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CONFERENCES INTERNATIONALES DE TOPOLOGIE !

(suite)

SUR LA STRUCTURE DES TRANSFORMATIONS
TOPOLOGIQUES DES SURFACES EN ELLES-MEMES?

PAR

B. ne Keréxsirtd (Szeged, Hongrie).

1. — Généralités. — Le probléme fondamental de la topologie
est de déterminer les conditions sous lesquelles deux configura-
tions sont homéomorphes; 'homéomorphie des deux configu-
rations sera établie par le moyen d’une transformation topo-
logique (c’est-a-dire biunivoque et bicontinue). Ce probleme est
résolu pour les cas des lignes et des surfaces; grace a ces résultats,
on peut approfondir lesrecherches concernant les transformations
des surfaces. Alors, les transformations ne seront plus consi-
dérées comme les seuls moyens qui servent a établir ’homéo-
morphie de deux surfaces, mais elles deviennent des étres
autonomes dont la topologie ouvre un champ important de
recherches nouvelles. Il s’agit dans ces recherches — comme
en toute question d’homéomorphie — de trouver des propriétés
topologiques des transformations.

Une partie considérable de ces problémes — d’une nature
plutét combinatoire — concerne la détermination des points

1 Ces conférences ont eu lieu & ’Université de Genéve, du 21 au 25 octobre 1935
sous la présidence de M. Elie CArRTAN, Membre de 1’Institut.

2 Conference faite le 23 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par I'Université de Genéve; série consacrée a
Quelques questions de Géométrie et de Topologie.
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mvariants, leurs classes et leurs indices. Aprés les résultats
classiques de MM. BrRouwER, BirRkHOFF et ALEXANDER, c’est
M. J. NIELSEN qui a réussi a développer une théorie systé-
matique de cette catégorie de problémes par des méthodes
remarquables par leur élégance et leur profondeur [31] .

Une autre partie beaucoup moins développée concerne la
structure des transformations; nous essayons de donner dans
la suite un résumé des problémes et des résultats concernant la
structure des transformations topologiques, et de signaler leurs
relations avec d’autres questions de mathématiques. Nous

- faisons observer que les recherches profondes de MM. BirkHOFF

et P. Smitn [2, 7], importantes par leurs applications dyna-
miques, concernent surtout des transformations analytiques.
Pour cette raison elles n’entrent pas dans le cadre de notre
conférence.

2. — Homéomorphie de deux transformations. — Soient S et S’
deux surfaces homéomorphes, et soient T et T’ des transforma-
tions topologiques de ces surfaces en elles-mémes. Les trans-
formations T et T’ seront dites homéomorphes s’il existe une
transformation topologique v de S en S’ telle que T’ est la trans-
formée de T par =:

T =« 'Tr .

Toutes les transformations topologiques homéomorphes entre
elles forment un seul type topologique de transformations.

Le probleme idéal est de reconnaitre les conditions sous
lesquelles deux transformations sont homéomorphes. Comme
ce probléme ne pourra pas étre résolu dans sa généralité, on
cherchera a déterminer des propriétés caractéristiques qui sont
alors communes a toutes les transformations appartenant au
méme type topologique. L’ensemble, les classes et les indices
des points invariants sont des caractéristiques; en voicl encore
quelques autres: la propriété d’une transformation d’appar-
tenir a un groupe continu ou discontinu de transformations,
d’admettre une racine carrée, d’étre périodique de période n,

1 Les numéros entre crochets renvoient 2 la liste bhibliographique placée A la fin
du Mémoire.
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etc.; la propriété d’une transformation que les images successives
d’un point (obtenues par l'itération indéfinie de la transforma-
tion et de son inverse) convergent vers un seul point, ou qu’elles
admettent des points d’accumulation dont I’ensemble posséde
une structure donnée, ou bien qu’elles forment un ensemble
partout dense sur la surface.

D’une facon analogue, nous définissons 1’homéomorphie de
deux ensembles de transformations (T) et (T’) dont I'un com-
prend des transformations T de la surface S en elle-méme,
Pautre des transformations T’ de S’ en elle-méme; les deux
ensembles seront dits homéomorphes, s’il existe une transforma-
tion topologique = de la surface S en S’ telle que les éléments
de (T') soient les transformés des éléments de (T) par <. Cette
définition s’applique, en particulier, si (T) et (T') sont des
groupes, et alors leur homéomorphie entraine leur isomorphie
holoédrique. Si les ensembles (T) et (T’) sont homéomorphes,
toute transformation T est homéomorphe a une transformation
T’, et vice versa. Mais on peut construire des exemples simples
montrant que P’homéomorphie de chacune des transforma-
tions (T) avec une transformation de (T’) n’entraine pas ’homéo-
morphie des ensembles (T) et (T') parce que la transformation =
établissant I’homéomorphie entre deux éléments correspon-
dants T et T' n’est pas la méme pour tout T.

