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CONFÉRENCES INTERNATIONALES DE TOPOLOGIE1

suite)

SUR LA STRUCTURE DES TRANSFORMATIONS

TOPOLOGIQUES DES SURFACES EN ELLES-MÊMES2

PAR

B. de Kerékjârtô (Szeged, Hongrie).

1. — Généralités. — Le problème fondamental de la topologie
est de déterminer les conditions sous lesquelles deux configurations

sont homéomorphes; l'homéomorphie des deux configurations

sera établie par le moyen d'une transformation
topologique (c'est-à-dire biunivoque et bicontinue). Ce problème est
résolu pour les cas des lignes et des surfaces; grâce à ces résultats,
on peut approfondir les recherches concernant les transformations
des surfaces. Alors, les transformations ne seront plus
considérées comme les seuls moyens qui servent à établir l'homéomorphie

de deux surfaces, mais elles deviennent des êtres
autonomes dont la topologie ouvre un champ important de

recherches nouvelles. Il s'agit dans ces recherches —- comme
en toute question d'homéomorphie — de trouver des propriétés
topologiques des transformations.

Une partie considérable de ces problèmes — d'une nature
plutôt combinatoire — concerne la détermination des points

1 Ces conférences ont eu lieu à l'Université de Genève, du 21 au 25 octobre 1935,
sous la présidence de M. Elie Cartan, Membre de l'Institut.

2 Conférence faite le 23 octobre 1935 dans le cycle des Conférences internationales
cles Sciences mathématiques organisées par l'Université de G-enève; série consacrée à
Quelques questions de Géométrie et de Topologie.

L'Enseignement mathém., 35me année, 1936. 20
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invariants, leurs classes et leurs indices. Après les résultats
classiques de MM. Brquwer, Birkhoff et Alexander, c'est
M. J. Nielsen qui a réussi à développer une théorie
systématique de cette catégorie de problèmes par des méthodes
remarquables par leur élégance et leur profondeur [31] h

Une autre partie beaucoup moins développée concerne la
structure des transformations; nous essayons de donner dans
la suite un résumé des problèmes et des résultats concernant la
structure des transformations topologiques, et de signaler leurs
relations avec d'autres questions de mathématiques. Nous
faisons observer que les recherches profondes de MM. Birkhoff
et P. Smith [2, 7], importantes par leurs applications
dynamiques, concernent surtout des transformations analytiques.
Pour cette raison elles n'entrent pas dans le cadre de notre
conférence.

2. — Homéomorphie de deux transformations. — Soient S et S'
deux surfaces homéornorphes, et soient T et T' des transformations

topologiques de ces surfaces en elles-mêmes. Les
transformations T et T' seront dites homéornorphes s'il existe une
transformation topologique t de S en S' telle que T' est la
transformée de T par t:

T' t~ 1 TT

Toutes les transformations topologiques homéornorphes entre
elles forment un seul type topologique de transformations.

Le problème idéal est de reconnaître les conditions sous

lesquelles deux transformations sont homéornorphes. Comme
ce problème ne pourra pas être résolu dans sa généralité, on
cherchera à déterminer des propriétés caractéristiques qui sont
alors communes à toutes les transformations appartenant au
même type topologique. L'ensemble, les classes et les indices
des points invariants sont des caractéristiques ; en voici encore
quelques autres: la propriété d'une transformation d'appartenir

à un groupe continu ou discontinu de transformations,
d'admettre une racine carrée, d'être périodique de période w,

i Les numéros entre crochets renvoient à la liste bibliographique placée à la fin
du Mémoire.
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etc. ; la propriété d'une transformation que les images successives

d'un point (obtenues par l'itération indéfinie de la transformation

et de son inverse) convergent vers un seul point, ou qu'elles
admettent des points d'accumulation dont l'ensemble possède

une structure donnée, ou bien qu'elles forment un ensemble

partout dense sur la surface.
D'une façon analogue, nous définissons l'homéomorphie de

deux ensembles de transformations (T) et (T') dont l'un
comprend des transformations T de la surface S en elle-même,
l'autre des transformations T' de S' en elle-même ; les deux
ensembles seront dits homéomorphes, s'il existe une transformation

topologique t de la surface S en S' telle que les éléments
de (T') soient les transformés des éléments de (T) par t. Cette
définition s'applique, en particulier, si (T) et (T') sont des

groupes, et alors leur homéomorphie entraîne leur isomorphie
boloédrique. Si les ensembles (T) et (T') sont homéomorphes,
toute transformation T est homéomorphe à une transformation
T', et vice versa. Mais on peut construire des exemples simples
montrant que l'homéomorphie de chacune des transformations

(T) avec une transformation de (T') n'entraîne pas l'homéomorphie

des ensembles (T) et (T") parce que la transformation t
établissant l'homéomorphie entre deux éléments correspondants

T et T' n'est pas la même pour tout T.

