
que tout espace localement homogene a deux dimensions est
localement équivalent & un espace homogene. La méme question
n’est pas encore résolue dans le cas de trois dimensions et on
n’a jamais déterminé tous les espaces homogenes de Lie & trois
dimensions.

4. — Je signale le théoreme suivant:

Si un espace localement homogéne de Lie est clos et stmplement
connezxe, 1l est équivalent @ un espace homogéne de Lie.
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On en déduit que tout espace localement homogéne clos, dont
le groupe de Poincaré est fini, est localement équivalent & un
espace homogene. Pour démontrer le ‘théoréme énoncé, on
applique surtout la propriété suivante: Etant donné un espace
localement homogéne E, tout arc AB établit un isomorphisme local
bien déterminé entre les groupes de Lie, au sens local, définis res-
pectivement au voisinage de A et au voisinage de B ; cet isomorphisme
ne varie pas lorsqu’on déforme Uarc AB, les extrémités A et B
restant fizes. En particulier, sil’espace E est simplement connexe,
il existe un isomorphisme local bien déterminé entre les groupes
de Lie au sens local définis respectivement dans les voisinages
de deux points quelconques de E.

5. — Par la suite nous porterons notre attention sur les
espaces localement homogénes qui sont localement équivalents
a un espace homogene donné. Soit H un espace homogene de Lie
et G le groupe de transformations correspondant. On démontre
alors le fait suivant:

S1 H est la variété de recouvrement simplement connexe de H,
ceite variété H définit un espace homogeéne localement équivalent

a H; le groupe G correspondant @ H est un groupe de recouvrement
(pas forcément simplement connexe) de G.

Appelons automorphisme de l’espace homogéne H une
transformation topologique T de H en lui-méme telle que la
transformée par T de toute transformation de G appartienne
encore a G. Appelons automorphisme local une transformation
topologique qui transforme un voisinage d’un point A de H en
un voisinage d’un point B de H de telle facon que la transformée
de toute transformation infinitésimale de G soit encore une
transformation infinitésimale de G. On démontre alors le
théoréeme suivant:

Tout automorphisme local d’un espace homogéne simplement
connexe se prolonge en un automorphisme global de cet espace.

La démonstration de ce théoréme repose sur le fait suivant:

St G est un groupe abstrait de Lie au sens global, tout auto-
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morphisme local de (G) se prolonge en un automorphisme global

de (G).

Soit E un espace localement homogéne que nous supposons .
localement équivalent & un espace homogéne simplement
connexe H. Définissons le développement sur H d’un arc de
l'espace E. Nous appelons arc la figure décrite par un point
qui est une fonction continue d’un parametre variant de 0 a 1.
Soit OA un arc de E. Tout point M de E appartient & un voisinage

élémentaire qui est équivalent & un voisinage d’un point M de H.
En vertu du lemme de Borel-Lebesgue, on peut recouvrir
Parc OA par une suite d’un nombre fini d’ares partiels telle que
deux arcs partiels successifs empiétent 'un sur l'autre et telle
que tout arc partiel soit contenu dans un voisinage élémentaire
équivalent & un voisinage dans I'espace H. Soit V,, V,, ..., V,
cette suite de voisinages; nous pouvons supposer que deux
volsinages successifs n’alent qu’un seul domaine en commun.
Une suite de voisinages de cette espece sera appelée une chaine
de voisinages recouvrant ’arc OA. Le voisinage V, du point O
peut étre représenté sur un voisinage V, d’un point O de H. Le
voisinage V, est équivalent a un voisinage V, dans H. Soit d
le domaine commun & V, et a V,. Il est représenté d’une part
sur un domaine d de V et d’autre part sur un domaine d’ de V,.

L’automorphisme local qui transforme d en d se prolonge en un

automorphisme global qui transforme V; en un volisinage V.
En répétant cette opération, on pourra représenter la chaine
de V01smage Vo, V4, ..., V., sur une chaine de voisinages

VO, Vl, . Vk L’arc OA sera represente sur un arc OA recouvert
par la chaine de voisinages VO, Vl, .. V,t Nous dirons que
Parc OA est un développement sur H de arc OA; de méme

Pare OA sera appelé un développement sur E de I'arc OA. On
a ainsi le résultat suivant:

