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SUR LES ESPACES LOCALEMENT HOMOGÈNES1

PAR

Charles Ehresmann (Paris).

Les espaces qui formeront l'objet de cette conférence sont
des espaces analogues aux formes spatiales de Clifford-Klein.
Je rappelle qu'une forme spatiale de Clifford-Klein est un

espace de Riemann à courbure constante; suivant que cette
courbure est nulle, positive ou négative, on aura un espace
localement euclidien, localement sphérique ou localement
hyperbolique. Etant donné un espace localement euclidien, par
exemple, celui-ci est aussi caractérisé par le fait que les déplacements

euclidiens voisins de la transformation identique sont
définis dans un voisinage suffisamment petit de chaque point.
Une généralisation immédiate de cette dernière définition
s'obtient en remplaçant le groupe des déplacements euclidiens

par un groupe de transformations continu et transitif quelconque,
en particulier par un groupe continu et transitif de Lie. On
définit ainsi les espaces localement homogènes que nous allons
étudier. Bien que les résultats que je pourrai indiquer soient
encore incomplets, il m'a semblé que ce sujet méritait d'être
traité ici, parce qu'il touche à la fois à la théorie des groupes
et à la topologie et parce qu'il conduit à des relations entre les

propriétés infinitésimales et les propriétés globales d'un espace.

1. — Avant de préciser la notion d'espace localement homogène,

il sera utile de rappeler la définition d'un groupe de trans-

i Conférence faite le 23 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Gfenève; série consacrée à
Quelques questions de Géométrie et de Topologie.
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formations de Lie au sens local ou au sens global. Soit V une
variété à n dimensions, c'est-à-dire un espace topologique
régulier admettant un système de voisinages dont chacun est

homéomorphe à l'intérieur d'un simplexe à n dimensions. Soit G

un ensemble de transformations topologiques dont chacune est
définie pour tout point d'un domaine D de V, les point de D
étant transformés en des points de Y qui n'appartiennent pas
forcément à D. L'ensemble G forme un groupe continu à r
paramètres au sens local lorsqu'il satisfait aux conditions suivantes:

a) Les éléments de G peuvent être mis en correspondance
biunivoque avec les points d'une variété à r dimensions, que
nous désignerons par (G), telle que, si M' 9 (M, s) est la
transformation correspondant au point s de (G), la fonction

9 (M, s) soit continue par rapport à l'ensemble des points M et s.

b) L'ensemble G contient la transformation identique; soit i
le point correspondant de (G).

c) Il existe dans (G) un voisinage A du point i tel qu'on ait les

propriétés suivantes: Si a est un point de A, il existe dans D des

points M dont les transformés M' 9 (M, a) appartiennent
à D; pour tout point M de cette espèce et pour tout point b

de A, on a:
M" 9 [9 (M a) b] 9 (M c)

Le point c de (G) qui correspond ainsi à l'ensemble des

points a et b est défini par une fonction c — ^(<2, b).

d) Soit a un point de A et M un point quelconque de D tel
que le point M' 9 (M, a) appartienne à D. Il existe dans (G)

un point a~l tel que M 9 (M', a"1).

e) La fonction j(a, b) est continue par rapport à l'ensemble
des points a et 6; le point a-1 est une fonction continue du

point a.

Un groupe G satisfaisant aux conditions précédentes est

appelé groupe de Lie au sens local s'il existe, dans un voisinage
du point i1 un système de coordonnées tel que les coordonnées
du point c ^ (a, b) soient des fonctions analytiques par rapport
aux coordonnées des points a et b.

Le groupe G est dit transitif dans D si tout point M de D

admet un voisinage tel que, M' étant un point quelconque de ce
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voisinage, il existe au moins une transformation de G qui
transforme M en M'. Si G est un groupe continu transitif de Lie

au sens local, il existe des systèmes de coordonnées définis

respectivement dans un voisinage de M0 et dans un voisinage
de i tels que les coordonnées du point M' 9 (M, a) soient
des fonctions analytiques par rapport à l'ensemble des

coordonnées de M et de a, en supposant que M et a appartiennent à

des voisinages suffisamment petits de M0 et de i. Deux systèmes
de coordonnées qui sont définis dans un voisinage de M0 et qui
jouissent de la propriété précédente se déduisent l'un de l'autre

par une transformation analytique.
Un ensemble de transformations topologiques, G, forme un

groupe continu à r paramètres au sens global lorsqu'il satisfait
aux conditions a), e), en supposant que dans l'énoncé de

ces conditions D soit remplacé par V et A par (G). L'ensemble G

forme un groupe de Lie au sens global lorsqu'il définit un groupe
continu à r paramètres au sens global et un groupe de Lie au
sens local. Je signale le théorème suivant:

Etant donné un groupe continu à r paramètres au sens local
dont les transformations sont définies pour tous les points de la
variété V (c'est-à-dire le domaine D est confondu avec V),
Vensemble des transformations dont chacune est le produit d'un
nombre fini de transformations appartenant au voisinage A de i
forme un groupe continu à r paramètres au sens global.

2. — Appelons espace homogène de Lie une variété à n dimensions

dans laquelle est défini un groupe de transformations
continu et transitif de Lie au sens global.

Appelons espace localement homogène de Lie (en général nous
dirons simplement espace localement homogène) une variété E
à n dimensions jouissant des propriétés suivantes:

a) Chaque point M de E appartient à un voisinage VM à

l'intérieur duquel est défini un groupe continu et transitif de Lie
au sens local qui transforme les points de VM en des points de E ;

le voisinage VM sera appelé voisinage élémentaire.
b) Soit d un domaine commun à deux voisinages élémentaires.

Etant donnés les deux groupes de Lie au sens local attachés à

ces voisinages, il existe dans chacun d'eux un voisinage de la



320 CH. EHRESMANN

transformation identique tel que les transformations de l'un
de ces voisinages soient en correspondance biunivoque avec
celles de l'autre, deux transformations correspondantes opérant
de la même façon sur les points de d.

Un espace localement homogène de Lie peut encore être
défini comme étant une variété E à n dimensions qui jouit des

propriétés suivantes :

a) Chaque point M de E appartient à un voisinage VM dans
lequel on a défini un système de coordonnées et un ensemble
de r transformations infinitésimales linéairement indépendantes
qui engendrent un groupe transitif de Lie au sens local.

b) Soit d un domaine commun à deux voisinages élémentaires
VM et VM,. Le changement de coordonnées défini pour les points
de d transforme les r transformations infinitésimales définies
dans VM en r combinaisons linéaires des transformations
infinitésimales définies dans VM/.

Remarquons qu'un espace homogène de Lie est aussi un espace
localement homogène de Lie.

Etant donnés deux points M et M' d'un voisinage élémentaire,
appelons transformation élémentaire de M en M'toute transformation

qui transforme M en M' et qui appartient au groupe
de Lie au sens local attaché à ce voisinage. Si A et B sont deux
points quelconques de E, on montre que A peut être transformé
en B par la succession d'un nombre fini de transformations
élémentaires. Il en résulte que les groupes de Lie, au sens local,
définis respectivement au voisinage de A et au voisinage de B
sont semblables.

La variété d^un espace localement homogène est une variété

analytique. En effet, dans chaque voisinage élémentaire on peut
introduire un système de coordonnées tel que le groupe de Lie,
au sens local correspondant, soit analytique par rapport à ces

coordonnées et par rapport aux paramètres. Le changement de

coordonnées qui en résulte pour un domaine commun à deux
voisinages élémentaires est alors également analytique.

3. — Deux espaces localement homogènes E et E' sont dits
équivalents lorsqu'il existe une transformation topologique de E

en E' telle que, M et M' étant deux points correspondants, les
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transformations infinitésimales définies au voisinage de M soient

transformées en les transformations infinitésimales définies au

voisinage de M'. Les deux espaces E et E' sont dits localement

équivalents lorsqu'il existe un voisinage élémentaire dans E qui
soit équivalent à un voisinage élémentaire dans E'. Le problème
général que nous nous proposons d'étudier s'énonce maintenant
de la façon suivante:

Trouver tous les espaces localement homogènes qui soient localement

équivalents à un espace localement homogène donné: en

d'autres termes, trouver tous les espaces localement homogènes qui
soient le prolongement d'un élément d'espace localement homogène
donné.