3. — Représentations conformes. — Bien que le problème
d'homéomorphie de deux transformations ne puisse pas être
résolu généralement, on peut chercher des conditions de nature
topologique sous lesquelles une transformation est homéomorphe
à une transformation donnée de structure simple. M.Brouwer[8]
a posé le problème de caractériser topologiquement les
représentations conformes, c'est-à-dire de déterminer les conditions
sous lesquelles une transformation est homéomorphe à une
représentation conforme. Nous traiterons ce problème plus loin;
ici nous le mentionnons seulement pour expliquer et justifier nos
définitions.

Si S' est une surface analytique, et si T' est une représentation
conforme de S' en elle-même, l'homéomorphie entre T et T'
permet de considérer aussi T comme une représentation conforme.
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Nous transportons, en effet, la métrique de S', c'est-à-dire les

angles et les distances définies en S', sur la surface S, au moyen
de la transformation t qui établit Fhoméomorphie entre T et T'.
La transformation T de S en elle-même est alors une représentation

conforme par rapport à cette métrique de S. On reconnaît
facilement que la propriété d'une transformation d'être homéo-

morphe à une représentation conforme est très restrictive; par
exemple, une transformation de S en elle-même, différente de

l'identité, qui laisse invariants tous les points d'un domaine sur S

ne peut être conforme dans aucune métrique.
Ici on voit immédiatement quelles raisons nous ont obligé à

restreindre la définition de l'homéomorphie de deux transformations

au cas des transformations des surfaces en elles-mêmes.

Car si T est une transformation topologique quelconque d'une
surface S en une autre surface Sx (sans point commun avec S),

on peut la considérer comme une représentation conforme de S

sur Sx; par la transformation T elle-même, nous transportons
une métrique de S, choisie arbitrairement, sur la surface Sx et

par cela T devient une représentation conforme de S sur Sx.

Le caractère topologique des représentations conformes et

biunivoques n'a donc un sens que s'il est restreint au cas des

transformations des surfaces en elles-mêmes.

En ce qui concerne les représentations conformes et non
biunivoques, il faut aussi dire que la détermination de leurs
caractères au point de vue topologique pour le cas des transformations

entre deux surfaces distinctes est complètement résolue

par les surfaces de Riemann et leurs théorèmes d'existence.
Mais le problème de caractériser topologiquement les
transformations des surfaces en elles-mêmes qui sont homéomorphes
à des représentations conformes, est complètement en suspens.
Considérons, par exemple, la question la plus simple suivante:
une transformation (1, n) de la sphère en elle-même, sous quelles
conditions est-elle homéomorphe à une transformation rationnelle

[établie par une fonction rationnelle w R (z)] La
condition que la transformation soit localement biunivoque,
excepté en un nombre fini de points, est évidemment nécessaire;
s'il s'agit d'une transformation entre deux sphères distinctes,
elle est aussi suffisante, mais non pas pour une transformation
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d'une sphère en elle-même. Les recherches de M. Julia [13] sur
l'itération des fonctions rationnelles ont révélé beaucoup de

propriétés topologiques de ces transformations; elles sont aussi

fondamentales pour attaquer la question posée ci-dessus.

4. — Domaine de la transformation. — Pour la recherche de la
structure d'une transformation topologique T qui transforme
une surface S en elle-même, c'est un moyen utile de considérer
les domaines libres et, en particulier, les domaines libres maxima.
On entend par un domaine libre un domaine qui n'a aucun point
commun avec son image; il est appelé maximum s'il n'est pas
un vrai sous-ensemble d'aucun domaine libre. Il faut dire tout
d'abord que l'existence seule d'un domaine libre maximum ne

signifie rien, c'est un fait presque évident pour une transformation

quelconque; c'est le type ou la forme d'un tel domaine et sa

situation sur la surface qui sont souvent importants et même

caractéristiques jusqu'à un certain degré.
Si P est un point quelconque de S non invariant dans la

transformation T, il existe un voisinage de P qui n'a aucun
point commun avec son image, ce voisinage est donc un domaine
libre. En l'augmentant, on peut obtenir un domaine libre maximum.