Un voisinage du point O de E étant représenté sur un voisinage
d’un point O de H, tout arc’'OA de E admet un développement bien

déterminé suivant un arc OA de H. Si deux arcs d’origine O et
d’extrémité A sont réductibles U'un a lautre par deformatwn

continue, leurs développements conduisent de O au méme point A.
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La derniére partie de cet énoncé se démontre en appliquant
le lemme de Borel-Lebesgue & une famille continue d’arcs
d’origine O et d’extrémité A. On démontre de méme le théoreme
sulvant:

Un voisinage de O étant représenté sur un voisinage de O, soit OA
un arc quelconque de H. Ou bien Parc OA se développe suivant un
arc bien déterminé OA de E, ou bien il existe sur U'arc OA un

point C zel que Uarc OC moins le point C se développe suivant une
ligne divergente sur U'espace de recouvrement stmplement connexe

de E. Etant donnée sur H une famille continue d’arcs d’origine O

et dextrémité A telle que chacun de ces arcs admette sur E un
développement issu de O, ce développement conduit toujours au
méme point A.

Les propriétés précédentes conduisent aux résultats suivants:

St Uespace localement homogéne E est clos et sumplement connexe,
il est équivalent a Uespace homogéne H. St E est clos et admet un
groupe de Poincaré fini, lespace de recouvrement simplement
connexe de E est équivalent ¢ H. St E est clos et H ouvert, le groupe
de Poincaré de E est infint.

Soit H un espace homogeéne localement équivalent ¢ H; si H’
est simplement connexe, il est équivaleri o H; si H' n’est pas
simplement connexe, son espace de recouvrement simplement
connexe est équivalent a H.

6. — Considérons maintenant une classe particuliérement
mmtéressante d’espaces localement homogénes. Un espace E de
cette classe satisfait & la condition suivante qui sera appelée
condition de normalité: L’espace E est localement équivalent a
un espace homogéne H que nous supposerons simplement
connexe, et toute ligne divergente sur l'espace de recouvrement
simplement connexe de E se développe suivant une ligne diver-
gente de H. L’espace E sera appelé espace localement homogéne
normal ou encore forme de Clifford de I’espace homogéne H. En
particulier, tout espace homogéne localement équivalent a H
est normal; on Pappelle forme de Klein de 'espace homogéne H.
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De méme tout espace localement homogeéne clos dont le groupe
de Poincaré est fini1 satisfait a la condition de normalité. On
démontre facilement le théoréme suivant:

Soit E un espace normal localement équivalent a U'espace homo-
géne simplement connexe H; Uespace H est équivalent a lespace
de recouvrement simplement connexe de E.

Un voisinage du point O de E étant représenté sur un voisinage
équivalent du point O de H, tout arc OM de E se développe
suivant un arec déterminé OM de H. La correspondance entre M

et M jouit alors des propriétés suivantes: A tout point M de H
correspond un point déterminé M de E. Les points de H qui
correspondent & un méme point M de E forment un ensemble
de points équivalents par rapport a un groupe d’automorphismes
de l'espace H. Ce groupe s’appelle le groupe d’holonomie de
I’espace E. Il est isomorphe au groupe de Poincaré de ’espace E.
De plus il est proprement discontinu dans tout 1’espace H et
aucune de ses opérations n’admet de points invariants dans H.
La recherche des formes de Clifford de 'espace H revient ainsi
a la recherche des groupes d’automorphismes de H qui peuvent
étre considérés comme des groupes d’holonomie.

Soit I' un groupe d’automorphismes de H. Pour que I' soit
le groupe d’holonomie d’un espace localement homogeéne normal
il faut et 1l suffit que les conditions suivantes soient vérifiées:

a) I' est proprement discontinu dans tout I’espace H.

b) Aucune opération de I' n’admet des points invariants.

¢) Considérons dans H deux voisinages quelconques ¢ et ¢,
distinets ou confondus. Parmi les voisinages transformés de ¢
par I') il y a au plus un nombre fini de voisinages qui ont des
points communs avec ¢'.

Lorsque ces conditions sont vérifiées, les ensembles de points
équivalents par rapport & I' peuvent étre considérés comme les
points d’un espace E qui sera une forme de Clifford de H.

La condition c¢) est vérifiée d’elle-méme lorsque I' est un groupe
fini. Cette condition est une conséquence des conditions a) et b)
lorsque I' laisse invariante une métrique définie dans H. En
particulier, supposons que H soit un espace riemannien dont la
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métrique est invariante par le groupe G qui opére transitivement
dans H. Lorsqu’un groupe d’automorphismes I' laisse invariante
cette métrique riemannienne et satisfait aux conditions a) et b),
c’est le groupe d’holonomie d’un espace riemannien localement
équivalent & H, c’est-a-dire localement applicable sur H. 1l
serait intéressant de savoir si la condition ¢) est toujours une
conséquence des conditions a) et b), lorsque le groupe I' est un
groupe d’automorphismes de H. J’ignore la réponse a cette
question. On sait seulement que la condition ¢) n’est pas néces-
sairement une conséquence des conditions @) et b) lorsque I' se
compose de transformations topologiques quelconques de H.

