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CONFERENCES INTERNATIONALES DE TOPOLOGIE !

(suite)

SUR LA STRUCTURE DES TRANSFORMATIONS
TOPOLOGIQUES DES SURFACES EN ELLES-MEMES?

PAR

B. ne Keréxsirtd (Szeged, Hongrie).

1. — Généralités. — Le probléme fondamental de la topologie
est de déterminer les conditions sous lesquelles deux configura-
tions sont homéomorphes; 'homéomorphie des deux configu-
rations sera établie par le moyen d’une transformation topo-
logique (c’est-a-dire biunivoque et bicontinue). Ce probleme est
résolu pour les cas des lignes et des surfaces; grace a ces résultats,
on peut approfondir lesrecherches concernant les transformations
des surfaces. Alors, les transformations ne seront plus consi-
dérées comme les seuls moyens qui servent a établir ’homéo-
morphie de deux surfaces, mais elles deviennent des étres
autonomes dont la topologie ouvre un champ important de
recherches nouvelles. Il s’agit dans ces recherches — comme
en toute question d’homéomorphie — de trouver des propriétés
topologiques des transformations.

Une partie considérable de ces problémes — d’une nature
plutét combinatoire — concerne la détermination des points

1 Ces conférences ont eu lieu & ’Université de Genéve, du 21 au 25 octobre 1935
sous la présidence de M. Elie CArRTAN, Membre de 1’Institut.

2 Conference faite le 23 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par I'Université de Genéve; série consacrée a
Quelques questions de Géométrie et de Topologie.
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mvariants, leurs classes et leurs indices. Aprés les résultats
classiques de MM. BrRouwER, BirRkHOFF et ALEXANDER, c’est
M. J. NIELSEN qui a réussi a développer une théorie systé-
matique de cette catégorie de problémes par des méthodes
remarquables par leur élégance et leur profondeur [31] .

Une autre partie beaucoup moins développée concerne la
structure des transformations; nous essayons de donner dans
la suite un résumé des problémes et des résultats concernant la
structure des transformations topologiques, et de signaler leurs
relations avec d’autres questions de mathématiques. Nous

- faisons observer que les recherches profondes de MM. BirkHOFF

et P. Smitn [2, 7], importantes par leurs applications dyna-
miques, concernent surtout des transformations analytiques.
Pour cette raison elles n’entrent pas dans le cadre de notre
conférence.

2. — Homéomorphie de deux transformations. — Soient S et S’
deux surfaces homéomorphes, et soient T et T’ des transforma-
tions topologiques de ces surfaces en elles-mémes. Les trans-
formations T et T’ seront dites homéomorphes s’il existe une
transformation topologique v de S en S’ telle que T’ est la trans-
formée de T par =:

T =« 'Tr .

Toutes les transformations topologiques homéomorphes entre
elles forment un seul type topologique de transformations.

Le probleme idéal est de reconnaitre les conditions sous
lesquelles deux transformations sont homéomorphes. Comme
ce probléme ne pourra pas étre résolu dans sa généralité, on
cherchera a déterminer des propriétés caractéristiques qui sont
alors communes a toutes les transformations appartenant au
méme type topologique. L’ensemble, les classes et les indices
des points invariants sont des caractéristiques; en voicl encore
quelques autres: la propriété d’une transformation d’appar-
tenir a un groupe continu ou discontinu de transformations,
d’admettre une racine carrée, d’étre périodique de période n,

1 Les numéros entre crochets renvoient 2 la liste bhibliographique placée A la fin
du Mémoire.

P A

3
b1
i
j




LA STRUCTURE DES TRANSFORMATIONS 299

etc.; la propriété d’une transformation que les images successives
d’un point (obtenues par l'itération indéfinie de la transforma-
tion et de son inverse) convergent vers un seul point, ou qu’elles
admettent des points d’accumulation dont I’ensemble posséde
une structure donnée, ou bien qu’elles forment un ensemble
partout dense sur la surface.

D’une facon analogue, nous définissons 1’homéomorphie de
deux ensembles de transformations (T) et (T’) dont I'un com-
prend des transformations T de la surface S en elle-méme,
Pautre des transformations T’ de S’ en elle-méme; les deux
ensembles seront dits homéomorphes, s’il existe une transforma-
tion topologique = de la surface S en S’ telle que les éléments
de (T') soient les transformés des éléments de (T) par <. Cette
définition s’applique, en particulier, si (T) et (T') sont des
groupes, et alors leur homéomorphie entraine leur isomorphie
holoédrique. Si les ensembles (T) et (T’) sont homéomorphes,
toute transformation T est homéomorphe a une transformation
T’, et vice versa. Mais on peut construire des exemples simples
montrant que P’homéomorphie de chacune des transforma-
tions (T) avec une transformation de (T’) n’entraine pas ’homéo-
morphie des ensembles (T) et (T') parce que la transformation =
établissant I’homéomorphie entre deux éléments correspon-
dants T et T' n’est pas la méme pour tout T.

3. — Représentations conformes. — Bien que le probléme
d’homéomorphie de deux transformations ne puisse pas étre
résolu généralement, on peut chercher des conditions de nature
topologique sous lesquelles une transformation est homéomorphe
& une transformation donnée de structure simple. M. BROUWER [8]
a posé le probléme de caractériser topologiquement les repré-
sentations conformes, c’est-a-dire de déterminer les conditions
sous lesquelles une transformation est homéomorphe & une
représentation conforme. Nous traiterons ce probléme plus loin;
ici nous le mentionnons seulement pour expliquer et justifier nos
définitions.

Si S’ est une surface analytique, et si T’ est une représentation
conforme de S en elle-méme, ’homéomorphie entre T et T
permet de considérer aussi T comme une représentation conforme.
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Nous transportons, en effet, la métrique de S’, c’est-a-dire les
angles et les distances définies en S’, sur la surface S, au moyen
de la transformation © qui établit I’homéomorphie entre T et T".
La transformation T de S en elle-méme est alors une représen-
tation conforme par rapport a cette métrique de S. On reconnait
facilement que la propriété d’une transformation d’étre homéo-
morphe & une représentation conforme est tres restrictive; par
exemple, une transformation de S en elle-méme, différente de
I'identité, qui laisse invariants tous les points d’un domaine sur S
ne peut étre conforme dans aucune métrique.

Ici on voit immédiatement quelles raisons nous ont obligé a
restreindre la définition de 'homéomorphie de deux transforma-
tions au cas des transformations des surfaces en elles-mémes.
Car si T est une transformation topologique quelconque d’une
surface S en une autre surface S; (sans point commun avec S),
on peut la considérer comme une représentation conforme de S
sur S;; par la transformation T elle-méme, nous transportons
une métrique de S, choisie arbitrairement, sur la surface S; et
par cela T devient une représentation conforme de S sur S,.
Le caractére topologique des représentations conformes et
biunivoques n’a donc un sens que s’il est restreint au cas des
transformations des surfaces en elles-mémes.

En ce qui concerne les représentations conformes et non
biunivoques, il faut aussi dire que la détermination de leurs
caractéres au point de vue topologique pour le cas des transfor- -
mations entre deux surfaces distinctes est complétement résolue
par les surfaces de Riemann et leurs théoremes d’existence.
Mais le probleme de caractériser topologiquement les trans-
formations des surfaces en elles-mémes qui sont homéomorphes
a des représentations conformes, est complétement en suspens.
Considérons, par exemple, la question la plus simple suivante:
une transformation (1, n) de la sphére en elle-méme, sous quelles
conditions est-elle homéomorphe & une transformation ration-
nelle [établie par une fonction rationnelle w = R (z)] ? La
condition que la transformation soit localement biunivoque,
excepté en un nombre fini de points, est évidemment nécessaire;
s’1l §’agit d’'une transformation entre deux spheres distinctes,
elle est aussi suffisante, mais non pas pour une transformation
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d’une sphére en elle-méme. Les recherches de M. Juria [13] sur
I’itération des fonctions rationnelles ont révélé beaucoup de pro-
priétés topologiques de ces transformations; elles sont aussi
fondamentales pour attaquer la question posée ci-dessus.

4. — Domaine de la transformation. — Pour la recherche de la
structure d’une transformation topologique T qui transforme
une surface S en elle-méme, c’est un moyen utile de considérer
les domaines libres et, en particulier, les domaines libres maxima.
On entend par un domaine libre un domaine qui n’a aucun point
commun avec son image; il est appelé maximum s’1l n’est pas
un vrai sous-ensemble d’aucun domaine libre. Il faut dire tout
d’abord que P'existence seule d’un domaine libre maximum ne
signifie rien, ¢’est un fait presque évident pour une transforma-
tion quelconque; c¢’est le type ou la forme d’un tel domaine et sa
situation sur la surface qui sont souvent importants et méme
caractéristiques jusqu’a un certain degré.

Si P est un point quelconque de S non invariant dans la
transformation T, il existe un voisinage de P qui n’a aucun
point commun avec son image, ce voisinage est donc un domaine
libre. En I'augmentant, on peut obtenir un domaine libre maxi-
mum. Ce fait qu’il est devenu maximum peut étre dii & deux
circonstances tout a fait différentes; ou bien la propriété du
domaine d’étre libre maximum exprime une propriété concernant
la structure de la transformation; ou bien une constitution
singuliére de la frontiere du domaine empéche d’augmenter le
domaine libre. Voici un exemple qui montre la seconde possi-
bilité; pour la tranmslation 2’ = z - 1, ¥’ = y, le domaine
limité par les lignes:

y=+1, —1<z<+1

1 .
x::}:3+%51

1
P, M I \
n1_]yl, l<y< + 1 (I, et 1)
forme un domaine libre maximum (fig. 1); le fait qu’il est maxi-
mum est di & la présence des continus de condensation a la
frontiére (les segments y = + 1, — 1 < z < 4 1 sont des
continus de condensation des lignes [, et I,).
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Pour éviter 'inconvénient signalé par cet exemple, nous ne
considérerons dans la suite que les domaines libres maxima dont
les frontiéres sont formées par des courbes d’ordre fini dans
tout point et telles que les points d’ordre > 2 forment un
ensemble 1solé. Nous appelons un domaine de cette sorte un
domaine de la transformation. Pour une surface close il est un
domaine limité par un nombre fini de courbes simples et fermées
dont deux quelconques n’ont au plus qu’un nombre fini de points
communs.