Ce fait qu'il est devenu maximum peut être dû à deux
circonstances tout à fait différentes ; ou bien la propriété du
domaine d'être libre maximum exprime une propriété concernant
la structure de la transformation ; ou bien une constitution
singulière de la frontière du domaine empêche d'augmenter le
domaine libre. Voici un exemple qui montre la seconde possibilité

; pour la translation x' x + 1, y' y, le domaine
I limité par les lignes:

• y zt 1 — l ^ x g -f* l

] « ± ~4~| sin - Oj-yI> — 1 < y < + 1 (h et y

forme un domaine libre maximum (fig. 1); le fait qu'il est maximum

est dû à la présence des continus de condensation à la
| frontière (les segments y ±1, — 1 < < + 1 sont des

continus de condensation des lignes lx et
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Pour éviter l'inconvénient signalé par cet exemple, nous ne
considérerons dans la suite que les domaines libres maxima dont
les frontières sont formées par des courbes d'ordre fini dans
tout point et telles que les points d'ordre > 2 forment un
ensemble isolé. Nous appelons un domaine de cette sorte un
domaine de la transformation. Pour une surface close il est un
domaine limité par un nombre fini de courbes simples et fermées
dont deux quelconques n'ont au plus qu'un nombre fini de points
communs.

Pour assurer l'existence d'un domaine de la transformation, il
faut restreindre la catégorie des transformations envisagées ;

nous supposons dans la suite que S est une surface orientable à

connexion finie, et T est une transformation à points invariants
isolés. En particulier, nous considérerons les surfaces closes, et
leurs transformations à un nombre fini de points invariants.

Le domaine de la transformation est l'analogue, dans un
certain sens, du domaine fondamental correspondant à un

groupe automorphe. Il n'est pas exactement déterminé par la
transformation, on peut le modifier de maintes façons. Si P

est un point quelconque sur la frontière du domaine, son image
directe ou inverse appartient aussi à la frontière. Si P est un
point de la frontière dont l'image directe appartient à la fron-



LA STRUCTURE DES TRANSFORMATIONS 303

tière, et dont l'image inverse n'appartient pas à la frontière, si,
de plus, P est un point d'ordre 2 de la frontière, c'est-à-dire
si le voisinage de P sur la frontière est formé par un arc simple,
l'image directe de cet arc appartient aussi à la frontière du
domaine. On peut alors remplacer le premier arc par un arc
voisin intérieur au domaine, et l'autre par l'image directe de

celui-ci; par cette modification de la frontière, on a obtenu un
autre domaine de la transformation. Un point invariant de la
transformation peut appartenir à la frontière du domaine de la
transformation, mais non pas à son intérieur.

Concernant le domaine de la transformation, les données
suivantes sont caractéristiques: le nombre de ses contours, son
nombre de connexion, le nombre des points invariants appartenant

à sa frontière et le nombre des domaines complémentaires
sur la surface. Sur une surface à connexion finie, le domaine de
la transformation peut avoir un ou deux domaines complémentaires;

dans le deuxième cas, il a précisément deux contours.
Nous faisons remarquer que la même transformation peut

admettre deux domaines de la transformation de types
différents. Tel est le cas pour une transformation linéaire
hyperbolique de la sphère: z' 2z. Un domaine de la transformation
est formé par la couronne limitée par les deux circonférences
concentriques |i| 1 et |t| 2; un domaine de type différent
est limité par les spirales:

log \z\ arc £ et log | z | — arc 2 -h log 2 ;

ce dernier domaine est à connexion simple, sur son seul contour
il y a deux points invariants (fig. 2). Pour une transformation
linéaire elliptique, le seul type du domaine de la transformation
est limité par deux arcs simples joignant les deux points
invariants, l'un de ces arcs étant l'image de l'autre.