Une question intéressante qui se pose aussitôt est la suivante:
Existe-t-il toujours un espace homogène qui soit localement
équivalent à un espace localement homogène donné

Pour répondre à cette question, je rappelle les propriétés
suivantes: Soit H un espace homogène de Lie et G le groupe
de Lie correspondant. Soit g le sous-groupe formé par l'ensemble
des transformations de G qui laissent invariant un point 0
de H. Le sous-groupe g est fermé dans G et n'admet aucun
sous-groupe invariant dans G. Réciproquement étant donnés

un groupe abstrait de Lie, G, et un sous-groupe g qui est fermé
dans G et qui ne contient aucun sous-groupe invariant dans G,

on peut définir un espace homogène H dont le groupe de
transformations Gx est isomorphe à G, le sous-groupe de Gx qui
correspond à g étant le plus grand sous-groupe dont les
transformations laissent invariant un point 0 de H.

Si G est un groupe transitif de Lie au sens local, il existe dans G

un voisinage A de la transformation identique tel que les
transformations qui appartiennent à A et qui laissent invariant un
point 0 forment un sous-groupe continu de Lie au sens local.
Réciproquement soit (G) un groupe abstrait de Lie au sens
local et soit (g) un sous-groupe continu de Lie au sens local.
Si (g) n'admet aucun sous-groupe continu invariant dans (G),
il existe un groupe de transformations continu et transitif de Lie
au sens local, que nous désignerons par Gj, tel que ce groupe soit
localement isomorphe à (G), son sous-groupe qui correspond
par cette isomorphie à (g) étant le plus grand sous-groupe continu
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qui laisse invariant un certain point. D'après le troisième théorème

fondamental de Lie démontré du point de vue global par
M. E. Cartan, la variété (G) peut être considérée comme un
voisinage de l'élément unité d'un groupe abstrait de Lie au sens

global. Désignons ce groupe par (G'); on peut le supposer
simplement connexe; sinon on le remplacerait par son groupe
de recouvrement simplement connexe. Le sous-groupe (g) au
sens local se prolonge dans (G') en un sous-groupe continu de Lie
au sens global; soit (g') ce prolongement. Pour que le groupe G±

puisse être prolongé en un groupe transitif de Lie au sens global,
il faut et il suffît que (gf) soit fermé dans (G'). Or on sait qu'un
groupe de Lie (G') simplement connexe peut avoir des sous-groupes
continus qui ne sont pas fermés dans (G'). Par exemple, un groupe
simple clos, simplement connexe et de rang supérieur à 1 admet
des sous-groupes ouverts à un paramètre; un tel sous-groupe
n'admet évidemment aucun sous-groupe continu invariant dans
le groupe simple donné. Donc il existe effectivement des espaces
localement homogènes qui ne sont localement équivalents à aucun

espace homogène.

Pratiquement il est difficile de reconnaître si un groupe
transitif de Lie au sens local défini dans un certain domaine

par r transformations infinitésimales données peut être prolongé
en un groupe de Lie au sens global. Remarquons seulement

qu'une condition suffisante pour que ce prolongement existe
est que le plus grand sous-groupe au sens local qui laisse invariant
un point 0 ne laisse invariant aucun autre point dans un voisinage

suffisamment petit de 0. M. E. Cartan a déterminé tous
les espaces homogènes de Lie à deux dimensions. On constate

que tout espace localement homogène à deux dimensions est

localement équivalent à un espace homogène. La même question
n'est pas encore résolue dans le cas de trois dimensions et on
n'a jamais déterminé tous les espaces homogènes de Lie à trois
dimensions.

4. — Je signale le théorème suivant:

Si un espace localement homogène de Lie est clos et simplement

connexe, il est équivalent à un espace homogène de Lie.
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On en déduit que tout espace localement homogène clos, dont
le groupe de Poincaré est fini, est localement équivalent à un

espace homogène. Pour démontrer le théorème énoncé, on

applique surtout la propriété suivante: Etant donné un espace
localement homogène E, tout arc AB établit un isomorphisme local

bien déterminé entre les groupes de Lie, au sens local, définis
respectivement au voisinage de A et au voisinage de B ; cet isomorphisme
ne varie pas lorsqu'on déforme Varc AB, les extrémités A et B

restant fixes. En particulier, si l'espace E est simplement connexe,
il existe un isomorphisme local bien déterminé entre les groupes
de Lie au sens local définis respectivement dans les voisinages
de deux points quelconques de E.