Pour assurer I'existence d’un domaine de la transformation, il
faut restreindre la catégorie des transformations envisagées ;

].d

Fig. 1.

nous supposons dans la suite que S est une surface orientable &
connexion finie, et T est une transformation a points invariants
isolés. En particulier, nous considérerons les surfaces closes, et
leurs transformations & un nombre fini de points invariants.

Le domaine de la transformation est 1’analogue, dans un
certain sens, du domaine fondamental correspondant a un
groupe automorphe. Il n’est pas exactement déterminé par la
transformation, on peut le modifier de maintes fagons. Si P
est un point quelconque sur la frontiéere du domaine, son image
directe ou inverse appartient aussi a la frontiére. S1 P est un
point de la frontiére dont 'image directe appartient & la fron-
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tiére, et dont 'image inverse n’appartient pas a la frontiére, si,
de plus, P est un point d’ordre 2 de la frontiere, c’est-a-dire-
si le voisinage de P sur la frontiére est formé par un arc simple,
I'image directe de cet arc appartient aussi & la frontiére du
domaine. On peut alors remplacer le premier arc par un arc
voisin intérieur au domaine, et 'autre par I'image directe de
celui-ci; par cette modification de la frontiére, on a obtenu un
autre domaine de la transformation. Un point invariant de la
transformation peut appartenir a la frontiére du domaine de la
transformation, mais non pas a son intérieur.

Concernant le domaine de la transformation, les données
sulivantes sont caractéristiques: le nombre de ses contours, son
nombre de connexion, le nombre des points invariants appar-
tenant a sa frontiere et le nombre des domaines complémentaires
sur la surface. Sur une surface & connexion finie, le domaine de
la transformation peut avoir un ou deux domaines complémen-
taires; dans le deuxiéme cas, il a précisément deux contours.

Nous faisons remarquer que la méme transformation peut
admettre deux domaines de la transformation de types diffé-
rents. Tel est le cas pour une transformation linéaire hyper-
bolique de la sphére: z” = 2z. Un domaine de la transformation
est formé par la couronne limitée par les deux circonférences
concentriques |z| = 1 et |z| = 2; un domaine de type différent
est limité par les spirales:

log |z] = arc z et log |z] = arc z 4 log 2 ;

ce dernier domaine est a connexion simple, sur son seul contour
il y a deux points invariants (fig. 2). Pour une transformation
linéaire elliptique, le seul type du domaine de la transformation
est limité par deux arcs simples joignant les deux points inva-
riants, 'un de ces arcs étant 'image de I'autre.

5. — Théoréme de translation. — Le théoréme de translation
di & M. BRouwER [9] énonce la propriété suivante d’importance
principale: Pour une transformation topologique du plan en
lui-méme conservant le sens et n’admettant pas de point inva-
riant, il existe un domaine de la transformation limité par deux
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lignes simples et ouvertes. On entend par une ligne simple et
ouverte un ensemble fermé qui est une image topologique de la
ligne droite. Si on projette le plan stéréographiquement sur une

Fig. 2 a.

Fig. 2 b.

sphére, a la transformation donnée du plan correspond une
transformation de la sphére en elle-méme a un seul point inva-
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riant; aux lignes simples et ouvertes limitant le domaine de la
transformation correspondent des courbes simples et fermeées
passant par le point invariant qui n’ont pas d’autres pomts
communs; 'une de ces courbes est IYimage de l'autre dans la
transformation donnée.

Remarque. — Comme cette conférence ne nous permet pas de
nous occuper des démonstrations, je rappelle que dans deux
notes aux Comptes rendus j’ai esquissé, et dans un mémoire
aux Acta Scient. Math. de Szeged j’ai développé une méthode
systématique qui nous met en état de démontrer, par une cons-
truction simple, & la fois le théoréme de translation et le dernier
théoréme de Poincar¥ (voir note 6) [15, 168, 17]. Si on se borne
a démontrer le théoréme de translation, on peut éviter la modi-
fication de ma construction que j’ai appelée la déviation de la
ligne construite. La construction nous fournit alors une ligne
brisée composée de segments perpendiculaires dont les sommets
forment une suite divergente. Si elle n’est pas un ensemble
fermé, ses points d’accumulation n’appartenant pas a la ligne
forment une ou deux lignes droites invariantes dans la trans-
formation. Il ne peut exister deux droites invariantes de direc-
tions distinctes, car leur point commun serait un point invariant
dans la transformation. En recommencant notre construction
a partir d’un segment qui n’est ni paralléle, ni perpendiculaire
a la direction des droites invariantes, notre construction fournit
automatiquement une ligne simple et ouverte qui n’a pas de
point commun avec son 1mage; cette ligne et son image limitent
un domaine de la transformation.

6. — Le derntier théoréme géométrique de Poincaré.— Un autre
résultat classique concernant la structure des transformations
est le théoréme suivant énoncé par Poincare [32] et démontré
pour la premiere fois par M. Birkuorr [1, 3]: Soit S une cou-
ronne limitée par deux circonférences concentriques G, et Cy; soit
T une transformation topologique de S en elle-méme qui trans-
forme chacune des circonférences C, et C, en elle-méme et
déplace leurs points en des sens opposés. Si la transformation T
n’admet pas de point invariant, il y a une courbe simple et fermée
qui se trouve & l'intérieur de son image directe ou inverse.
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Nous indiquons la relation entre ce théoréme et le théoréme
de translation. Soient (r, ¢) des coordonnées polaires dans la
couronne 1 =r<32 0= ¢ < 2=, et soit la transformation T
exprimée par les formules r' = R(r, ), ¢ = 0(r, ¢); déter-
minons la valeur de 6(r, ¢) pour un point de C,; de telle facon
que ¢ < 0 (1, 9) <o + 27; pour les points de C,, on aura alors
(2, ) < ¢; c’est I'expression de la condition que T déplace
les points de C; et de C, en des sens opposés. Nous trans-
formons la couronne par les formules y = r, x = ¢ + 2k=
(k=0,+£1, £2,..)surlabande 1 Sy =<2, — o0 <2< +
dans le plan cartésien (z, y), et nous étendons la transformation
de cette bande en elle-méme correspondant & T sur le plan
entier pour obtenir une transformation sans point invariant du
plan en lui-méme. Le théoréme de translation assure ’existence
d’un domaine de la transformation dans le plan; pour démontrer
le théoréme de Poincarg, il faut trouver un domaine de la
transformation dans la bande qui est périodique en z de pé-
riode 27. Ma méthode mentionnée ci-dessus permet de construire
un domaine de cette sorte [16, 17].

D’une fagon similaire, on peut ramener toute transformation T,
d’une surface S en elle-méme, conservant le sens a une transfor-
mation du plan sans point invariant. Sur la surface S privée
des points invariants de T, nous construisons la surface de recou-
vrement a connexion simple; la transformation T de cette
surface en elle-méme engendrée par la transformation T révele
une certaine partie des propriétés de la transformation T elle-
méme; ensuite T peut étre considérée comme une transformation
du plan en lui-méme conservant le sens et n’admettant pas de
point invariant. Ces circonstances montrent la nécessité d’appro-
fondir I’étude des transformations du plan.

7. — Sur les translations planes. — Soit T une transforma-
tion topologique du plan en lui-méme conservant le sens et
n’ayant pas de point invariant. En vertu du théoreme de
M. BrRouweR, il existe un domaine de la transformation, F,
limité par deux lignes simples et ouvertes; I’ensemble complé-
mentaire de F sur le plan consiste en deux domaines G et
D. Nous désignons par F, 'image de I obtenue par la trans-

g % PO O,
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formation T" (n = 0, = 1, £ 2, ...); les domaines F;, F,, ...
appartiennent & D, et les domaines F_;, F_,, ... & G (voir fig. 3).
La réunion des domaines F, est un domaine A dans lequel la
transformation T est homéomorphe & une translation métrique

Fig. 3.

du plan. Cependant le domaine A n’est pas nécessairement
identique au plan entier; tel est le cas pour la translation:
' =2x-+ 1,y =y, si on prend pour F le domaine Ilimité
par les lignes ‘

R L
les images successives de F ne remplissent que le demi-plan
y > 0. Pourtant, pour cette transformation, on peut aussi
construire un tel domaine F dont les images successives rem-
plissent le plan entier. Mais il y a des transformations pour

lesquelles c’est impossible [10]; tel est le cas dans I'exemple
suivant (voir figure 4):

d =z+1—2y, y =+y* pour 0<y<1,
o=z +1, y =y pour y <0,
2 =x—1, "=y pour y>1.

Dans cette transformation, les lignes y = 0 et y = 1 sont
singuliéres dans un certain sens que nous allons préciser tout a
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I’heure; un domaine de la transformation ne peut pas com-
prendre & la fois des points appartenant aux demi-plans y < 0
et y > 1. Cette transformation ne peut done pas étre homéo-
morphe & une translation métrique. |

Nous projetons stéréographiquement le plan sur une spheére
et nous entendons par la distance sphérique de deux points P

]=4

N

0 —

N

Fig. 4.

et Q du plan la distance sphérique des points qui leur corres-
pondent sur la sphere. Nous entendons par ’expression que les
puissances de la transformation T sont uniformément continues
au point P la propriété suivante: pour toute quantité positive ¢,
il existe un 3§ > 0 tel que, Q étant un point quelconque a une
distance de P plus petite que 3, les images de ces points, T"(P)
et T"(Q), obtenues parla transformation T", sont a une distance
sphérique I'une de ’autre inférieure a e, pour n =10, £ 1, + 2, ...
Les points P pour lesquels cette condition se trouve vérifiée, sont
appelés réguliers, les autres singuliers. Dans I'exemple de la
figure 4, les points appartenant aux lignes y = 0 et ¥y = 1 sont
singuliers, les autres sont réguliers.