5. — Théorème de translation. — Le théorème de translation
dû à M. Brouwer [9] énonce la propriété suivante d'importance
principale: Pour une transformation topologique du plan en
lui-même conservant le sens et n'admettant pas de point
invariant, il existe un domaine de la transformation limité par deux



304 B. DE KERÉKJARTO

lignes simples et ouvertes. On entend par une ligne simple et
ouverte un ensemble fermé qui est une image topologique de la

ligne droite. Si on projette le plan stéréographiquement sur une

Fig. 2 a,

Fig. 2 b.

sphère, à la transformation donnée du plan correspond une
transformation de la sphère en elle-même à un seul point inva-
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riant; aux lignes simples et ouvertes limitant le domaine de la

transformation correspondent des courbes simples et fermées

passant par le point invariant qui n'ont pas d'autres points

communs; l'une de ces courbes est l'image de l'autre dans la

transformation donnée.

Remarque. — Comme cette conférence ne nous permet pas de

nous occuper des démonstrations, je rappelle que dans deux

notes aux Comptes rendus j'ai esquissé, et dans un mémoire

aux Acta Scient. Math, de Szeged j'ai développé une méthode

systématique qui nous met en état de démontrer, par une
construction simple, à la fois le théorème de translation et le dernier
théorème de Poincaré (voir note 6) [15, 16, 17]. Si on se borne
à démontrer le théorème de translation, on peut éviter la
modification de ma construction que j'ai appelée la déviation de la

ligne construite. La construction nous fournit alors une ligne
brisée composée de segments perpendiculaires dont les sommets
forment une suite divergente. Si elle n'est pas un ensemble

fermé, ses points d'accumulation n'appartenant pas à la ligne
forment une ou deux lignes droites invariantes dans la
transformation. Il ne peut exister deux droites invariantes de directions

distinctes, car leur point commun serait un point invariant
dans la transformation. En recommençant notre construction
à partir d'un segment qui n'est ni parallèle, ni perpendiculaire
à la direction des droites invariantes, notre construction fournit
automatiquement une ligne simple et ouverte qui n'a pas de

point commun avec son image; cette ligne et son image limitent
un domaine de la transformation.

6. — Le dernier théorème géométrique de Poincaré. — Un autre
résultat classique concernant la structure des transformations
est le théorème suivant énoncé par Poincaré [32] et démontré
pour la première fois par M. Birkhoff [1, 3]: Soit S une
couronne limitée par deux circonférences concentriques C± et C2; soit
T une transformation topologique de S en elle-même qui transforme

chacune des circonférences Cx et C2 en elle-même et
déplace leurs points en des sens opposés. Si la transformation T
n'admet pas de point invariant, il y a une courbe simple et fermée
qui se trouve à l'intérieur de son image directe ou inverse.
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Nous indiquons la relation entre ce théorème et le théorème
de translation. Soient (r, 9) des coordonnées polaires dans la
couronne 1 <. r 51 2, 0 < 9 < 2tc, et soit la transformation T
exprimée par les formules r' R(r, 9), 9' 0(r, 9);
déterminons la valeur de 6 (r, 9) pour un point de Cx de telle façon
que 9 < 6 (1, 9) < 9 4- 27T ; pour les points de C2, on aura alors

6(2,9) < 9; c'est l'expression de la condition que T déplace
les points de Cx et de C2 en des sens opposés. Nous
transformons la couronne par les formules y r, ^ 9 + 2kiz
(k 0, ± 1, ± 2, sur la bande 1 < y < 2, — 00 < # < + 00

dans le plan cartésien (x, y), et nous étendons la transformation
de cette bande en elle-même correspondant à T sur le plan
entier pour obtenir une transformation sans point invariant du
plan en lui-même. Le théorème de translation assure l'existence
d'un domaine de la transformation dans le plan; pour démontrer
le théorème de Poingare, il faut trouver un domaine de la
transformation dans la bande qui est périodique en x de
période 2tz. Ma méthode mentionnée ci-dessus permet de construire
un domaine de cette sorte [16,17].

D'une façon similaire, on peut ramener toute transformation T,
d'une surface S en elle-même, conservant le sens à une transformation

du plan sans point invariant. Sur la surface S privée
des points invariants de T, nous construisons la surface de
recouvrement à connexion simple ; la transformation T de cette
surface en elle-même engendrée par la transformation T révèle

une certaine partie des propriétés de la transformation T elle-
même ; ensuite T peut être considérée comme une transformation
du plan en lui-même conservant le sens et n'admettant pas de

point invariant. Ces circonstances montrent la nécessité d'approfondir

l'étude des transformations du plan.