5. — Par la suite nous porterons notre attention sur les

espaces localement homogènes qui sont localement équivalents
à un espace homogène donné. Soit H un espace homogène de Lie
et G le groupe de transformations correspondant. On démontre
alors le fait suivant:

Si H est la variété de recouvrement simplement connexe de H,
cette variété H définit un espace homogène localement équivalent
à H ; le groupe G correspondant à H est un groupe de recouvrement
(pas forcément simplement connexe) de G.

Appelons automorphisme de l'espace homogène H une
transformation topologique T de H en lui-même telle que la
transformée par T de toute transformation de G appartienne
encore à G. Appelons automorphisme local une transformation
topologique qui transforme un voisinage d'un point A de H en
un voisinage d'un point B de H de telle façon que la transformée
de toute transformation infinitésimale de G soit encore une
transformation infinitésimale de G. On démontre alors le
théorème suivant:

Tout automorphisme local d'un espace homogène simplement
connexe se prolonge en un automorphisme global de cet espace.

La démonstration de ce théorème repose sur le fait suivant :

Si G est un groupe abstrait de Lie au sens global, tout auto-
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morphisme local de (G) se prolonge en un automorphisme global
de (G).

Soit E un espace localement homogène que nous supposons
localement équivalent à un espace homogène simplement
connexe H. Définissons le développement sur H d'un arc de

l'espace E. Nous appelons arc la figure décrite par un point
qui est une fonction continue d'un paramètre variant de 0 à 1.

Soit OA un arc de E. Tout point M de E appartient à un voisinage
élémentaire qui est équivalent à un voisinage d'un point M de H.
En vertu du lemme de Borel-Lebesgue, on peut recouvrir
l'arc OA par une suite d'un nombre fini d'arcs partiels telle que
deux arcs partiels successifs empiètent l'un sur l'autre et telle
que tout arc partiel soit contenu dans un voisinage élémentaire
équivalent à un voisinage dans l'espace H. Soit V0, V1? Vk
cette suite de voisinages; nous pouvons supposer que deux
voisinages successifs n'aient qu'un seul domaine en commun.
Une suite de voisinages de cette espèce sera appelée une chaîne
de voisinages recouvrant l'arc OA. Le voisinage V0 du point O

peut être représenté sur un voisinage V0 d'un point O de H. Le

voisinage Vt est équivalent à un voisinage Vi dans H. Soit d

le domaine commun à V0 et à Vr II est représenté d'une part
sur un domaine d de V0 et d'autre part sur un domaine d'de Vi.
L'automorphisme local qui transforme d'en d se prolonge en un

automorphisme global qui transforme V* en un voisinage Vx.
En répétant cette opération, on pourra représenter la chaîne
de voisinage V0, Vl7 Vk sur une chaîne de voisinages

V0, Vj, V7i. L'arc OA sera représenté sur un arc OA recouvert

par la chaîne de voisinages V0, Vl7 V/?. Nous dirons que
l'arc OA est un développement sur H de l'arc OA; de même

l'arc OA sera appelé un développement sur E de l'arc OA. On

a ainsi le résultat suivant:

Un voisinage du point O de E étant représenté sur un voisinage

d'un point O de H, tout arc OA de E admet un développement bien

déterminé suivant un arc OA de H. Si deux arcs d'origine O et

d'extrémité A sont réductibles l'un à l'autre par déformation

continue, leurs développements conduisent de O au même point A.
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La dernière partie de cet énoncé se démontre en appliquant
le lemme de Borel-Lebesgue à une famille continue d'arcs

d'origine 0 et d'extrémité A. On démontre de même le théorème
suivant :

Un voisinage de 0 étant représenté sur un voisinage de 0, soit OA

un arc quelconque de H. Ou bien Varc OA se développe suivant un

arc bien déterminé OA de E, ou bien il existe sur Varc OA un

point C tel que Varc OC moins le point C se développe suivant une

ligne divergente sur Vespace de recouvrement simplement connexe

de E. Etant donnée sur H une famille continue d' arcs d'origine 0
et d'extrémité A telle que chacun de ces arcs admette sur E un
développement issu de 0, ce développement conduit toujours au
même point A.