On reconnait immeédiatement que pour une translation
métrique, tous les points du plan sont réguliers. J’ai démontré
que cette propriété est caractéristique pour les transformations
homéomorphes & une translation métrique; ce résultat s’exprime
dans le théoréme suivant:

La condition nécessaire et suffisante sous laquelle une trans-
formation topologique du plan en lui-méme conservant le sens
et n’admettant pas de point invariant est homéomorphe & une
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translation métrique est qu’elle soit réguliére en tout point du
plan [14, 22]. '

8. — Examen des caractéres topologiques des représentations
conformes. — La définition de la régularité d’une transformation -
s’applique dans sa forme donnée ci-dessus & une surface close
quelconque; on reconnait aussi facilement qu’elle se conserve
par une transformation topologique quelconque, et en parti-
culier qu’elle est indépendante de la métrique spéciale de la
surface. A l'aide de cette notion, on parvient & caractériser de
la maniére suivante les représentations conformes et biuni-
voques, maniere qui répond au probléme posé par M. BRouwERr
(n° 3):

La condition nécessaire et suffisante sous laquelle une trans-
formation topologique de la surface d’une sphére en elle-méme
est homéomorphe & une transformation linéaire (ou homogra-
phique) est que la transformation soit réguliére, excepté en un
nombre fini de points, au plus. Elle est homéomorphe a une
transformation elliptique parabolique ou hyperbolique suivant
que le nombre des points singuliers est 0, 1 ou 2 [20, 23].

La condition nécessaire et suffisante pour qu'une transforma-
tion topologique d’une surface close et orientable de genre p > 1
en elle-méme, conservant le sens, soit homéomorphe & une
représentation conforme, est que la transformation soit réguliere
(en tout point de la surface). Pour p > 1, les transformations
régulieres sont périodiques [25, 26, 27].

9. — Le groupe homographique. — Les remarques faites au
n° 2 montrent la nature différente des problémes qui consistent
a caractériser les transformations linéaires et le groupe des
transformations linéaires & wune variable complexe (groupe
homographique). Un critére du groupe homographique donné
par M. Stss [38] est le suivant:

Soit G un groupe de transformations topologiques de la
surface d'une sphére en elle-méme conservant le sens, et soit (k)
un systéme de courbes simples et fermées sur la surface. Pour
deux triples de points (A, B, C) et (A’, B’, C), il existe une
transformation de G et une seule qui transforme (A, B, C) en
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(A", B’, C'). Par trois points quelconques passe une courbe du
systeme (k) et une seule. Soient k et k£’ deux courbes du sys-
téme (k) ayant un point B en commun, et soit A un point de %’
distinct de B; si une transformation de G transforme %’ en lui-
meéme et laisse les points A et B invariants, elle transforme
ausst k& en elle-méme. Sous ces conditions, le groupe G est
homéomorphe au groupe homographique, et le systeme (k) est
homéomorphe au systéme des circonférences sur la sphére.

- Cette solution du probleme a 'inconvénient qu’elle introduit
a priori les circonférences au lieu de les définir par le groupe.
Voici un autre systéme de conditions qui évite cet inconvénient.

Soit G un groupe de transformations topologiques de la
surface d’une spheére en elle-méme conservant le sens, et dont
chacune admet au plus un nombre fini de points singuliers. Pour
deux triples de points (A, B, C) et (A’, B’, C’), il existe une
transformation de G qui transforme (A, B, C) en (A’, B’, C') et
qui varie continuement avec le triple (A’, B, C’). Les transfor-
mations de G qui laissent un point U invariant et qui sont
régulieres excepté au point U, forment un sous-groupe de G.

Je vais indiquer comment on peut définir les circonférences
par le groupe G. Soient A, B et P trois points fixes, et soit P’ un
point variable. Il y a une transformation dans G et une seule qui
laisse invariants les points A et B et qui transforme P en P’;
cette transformation varie contintiment avec P’. Les transfor-
mations correspondant aux diverses positions de P’ forment un
groupe continu simplement transitif sur la surface privée: des
points A et B. Ce sous-groupe de G est commutatif et il est
homéomorphe au groupe des translations d’une surface cylin-
drique en elle-méme [19]. Il contient donc un sous-groupe clos
d’ordre 1; les trajectoires de ce dernier sous-groupe sont les
circonférences de centres A et B. Par I’étude de ces circonférences
définies par le groupe, on parvient & caractériser le groupe
homographique.

Les groupes des géométries euclidienne et non-euclidiennes
planes peuvent étre caractérisés comme des sous-groupes du
groupe homographique; on obtient de cette facon une autre
solution du probleme résolu dans I’ccuvre célébre de M. HiLBERT
[12]. Je tiens & faire remarquer ici qu'un axiome de M. HiLBERT
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appelé « axiome de voisinage » (Axiom der Nachbarschaft) qu’il
a introduit d’abord et qu’il a déduit ensuite de ses autres
axiomes (surtout de axiome de « systéme fermé ») est en relation
avec notre notion de régularité, et de méme la notion d’ensemble
de fonctions « également continues » due & Ascor1. La différence
essentielle consiste en ce que nous avons déterminé une pro-
priété caractéristique d’une seule transformation en appliquant
la condition d’égale continuité & ’ensemble de ses puissances.

10. — La distribution des points singuliers d’une transforma-
tton. — Nous considérons de nouveau les transformations du
~ plan en lui-méme sans point invariant; la recherche de la distri-
bution de leurs points singuliers est importante en vue de ses
applications.

Nous mentionnons la question suivante qui a été posée en
relation avec des problemes dynamiques:

Une transformation topologique du plan en lui-méme conser-
vant le sens et n’admettant pas de point invariant peut-elle étre
immergée dans un groupe continu d’ordre 1 du plan ?

La réponse négative découle des remarques suivantes. St une
transformation sans point invariant appartient & un groupe
continu d’ordre 1, ses points singuliers forment des lignes simples
et ouvertes sans point commun deux a deux. D’autre part, j’ai
construit une transformation dont les points singuliers forment
des lignes avec des points multiples; elle ne peut donc pas
appartenir a un groupe continu d’ordre 1, et de plus, elle n’admet,
pas de racine carrée [24]. Il faut alors chercher les conditions
concernant la distribution des points singuliers sous lesquelles
une transformation peut étre plongée dans un groupe continu
d’ordre 1.

Voicl quelques propriétés générales des points singuliers. Si T
est une transformation topologique du plan sans point invariant
et conservant le sens, les composants de 'ensemble de ses points
singuliers sont des continus non-bornés; par conséquent tout
domaine maximum consistant de points réguliers est & connexion
simple, et §’il est invariant dans T, dans son intérieur la trans-
formation T est homéomorphe & une translation métrique.

En reprenant les notations du n® 7, désignons par A le domaine
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qui est la réunion des images successives d’'un domaine de la
transformation F. Nous disons que A est maximum s’il n’est
pas un vrai sous-ensemble d’un autre domaine A’ de la méme
sorte. S1 A est maximum, tout point de sa frontiére est un point
singulier de T, mais la réciproque n’est pas vraie.

Nous appelons deux points singuliers P et () associés s’1l existe
une suite de points P, P,, ... convergeant vers P, et une suite
divergente d’entiers n;, n,, ... tels que la suite T™(P,), T™(P,), ...
tende vers (). Les points associés a un point singulier quelconque
intérieur a A se trouvent sur la frontiére de A; ils forment un
ensemble fermé dont les composants sont des continus non-
bornés.

A Taide de la notion des points singuliers associés, on peut
décrire les propriétés de I’ensemble des points singuliers d’une
transformation donnée.

11. —- Groupes continus. — On peut étendre la notion de
régularité aux surfaces et variétés non-compactes de la facon
suivante. Nous ajoutons a la variété S ses éléments de frontiére
et nous considérons une famille de voisinages { V } des points
et des éléments de frontiére de S. Une transformation topologique
T de S en lui-méme est dite réguliére au point P de S, si pour une
famille arbitraire de voisinages { V }, il existe un voisinage U,
de P tel que, pour un point quelconque  pris dans U, et pour
tout entier n, 'un au moins des voisinages V contienne & la fois
les points T"(P) et T"(Q). Pour les espaces meétriques et
compacts, cette définition est équivalente a celle donnée au
n° 7.

J’ai démontré [21] que toute transformation appartenant &
un groupe continu simplement transitif, d’ordre fini, est réguliere
en tout point de I’espace du groupe, et, de plus, la régularité est
uniformément vérifiée pour les transformations du groupe. Cela
veut dire que, dans la définition ci-dessus, on peut choisir le
voisinage U, du point P de telle facon que, pour toute trans-
formation T du groupe, pour tout point ) de U, et pour tout
entier n, il y a un, au moins, des voisinages donnés V contenant
a la fois T"(P) et T"(Q). La signification théorique de notre
résultat consiste en ce que les images d’un « petit » voisinage
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obtenues par les transformations du groupe peuvent étre regar-
dées comme une famille de voisinages uniformément « petits »
dans I’espace du groupe. Sa portée pratique consiste en ce que
régularité ou singularité d’une transformation en un point
exprime une propriété de structure, et alors I'existence d’un
point singulier exclut que la transformation appartienne & un
groupe continu simplement transitif. Ensuite, pour qu’une
variété puisse représenter Pespace d’un groupe, il faut qu’elle
admette des transformations réguliéres arbitrairement petites
sans point invariant.

I1 me parait que le résultat ci-dessus est en relation avec la
proposition suivante qui pour les groupes de transformations
pseudo-conformes a été démontrée par M. H. Carrtan [11],
mais qui est encore en suspens pour le cas général: Dans un
groupe continu d’ordre fini, il existe un voisinage de I'identité
qui ne contient aucun sous-groupe.