3. — Représentations conformes. — Bien que le probléme
d’homéomorphie de deux transformations ne puisse pas étre
résolu généralement, on peut chercher des conditions de nature
topologique sous lesquelles une transformation est homéomorphe
& une transformation donnée de structure simple. M. BROUWER [8]
a posé le probléme de caractériser topologiquement les repré-
sentations conformes, c’est-a-dire de déterminer les conditions
sous lesquelles une transformation est homéomorphe & une
représentation conforme. Nous traiterons ce probléme plus loin;
ici nous le mentionnons seulement pour expliquer et justifier nos
définitions.

Si S’ est une surface analytique, et si T’ est une représentation
conforme de S en elle-méme, ’homéomorphie entre T et T
permet de considérer aussi T comme une représentation conforme.
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Nous transportons, en effet, la métrique de S’, c’est-a-dire les
angles et les distances définies en S’, sur la surface S, au moyen
de la transformation © qui établit I’homéomorphie entre T et T".
La transformation T de S en elle-méme est alors une représen-
tation conforme par rapport a cette métrique de S. On reconnait
facilement que la propriété d’une transformation d’étre homéo-
morphe & une représentation conforme est tres restrictive; par
exemple, une transformation de S en elle-méme, différente de
I'identité, qui laisse invariants tous les points d’un domaine sur S
ne peut étre conforme dans aucune métrique.

Ici on voit immédiatement quelles raisons nous ont obligé a
restreindre la définition de 'homéomorphie de deux transforma-
tions au cas des transformations des surfaces en elles-mémes.
Car si T est une transformation topologique quelconque d’une
surface S en une autre surface S; (sans point commun avec S),
on peut la considérer comme une représentation conforme de S
sur S;; par la transformation T elle-méme, nous transportons
une métrique de S, choisie arbitrairement, sur la surface S; et
par cela T devient une représentation conforme de S sur S,.
Le caractére topologique des représentations conformes et
biunivoques n’a donc un sens que s’il est restreint au cas des
transformations des surfaces en elles-mémes.

En ce qui concerne les représentations conformes et non
biunivoques, il faut aussi dire que la détermination de leurs
caractéres au point de vue topologique pour le cas des transfor- -
mations entre deux surfaces distinctes est complétement résolue
par les surfaces de Riemann et leurs théoremes d’existence.
Mais le probleme de caractériser topologiquement les trans-
formations des surfaces en elles-mémes qui sont homéomorphes
a des représentations conformes, est complétement en suspens.
Considérons, par exemple, la question la plus simple suivante:
une transformation (1, n) de la sphére en elle-méme, sous quelles
conditions est-elle homéomorphe & une transformation ration-
nelle [établie par une fonction rationnelle w = R (z)] ? La
condition que la transformation soit localement biunivoque,
excepté en un nombre fini de points, est évidemment nécessaire;
s’1l §’agit d’'une transformation entre deux spheres distinctes,
elle est aussi suffisante, mais non pas pour une transformation
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d’une sphére en elle-méme. Les recherches de M. Juria [13] sur
I’itération des fonctions rationnelles ont révélé beaucoup de pro-
priétés topologiques de ces transformations; elles sont aussi
fondamentales pour attaquer la question posée ci-dessus.

4. — Domaine de la transformation. — Pour la recherche de la
structure d’une transformation topologique T qui transforme
une surface S en elle-méme, c’est un moyen utile de considérer
les domaines libres et, en particulier, les domaines libres maxima.
On entend par un domaine libre un domaine qui n’a aucun point
commun avec son image; il est appelé maximum s’1l n’est pas
un vrai sous-ensemble d’aucun domaine libre. Il faut dire tout
d’abord que P'existence seule d’un domaine libre maximum ne
signifie rien, ¢’est un fait presque évident pour une transforma-
tion quelconque; c¢’est le type ou la forme d’un tel domaine et sa
situation sur la surface qui sont souvent importants et méme
caractéristiques jusqu’a un certain degré.