Les propriétés précédentes conduisent aux résultats suivants :

Si l'espace localement homogène E est clos et simplement connexe,
il est équivalent à l'espace homogène H. Si E est clos et admet un
groupe de Poincaré fini, l'espace de recouvrement simplement
connexe de E est équivalent à H. Si E est clos et H ouvert, le groupe
de Poincaré de E est infini.

Soit H' un espace homogène localement équivalent à H; si H'
est simplement connexe, il est équivalent à H; si H' n'est pas
simplement connexe, son espace de recouvrement simplement
connexe est équivalent à H.

6. — Considérons maintenant une classe particulièrement
intéressante d'espaces localement homogènes. Un espace E de
cette classe satisfait à la condition suivante qui sera appelée
condition de normalité: L'espace E est localement équivalent à

un espace homogène H que nous supposerons simplement
connexe, et toute ligne divergente sur l'espace de recouvrement
simplement connexe de E se développe suivant une ligne divergente

de H. L'espace E sera appelé espace localement homogène
normal ou encore forme de Clifford de l'espace homogène H. En
particulier, tout espace homogène localement équivalent à H
est normal; on l'appelle forme de Klein de l'espace homogène H.
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De même tout espace localement homogène clos dont le groupe
de Poincaré est fini satisfait à la condition de normalité. On
démontre facilement le théorème suivant:

Soit E un espace normal localement équivalent à Vespace homogène

simplement connexe H ; Vespace H est équivalent à Vespace
de recouvrement simplement connexe de E.

Un voisinage du point 0 de E étant représenté sur un voisinage

équivalent du point 0 de H, tout arc OM de E se développe
suivant un arc déterminé OM de H. La correspondance entre M

et M jouit alors des propriétés suivantes: A tout point M de H
correspond un point déterminé M de E. Les points de H qui
correspondent à un même point M de E forment un ensemble
de points équivalents par rapport à un groupe d'automorphismes
de l'espace H. Ce groupe s'appelle le groupe d'holonomie de

l'espace E. Il est isomorphe au groupe de Poincaré de l'espace E.
De plus il est proprement discontinu dans tout l'espace H et
aucune de ses opérations n'admet de points invariants dans H.
La recherche des formes de Clifford de l'espace H revient ainsi
à la recherche des groupes d'automorphismes de H qui peuvent
être considérés comme des groupes d'holonomie.

Soit r un groupe d'automorphismes de H. Pour que P soit
le groupe d'holonomie d'un espace localement homogène normal
il faut et il suffit que les conditions suivantes soient vérifiées:

a) F est proprement discontinu dans tout l'espace H.
h) Aucune opération de F n'admet des points invariants.
c) Considérons dans H deux voisinages quelconques v et e',

distincts ou confondus. Parmi les voisinages transformés de c

par F, il y a au plus un nombre fini de voisinages qui ont des

points communs avec e'.

Lorsque ces conditions sont vérifiées, les ensembles de points
équivalents par rapport à Y peuvent être considérés comme les

points d'un espace E qui sera une forme de Clifford de H.
La condition c) est vérifiée d'elle-même lorsque Y est un groupe

fini. Cette condition est une conséquence des conditions a) et b)

lorsque F laisse invariante une métrique définie dans H. En
particulier, supposons que H soit un espace riemannien dont la
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métrique est invariante par le groupe G qui opère transitivement
dans H. Lorsqu'un groupe d'automorphismes F laisse invariante
cette métrique riemannienne et satisfait aux conditions a) et b),

c'est le groupe d'holonomie d'un espace riemannien localement

équivalent à H, c'est-à-dire localement applicable sur H. Il
serait intéressant de savoir si la condition c) est toujours une

conséquence des conditions a) et à), lorsque le groupe F est un

groupe d'automorphismes de H. J'ignore la réponse à cette

question. On sait seulement que la condition c) n'est pas
nécessairement une conséquence des conditions a) et b) lorsque F se

compose de transformations topologiques quelconques de H.