12. — Applications aux systémes dynamiques. — En nous
servant des méthodes de PoincArRE concernant les relations
entre les systémes dynamiques et des transformations des
surfaces, nos résultats précédents admettent des applications
aux systémes dynamiques & deux degrés de liberté. Notre notion
de régularité correspond, en effet, a la stabilité permanente du
systéme.dynamique [4].

Considérons un systéme dynamique conservatif & deux degrés
de liberté dont les états forment une variété close. Les solutions
correspondant a une valeur de I’énergie peuvent étre regardées
comme des trajectoires dont 1’ensemble remplit une variété
close a trois dimensions. Une solution (périodique ou non) sera
dite posséder la stabilité permanente si la condition suivante se
trouve vérifiée: en changeant trés peu les valeurs initiales de la
solution donnée (correspondant & la valeur ¢ = 0 du temps),
on obtient des solutions qui restent infiniment voisines de la
solution primitive pour toute valeur det (t> 0 et ¢ < 0).

Construisons, d’aprés PoiNcARE, une surface de section S et
considérons la transformation T de S en elle-méme engendrée
par des intersections consécutives avec les trajectoires. Cette
transformation topologique de la surface S en elle-méme est

L’Enseignement mathém., 35me année, 1936. 21
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réguliére ou singuliere au point P de S suivant que la trajectoire
passant par P vérifie ou non la condition de stabilité perma-
nente. En appliquant les résultats du n°® 8, on obtient, & partir
de 1a, le théoréme suivant:

Si un systeme conservatif & deux degrés de liberté dont toutes
les solutions vérifient la condition de stabilité permanente admet
une surface de section de genre p > 1, toutes les solutions sont
périodiques.

Nous signalons aussi une application de nos recherches au
probléme ergodigue. Les recherches profondes de MM. von
NEumANN [80] et Birxuorr [5, 6] ont conduit a ce résultat
que 'ergodicité d’un systeme est une conséquence de I’hypothése
suivante appelée «transivité métrique »: Tout ensemble inva-
riant dans la transformation, ou son ensemble complémentaire,
est de mesure nulle. M. MorsEe [29], a démontré qu’une hypo-
these concernant '« instabilité uniforme » entraine la transivité
métrique et, par conséquent, ’ergodicité du systéeme. D’autre
part, j’ai trouvé que pour les systémes dynamiques a deux
degrés de liberté, l'existence d’une solution, qui posséde la
stabilité permanente, exclut ’ergodicité du systéme, pourvu que
- le systeme admette une surface de section de genre p > 1. Cela
revient a dire qu’une transformation topologique d’une surface
close de genre p > 1 en elle-méme admettant un point régulier,
au moins, ne peut pas satisfaire a la condition de transivité
métrique [28].

Dans cet ordre d’idées, j’ai recherché les transformations
asymptotiquement périodigues; je nomme ainsi des transforma-
tions qui ont des puissances différant de I'identité aussi peu que
I’on veut; j’ail trouvé qu’elles sont périodiques dans le sens strict
pour le cas des surfaces de genre p > 1. Il serait intéressant de
connaitre la structure des transformations asymptotiquement
périodiques de la surface d’une sphére en elle-méme; sont-elles
homéomorphes a des rotations par un angle incommensurable
a m, comme les transformations périodiques sont homéomorphes
aux rotations d’angles commensurables a = ? Un probleme
important, concernant les transformations topologiques d’un
cercle en lui-méme, est le suivant: est-il possible que les 1mages
successives d’un point forment un ensemble partout dense dans
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le cercle ? Pour les transformations dont les points invariants se
trouvent a la frontiére, ¢’est impossible; cet événement est aussi
exclu si la transformation admet un point régulier dans l'inté-
rieur du cercle; pour le cas général cette question n’est pas
encore résolue.

Si T est une transformation topologique générale d’une surface
~ en elle-méme, il est possible que tous les points de S soient des
points singuliers de T. La classification des points de S en des
points réguliers et singuliers devient illusoire dans ce cas, et
il faut diviser la surface en des ensembles de « transitivité » dans
lesquels la transformation est réguliere; il faut donc remplacer
la notion de régularité, qui était féconde pour caractériser
certaines classes de transformations et de groupes, par une
notion de régularité régionale. Mais il me semble que, pour
certaines classes de transformations, par exemple pour les
transformations analytiques conservant l’aire, on peut établir,
sous des conditions de nature générale, I’existence d’un point
régulier, au moins. Peut-étre de cette facon on réussira & démon-
trer Pexistence d’une solution périodique vérifiant la condition
de stabilité permanente dans le probléme restreint des trois
corps.
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SUR LES ESPACES LOCALEMENT HOMOGENES!

PAR

Charles EnreEsmaAnN (Paris).

Les espaces qui formeront ’objet de cette conférence sont
des espaces analogues aux formes spatiales de Clifford-Klein.
Je rappelle qu'une forme spatiale de Clifford-Klein est un
espace de Riemann & courbure constante; suivant que cette
courbure est nulle, positive ou négative, on aura un espace
localement euclidien, localement sphérique ou localement hyper-
bolique. Etant donné un espace localement euclidien, par
exemple, celui-ci est aussi caractérisé par le fait que les déplace-
ments euclidiens voisins de la transformation identique sont
définis dans un voisinage suffisamment petit de chaque point.
Une généralisation immédiate de cette derniere définition
s’obtient en remplacant le groupe des déplacements euclidiens
par un groupe de transformations continu et transitif quelconque,
en particulier par un groupe continu et transitif de Lie. On
définit ainsi les espaces localement homogenes que nous allons
étudier. Bien que les résultats que je pourrai indiquer soient
encore incomplets, il m’a semblé que ce sujet méritait d’étre
traité ici, parce qu’il touche a la fois & la théorie des groupes
et a la topologie et parce qu’il conduit & des relations entre les
propriétés infinitésimales et les propriétés globales d’un espace.

1. — Avant de préciser la notion d’espace localement homo-
géne, il sera utile de rappeler la définition d’'un groupe de trans-

1 Conférence faite le 23 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par 1’Université de Genéve; série consacrée a
Quelques questions de Géométrie et de Topologie.
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formations de Lie au sens local ou au sens global. Soit V une
variété & n dimensions, c’est-d-dire un espace topologique
régulier admettant un systéme de voisinages dont chacun est
homéomorphe a I'intérieur d’un simplexe & » dimensions. Soit G
un ensemble de transformations topologiques dont chacune est
définie pour tout point d’un domaine D de V, les point de D
étant transformés en des points de V qui n’appartiennent pas
forcément & D. L’ensemble G forme un groupe continu a r para-
metres au sens local lorsqu’il satisfait aux conditions suivantes:
a) Les éléments de G peuvent étre mis en correspondance
biunivoque avec les points d’une variété a r dimensions, que
nous désignerons par (G), telle que, s1 M’ = ¢ (M, s) est la
transformation correspondant au point s de (G), la fonction
o (M, s) soit continue par rapport a I'ensemble des points M et s.
b) L’ensemble G contient la transformation identique; soit &
le point correspondant de (G).
¢) Il existe dans (G) un voisinage A du point ¢ tel qu’on ait les
propriétés suivantes: Si a est un point de A, il existe dans D des
points M dont les transformés M’ = ¢ (M, a) appartiennent
a D; pour tout point M de cette espéce et pour tout point b
de A, on a:
M = oloM, a), b] = oM, ¢) .

Le point ¢ de (G) qui correspond ainsi a I’ensemble des
points a et b est défini par une fonction ¢ = ¢ (a, b).

d) Soit @ un point de A et M un point quelconque de D tel
que le point M’ = ¢ (M, a) appartienne a D. Il existe dans (G)
un point a! tel que M = o (M’, a™).

e) La fonction ¢ (a, b) est continue par rapport a I’ensemble
des points a et b; le point a™! est une fonection continue du
point a.

Un groupe G satisfaisant aux conditions précédentes est
appelé groupe de Lie au sens local s'1l existe, dans un voisinage
du point 7, un systeme de coordonnées tel que les coordonnées
du point ¢ = ¢ (a, b) soient des fonctions analytiques par rapport
aux coordonnées des points a et b.

Le groupe G est dit transitif dans D si tout point M de D
admet un voisinage tel que, M’ étant un point quelconque de ce

AL e M
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voisinage, il existe au moins une transformation de G qui
transforme M en M’. Si G est un groupe continu transitif de Lie
au sens local, il existe des systémes de coordonnées définis
respectivement dans un voisinage de M, et dans un voisinage
de i tels que les coordonnées du point M = ¢ (M, a) soient
des fonctions analytiques par rapport & l’ensemble des coor-
données de M et de a, en supposant que M et a appartiennent a
des voisinages suffisamment petits de M, et de 1. Deux systemes
de coordonnées qui sont définis dans un voisinage de My et qui
jouissent de la propriété précédente se déduisent 'un de l'autre
par une transformation analytique.

Un ensemble de transformations topologiques, G, forme un
groupe continu d v paramélres au sens global lorsqu’il satisfait
aux conditions a), ..., €), en supposant que dans I’énoncé de
ces conditions D soit remplacé par V et A par (G). L’ensemble G
forme un groupe de Lie au sens global lorsqu’il définit un groupe
continu & r paramétres au sens global et un groupe de Lie au
sens local. Je signale le théoréeme suivant:

Etant donné un groupe continu & r paramétres au sens local
dont les transformations sont défintes pour tous les points de la
variété 'V (c’est-a-dire le domaine D est confondu avec V),
Pensemble des transformations dont chacune est le produit d’un
nombre fini de transformations appartenant au voisinage A de 1
forme un groupe continu @ r paraméires au sens global.

2. — Appelons espace homogéne de Lie une variété a n dimen-
sions dans laquelle est défini un groupe de transformations
continu et transitif de Lie au sens global.