7. — Sur les translations planes. — Soit T une transformation

topologique du plan en lui-même conservant le sens et

n'ayant pas de point invariant. En vertu du théorème de

M. Brouwer, il existe un domaine de la transformation, F,
limité par deux lignes simples et ouvertes; l'ensemble
complémentaire de F sur le plan consiste en deux domaines G et
D. Nous désignons par F^ l'image de F obtenue par la trans-
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formation Tn (n 0, ± 1, ± 2, ...); les domaines Fx, F2,

appartiennent à D, et les domaines F_1? F_2, à G (voir fig. 3).

La réunion des domaines Fn est un domaine A dans lequel la

transformation T est homéomorphe à une translation métrique

Fig. 3.

du plan. Cependant le domaine A n'est pas nécessairement

identique au plan entier; tel est le cas pour la translation:
x' x + 1, y' y, si on prend pour F le domaine limité
par les lignes

et y x — 1
(x > 0)

les images successives de F ne remplissent que le demi-plan
y > 0. Pourtant, pour cette transformation, on peut aussi
construire un tel domaine F dont les images successives
remplissent le plan entier. Mais il y a des transformations pour
lesquelles c'est impossible [10]; tel est le cas dans l'exemple
suivant (voir figure 4):

x' tas x + 1

x' x A- 1

x' — x — 1

2 i/, y + y
y' y

yf y

pour 0^2/^1,
pour y < 0

pour y > 1

Dans cette transformation, les lignes y 0 et y — 1 sont
singulières dans un certain sens que nous allons préciser tout à
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l'heure; un domaine de la transformation ne peut pas
comprendre à la fois des points appartenant aux demi-plans y < 0

et y > 1. Cette transformation ne peut donc pas être homéo-
morphe à une translation métrique.

Nous projetons stéréographiquement le plan sur une sphère
et nous entendons par la distance sphérique de deux points P

et Q du plan la distance sphérique des points qui leur
correspondent sur la sphère. Nous entendons par l'expression que les

puissances de la transformation T sont uniformément continues

au point P la propriété suivante: pour toute quantité positive s,

il existe un S > 0 tel que, Q étant un point quelconque à une
distance de P plus petite que S, les images de ces points, Tn(P)
et Tn(Q), obtenues par la transformation Tn, sont à une distance
sphérique l'une de l'autre inférieure à s, pour n 0, d= 1, ± 2,....
Les points P pour lesquels cette condition se trouve vérifiée, sont
appelés réguliers, les autres singuliers. Dans l'exemple de la
figure 4, les points appartenant aux lignes y 0 et y 1 sont
singuliers, les autres sont réguliers.

On reconnaît immédiatement que pour une translation
métrique, tous les points du plan sont réguliers. J'ai démontré

que cette propriété est caractéristique pour les transformations
homéomorphes à une translation métrique; ce résultat s'exprime
dans le théorème suivant:

La condition nécessaire et suffisante sous laquelle une
transformation topologique du plan en lui-même conservant le sens

et n'admettant pas de point invariant est homéomorphe à une

y.<

J'°
Fig. 4
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translation métrique est qu'elle soit régulière en tout point du

plan [14, 22].

8. — Examen des caractères topologiques des représentations

conformes. — La définition de la régularité d'une transformation
s'applique dans sa forme donnée ci-dessus à une surface close

quelconque; on reconnaît aussi facilement qu'elle se conserve

par une transformation topologique quelconque, et en particulier

qu'elle est indépendante de la métrique spéciale de la
surface. A l'aide de cette notion, on parvient à caractériser de

la manière suivante les représentations conformes et biuni-
voques, manière qui répond au problème posé parM.BROuwER
(n° 3) :

La condition nécessaire et suffisante sous laquelle une
transformation topologique de la surface d'une sphère en elle-même
est homéomorphe à une transformation linéaire (ou homogra-
phique) est que la transformation soit régulière, excepté en un
nombre fini de points, au plus. Elle est homéomorphe à une
transformation elliptique parabolique ou hyperbolique suivant
que le nombre des points singuliers est 0, 1 ou 2 [20, 23].