7. — La condition de normalité, pour un espace localement
homogeéne E, peut étre remplacée, dans certains cas, par des
conditions plus simples. Considérons en particulier les espaces
riemanniens localement homogénes. On voit facilement que la
condition de normalité est équivalente dans ce cas a la condition
suivante: Dans [lespace E, toute ligne divergente localement
rectifiable a une longueur infinte. Cette condition est encore
équivalente & d’autres conditions, par exemple a la condition
suivante: Sur tout rayon géodésique on peut reporter, & pariir de
son origine, une longueur donnée arbitraire. 1.’équivalence des
deux conditions précédentes s’établit facilement dans le cas
d’un espace riemannien localement homogéne. M. Hopf et
M. Rinow ont méme démontré cette équivalence pour un
espace de Riemann quelconque.

Dans le cas des espaces localement affines, ¢’est-a-dire locale-
ment équivalents & I'espace affine, la condition de normalité peut
étre remplacée par la suivante: Etant donnée une géodésique
quelconque de l'espace localement affine, un point M qui décrit la
géodésique peut élre défint en fonction d’un paraméire s tel que,
dans tout systéme de coordonnées affines locales, les coordonnées de M
sotent des fonctions linéaires de s; Uespace considéré sera alors
normal st & toute valeur de s somprise enire — «w et -+ oo corres-
pond un point M de la géodésique donnée.

8. — Lorsqu’un espace riemannien localement équivalent a
un espace riemannien homogene est clos, il est normal; car il n’y
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a pas de lignes divergentes dans cet espace. Mais dans le cas
général, un espace localement homogene clos n’est pas forcément
normal. Les espaces localement homogenes normaux ainsi que
les espaces localement homogenes clos font partie de la classe
plus générale des espaces localement homogénes non prolon-
geables. Un espace localement homogéne E est dit non prolon-
geable lorsqu’il n’est pas équivalent a un domaine D d’un
espace localement homogeéne E’, le domaine D ayant des points
frontiéres dans E’. On démontre facilement le théoréme suivant:

Tout espace homogéne est non prolongeable.

Il suffit d’appliquer le théoreme qui dit que tout arc d’un
espace localement équivalent & un espace homogéne H admet
un développement sur H. Il résulte immédiatement de ce théo-
réeme que tout espace localement homogéne normal est non prolon-
geable. De méme 1l est clair que tout espace clos est non prolon-
geable. Il existe des espaces localement homogénes non prolon-
geables (méme simplement connexes ou clos) qui ne sont pas
normaux. Par exemple, soit H un espace homogéne & 3 dimen-
sions et considérons un nceud dans cet espace. Tout espace de
recouvrement a plusieurs feuillets de 1’espace complémentaire
du neeud est non prolongeable. D’une facon générale, le théoréme
relatif au développement d’un arc sur un espace homogene
permet de reconnaitre si un espace localement homogene donné
est prolongeable ou non prolongeable. Il serait intéressant de
savoir si tout espace prolongeable est équivalent a un domaine
d’un espace non prolongeable.

9. — Donnons quelques applications des notions et propriétés
générales qui précédent. Je ne parlerai pas des espaces localement
euclidiens ou localement non euclidiens, car ce sujet est bien
connu. Je signale que les formes de Clifford ou de Klein des
espaces riemanniens homogénes, en particulier des espaces
riemanniens symétriques, ont été considérées par M. E. Cartan
dans plusieurs de ses travaux. Je me propose d’indiquer seule-
ment quelques propriétés des espaces localement projectifs.

Un espace localement projectif est un espace localement équi-
valent & un espace projectif réel. On peut encore le définir de la
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facon suivante: Un espace localement projectif E est une
variété & n dimensions sur laquelle on a défini un systéme de
courbes appelées géodésiques tel que chaque point de E appar-
tient & un voisinage qui admet une représentation topologique
sur un domaine de D’espace projectif, les arcs de géodésiques
étant représentés par des segments de droites.