Si P est un point quelconque de S non invariant dans la
transformation T, il existe un voisinage de P qui n’a aucun
point commun avec son image, ce voisinage est donc un domaine
libre. En I'augmentant, on peut obtenir un domaine libre maxi-
mum. Ce fait qu’il est devenu maximum peut étre dii & deux
circonstances tout a fait différentes; ou bien la propriété du
domaine d’étre libre maximum exprime une propriété concernant
la structure de la transformation; ou bien une constitution
singuliére de la frontiere du domaine empéche d’augmenter le
domaine libre. Voici un exemple qui montre la seconde possi-
bilité; pour la tranmslation 2’ = z - 1, ¥’ = y, le domaine
limité par les lignes:

y=+1, —1<z<+1

1 .
x::}:3+%51

1
P, M I \
n1_]yl, l<y< + 1 (I, et 1)
forme un domaine libre maximum (fig. 1); le fait qu’il est maxi-
mum est di & la présence des continus de condensation a la
frontiére (les segments y = + 1, — 1 < z < 4 1 sont des
continus de condensation des lignes [, et I,).
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Pour éviter 'inconvénient signalé par cet exemple, nous ne
considérerons dans la suite que les domaines libres maxima dont
les frontiéres sont formées par des courbes d’ordre fini dans
tout point et telles que les points d’ordre > 2 forment un
ensemble 1solé. Nous appelons un domaine de cette sorte un
domaine de la transformation. Pour une surface close il est un
domaine limité par un nombre fini de courbes simples et fermées
dont deux quelconques n’ont au plus qu’un nombre fini de points
communs.

Pour assurer I'existence d’un domaine de la transformation, il
faut restreindre la catégorie des transformations envisagées ;

].d

Fig. 1.

nous supposons dans la suite que S est une surface orientable &
connexion finie, et T est une transformation a points invariants
isolés. En particulier, nous considérerons les surfaces closes, et
leurs transformations & un nombre fini de points invariants.

Le domaine de la transformation est 1’analogue, dans un
certain sens, du domaine fondamental correspondant a un
groupe automorphe. Il n’est pas exactement déterminé par la
transformation, on peut le modifier de maintes fagons. Si P
est un point quelconque sur la frontiéere du domaine, son image
directe ou inverse appartient aussi a la frontiére. S1 P est un
point de la frontiére dont 'image directe appartient & la fron-
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tiére, et dont 'image inverse n’appartient pas a la frontiére, si,
de plus, P est un point d’ordre 2 de la frontiere, c’est-a-dire-
si le voisinage de P sur la frontiére est formé par un arc simple,
I'image directe de cet arc appartient aussi & la frontiére du
domaine. On peut alors remplacer le premier arc par un arc
voisin intérieur au domaine, et 'autre par I'image directe de
celui-ci; par cette modification de la frontiére, on a obtenu un
autre domaine de la transformation. Un point invariant de la
transformation peut appartenir a la frontiére du domaine de la
transformation, mais non pas a son intérieur.

Concernant le domaine de la transformation, les données
sulivantes sont caractéristiques: le nombre de ses contours, son
nombre de connexion, le nombre des points invariants appar-
tenant a sa frontiere et le nombre des domaines complémentaires
sur la surface. Sur une surface & connexion finie, le domaine de
la transformation peut avoir un ou deux domaines complémen-
taires; dans le deuxiéme cas, il a précisément deux contours.

Nous faisons remarquer que la méme transformation peut
admettre deux domaines de la transformation de types diffé-
rents. Tel est le cas pour une transformation linéaire hyper-
bolique de la sphére: z” = 2z. Un domaine de la transformation
est formé par la couronne limitée par les deux circonférences
concentriques |z| = 1 et |z| = 2; un domaine de type différent
est limité par les spirales:

log |z] = arc z et log |z] = arc z 4 log 2 ;

ce dernier domaine est a connexion simple, sur son seul contour
il y a deux points invariants (fig. 2). Pour une transformation
linéaire elliptique, le seul type du domaine de la transformation
est limité par deux arcs simples joignant les deux points inva-
riants, 'un de ces arcs étant 'image de I'autre.