La condition nécessaire et suffisante pour qu'une transformation

topologique d'une surface close et orientable de genre p> 1

en elle-même, conservant le sens, soit homéomorphe à une
représentation conforme, est que la transformation soit régulière
(en tout point de la surface). Pour p> 1, les transformations
régulières sont périodiques [25, 26, 27].

9. — Le groupe homographique. — Les remarques faites au
n° 2 montrent la nature différente des problèmes qui consistent
à caractériser les transformations linéaires et le groupe des
transformations linéaires à une variable complexe (groupe
homographique). Un critère du groupe homographique donné
par M. Süss [33] est le suivant:

Soit G un groupe de transformations topologiques de la
surface d'une sphère en elle-même conservant le sens, et soit (k)
un système de courbes simples et fermées sur la surface. Pour
deux triples de points (A, B, C) et (A', B', G'), il existe une
transformation de G et une seule qui transforme (A, B, C) en
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(A7, B', C). Par trois points quelconques passe une courbe du
système (k) et une seule. Soient k et k' deux courbes du
système (k) ayant un point B en commun, et soit A un point de k'
distinct de B ; si une transformation de G transforme k7 en lui-
même et laisse les points A et B invariants, elle transforme
aussi k en elle-même. Sous ces conditions, le groupe G est

homéomorphe au groupe homographique, et le système (k) est

homéomorphe au système des circonférences sur la sphère.
Cette solution du problème a l'inconvénient qu'elle introduit

a priori les circonférences au lieu de les définir par le groupe.
Voici un autre système de conditions qui évite cet inconvénient.

Soit G un groupe de transformations topologiques de la
surface d'une sphère en elle-même conservant le sens, et dont
chacune admet au plus un nombre fini de points singuliers. Pour
deux triples de points (A, B, C) et (A7, B7, C7), il existe une
transformation de G qui transforme (A, B, C) en (A7, B7, C7) et

qui varie continuement avec le triple (A7, B7, C7). Les transformations

de G qui laissent un point U invariant et qui sont
régulières excepté au point U, forment un sous-groupe de G.

Je vais indiquer comment on peut définir les circonférences

par le groupe G. Soient A, B et P trois points fixes, et soit P7 un
point variable. Il y a une transformation dans G et une seule qui
laisse invariants les points A et B et qui transforme P en P7;
cette transformation varie continûment avec P7. Les transformations

correspondant aux diverses positions de P7 forment un
groupe continu simplement transitif sur la surface privée- des

points A et B. Ce sous-groupe de G est commutatif et il est

homéomorphe au groupe des translations d'une surface
cylindrique en elle-même [19]. Il contient donc un sous-groupe clos

d'ordre 1; les trajectoires de ce dernier sous-groupe sont les

circonférences de centres A et B. Par l'étude de ces circonférences
définies par le groupe, on parvient à caractériser le groupe
homographique.

Les groupes des géométries euclidienne et non-euclidiennes

planes peuvent être caractérisés comme des sous-groupes du

groupe homographique; on obtient de cette façon une autre
solution du problème résolu dans l'œuvre célèbre de M. Hilbert
[12]. Je tiens à faire remarquer ici qu'un axiome de M. Hilbert
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appelé « axiome de voisinage » (Axiom der Nachbarschaft) qu'il
a introduit d'abord et qu'il a déduit ensuite de ses autres

axiomes (surtout de l'axiome de « système fermé ») est en relation

avec notre notion de régularité, et de même la notion d'ensemble

de fonctions « également continues » due à Ascoli. La différence
essentielle consiste en ce que nous avons déterminé une
propriété caractéristique d'une seule transformation en appliquant
la condition d'égale continuité à l'ensemble de ses puissances.

10. — La distribution des points singuliers d'une transformation.