Tout espace localement euclidien, localement non-euclidien
ou localement affine est évidemment un espace localement pro-
jectif. D’une facon générale, si H est un espace homogéne et G
le groupe de transformations correspondant, tout sous-groupe
continu G’ qui est localement transitif dans un domaine de H
définit un espace homogene H’, et tout espace localement équi-
valent & H’ définit aussi un espace localement équivalent & H.

Soit S l’espace de recouvrement simplement connexe de
Iespace projectif & n dimensions. L’espace S est homéomorphe
& la sphére a n dimensions et recouvre deux fois I’espace pro-
jectif. Un point de S est représenté par I'ensemble de n + 1
quantités Az,, Azy, ..., Az, , non toutes nulles, le nombre A étant
un nombre positif quelconque. Le groupe d’automorphismes (A)
de I’espace S est le groupe dont la transformation générale est:

4

déterminant | a;; | = 41 .
L’application d’un résultat général au cas présent donne le
théoreme suivant:

Tout espace localement projectif clos et & groupe de Poincaré
fini admet Uespace S pour espace de recouvrement simplement
conneze.

Les espaces de cette classe sont les espaces localement pro-
Jectifs normaux. Un espace localement projectif normal peut
aussl étre caractérisé par la propriété suivante: Toute géodésique
de l'espace est une courbe fermée.

Tout espace localement projectif normal est défini par un
groupe formé d’un nombre fini de transformations du groupe (A),
chacune de ces transformations étant sans points invariants
dans S. Réciproquement tout groupe fini de cette espéece définit
un espace localement projectif normal. Or tout groupe fini de
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transformations de (A) laisse invariante au moins une forme
quadratique définie en z,, z,, ..., ,, que nous pouvons supposer
étre la forme a5 + z; + ... + z,,. Le groupe considéré est
donc un groupe de déplacements sphériques. Donc

THEOREME: Tout espace localement projectif normal est équi-
valent a un espace localement sphérique normal (forme spatiale
de Clifford & courbure constante positive). Er particulier, tout
espace homogéne localement équivalent a [Uespace projectif est
équivalent & Uespace projectif ou a lespace sphérique.

Les espaces localement euclidiens ou localement hyperboliques
sont des espaces localement projectifs qui ne sont pas normaux.
Si les géodésiques d’un espace localement projectif sont les
géodésiques d’une métrique riemannienne, cet espace est locale-
ment euclidien ou non-euclidien. Il existe des espaces localement
projectifs, méme clos, qui ne sont pas équivalents a des espaces
localement euclidiens ou non-euclidiens. Considérons, par
exemple, dans le plan projectif la transformation z, = Az,
T, = X;, Ty = T, et le groupe I' engendré par cette transforma-
tion. Dans le domaine obtenu en enlevant du plan projectif la
droite x, = O et le point x;, = x, == 0, le groupe I' a les carac-
teres d’un groupe d’holonomie et définit un espace localement
projectif E. On peut prendre pour domaine fondamental du
groupe I' le domaine compris entre les deux coniques
x4 2y — 12 =0 et xf + 25— N2, = 0. On voit donc que
Pespace E est homéomorphe au tore, mais les géodésiques de
cet espace ne peuvent pas étre les géodésiques d’'une métrique
riemannienne. De plus ces géodésiques ne satisfont pas a la
condition suivante que nous appellerons condition de convexité:
Supposons donnée une famille continue d’arcs géodésiques AB,,
Porigine A étant fixze et Uextrémité B, étant une fonction continue
d’un paramétre t, définie pour 0 =t <1; si B, tend vers un
point B, lorsque t tend vers 1, U'arc géodésique AB, tend vers un
arc géodésiqgue AB;. Remarquons que les géodésiques d’un
espace riemannien normal satisfont & cette condition ainsi que
les géodésiques d’un espace localement projectif normal ou d’un
espace localement affine normal. Un espace localement projectif
qui satisfait a la condition de convexité sera appelé convexe.
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Les géodésiques issues d’un point remplissent tout I’espace. On
peut démontrer le théoréeme suivant: “

Lespace de recouvrement simplement connexe d’un espace
localement projectif convexe est équivalent a Uespace sphérigue S
ou bien @ un domaine convexe de l’espace projectif.