Appelons espace localement homogeéne de Lie (en général nous
dirons simplement espace localement homogéne) une variété E
& n dimensions jouissant des propriétés suivantes:

a) Chaque point M de E appartient & un voisinage V, a
I'imtérieur duquel est défini un groupe continu et transitif de Lie
au sens local qui transforme les points de V,, en des points de E:
le voisinage V, sera appelé voisinage élémentaire.

b) Soit d un domaine commun & deux voisinages élémentaires.
Etant donnés les deux groupes de Lie au sens local attachés a
ces voisinages, il existe dans chacun d’eux un voisinage de la
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transformation identique tel que les transformations de l'un
de ces voisinages solent en correspondance biunivoque avec
celles de I'autre, deux transformations correspondantes opérant
de la méme facon sur les points de d.

Un espace localement homogéne de Lie peut encore étre
défini comme étant une variété E & n dimensions qui jouit des
propriétés suivantes: |

a) Chaque point M de E appartient & un voisinage V, dans
lequel on a défini un systéme de coordonnées et un ensemble
de r transformations infinitésimales linéairement indépendantes
qui engendrent un groupe transitif de Lie au sens local.

b) Soit d un domaine commun & deux voisinages élémentaires
V, et V.. Le changement de coordonnées défini pour les points
de d transforme les r transformations infinitésimales définies
dans V, en r combinaisons linéaires des transformations
mfinitésimales définies dans V..

Remarquons qu’un espace homogeéne de Lie est aussi un espace
localement homogeéne de Lie.

Etant donnés deux points M et M’ d’un voisinage élémentaire,
appelons transformation élémentaire de M en M’ toute transfor-
mation qui transforme M en M’ et qui appartient au groupe
de Lie au sens local attaché a ce voisinage. Si A et B sont deux
points quelconques de E, on montre que A peut étre transformé
en B par la succession d’un nombre fini de transformations
élémentaires. Il en résulte que les groupes de Lie, au sens local,
définis respectivement au voisinage de A et au voisinage de B
sont semblables.

La variété d’un espace localement homogeéne est une variété
analytigue. En effet, dans chaque voisinage élémentaire on peut
introduire un systéme de coordonnées tel que le groupe de Lie,
au sens local correspondant, soit analytique par rapport & ces
coordonnées et par rapport aux parametres. Le changement de
coordonnées qui en résulte pour un domaine commun & deux
voisinages élémentaires est alors également analytique.

3. — Deux espaces localement homogénes E et E’ sont dits
équivalents lorsqu’il existe une transformation topologique de E
en E’ telle que, M et M’ étant deux points correspondants, les
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transformations infinitésimales définies au voisinage de M soient
transformées en les transformations infinitésimales définies au
voisinage de M’. Les deux espaces E et E’ sont dits localement
équivalents lorsqu’il existe un voisinage élémentaire dans E qui
soit équivalent & un voisinage élémentaire dans E’. Le probleme
général que nous nous proposons d’étudier s’énonce maintenant
de la facon suivante:

Trouver tous les espaces localement homogénes qui soient locale-
ment équivalents @ un espace localement homogéne donné: en
d’autres termes, trouver tous les espaces localement homogeénes qui
sotent le prolongement d’un élément d’espace localement homogéne
donné. :

Une question intéressante qui se pose aussitot est la suivante:
Existe-t-il toujours un espace homogéne qut soit localement équi-
valent @ un espace localement homogéne donné ?

Pour répondre a cette question, je rappelle les propriétés
suivantes: Soit H un espace homogene de Lie et G le groupe
de Lie correspondant. Soit g le sous-groupe formé par I’ensemble
des transformations de G qui laissent invariant un point O
de H. Le sous-groupe g est fermé dans G et n’admet aucun
sous-groupe invariant dans G. Réciproquement étant donnés
un groupe abstrait de Lie, G, et un sous-groupe g qui est fermé
dans G et qui ne contient aucun sous-groupe invariant dans G,
on peut définir un espace homogéne H dont le groupe de trans-
formations G, est isomorphe & G, le sous-groupe de G; qui
correspond a g étant le plus grand sous-groupe dont les trans-
formations laissent invariant un point O de H.

S1 G est un groupe transitif de Lie au sens local, il existe dans G
un voisinage A de la transformation identique tel que les trans-
formations qui appartiennent & A et qui laissent invariant un
point O forment un sous-groupe continu de Lie au sens local.
Réciproquement soit (G) un groupe abstrait de Lie au sens
local et soit (g) un sous-groupe continu de Lie au sens local.
Si (g) n’admet aucun sous-groupe continu invariant dans (G),
1l existe un groupe de transformations continu et transitif de Lie
au sens local, que nous désignerons par G,, tel que ce groupe soit
localement isomorphe & (G), son sous-groupe qui correspond
par cette isomorphie a (g) étant le plus grand sous-groupe continu
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qui laisse invariant un certain point. D’aprés le troisieme théo-
réeme fondamental de Lie démontré du point de vue global par
M. E. Cartan, la variété (G) peut étre considérée comme un
voisinage de I’élément unité d’un groupe abstrait de Lie au sens
global. Désignons ce groupe par (G’); on peut le supposer
simplement connexe; sinon on le remplacerait par son groupe
de recouvrement simplement connexe. Le sous-groupe (g) au
sens local se prolonge dans (G’) en un sous-groupe continu de Lie
au sens global; soit (g') ce prolongement. Pour que le groupe G,
puisse étre prolongé en un groupe transitif de Lie au sens global,
il faut et il suffit que (g’) soit fermé dans (G’). Or on sait qu’un
groupe de Lie (G') simplement connexe peut avoir des sous-groupes
continus qui ne sont pas fermés dans (G'). Par exemple, un groupe
simple clos, simplement connexe et de rang supérieur & 1 admet
des sous-groupes ouverts a un parametre; un tel sous-groupe
n’admet évidemment aucun sous-groupe continu invariant dans
le groupe simple donné. Donc il existe effectivement des espaces
localement homogénes qui ne sont localement équivalents a aucun
espace homogene.

Pratiquement il est difficile de reconnaitre si un groupe
transitif de Lie au sens local défini dans un certain domaine
par r transformations infinitésimales données peut étre prolongé
en un groupe de Lie au sens global. Remarquons seulement
qu’une condition suffisante pour que ce prolongement existe
est que le plus grand sous-groupe au sens local qui laisse invariant
un point O ne laisse invariant aucun autre point dans un voisi-
nage suffisamment petit de O. M. E. Cartan a déterminé tous
les espaces homogénes de Lie a deux dimensions. On constate
que tout espace localement homogene a deux dimensions est
localement équivalent & un espace homogene. La méme question
n’est pas encore résolue dans le cas de trois dimensions et on
n’a jamais déterminé tous les espaces homogenes de Lie & trois
dimensions.

4. — Je signale le théoreme suivant:

Si un espace localement homogéne de Lie est clos et stmplement
connezxe, 1l est équivalent @ un espace homogéne de Lie.
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On en déduit que tout espace localement homogéne clos, dont
le groupe de Poincaré est fini, est localement équivalent & un
espace homogene. Pour démontrer le ‘théoréme énoncé, on
applique surtout la propriété suivante: Etant donné un espace
localement homogéne E, tout arc AB établit un isomorphisme local
bien déterminé entre les groupes de Lie, au sens local, définis res-
pectivement au voisinage de A et au voisinage de B ; cet isomorphisme
ne varie pas lorsqu’on déforme Uarc AB, les extrémités A et B
restant fizes. En particulier, sil’espace E est simplement connexe,
il existe un isomorphisme local bien déterminé entre les groupes
de Lie au sens local définis respectivement dans les voisinages
de deux points quelconques de E.

5. — Par la suite nous porterons notre attention sur les
espaces localement homogénes qui sont localement équivalents
a un espace homogene donné. Soit H un espace homogene de Lie
et G le groupe de transformations correspondant. On démontre
alors le fait suivant:

S1 H est la variété de recouvrement simplement connexe de H,
ceite variété H définit un espace homogeéne localement équivalent

a H; le groupe G correspondant @ H est un groupe de recouvrement
(pas forcément simplement connexe) de G.

Appelons automorphisme de l’espace homogéne H une
transformation topologique T de H en lui-méme telle que la
transformée par T de toute transformation de G appartienne
encore a G. Appelons automorphisme local une transformation
topologique qui transforme un voisinage d’un point A de H en
un voisinage d’un point B de H de telle facon que la transformée
de toute transformation infinitésimale de G soit encore une
transformation infinitésimale de G. On démontre alors le
théoréeme suivant:

Tout automorphisme local d’un espace homogéne simplement
connexe se prolonge en un automorphisme global de cet espace.

La démonstration de ce théoréme repose sur le fait suivant:

St G est un groupe abstrait de Lie au sens global, tout auto-
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morphisme local de (G) se prolonge en un automorphisme global

de (G).

Soit E un espace localement homogéne que nous supposons .
localement équivalent & un espace homogéne simplement
connexe H. Définissons le développement sur H d’un arc de
l'espace E. Nous appelons arc la figure décrite par un point
qui est une fonction continue d’un parametre variant de 0 a 1.
Soit OA un arc de E. Tout point M de E appartient & un voisinage

élémentaire qui est équivalent & un voisinage d’un point M de H.
En vertu du lemme de Borel-Lebesgue, on peut recouvrir
Parc OA par une suite d’un nombre fini d’ares partiels telle que
deux arcs partiels successifs empiétent 'un sur l'autre et telle
que tout arc partiel soit contenu dans un voisinage élémentaire
équivalent & un voisinage dans I'espace H. Soit V,, V,, ..., V,
cette suite de voisinages; nous pouvons supposer que deux
volsinages successifs n’alent qu’un seul domaine en commun.
Une suite de voisinages de cette espece sera appelée une chaine
de voisinages recouvrant ’arc OA. Le voisinage V, du point O
peut étre représenté sur un voisinage V, d’un point O de H. Le
voisinage V, est équivalent a un voisinage V, dans H. Soit d
le domaine commun & V, et a V,. Il est représenté d’une part
sur un domaine d de V et d’autre part sur un domaine d’ de V,.