5. — Théoréme de translation. — Le théoréme de translation
di & M. BRouwER [9] énonce la propriété suivante d’importance
principale: Pour une transformation topologique du plan en
lui-méme conservant le sens et n’admettant pas de point inva-
riant, il existe un domaine de la transformation limité par deux
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lignes simples et ouvertes. On entend par une ligne simple et
ouverte un ensemble fermé qui est une image topologique de la
ligne droite. Si on projette le plan stéréographiquement sur une

Fig. 2 a.

Fig. 2 b.

sphére, a la transformation donnée du plan correspond une
transformation de la sphére en elle-méme a un seul point inva-
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riant; aux lignes simples et ouvertes limitant le domaine de la
transformation correspondent des courbes simples et fermeées
passant par le point invariant qui n’ont pas d’autres pomts
communs; 'une de ces courbes est IYimage de l'autre dans la
transformation donnée.

Remarque. — Comme cette conférence ne nous permet pas de
nous occuper des démonstrations, je rappelle que dans deux
notes aux Comptes rendus j’ai esquissé, et dans un mémoire
aux Acta Scient. Math. de Szeged j’ai développé une méthode
systématique qui nous met en état de démontrer, par une cons-
truction simple, & la fois le théoréme de translation et le dernier
théoréme de Poincar¥ (voir note 6) [15, 168, 17]. Si on se borne
a démontrer le théoréme de translation, on peut éviter la modi-
fication de ma construction que j’ai appelée la déviation de la
ligne construite. La construction nous fournit alors une ligne
brisée composée de segments perpendiculaires dont les sommets
forment une suite divergente. Si elle n’est pas un ensemble
fermé, ses points d’accumulation n’appartenant pas a la ligne
forment une ou deux lignes droites invariantes dans la trans-
formation. Il ne peut exister deux droites invariantes de direc-
tions distinctes, car leur point commun serait un point invariant
dans la transformation. En recommencant notre construction
a partir d’un segment qui n’est ni paralléle, ni perpendiculaire
a la direction des droites invariantes, notre construction fournit
automatiquement une ligne simple et ouverte qui n’a pas de
point commun avec son 1mage; cette ligne et son image limitent
un domaine de la transformation.

6. — Le derntier théoréme géométrique de Poincaré.— Un autre
résultat classique concernant la structure des transformations
est le théoréme suivant énoncé par Poincare [32] et démontré
pour la premiere fois par M. Birkuorr [1, 3]: Soit S une cou-
ronne limitée par deux circonférences concentriques G, et Cy; soit
T une transformation topologique de S en elle-méme qui trans-
forme chacune des circonférences C, et C, en elle-méme et
déplace leurs points en des sens opposés. Si la transformation T
n’admet pas de point invariant, il y a une courbe simple et fermée
qui se trouve & l'intérieur de son image directe ou inverse.




e

e o S 8 i o

306 B. DE KEREKJARTO

Nous indiquons la relation entre ce théoréme et le théoréme
de translation. Soient (r, ¢) des coordonnées polaires dans la
couronne 1 =r<32 0= ¢ < 2=, et soit la transformation T
exprimée par les formules r' = R(r, ), ¢ = 0(r, ¢); déter-
minons la valeur de 6(r, ¢) pour un point de C,; de telle facon
que ¢ < 0 (1, 9) <o + 27; pour les points de C,, on aura alors
(2, ) < ¢; c’est I'expression de la condition que T déplace
les points de C; et de C, en des sens opposés. Nous trans-
formons la couronne par les formules y = r, x = ¢ + 2k=
(k=0,+£1, £2,..)surlabande 1 Sy =<2, — o0 <2< +
dans le plan cartésien (z, y), et nous étendons la transformation
de cette bande en elle-méme correspondant & T sur le plan
entier pour obtenir une transformation sans point invariant du
plan en lui-méme. Le théoréme de translation assure ’existence
d’un domaine de la transformation dans le plan; pour démontrer
le théoréme de Poincarg, il faut trouver un domaine de la
transformation dans la bande qui est périodique en z de pé-
riode 27. Ma méthode mentionnée ci-dessus permet de construire
un domaine de cette sorte [16, 17].

D’une fagon similaire, on peut ramener toute transformation T,
d’une surface S en elle-méme, conservant le sens a une transfor-
mation du plan sans point invariant. Sur la surface S privée
des points invariants de T, nous construisons la surface de recou-
vrement a connexion simple; la transformation T de cette
surface en elle-méme engendrée par la transformation T révele
une certaine partie des propriétés de la transformation T elle-
méme; ensuite T peut étre considérée comme une transformation
du plan en lui-méme conservant le sens et n’admettant pas de
point invariant. Ces circonstances montrent la nécessité d’appro-
fondir I’étude des transformations du plan.