7. — La condition de normalité, pour un espace localement

homogène E, peut être remplacée, dans certains cas, par des

conditions plus simples. Considérons en particulier les espaces
riemanniens localement homogènes. On voit facilement que la
condition de normalité est équivalente dans ce cas à la condition
suivante: Dans Vespace E, toute ligne divergente localement

rectifiable a une longueur infinie. Cette condition est encore
équivalente à d'autres conditions, par exemple à la condition
suivante: Sur tout rayon géodésique on peut reporter, à partir de

son origine, une longueur donnée arbitraire. L'équivalence des

deux conditions précédentes s'établit facilement dans le cas
d'un espace riemannien localement homogène. M. Hopf et
M. Rinow ont même démontré cette équivalence pour un
espace de Riemann quelconque.

Dans le cas des espaces localement affines, c'est-à-dire localement

équivalents à l'espace affine, la condition de normalité peut
être remplacée par la suivante: Etant donnée une géodésique
quelconque de Vespace localement affine, un point M qui décrit la
géodésique peut être défini en fonction d'un paramètre s tel que,
dans tout système de coordonnées affines locales, les coordonnées de M
soient des fonctions linéaires de s; Vespace considéré sera alors
normal si à toute valeur de s somprise entre — oo et + oo correspond

un point M de la géodésique donnée.

8. — Lorsqu'un espace riemannien localement équivalent à

un espace riemannien homogène est clos, il est normal; car il n'y
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a pas de lignes divergentes dans cet espace. Mais dans le cas

général, un espace localement homogène clos n'est pas forcément
normal. Les espaces localement homogènes normaux ainsi que
les espaces localement homogènes clos font partie de la classe

plus générale des espaces localement homogènes non prolon-
geables. Un espace localement homogène E est dit non prolon-
geable lorsqu'il n'est pas équivalent à un domaine D d'un
espace localement homogène E', le domaine D ayant des points
frontières dans E'. On démontre facilement le théorème suivant:

Tout espace homogène est non prolongeable.

Il suffit d'appliquer le théorème qui dit que tout arc d'un
espace localement équivalent à un espace homogène H admet
un développement sur H. Il résulte immédiatement de ce théorème

que tout espace localement homogène normal est non prolongeable.

De même il est clair que tout espace clos est non prolongeable.

Il existe des espaces localement homogènes non prolon-
geables (même simplement connexes ou clos) qui ne sont pas
normaux. Par exemple, soit H un espace homogène à 3 dimensions

et considérons un nœud dans cet espace. Tout espace de

recouvrement à plusieurs feuillets de l'espace complémentaire
du nœud est non prolongeable. D'une façon générale, le théorème
relatif au développement d'un arc sur un espace homogène

permet de reconnaître si un espace localement homogène donné
est prolongeable ou non prolongeable. Il serait intéressant de

savoir si tout espace prolongeable est équivalent à un domaine
d'un espace non prolongeable.

9. — Donnons quelques applications des notions et propriétés
générales qui précèdent. Je ne parlerai pas des espaces localement
euclidiens ou localement non euclidiens, car ce sujet est bien

connu. Je signale que les formes de Clifford ou de Klein des

espaces riemanniens homogènes, en particulier des espaces
riemanniens symétriques, ont été considérées par M. E. Cartan
dans plusieurs de ses travaux. Je me propose d'indiquer seulement

quelques propriétés des espaces localement projectifs.
Un espace localement projectif est un espace localement

équivalent à un espace projectif réel. On peut encore le définir de la
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façon suivante: Un espace localement projectif E est une
variété à n dimensions sur laquelle on a défini un système de

courbes appelées géodésiques tel que chaque point de E appartient

à un voisinage qui admet une représentation topologique
sur un domaine de l'espace projectif, les arcs de géodésiques
étant représentés par des segments de droites.

Tout espace localement euclidien, localement non-euclidien
ou localement affine est évidemment un espace localement
projectif. D'une façon générale, si H est un espace homogène et G

le groupe de transformations correspondant, tout sous-groupe
continu G' qui est localement transitif dans un domaine de H
définit un espace homogène H', et tout espace localement
équivalent à H' définit aussi un espace localement équivalent à H.