L’automorphisme local qui transforme d en d se prolonge en un

automorphisme global qui transforme V; en un volisinage V.
En répétant cette opération, on pourra représenter la chaine
de V01smage Vo, V4, ..., V., sur une chaine de voisinages

VO, Vl, . Vk L’arc OA sera represente sur un arc OA recouvert
par la chaine de voisinages VO, Vl, .. V,t Nous dirons que
Parc OA est un développement sur H de arc OA; de méme

Pare OA sera appelé un développement sur E de I'arc OA. On
a ainsi le résultat suivant:

Un voisinage du point O de E étant représenté sur un voisinage
d’un point O de H, tout arc’'OA de E admet un développement bien

déterminé suivant un arc OA de H. Si deux arcs d’origine O et
d’extrémité A sont réductibles U'un a lautre par deformatwn

continue, leurs développements conduisent de O au méme point A.
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La derniére partie de cet énoncé se démontre en appliquant
le lemme de Borel-Lebesgue & une famille continue d’arcs
d’origine O et d’extrémité A. On démontre de méme le théoreme
sulvant:

Un voisinage de O étant représenté sur un voisinage de O, soit OA
un arc quelconque de H. Ou bien Parc OA se développe suivant un
arc bien déterminé OA de E, ou bien il existe sur U'arc OA un

point C zel que Uarc OC moins le point C se développe suivant une
ligne divergente sur U'espace de recouvrement stmplement connexe

de E. Etant donnée sur H une famille continue d’arcs d’origine O

et dextrémité A telle que chacun de ces arcs admette sur E un
développement issu de O, ce développement conduit toujours au
méme point A.

Les propriétés précédentes conduisent aux résultats suivants:

St Uespace localement homogéne E est clos et sumplement connexe,
il est équivalent a Uespace homogéne H. St E est clos et admet un
groupe de Poincaré fini, lespace de recouvrement simplement
connexe de E est équivalent ¢ H. St E est clos et H ouvert, le groupe
de Poincaré de E est infint.

Soit H un espace homogeéne localement équivalent ¢ H; si H’
est simplement connexe, il est équivaleri o H; si H' n’est pas
simplement connexe, son espace de recouvrement simplement
connexe est équivalent a H.

6. — Considérons maintenant une classe particuliérement
mmtéressante d’espaces localement homogénes. Un espace E de
cette classe satisfait & la condition suivante qui sera appelée
condition de normalité: L’espace E est localement équivalent a
un espace homogéne H que nous supposerons simplement
connexe, et toute ligne divergente sur l'espace de recouvrement
simplement connexe de E se développe suivant une ligne diver-
gente de H. L’espace E sera appelé espace localement homogéne
normal ou encore forme de Clifford de I’espace homogéne H. En
particulier, tout espace homogéne localement équivalent a H
est normal; on Pappelle forme de Klein de 'espace homogéne H.
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De méme tout espace localement homogeéne clos dont le groupe
de Poincaré est fini1 satisfait a la condition de normalité. On
démontre facilement le théoréme suivant:

Soit E un espace normal localement équivalent a U'espace homo-
géne simplement connexe H; Uespace H est équivalent a lespace
de recouvrement simplement connexe de E.

Un voisinage du point O de E étant représenté sur un voisinage
équivalent du point O de H, tout arc OM de E se développe
suivant un arec déterminé OM de H. La correspondance entre M

et M jouit alors des propriétés suivantes: A tout point M de H
correspond un point déterminé M de E. Les points de H qui
correspondent & un méme point M de E forment un ensemble
de points équivalents par rapport a un groupe d’automorphismes
de l'espace H. Ce groupe s’appelle le groupe d’holonomie de
I’espace E. Il est isomorphe au groupe de Poincaré de ’espace E.
De plus il est proprement discontinu dans tout 1’espace H et
aucune de ses opérations n’admet de points invariants dans H.
La recherche des formes de Clifford de 'espace H revient ainsi
a la recherche des groupes d’automorphismes de H qui peuvent
étre considérés comme des groupes d’holonomie.

Soit I' un groupe d’automorphismes de H. Pour que I' soit
le groupe d’holonomie d’un espace localement homogeéne normal
il faut et 1l suffit que les conditions suivantes soient vérifiées:

a) I' est proprement discontinu dans tout I’espace H.

b) Aucune opération de I' n’admet des points invariants.

¢) Considérons dans H deux voisinages quelconques ¢ et ¢,
distinets ou confondus. Parmi les voisinages transformés de ¢
par I') il y a au plus un nombre fini de voisinages qui ont des
points communs avec ¢'.

Lorsque ces conditions sont vérifiées, les ensembles de points
équivalents par rapport & I' peuvent étre considérés comme les
points d’un espace E qui sera une forme de Clifford de H.

La condition c¢) est vérifiée d’elle-méme lorsque I' est un groupe
fini. Cette condition est une conséquence des conditions a) et b)
lorsque I' laisse invariante une métrique définie dans H. En
particulier, supposons que H soit un espace riemannien dont la
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métrique est invariante par le groupe G qui opére transitivement
dans H. Lorsqu’un groupe d’automorphismes I' laisse invariante
cette métrique riemannienne et satisfait aux conditions a) et b),
c’est le groupe d’holonomie d’un espace riemannien localement
équivalent & H, c’est-a-dire localement applicable sur H. 1l
serait intéressant de savoir si la condition ¢) est toujours une
conséquence des conditions a) et b), lorsque le groupe I' est un
groupe d’automorphismes de H. J’ignore la réponse a cette
question. On sait seulement que la condition ¢) n’est pas néces-
sairement une conséquence des conditions @) et b) lorsque I' se
compose de transformations topologiques quelconques de H.

7. — La condition de normalité, pour un espace localement
homogeéne E, peut étre remplacée, dans certains cas, par des
conditions plus simples. Considérons en particulier les espaces
riemanniens localement homogénes. On voit facilement que la
condition de normalité est équivalente dans ce cas a la condition
suivante: Dans [lespace E, toute ligne divergente localement
rectifiable a une longueur infinte. Cette condition est encore
équivalente & d’autres conditions, par exemple a la condition
suivante: Sur tout rayon géodésique on peut reporter, & pariir de
son origine, une longueur donnée arbitraire. 1.’équivalence des
deux conditions précédentes s’établit facilement dans le cas
d’un espace riemannien localement homogéne. M. Hopf et
M. Rinow ont méme démontré cette équivalence pour un
espace de Riemann quelconque.

Dans le cas des espaces localement affines, ¢’est-a-dire locale-
ment équivalents & I'espace affine, la condition de normalité peut
étre remplacée par la suivante: Etant donnée une géodésique
quelconque de l'espace localement affine, un point M qui décrit la
géodésique peut élre défint en fonction d’un paraméire s tel que,
dans tout systéme de coordonnées affines locales, les coordonnées de M
sotent des fonctions linéaires de s; Uespace considéré sera alors
normal st & toute valeur de s somprise enire — «w et -+ oo corres-
pond un point M de la géodésique donnée.

8. — Lorsqu’un espace riemannien localement équivalent a
un espace riemannien homogene est clos, il est normal; car il n’y
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a pas de lignes divergentes dans cet espace. Mais dans le cas
général, un espace localement homogene clos n’est pas forcément
normal. Les espaces localement homogenes normaux ainsi que
les espaces localement homogenes clos font partie de la classe
plus générale des espaces localement homogénes non prolon-
geables. Un espace localement homogéne E est dit non prolon-
geable lorsqu’il n’est pas équivalent a un domaine D d’un
espace localement homogeéne E’, le domaine D ayant des points
frontiéres dans E’. On démontre facilement le théoréme suivant:

Tout espace homogéne est non prolongeable.

Il suffit d’appliquer le théoreme qui dit que tout arc d’un
espace localement équivalent & un espace homogéne H admet
un développement sur H. Il résulte immédiatement de ce théo-
réeme que tout espace localement homogéne normal est non prolon-
geable. De méme 1l est clair que tout espace clos est non prolon-
geable. Il existe des espaces localement homogénes non prolon-
geables (méme simplement connexes ou clos) qui ne sont pas
normaux. Par exemple, soit H un espace homogéne & 3 dimen-
sions et considérons un nceud dans cet espace. Tout espace de
recouvrement a plusieurs feuillets de 1’espace complémentaire
du neeud est non prolongeable. D’une facon générale, le théoréme
relatif au développement d’un arc sur un espace homogene
permet de reconnaitre si un espace localement homogene donné
est prolongeable ou non prolongeable. Il serait intéressant de
savoir si tout espace prolongeable est équivalent a un domaine
d’un espace non prolongeable.

9. — Donnons quelques applications des notions et propriétés
générales qui précédent. Je ne parlerai pas des espaces localement
euclidiens ou localement non euclidiens, car ce sujet est bien
connu. Je signale que les formes de Clifford ou de Klein des
espaces riemanniens homogénes, en particulier des espaces
riemanniens symétriques, ont été considérées par M. E. Cartan
dans plusieurs de ses travaux. Je me propose d’indiquer seule-
ment quelques propriétés des espaces localement projectifs.

Un espace localement projectif est un espace localement équi-
valent & un espace projectif réel. On peut encore le définir de la




ESPACES LOCALEMENT HOMOGENES 329

facon suivante: Un espace localement projectif E est une
variété & n dimensions sur laquelle on a défini un systéme de
courbes appelées géodésiques tel que chaque point de E appar-
tient & un voisinage qui admet une représentation topologique
sur un domaine de D’espace projectif, les arcs de géodésiques
étant représentés par des segments de droites.

Tout espace localement euclidien, localement non-euclidien
ou localement affine est évidemment un espace localement pro-
jectif. D’une facon générale, si H est un espace homogéne et G
le groupe de transformations correspondant, tout sous-groupe
continu G’ qui est localement transitif dans un domaine de H
définit un espace homogene H’, et tout espace localement équi-
valent & H’ définit aussi un espace localement équivalent & H.