7. — Sur les translations planes. — Soit T une transforma-
tion topologique du plan en lui-méme conservant le sens et
n’ayant pas de point invariant. En vertu du théoreme de
M. BrRouweR, il existe un domaine de la transformation, F,
limité par deux lignes simples et ouvertes; I’ensemble complé-
mentaire de F sur le plan consiste en deux domaines G et
D. Nous désignons par F, 'image de I obtenue par la trans-

g % PO O,
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formation T" (n = 0, = 1, £ 2, ...); les domaines F;, F,, ...
appartiennent & D, et les domaines F_;, F_,, ... & G (voir fig. 3).
La réunion des domaines F, est un domaine A dans lequel la
transformation T est homéomorphe & une translation métrique

Fig. 3.

du plan. Cependant le domaine A n’est pas nécessairement
identique au plan entier; tel est le cas pour la translation:
' =2x-+ 1,y =y, si on prend pour F le domaine Ilimité
par les lignes ‘

R L
les images successives de F ne remplissent que le demi-plan
y > 0. Pourtant, pour cette transformation, on peut aussi
construire un tel domaine F dont les images successives rem-
plissent le plan entier. Mais il y a des transformations pour

lesquelles c’est impossible [10]; tel est le cas dans I'exemple
suivant (voir figure 4):

d =z+1—2y, y =+y* pour 0<y<1,
o=z +1, y =y pour y <0,
2 =x—1, "=y pour y>1.

Dans cette transformation, les lignes y = 0 et y = 1 sont
singuliéres dans un certain sens que nous allons préciser tout a




308 B. DE KEREKJARTO

I’heure; un domaine de la transformation ne peut pas com-
prendre & la fois des points appartenant aux demi-plans y < 0
et y > 1. Cette transformation ne peut done pas étre homéo-
morphe & une translation métrique. |

Nous projetons stéréographiquement le plan sur une spheére
et nous entendons par la distance sphérique de deux points P

]=4

N

0 —

N

Fig. 4.

et Q du plan la distance sphérique des points qui leur corres-
pondent sur la sphere. Nous entendons par ’expression que les
puissances de la transformation T sont uniformément continues
au point P la propriété suivante: pour toute quantité positive ¢,
il existe un 3§ > 0 tel que, Q étant un point quelconque a une
distance de P plus petite que 3, les images de ces points, T"(P)
et T"(Q), obtenues parla transformation T", sont a une distance
sphérique I'une de ’autre inférieure a e, pour n =10, £ 1, + 2, ...
Les points P pour lesquels cette condition se trouve vérifiée, sont
appelés réguliers, les autres singuliers. Dans I'exemple de la
figure 4, les points appartenant aux lignes y = 0 et ¥y = 1 sont
singuliers, les autres sont réguliers.

On reconnait immeédiatement que pour une translation
métrique, tous les points du plan sont réguliers. J’ai démontré
que cette propriété est caractéristique pour les transformations
homéomorphes & une translation métrique; ce résultat s’exprime
dans le théoréme suivant:

La condition nécessaire et suffisante sous laquelle une trans-
formation topologique du plan en lui-méme conservant le sens
et n’admettant pas de point invariant est homéomorphe & une
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translation métrique est qu’elle soit réguliére en tout point du
plan [14, 22]. '

8. — Examen des caractéres topologiques des représentations
conformes. — La définition de la régularité d’une transformation -
s’applique dans sa forme donnée ci-dessus & une surface close
quelconque; on reconnait aussi facilement qu’elle se conserve
par une transformation topologique quelconque, et en parti-
culier qu’elle est indépendante de la métrique spéciale de la
surface. A l'aide de cette notion, on parvient & caractériser de
la maniére suivante les représentations conformes et biuni-
voques, maniere qui répond au probléme posé par M. BRouwERr
(n° 3):

La condition nécessaire et suffisante sous laquelle une trans-
formation topologique de la surface d’une sphére en elle-méme
est homéomorphe & une transformation linéaire (ou homogra-
phique) est que la transformation soit réguliére, excepté en un
nombre fini de points, au plus. Elle est homéomorphe a une
transformation elliptique parabolique ou hyperbolique suivant
que le nombre des points singuliers est 0, 1 ou 2 [20, 23].