Soit S l'espace de recouvrement simplement connexe de

l'espace projectif à n dimensions. L'espace S est homéomorphe
à la sphère à n dimensions et recouvre deux fois l'espace
projectif. Un point de S est représenté par l'ensemble de n + 1

quantités X£0, Xaq, X£n, non toutes nulles, le nombre X étant
un nombre positif quelconque. Le groupe d'automorphismes (A)
de l'espace S est le groupe dont la transformation générale est:

x, a.--x- déterminant I a- - 4- 1
lJ 1 I |

L'application d'un résultat général au cas présent donne le
théorème suivant:

Tout espace localement projectif clos et à groupe de Poincaré
fini admet l'espace S pour espace de recouvrement simplement
connexe.

Les espaces de cette classe sont les espaces localement pro-
jectifs normaux. Un espace localement projectif normal peut
aussi être caractérisé par la propriété suivante: Toute géodésique
de l'espace est une courbe fermée.

Tout espace localement projectif normal est défini par un
groupe formé d'un nombre fini de transformations du groupe (A),
chacune de ces transformations étant sans points invariants
dans S. Réciproquement tout groupe fini de cette espèce définit
un espace localement projectif normal. Or tout groupe fini de
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transformations de (A) laisse invariante au moins une forme
quadratique définie en x0, #l5 xni que nous pouvons supposer
être la forme xl ~j~ #î + ••• + xn. Le groupe considéré est
donc un groupe de déplacements sphériques. Donc

Théorème: Tout espace localement projectif normal est
équivalent à un espace localement sphérique normal (forme spatiale
de Clifford à courbure constante positive). En particulier, tout

espace homogène localement équivalent à Vespace projectif est

équivalent à Vespace projectif ou à Vespace sphérique.

Les espaces localement euclidiens ou localement hyperboliques
sont des espaces localement projectifs qui ne sont pas normaux.
Si les géodésiques d'un espace localement projectif sont les

géodésiques d'une métrique riemannienne, cet espace est localement

euclidien ou non-euclidien. Il existe des espaces localement
projectifs, même clos, qui ne sont pas équivalents à des espaces
localement euclidiens ou non-euclidiens. Considérons, par
exemple, dans le plan projectif la transformation x\ — \x0l
x\ x±1 x\ x2 et le groupe T engendré par cette transformation.

Dans le domaine obtenu en enlevant du plan projectif la
droite x0 0 et le point x1 x2 -= 0, le groupe T a les caractères

d'un groupe d'holonomie et définit un espace localement
projectif E. On peut prendre pour domaine fondamental du

groupe T le domaine compris entre les deux coniques
x\ x\ — xl 0 et x\ + xl — X2 x\ 0. On voit donc que
l'espace E est homéomorphe au tore, mais les géodésiques de

cet espace ne peuvent pas être les géodésiques d'une métrique
riemannienne. De plus ces géodésiques ne satisfont pas à la
condition suivante que nous appellerons condition de convexité :

Supposons donnée une famille continue d'arcs géodésiques ABM
Vorigine A étant fixe et Vextrémité Bt étant une fonction continue
d'un paramètre t, définie pour 0 ^ t < 1 ; si Bt tend vers un
point Bx lorsque t tend vers 1, Varc géodésique ABt tend vers un
arc géodésique ABX. Remarquons que les géodésiques d'un
espace riemannien normal satisfont à cette condition ainsi que
les géodésiques d'un espace localement projectif normal ou d'un
espace localement affine normal. Un espace localement projectif
qui satisfait à la condition de convexité sera appelé convexe.
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Les géodésiques issues d'un point remplissent tout l'espace. On

peut démontrer le théorème suivant:

&espace de recouvrement simplement connexe d'un espace
localement projectif convexe est équivalent à l'espace sphérique S

ou bien à un domaine convexe de l'espace projectif.

Réciproquement, soit D un domaine convexe de l'espace
projectif, c'est-à-dire un domaine satisfaisant à notre condition
de convexité. Soit Y un groupe de transformations projectives
qui transforme D en lui-même, qui est proprement discontinu
dans D et dont les transformations n'admettent pas de points
invariants dans D. On sait qu'on peut définir dans D une
métrique en prenant pour distance de deux points M et M' le

logarithme du rapport anharmonique des points M, M' et des

deux points d'intersection de la droite MM' avec la frontière
de D. Cette métrique est invariante par Y. L'ensemble des

points équivalents à un point de D par rapport au groupe Y

peut donc être considéré comme le point général d'un espace
localement projectif; celui-ci sera convexe et admettra D pour
espace de recouvrement simplement connexe. Dans ce
raisonnement on a supposé que D n'est pas l'espace affine.