— Nous considérons de nouveau les transformations du

plan en lui-même sans point invariant; la recherche de la
distribution de leurs points singuliers est importante en vue de ses

applications.
Nous mentionnons la question suivante qui a été posée en

relation avec des problèmes dynamiques:
Une transformation topologique du plan en lui-même conservant

le sens et n'admettant pas de point invariant peut-elle être

immergée dans un groupe continu d'ordre 1 du plan
La réponse négative découle des remarques suivantes. Si une

transformation sans point invariant appartient à un groupe
continu d'ordre 1, ses points singuliers forment des lignes simples
et ouvertes sans point commun deux à deux. D'autre part, j'ai
construit une transformation dont les points singuliers forment
des lignes avec des points multiples; elle ne peut donc pas
appartenir à un groupe continu d'ordre 1, et de plus, elle n'admet
pas de racine carrée [24]. Il faut alors chercher les conditions
concernant la distribution des points singuliers sous lesquelles
une transformation peut être plongée dans un groupe continu
d'ordre 1.

Voici quelques propriétés générales des points singuliers. Si T
est une transformation topologique du plan sans point invariant
et conservant le sens, les composants de l'ensemble de ses points
singuliers sont des continus non-bornés; par conséquent tout
domaine maximum consistant de points réguliers est à connexion
simple, et s'il est invariant dans T, dans son intérieur la
transformation T est homéomorphe à une translation métrique.

En reprenant les notations du n° 7, désignons par A le domaine
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qui est la réunion des images successives d'un domaine de la
transformation F. Nous disons que À est maximum s'il n'est
pas un vrai sous-ensemble d'un autre domaine A' de la même
sorte. Si A est maximum, tout point de sa frontière est un point
singulier de T, mais la réciproque n'est pas vraie.

Nous appelons deux points singuliers P et Q associés s'il existe
une suite de points P1? P2, convergeant vers P, et une suite

divergente d'entiers nlt n2, tels que la suite Tni(Px), Tn2(P2),...
tende vers Q. Les points associés à un point singulier quelconque
intérieur à A se trouvent sur la frontière de A; ils forment un
ensemble fermé dont les composants sont des continus non-
bornés.

A l'aide de la notion des points singuliers associés, on peut
décrire les propriétés de l'ensemble des points singuliers d'une
transformation donnée.

11. — Groupes continus. — On peut étendre la notion de

régularité aux surfaces et variétés non-compactes de la façon
suivante. Nous ajoutons à la variété S ses éléments de frontière
et nous considérons une famille de voisinages { Y } des points
et des éléments de frontière de S. Une transformation topologique
T de S en lui-même est dite régulière au point P de S, si pour une
famille arbitraire de voisinages {V}, il existe un voisinage Up
de P tel que, pour un point quelconque Q pris dans Up et pour
tout entier ra, l'un au moins des voisinages V contienne à la fois
les points Tn(P) et, Tn(Q). Pour les espaces métriques et

compacts, cette définition est équivalente à celle donnée au
n° 7.

J'ai démontré [21] que toute transformation appartenant à

un groupe continu simplement transitif, d'ordre fini, est régulière
en tout point de l'espace du groupe, et, de plus, la régularité est

uniformément vérifiée pour les transformations du groupe. Cela

veut dire que, dans la définition ci-dessus, on peut choisir le

voisinage Up du point P de telle façon que, pour toute
transformation T du groupe, pour tout point Q de Up et pour tout
entier ai, il y a un, au moins, des voisinages donnés Y contenant
à la fois Tn(P) et Tn(Q). La signification théorique de notre
résultat consiste en ce que les images d'un « petit » voisinage
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obtenues par les transformations du groupe peuvent être regardées

comme une famille de voisinages uniformément « petits »

dans l'espace du groupe. Sa portée pratique consiste en ce que

régularité ou singularité d'une transformation en un point
exprime une propriété de structure, et alors l'existence d'un

point singulier exclut que la transformation appartienne à un

groupe continu simplement transitif. Ensuite, pour qu'une
variété puisse représenter l'espace d'un groupe, il faut qu'elle
admette des transformations régulières arbitrairement petites
sans point invariant.

Il me paraît que le résultat ci-dessus est en relation avec la

proposition suivante qui pour les groupes de transformations
pseudo-conformes a été démontrée par M. H. Gartan [11],
mais qui est encore en suspens pour le cas général: Dans un

groupe continu d'ordre fini, il existe un voisinage de l'identité
qui ne contient aucun sous-groupe.