La condition nécessaire et suffisante pour qu'une transforma-
tion topologique d’une surface close et orientable de genre p > 1
en elle-méme, conservant le sens, soit homéomorphe & une
représentation conforme, est que la transformation soit réguliere
(en tout point de la surface). Pour p > 1, les transformations
régulieres sont périodiques [25, 26, 27].

9. — Le groupe homographique. — Les remarques faites au
n° 2 montrent la nature différente des problémes qui consistent
a caractériser les transformations linéaires et le groupe des
transformations linéaires & wune variable complexe (groupe
homographique). Un critére du groupe homographique donné
par M. Stss [38] est le suivant:

Soit G un groupe de transformations topologiques de la
surface d'une sphére en elle-méme conservant le sens, et soit (k)
un systéme de courbes simples et fermées sur la surface. Pour
deux triples de points (A, B, C) et (A’, B’, C), il existe une
transformation de G et une seule qui transforme (A, B, C) en
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(A", B’, C'). Par trois points quelconques passe une courbe du
systeme (k) et une seule. Soient k et k£’ deux courbes du sys-
téme (k) ayant un point B en commun, et soit A un point de %’
distinct de B; si une transformation de G transforme %’ en lui-
meéme et laisse les points A et B invariants, elle transforme
ausst k& en elle-méme. Sous ces conditions, le groupe G est
homéomorphe au groupe homographique, et le systeme (k) est
homéomorphe au systéme des circonférences sur la sphére.

- Cette solution du probleme a 'inconvénient qu’elle introduit
a priori les circonférences au lieu de les définir par le groupe.
Voici un autre systéme de conditions qui évite cet inconvénient.

Soit G un groupe de transformations topologiques de la
surface d’une spheére en elle-méme conservant le sens, et dont
chacune admet au plus un nombre fini de points singuliers. Pour
deux triples de points (A, B, C) et (A’, B’, C’), il existe une
transformation de G qui transforme (A, B, C) en (A’, B’, C') et
qui varie continuement avec le triple (A’, B, C’). Les transfor-
mations de G qui laissent un point U invariant et qui sont
régulieres excepté au point U, forment un sous-groupe de G.

Je vais indiquer comment on peut définir les circonférences
par le groupe G. Soient A, B et P trois points fixes, et soit P’ un
point variable. Il y a une transformation dans G et une seule qui
laisse invariants les points A et B et qui transforme P en P’;
cette transformation varie contintiment avec P’. Les transfor-
mations correspondant aux diverses positions de P’ forment un
groupe continu simplement transitif sur la surface privée: des
points A et B. Ce sous-groupe de G est commutatif et il est
homéomorphe au groupe des translations d’une surface cylin-
drique en elle-méme [19]. Il contient donc un sous-groupe clos
d’ordre 1; les trajectoires de ce dernier sous-groupe sont les
circonférences de centres A et B. Par I’étude de ces circonférences
définies par le groupe, on parvient & caractériser le groupe
homographique.

Les groupes des géométries euclidienne et non-euclidiennes
planes peuvent étre caractérisés comme des sous-groupes du
groupe homographique; on obtient de cette facon une autre
solution du probleme résolu dans I’ccuvre célébre de M. HiLBERT
[12]. Je tiens & faire remarquer ici qu'un axiome de M. HiLBERT
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appelé « axiome de voisinage » (Axiom der Nachbarschaft) qu’il
a introduit d’abord et qu’il a déduit ensuite de ses autres
axiomes (surtout de axiome de « systéme fermé ») est en relation
avec notre notion de régularité, et de méme la notion d’ensemble
de fonctions « également continues » due & Ascor1. La différence
essentielle consiste en ce que nous avons déterminé une pro-
priété caractéristique d’une seule transformation en appliquant
la condition d’égale continuité & ’ensemble de ses puissances.

10. — La distribution des points singuliers d’une transforma-
tton. — Nous considérons de nouveau les transformations du
~ plan en lui-méme sans point invariant; la recherche de la distri-
bution de leurs points singuliers est importante en vue de ses
applications.

Nous mentionnons la question suivante qui a été posée en
relation avec des problemes dynamiques:

Une transformation topologique du plan en lui-méme conser-
vant le sens et n’admettant pas de point invariant peut-elle étre
immergée dans un groupe continu d’ordre 1 du plan ?