Réciproquement, soit D un domaine convexe de l’espace
projectif, c¢’est-a-dire un domaine satisfaisant & notre condition
de convexité. Soit I' un groupe de transformations projectives
qui transforme D en lui-méme, qui est proprement discontinu
dans D et dont les transformations n’admettent pas de points
invariants dans D. On sait qu’on peut définir dans D une mé-
trique en prenant pour distance de deux points M et M’ le
logarithme du rapport anharmonique des points M, M’ et des
deux points d’intersection de la droite MM’ avec la frontiére
de D. Cette métrique est invariante par I'. L’ensemble des
points équivalents & un point de D par rapport au groupe I'
peut donc étre considéré comme le point général d’un espace
localement projectif; celui-ci sera convexe et admettra D pour
espace de recouvrement simplement connexe. Dans ce raison-
nement on a supposé que D n’est pas I’espace affine.

10. — Considérons plus spécialement les espaces localement
projectifs convexes a deux dimensions. Faisons abstraction des
espaces localement projectifs normaux, c’est-a-dire de ’espace
sphérique & deux dimensions et du plan projectif. Soit E un
espace localement projectif clos. Son espace de recouvrement,
simplement connexe est équivalent & un domaine convexe D
du plan projectif; appelons C la frontiére de D. I’espace E sera
défin1 par un groupe projectif I' qui a les caractéres d’un groupe
d’holonomie dans le domaine D; ce groupe I est d’ailleurs infini.
On montre alors que les seuls cas qui peuvent se présenter sont
les suivants: 19 C est une droite et D est le plan affine; 20 C se
compose de deux droites et D est le demi-plan affine; 3¢ C se
compose de trois segments de droites et D est I'intérieur d’un
triangle; 4° C se compose d’un segment de droite et ‘d’un arc
de courbe tel que les transformés par I' de tout point de cet
arc forment un ensemble partout dense sur cet arc; 5° les trans-
formés de tout point de C (peut-8tre & I’exception d’un point)
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forment un ensemble partout dense sur C. Supposons que C
soit composé d’arcs analytiques. Alors la partie non rectiligne
de C est & courbure projective constante. On peut en déduire
que les seuls cas possibles sont les trois premiers cas et le cin-
quiéme cas ou D est I'intérieur d’une conique. On a par consé-
quent le résultat suivant:

St un espace localement projectif a deux dimensions est convexe
et clos, il est équivalent a Uespace sphérique, ou bien a Uespace
projectif, ou bien a un espace localement hyperbolique, ou bien d
un espace localement affine normal, ou bien son espace de recouvre-
ment simplement connexe est équivalent soit au demi-plan affine,
soit a Uintérieur d’un triangle, soit & un domaine convexe du plan
projectif dont la frontiére contient des arcs non analytiques.

Il parait probable que le dernier cas ne peut pas se présenter.
On a de méme le résultat suivant:

St un espace localement affine @ deux dimensions est convexe
et clos, il est normal, ou bien son espace de recouvrement simplement
connexe est équivalent soit au demi-plan affine, soit a un domaine
du plan affine limité par deux demi-droites issues d’un point,
sott & un domaine convexe du plan affine dont la frontiére contient
des arcs non analytiques.

Plus généralement on peut démontrer que les deux énoncés
précédents sont encore valables pour les espaces localement
projectifs ou pour les espaces localement affines qui sont convexes
et non prolongeables. Remarquons cependant qu'un espace
localement hyperbolique normal est prolongeable en tant
qu’espace localement projectif lorsque le groupe I' correspon-
dant est proprement discontinu sur la conique C.

11. — Il est intéressant de considérer également les espaces
localement projectifs complexes. L’espace projectif complexe
est simplement connexe. Dans le cas d’un nombre pair de dimen-
sions, l'espace projectif complexe n’admet pas de forme de
Clifford autre que lui-méme. Dans le cas d’un nombre impair
de dimensions complexes, il existe une forme de Clifford dis-
tincte de ’espace projectif complexe. Cette forme de Clifford est
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non orientable, et elle peut aussi étre considérée comme une
forme de Clifford de 1’espace hermitien elliptique.

On détermine encore facilement les espaces localement,
conformes normaux. On peut démonirer que ceuz-ci sont ausst
équivalents aux espaces localement sphériques normauz.

Pour terminer remarquons que les espaces localement homo-
genes considérés sont des cas particuliers des espaces non holo-
nomes définis d’'une facon générale par M. E. Cartan. Ce sont les
espaces non holonomes correspondant & un groupe transitif
de Lie G tels que les déplacements infinitésimaux attachés aux
différents veecteurs infinitésimaux de l'espace satisfont aux
équations de structure du groupe G. L’étude des espaces locale-
ment homogeénes est ainsi le premier pas dans ’étude des pro-
priétés globales des espaces non holonomes.
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