Soit S l’espace de recouvrement simplement connexe de
Iespace projectif & n dimensions. L’espace S est homéomorphe
& la sphére a n dimensions et recouvre deux fois I’espace pro-
jectif. Un point de S est représenté par I'ensemble de n + 1
quantités Az,, Azy, ..., Az, , non toutes nulles, le nombre A étant
un nombre positif quelconque. Le groupe d’automorphismes (A)
de I’espace S est le groupe dont la transformation générale est:

4

déterminant | a;; | = 41 .
L’application d’un résultat général au cas présent donne le
théoreme suivant:

Tout espace localement projectif clos et & groupe de Poincaré
fini admet Uespace S pour espace de recouvrement simplement
conneze.

Les espaces de cette classe sont les espaces localement pro-
Jectifs normaux. Un espace localement projectif normal peut
aussl étre caractérisé par la propriété suivante: Toute géodésique
de l'espace est une courbe fermée.

Tout espace localement projectif normal est défini par un
groupe formé d’un nombre fini de transformations du groupe (A),
chacune de ces transformations étant sans points invariants
dans S. Réciproquement tout groupe fini de cette espéece définit
un espace localement projectif normal. Or tout groupe fini de
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transformations de (A) laisse invariante au moins une forme
quadratique définie en z,, z,, ..., ,, que nous pouvons supposer
étre la forme a5 + z; + ... + z,,. Le groupe considéré est
donc un groupe de déplacements sphériques. Donc

THEOREME: Tout espace localement projectif normal est équi-
valent a un espace localement sphérique normal (forme spatiale
de Clifford & courbure constante positive). Er particulier, tout
espace homogéne localement équivalent a [Uespace projectif est
équivalent & Uespace projectif ou a lespace sphérique.

Les espaces localement euclidiens ou localement hyperboliques
sont des espaces localement projectifs qui ne sont pas normaux.
Si les géodésiques d’un espace localement projectif sont les
géodésiques d’une métrique riemannienne, cet espace est locale-
ment euclidien ou non-euclidien. Il existe des espaces localement
projectifs, méme clos, qui ne sont pas équivalents a des espaces
localement euclidiens ou non-euclidiens. Considérons, par
exemple, dans le plan projectif la transformation z, = Az,
T, = X;, Ty = T, et le groupe I' engendré par cette transforma-
tion. Dans le domaine obtenu en enlevant du plan projectif la
droite x, = O et le point x;, = x, == 0, le groupe I' a les carac-
teres d’un groupe d’holonomie et définit un espace localement
projectif E. On peut prendre pour domaine fondamental du
groupe I' le domaine compris entre les deux coniques
x4 2y — 12 =0 et xf + 25— N2, = 0. On voit donc que
Pespace E est homéomorphe au tore, mais les géodésiques de
cet espace ne peuvent pas étre les géodésiques d’'une métrique
riemannienne. De plus ces géodésiques ne satisfont pas a la
condition suivante que nous appellerons condition de convexité:
Supposons donnée une famille continue d’arcs géodésiques AB,,
Porigine A étant fixze et Uextrémité B, étant une fonction continue
d’un paramétre t, définie pour 0 =t <1; si B, tend vers un
point B, lorsque t tend vers 1, U'arc géodésique AB, tend vers un
arc géodésiqgue AB;. Remarquons que les géodésiques d’un
espace riemannien normal satisfont & cette condition ainsi que
les géodésiques d’un espace localement projectif normal ou d’un
espace localement affine normal. Un espace localement projectif
qui satisfait a la condition de convexité sera appelé convexe.
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Les géodésiques issues d’un point remplissent tout I’espace. On
peut démontrer le théoréeme suivant: “

Lespace de recouvrement simplement connexe d’un espace
localement projectif convexe est équivalent a Uespace sphérigue S
ou bien @ un domaine convexe de l’espace projectif.

Réciproquement, soit D un domaine convexe de l’espace
projectif, c¢’est-a-dire un domaine satisfaisant & notre condition
de convexité. Soit I' un groupe de transformations projectives
qui transforme D en lui-méme, qui est proprement discontinu
dans D et dont les transformations n’admettent pas de points
invariants dans D. On sait qu’on peut définir dans D une mé-
trique en prenant pour distance de deux points M et M’ le
logarithme du rapport anharmonique des points M, M’ et des
deux points d’intersection de la droite MM’ avec la frontiére
de D. Cette métrique est invariante par I'. L’ensemble des
points équivalents & un point de D par rapport au groupe I'
peut donc étre considéré comme le point général d’un espace
localement projectif; celui-ci sera convexe et admettra D pour
espace de recouvrement simplement connexe. Dans ce raison-
nement on a supposé que D n’est pas I’espace affine.

10. — Considérons plus spécialement les espaces localement
projectifs convexes a deux dimensions. Faisons abstraction des
espaces localement projectifs normaux, c’est-a-dire de ’espace
sphérique & deux dimensions et du plan projectif. Soit E un
espace localement projectif clos. Son espace de recouvrement,
simplement connexe est équivalent & un domaine convexe D
du plan projectif; appelons C la frontiére de D. I’espace E sera
défin1 par un groupe projectif I' qui a les caractéres d’un groupe
d’holonomie dans le domaine D; ce groupe I est d’ailleurs infini.
On montre alors que les seuls cas qui peuvent se présenter sont
les suivants: 19 C est une droite et D est le plan affine; 20 C se
compose de deux droites et D est le demi-plan affine; 3¢ C se
compose de trois segments de droites et D est I'intérieur d’un
triangle; 4° C se compose d’un segment de droite et ‘d’un arc
de courbe tel que les transformés par I' de tout point de cet
arc forment un ensemble partout dense sur cet arc; 5° les trans-
formés de tout point de C (peut-8tre & I’exception d’un point)
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forment un ensemble partout dense sur C. Supposons que C
soit composé d’arcs analytiques. Alors la partie non rectiligne
de C est & courbure projective constante. On peut en déduire
que les seuls cas possibles sont les trois premiers cas et le cin-
quiéme cas ou D est I'intérieur d’une conique. On a par consé-
quent le résultat suivant:

St un espace localement projectif a deux dimensions est convexe
et clos, il est équivalent a Uespace sphérique, ou bien a Uespace
projectif, ou bien a un espace localement hyperbolique, ou bien d
un espace localement affine normal, ou bien son espace de recouvre-
ment simplement connexe est équivalent soit au demi-plan affine,
soit a Uintérieur d’un triangle, soit & un domaine convexe du plan
projectif dont la frontiére contient des arcs non analytiques.

Il parait probable que le dernier cas ne peut pas se présenter.
On a de méme le résultat suivant:

St un espace localement affine @ deux dimensions est convexe
et clos, il est normal, ou bien son espace de recouvrement simplement
connexe est équivalent soit au demi-plan affine, soit a un domaine
du plan affine limité par deux demi-droites issues d’un point,
sott & un domaine convexe du plan affine dont la frontiére contient
des arcs non analytiques.

Plus généralement on peut démontrer que les deux énoncés
précédents sont encore valables pour les espaces localement
projectifs ou pour les espaces localement affines qui sont convexes
et non prolongeables. Remarquons cependant qu'un espace
localement hyperbolique normal est prolongeable en tant
qu’espace localement projectif lorsque le groupe I' correspon-
dant est proprement discontinu sur la conique C.

11. — Il est intéressant de considérer également les espaces
localement projectifs complexes. L’espace projectif complexe
est simplement connexe. Dans le cas d’un nombre pair de dimen-
sions, l'espace projectif complexe n’admet pas de forme de
Clifford autre que lui-méme. Dans le cas d’un nombre impair
de dimensions complexes, il existe une forme de Clifford dis-
tincte de ’espace projectif complexe. Cette forme de Clifford est
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non orientable, et elle peut aussi étre considérée comme une
forme de Clifford de 1’espace hermitien elliptique.

On détermine encore facilement les espaces localement,
conformes normaux. On peut démonirer que ceuz-ci sont ausst
équivalents aux espaces localement sphériques normauz.

Pour terminer remarquons que les espaces localement homo-
genes considérés sont des cas particuliers des espaces non holo-
nomes définis d’'une facon générale par M. E. Cartan. Ce sont les
espaces non holonomes correspondant & un groupe transitif
de Lie G tels que les déplacements infinitésimaux attachés aux
différents veecteurs infinitésimaux de l'espace satisfont aux
équations de structure du groupe G. L’étude des espaces locale-
ment homogeénes est ainsi le premier pas dans ’étude des pro-
priétés globales des espaces non holonomes.
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QUELQUES PROBLEMES
DE LA THEORIE DES REPRESENTATIONS
CONTINUES !

PAR

H. Hore¥ (Zurich).

1. — Comme but des recherches topologiques on assigne
souvent 1’étude d’une certaine classe de propriétés concernant
la forme et la position des figures géométriques, propriétés qui sont
invariantes pour les représentations topologiques, c’est-a-dire
biunivoques et continues dans les deux sens. C’est bien la
définition usuelle, mais elle n’est certainement pas compléte.
Car ce sont non seulement les propriétés des figures géomé-
triques qui doivent étre étudiées, mais aussi les propriétés des
représentations topologiques ou, plus généralement, des repré-
sentations univoques et continues elles-mémes. Comme les figures,
ces représentations elles-mémes aussi torment un domaine impor-
tant et fécond pour les recherches des topologues — il suffit de
nous rappeler les conférences intéressantes que nous entendimes
derni¢rement de MM. pe KERERJARTO et NIELSEN, ainsi que
quelques travaux classiques de M. Brouwer. L’indication de
cette distinction de deux parties différentes de la topologie
n’entraine heureusement pas de scission de notre science en
deux branches particulieres qui seraient peu liées entre elles;
tout au contraire, il existe entre elles des rapports étroits: par

1 Conférence faite le 25 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par I’Université de Geneve; série consacrée i
Quelques questions de Géométrie et de Topologie.
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exemple, les propriétés de toutes les représentations d'un
espace P en un autre espace fixe Q — c’est-a-dire les propriétes
de D'« espace (abstrait) des représentations» Q° — sont en
méme temps, comme M. Kurarowskr nous I'a rappelé, des
propriétés de P méme, qui donnent des renseignements impor-
tants sur la forme de P. |

Je voudrais exposer ici ces rapports entre la « topologie des
représentations » et la « topologie de la forme » et cela en traitant
deux catégories de problémes: une premiére catégorie se rappor-
tant a la possibilité de comparer entre elles les formes de deux
espaces 1 P et Q en considérant les représentations de P sur Q
et celles de Q sur P, une seconde concernant les relations entre
la forme d’un espace P et les représentations de P sur lui-méme 2.