La réponse négative découle des remarques suivantes. St une
transformation sans point invariant appartient & un groupe
continu d’ordre 1, ses points singuliers forment des lignes simples
et ouvertes sans point commun deux a deux. D’autre part, j’ai
construit une transformation dont les points singuliers forment
des lignes avec des points multiples; elle ne peut donc pas
appartenir a un groupe continu d’ordre 1, et de plus, elle n’admet,
pas de racine carrée [24]. Il faut alors chercher les conditions
concernant la distribution des points singuliers sous lesquelles
une transformation peut étre plongée dans un groupe continu
d’ordre 1.

Voicl quelques propriétés générales des points singuliers. Si T
est une transformation topologique du plan sans point invariant
et conservant le sens, les composants de 'ensemble de ses points
singuliers sont des continus non-bornés; par conséquent tout
domaine maximum consistant de points réguliers est & connexion
simple, et §’il est invariant dans T, dans son intérieur la trans-
formation T est homéomorphe & une translation métrique.

En reprenant les notations du n® 7, désignons par A le domaine
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qui est la réunion des images successives d’'un domaine de la
transformation F. Nous disons que A est maximum s’il n’est
pas un vrai sous-ensemble d’un autre domaine A’ de la méme
sorte. S1 A est maximum, tout point de sa frontiére est un point
singulier de T, mais la réciproque n’est pas vraie.

Nous appelons deux points singuliers P et () associés s’1l existe
une suite de points P, P,, ... convergeant vers P, et une suite
divergente d’entiers n;, n,, ... tels que la suite T™(P,), T™(P,), ...
tende vers (). Les points associés a un point singulier quelconque
intérieur a A se trouvent sur la frontiére de A; ils forment un
ensemble fermé dont les composants sont des continus non-
bornés.

A Taide de la notion des points singuliers associés, on peut
décrire les propriétés de I’ensemble des points singuliers d’une
transformation donnée.

11. —- Groupes continus. — On peut étendre la notion de
régularité aux surfaces et variétés non-compactes de la facon
suivante. Nous ajoutons a la variété S ses éléments de frontiére
et nous considérons une famille de voisinages { V } des points
et des éléments de frontiére de S. Une transformation topologique
T de S en lui-méme est dite réguliére au point P de S, si pour une
famille arbitraire de voisinages { V }, il existe un voisinage U,
de P tel que, pour un point quelconque  pris dans U, et pour
tout entier n, 'un au moins des voisinages V contienne & la fois
les points T"(P) et T"(Q). Pour les espaces meétriques et
compacts, cette définition est équivalente a celle donnée au
n° 7.

J’ai démontré [21] que toute transformation appartenant &
un groupe continu simplement transitif, d’ordre fini, est réguliere
en tout point de I’espace du groupe, et, de plus, la régularité est
uniformément vérifiée pour les transformations du groupe. Cela
veut dire que, dans la définition ci-dessus, on peut choisir le
voisinage U, du point P de telle facon que, pour toute trans-
formation T du groupe, pour tout point ) de U, et pour tout
entier n, il y a un, au moins, des voisinages donnés V contenant
a la fois T"(P) et T"(Q). La signification théorique de notre
résultat consiste en ce que les images d’un « petit » voisinage
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obtenues par les transformations du groupe peuvent étre regar-
dées comme une famille de voisinages uniformément « petits »
dans I’espace du groupe. Sa portée pratique consiste en ce que
régularité ou singularité d’une transformation en un point
exprime une propriété de structure, et alors I'existence d’un
point singulier exclut que la transformation appartienne & un
groupe continu simplement transitif. Ensuite, pour qu’une
variété puisse représenter Pespace d’un groupe, il faut qu’elle
admette des transformations réguliéres arbitrairement petites
sans point invariant.

I1 me parait que le résultat ci-dessus est en relation avec la
proposition suivante qui pour les groupes de transformations
pseudo-conformes a été démontrée par M. H. Carrtan [11],
mais qui est encore en suspens pour le cas général: Dans un
groupe continu d’ordre fini, il existe un voisinage de I'identité
qui ne contient aucun sous-groupe.

12. — Applications aux systémes dynamiques. — En nous
servant des méthodes de PoincArRE concernant les relations
entre les systémes dynamiques et des transformations des
surfaces, nos résultats précédents admettent des applications
aux systémes dynamiques & deux degrés de liberté. Notre notion
de régularité correspond, en effet, a la stabilité permanente du
systéme.dynamique [4].