10. — Considérons plus spécialement les espaces localement
projectifs convexes à deux dimensions. Faisons abstraction des

espaces localement projectifs normaux, c'est-à-dire de l'espace
sphérique à deux dimensions et du plan projectif. Soit E un
espace localement projectif clos. Son espace de recouvrement
simplement connexe est équivalent à un domaine convexe D
du plan projectif; appelons C la frontière de D. L'espace E sera
défini par un groupe projectif Y qui a les caractères d'un groupe
d'holonomie dans le domaine D; ce groupe Y est d'ailleurs infini.
On montre alors que les seuls cas qui peuvent se présenter sont
les suivants : 1° C est une droite et D est le plan affine ; 2° G se

compose de deux droites et D est le demi-plan affine; 3° G se

compose de trois segments de droites et D est l'intérieur d'un
triangle; 4° G se compose d'un segment de droite et d'un arc
de courbe tel que les transformés par Y de tout point de cet
arc forment un ensemble partout dense sur cet arc; 5° les
transformés de tout point de C (peut-être à l'exception d'un point)
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forment un ensemble partout dense sur C. Supposons que C

soit composé d'arcs analytiques. Alors la partie non rectiligne
de C est à courbure projective constante. On peut en déduire

que les seuls cas possibles sont les trois premiers cas et le
cinquième cas où D est l'intérieur d'une conique. On a par conséquent

le résultat suivant:

Si un espace localement projectif à deux dimensions est convexe
et clos, il est équivalent à Vespace sphérique, ou bien à Vespace

projectif, ou bien à un espace localement hyperbolique, ou bien à

un espace localement affine normal, ou bien son espace de recouvrement

simplement connexe est équivalent soit au demi-plan affine,
soit à Vintérieur d'un triangle, soit à un domaine convexe du plan
projectif dont la frontière contient des arcs non analytiques.

Il paraît probable que le dernier cas ne peut pas se présenter.
On a de même le résultat suivant :

Si un espace localement affine à deux dimensions est convexe
et clos, il est normal, ou bien son espace de recouvrement simplement
connexe est équivalent soit au demi-plan affine, soit à un domaine
du plan affine limité par deux demi-droites issues d'un point,
soit à un domaine convexe du plan affine dont la frontière contient
des arcs non analytiques.

Plus généralement on peut démontrer que les deux énoncés

précédents sont encore valables pour les espaces localement
projectifs ou pour les espaces localement affines qui sont convexes

et non prolongeâmes. Remarquons cependant qu'un espace
localement hyperbolique normal est prolongeable en tant
qu'espace localement projectif lorsque le groupe T correspondant

est proprement discontinu sur la conique C.

11. — Il est intéressant de considérer également les espaces
localement projectifs complexes. L'espace projectif complexe
est simplement connexe. Dans le cas d'un nombre pair de dimensions,

l'espace projectif complexe n'admet pas de forme de

Clifford autre que lui-même. Dans le cas d'un nombre impair
de dimensions complexes, il existe une forme de Clifford
distincte de l'espace projectif complexe. Cette forme de Clifford est
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non orientable, et elle peut aussi être considérée comme une
forme de Clifford de l'espace hermitien elliptique.

On détermine encore facilement les espaces localement,
conformes normaux. On peut démontrer que ceux-ci sont aussi

équivalents aux espaces localement sphériques normaux.
Pour terminer remarquons que les espaces localement homogènes

considérés sont des cas particuliers des espaces non holo-
nomes définis d'une façon générale par M. E. Cartan. Ce sont les

espaces non holonomes correspondant à un groupe transitif
de Lie G tels que les déplacements infinitésimaux attachés aux
différents vecteurs infinitésimaux de l'espace satisfont aux
équations de structure du groupe G. L'étude des espaces localement

homogènes est ainsi le premier pas dans l'étude des

propriétés globales des espaces non holonomes.
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