12. — Applications aux systèmes dynamiques. — En nous
servant des méthodes de Poincaré concernant les relations
entre les systèmes dynamiques et des transformations des

surfaces, nos résultats précédents admettent des applications
aux systèmes dynamiques à deux degrés de liberté. Notre notion
de régularité correspond, en effet, à la stabilité permanente du

système dynamique [4].
Considérons un système dynamique conservatif à deux degrés

de liberté dont les états forment une variété close. Les solutions
correspondant à une valeur de l'énergie peuvent être regardées
comme des trajectoires dont l'ensemble remplit une variété
close à trois dimensions. Une solution (périodique ou non) sera
dite posséder la stabilité permanente si la condition suivante se

trouve vérifiée : en changeant très peu les valeurs initiales de la
solution donnée (correspondant à la valeur t 0 du temps),
on obtient des solutions qui restent infiniment voisines de la
solution primitive pour toute valeur de t (t > 0 et t < 0).

Construisons, d'après Poincaré, une surface de section S et
considérons la transformation T de S en elle-même engendrée
par des intersections consécutives avec les trajectoires. Cette
transformation topologique de la surface S en elle-même est

L'Enseignement mathém., 35me année, 1936. 21
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régulière ou singulière au point P de S suivant que la trajectoire
passant par P vérifie ou non la condition de stabilité permanente.

En appliquant les résultats du n° 8, on obtient, à partir
de là, le théorème suivant:

Si un système conservatif à deux degrés de liberté dont toutes
les solutions vérifient la condition de stabilité permanente admet
une surface de section de genre p > 1, toutes les solutions sont
périodiques.

Nous signalons aussi une application de nos recherches au
problème ergodique. Les recherches profondes de MM. von
Neumann [30] et Birkhoff [5,6] ont conduit à ce résultat
que l'ergodicité d'un système est une conséquence de l'hypothèse
suivante appelée « transivité métrique»: Tout ensemble invariant

dans la transformation, ou son ensemble complémentaire,
est de mesure nulle. M. Morse [29], a démontré qu'une hypothèse

concernant 1'« instabilité uniforme » entraîne la transivité
métrique et, par conséquent, l'ergodicité du système. D'autre
part, j'ai trouvé que pour les systèmes dynamiques à deux
degrés de liberté, l'existence d'une solution, qui possède la
stabilité permanente, exclut l'ergodicité du système, pourvu que
le système admette une surface de section de genre p > 1. Cela
revient à dire qu'une transformation topologique d'une surface
close de genre p > 1 en elle-même admettant un point régulier,
au moins, ne peut pas satisfaire à la condition de transivité
métrique [28].

Dans cet ordre d'idées, j'ai recherché les transformations
asymptotiquement périodiques ; je nomme ainsi des transformations

qui ont des puissances différant de l'identité aussi peu que
l'on veut; j'ai trouvé qu'elles sont périodiques dans le sens strict
pour le cas des surfaces de genre p > 1. Il serait intéressant de

connaître la structure des transformations asymptotiquement
périodiques de la surface d'une sphère en elle-même; sont-elles

homéomorphes à des rotations par un angle incommensurable
à 71, comme les transformations périodiques sont homéomorphes
aux rotations d'angles commensurables à tc Un problème
important, concernant les transformations topologiques d'un
cercle en lui-même, est le suivant: est-il possible que les images
successives d'un point forment un ensemble partout dense dans
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le cercle Pour les transformations dont les points invariants se

trouvent à la frontière, c'est impossible ; cet événement est aussi

exclu si la transformation admet un point régulier dans l'intérieur

du cercle; pour le cas général cette question n'est pas
encore résolue.

Si T est une transformation topologique générale d'une surface

en elle-même, il est possible que tous les points de S soient des

points singuliers de T. La classification des points de S en des

points réguliers et singuliers devient illusoire dans ce cas, et

il faut diviser la surface en des ensembles de « transitivité » dans

lesquels la transformation est régulière; il faut donc remplacer
la notion de régularité, qui était féconde pour caractériser
certaines classes de transformations et de groupes, par une
notion de régularité régionale. Mais il me semble que, pour
certaines classes de transformations, par exemple pour les

transformations analytiques conservant l'aire, on peut établir,
sous des conditions de nature générale, l'existence d'un point
régulier, au moins. Peut-être de cette façon on réussira à démontrer

l'existence d'une solution périodique vérifiant la condition
de stabilité permanente dans le problème restreint des trois
corps.
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