Considérons un systéme dynamique conservatif & deux degrés
de liberté dont les états forment une variété close. Les solutions
correspondant a une valeur de I’énergie peuvent étre regardées
comme des trajectoires dont 1’ensemble remplit une variété
close a trois dimensions. Une solution (périodique ou non) sera
dite posséder la stabilité permanente si la condition suivante se
trouve vérifiée: en changeant trés peu les valeurs initiales de la
solution donnée (correspondant & la valeur ¢ = 0 du temps),
on obtient des solutions qui restent infiniment voisines de la
solution primitive pour toute valeur det (t> 0 et ¢ < 0).

Construisons, d’aprés PoiNcARE, une surface de section S et
considérons la transformation T de S en elle-méme engendrée
par des intersections consécutives avec les trajectoires. Cette
transformation topologique de la surface S en elle-méme est

L’Enseignement mathém., 35me année, 1936. 21
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réguliére ou singuliere au point P de S suivant que la trajectoire
passant par P vérifie ou non la condition de stabilité perma-
nente. En appliquant les résultats du n°® 8, on obtient, & partir
de 1a, le théoréme suivant:

Si un systeme conservatif & deux degrés de liberté dont toutes
les solutions vérifient la condition de stabilité permanente admet
une surface de section de genre p > 1, toutes les solutions sont
périodiques.

Nous signalons aussi une application de nos recherches au
probléme ergodigue. Les recherches profondes de MM. von
NEumANN [80] et Birxuorr [5, 6] ont conduit a ce résultat
que 'ergodicité d’un systeme est une conséquence de I’hypothése
suivante appelée «transivité métrique »: Tout ensemble inva-
riant dans la transformation, ou son ensemble complémentaire,
est de mesure nulle. M. MorsEe [29], a démontré qu’une hypo-
these concernant '« instabilité uniforme » entraine la transivité
métrique et, par conséquent, ’ergodicité du systéeme. D’autre
part, j’ai trouvé que pour les systémes dynamiques a deux
degrés de liberté, l'existence d’une solution, qui posséde la
stabilité permanente, exclut ’ergodicité du systéme, pourvu que
- le systeme admette une surface de section de genre p > 1. Cela
revient a dire qu’une transformation topologique d’une surface
close de genre p > 1 en elle-méme admettant un point régulier,
au moins, ne peut pas satisfaire a la condition de transivité
métrique [28].

Dans cet ordre d’idées, j’ai recherché les transformations
asymptotiquement périodigues; je nomme ainsi des transforma-
tions qui ont des puissances différant de I'identité aussi peu que
I’on veut; j’ail trouvé qu’elles sont périodiques dans le sens strict
pour le cas des surfaces de genre p > 1. Il serait intéressant de
connaitre la structure des transformations asymptotiquement
périodiques de la surface d’une sphére en elle-méme; sont-elles
homéomorphes a des rotations par un angle incommensurable
a m, comme les transformations périodiques sont homéomorphes
aux rotations d’angles commensurables a = ? Un probleme
important, concernant les transformations topologiques d’un
cercle en lui-méme, est le suivant: est-il possible que les 1mages
successives d’un point forment un ensemble partout dense dans
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le cercle ? Pour les transformations dont les points invariants se
trouvent a la frontiére, ¢’est impossible; cet événement est aussi
exclu si la transformation admet un point régulier dans l'inté-
rieur du cercle; pour le cas général cette question n’est pas
encore résolue.

Si T est une transformation topologique générale d’une surface
~ en elle-méme, il est possible que tous les points de S soient des
points singuliers de T. La classification des points de S en des
points réguliers et singuliers devient illusoire dans ce cas, et
il faut diviser la surface en des ensembles de « transitivité » dans
lesquels la transformation est réguliere; il faut donc remplacer
la notion de régularité, qui était féconde pour caractériser
certaines classes de transformations et de groupes, par une
notion de régularité régionale. Mais il me semble que, pour
certaines classes de transformations, par exemple pour les
transformations analytiques conservant l’aire, on peut établir,
sous des conditions de nature générale, I’existence d’un point
régulier, au moins. Peut-étre de cette facon on réussira & démon-
trer Pexistence d’une solution périodique vérifiant la condition
de stabilité permanente dans le probléme restreint des trois
corps.
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