2. — Avant d’aborder le premier de ces points, celui de la
comparaison de deux espaces par leurs représentations réci-
proques, j’introduirai une notion qui a fait ses preuves en
ces matiéres: la représentation f de I’espace P sur l'espace Q
sera dite « essentielle » si pour chaque modification continue de la
représentation f, fout ’espace Q reste image de P; en d’autres
termes, §'il est impossible de libérer une partie de Q du recou-
vrement par 'image de P, par une modification continue de la
représentation f.

En faisant des hypothéses trés générales sur P et Q il est
possible de représenter ces espaces I’'un sur ’autre d’une maniére
continue; mais sous quelles conditions existe-t-il une représen-
tation essentielle de P sur Q ? On montre par exemple facilement
que toute surface close peut étre représentée essentiellement
sur la surface sphérique, tandis que chaque représentation d’une
surface sphérique sur une surface close et orientable de genre
supérieur est non-essentielle. Ce dernier fait est un cas parti-
culier du théoréme plus général suivant: P et Q étant des
variétés closes et orientables & n dimensions, une condition

1 Par un «espace » nous entendons toujours un espace métrique.
? Par une «représentation » nous entendons toujours une représentation univoque
et continue. Nous appelons f une représentation de P en Q si I'image f (P) est sous-

ensemble de Q; si 'on a, en particulier, f (P) = Q, alors f sera dite une représentation
de P sur Q. '
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nécessatre pour que I’ soit représentable essentiellement sur Q,
est 'existence des relations suivantes
pr=4q" re= 1, 2 n— 1

9 ees g 5

ou p" et ¢" désignent les r-iemes nombres de Betti de P et Q [13] 1.

Ce théoréme, bien entendu, est valable pour des ¢ariétés closes
de la méme dimension ; les exemples suivants montreront qu’il
ne peut pas, sans autre, étre étendu a des paires plus générales
d’espaces P et Q: une circonférence P peut évidemment étre
représentée essentiellement sur une lemniscate (Q, hien qu’on
ait p! = 1, ¢ = 2; il existe aussi des représentations essen-
tielles de la sphére & trois dimensions P sur la sphére & deux
dimensions Q, bien qu’on ait p2 =0, ¢ =1 [16]. Je crois
cependant qu’une loi plus générale se manifeste par le théoréme
précité, une loi dont le contenu exact et le domaine de validité ne
sont pas encore connus, mais qui pourrait s’énoncer a peu preés
de la facon suivante: si ’espace P a, dans un certain sens, une
structure topologique «plus simple» que ’espace Q, alors P
n’est pas représentable essentiellement sur (). Mais la déter-
mination exacte du sens de la notion de « simplicité » qui inter-
vient ici nous manque encore. C’est précisément ici 'un des
problémes principaux que j’ai en vue. Nous indiquerons dans la

r

suite (n° 5, n® 7) d’autres apparitions de la méme loi.

3. — Restons-en pour Pinstant aux variétés closes a n dimen-
sions P et Q; alors le fait qu’une représentation de P sur () est
essentielle équivaut au fait que le degré de cette représentation
n’est pas nul [23; 11]; et 'on peut joindre au théoréeme susmen-
tionné sur les représentations essentielles d’autres théorémes
sur le degré de représentation qui sont, en partie, plus précis:

M. H. KxesEr a démontré la formule suivante pour z = 2,
c’est-a-dire pour les surfaces closes, ou ¢ désigne le degré d’une
représentation de P sur Q et p, ¢ les genres de P, () [24]:

p—1=le|-{¢g—1) (pour p > 0j .

1 Les chiffres entre crochets renvoient & la bibliographie qui se trouve a la fin de
cet exposé,
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D’autre part, comme il existe des représentations pour tout ¢
satisfaisant a Dinégalité de M. Kneser, cette formule donne
d’amples renseignements sur le rapport entre les propriétés
de la forme de P et Q, d’une part, et les représentations possibles
de 'autre.

On ne connait pas de théoréme aussi précis pour les dimensions:
supérieures. On connait cependant certaines propriétés des
variétés closes et orientables & n dimensions, par exemple le
fait que voici: si 'on peut représenter, avec le degré 1, P sur Q,
ainsi que Q sur P, alors tous les invariants d’homologie — les
groupes de Betti et 'anneau d’intersection de M. Alexander —
coincident pour P et Q [13]. Le probléme reste ouvert de savoir
si deux variétés, représentables 'une sur autre avec le degré 1,
sont aussi homéomorphes. Ce probléme est d’ailleurs étroitement
apparenté avec cet autre probléme, posé par MM. KURATOWSKI
et ULam [25] et resté ouvert lui aussi: soient P et Q des variétés
closes et supposons qu’il existe, pour chaque e positif, une
représentation f telle que ’ensemble /! (¢) pour chaque point ¢
de Q ait un diamétre inférieur & e; P et Q sont-elles alors
homéomorphes ?

Le théoréme indiqué plus haut, sur la possibilité des repré-
sentations réciproques avec le degré 1, mérite une attention
particuliére dans le cas ot Q est la sphére S"™ a n dimensions.
On voit aisément que chaque variété (close et orientable) &
n dimensions P peut étre représentée sur 5" avec le degré 1;
Iénoncé du théoréme est alors le suivant: si 'on peut repré-
senter S™ sur P avec le degré 1, alors P a les mémes invariants
d’homologie que la sphére S™; et il est facile de montrer que,
en plus, le groupe fondamental de P disparait lui aussi
[11, théor. VIII]. La fameuse hypothese de Poincarg dit que
la sphére S™ se distingue de toutes les autres variétés closes a
n dimensions par le fait que le groupe fondamental ainsi que tous
les r-1emes groupes de Betti (pour 1 = r = n — 1) disparaissent;
si cette hypothese est exacte, alors P aussi est homéomorphe
a la sphere. On voit que la justesse de ’hypothése de Poincaré
entrainerait aussi celle de I’hypothése suivante, énoncée par
M. KNESER (en rapport avec certaines recherches sur Paxioma-
tique des variétés) [22, p. 10]: « La seule variété close a n dimen-
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sions sur laquelle la sphere a n dimensions peut étre représentée
avec le degré 1, est la sphére elle-méme». Derniérement,
M. Hurewicz a annoncé une démonstration du fait que, inver-
sement, ’hypotheése de Poincaré découle de celle de M. Kneser,
que les deux sont, par conséquent, équivalentes [21].

4. — Je tiens d’ailleurs a faire observer que cette remarque
de M. Hurewicz doit étre placée dans le cadre de ses recherches
systématiques sur les représentations des sphéres S™ en un
espace ): celles-ci forment le noyau de sa nouvelle théorie des
« groupes d’homotopie & un nombre supérieur de dimensions »
[20; 21]; cette théorie semble représenter un progres tres impor-
tant dans le domaine dont je parle ici. Malheureusement, je ne
connais pas encore cette théorie assez a fond pour pouvoir
I’exposer ici; je n'indiqueral par la suite qu’un de ses beaux
théorénies (No 8).

5. — Par contre, depuis quelques années, les représentations
d’un espace P en la sphére S™ ont été employées pour examiner P
lui-méme et cela a donné des résultats satisfaisants dans le cas
ou P est a n dimensions lut aussi. J’ai pu montrer pour commencer
que la condition nécessaire et suffisante pour qu’un polyédre
@ n dimenstons P puisse étre représenté essentiellement sur S"
est qu’il contienne un cycle & n dimensions (d’'un domaine de
coefficients quelconque) différent de zéro [14; 15; 2, p. H14].
Ce théoreme fut étendu par M. ALEXANDROFF & des espaces
compacts arbitraires [1, p. 223]. M. FrEUDENTHAL enfin a
porté ces recherches & leur achévement en démontrant le fait
suivant: les propriétés d’homologie & n dimensions d’un espace
compact a n dimensions P sont équivalentes aux propriétés des
classes d’homotopie des représentations de P en la sphere S";
comme M. Freudenthal 1’a montré, ces classes d’homotopie
peuvent en effet étre concues comme éléments d’un groupe, et
ce groupe, d’'une part, le n-iéme groupe de Betti de P de autre,
se déterminent réciproquement d’une facon univoque [9].

Le théoréme que voici de M. Borsuk mérite aussi d’étre
mentionné dans cet ordre d’idées, et cela autant a cause de son
intuitive simplicité qu’a cause de sa démonstration élémentaire:
P étant un ensemble fermé et borné de l'espace euclidien a
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n + 1 dimensions R**!, il partage R™"! et ne le partage que 8’1l
existe une représentation essentielle de P sur S*[3; 2, p. 405] L.

8. — Ce théoréme dépasse un peu le cadre des théoremes
précités: ici la dimension de P peut étre supérieure & n, & savoir
égale & n + 1 (il est vrai que cette différence s’affaiblit du fait
que P se trouve dans R™"!). En général, on est peu renseigné sur
la signification des représentations d’un espace P, & dimension
supérieure & n, sur la sphére & n dimensions; les efforts pour
caractériser aussi par ces représentations les groupes de Bett
inférieurs de P, sont restés jusqu’a présent sans succes.

C’est uniquement dans le cas n =1 qu’on peut, dans les
théorémes précités, renoncer a I'’hypothése que P aussi est
a n dimensions: j’avais démontré qu’'un polyedre de dimen-
sion arbitraire peut étre représenté essentiellement sur la
circonférence, et ne peut I'étre que si son premier nombre
de Betti est non nul [16, théor. Va; 2, p. 518]. M. Borsuk a
étendu ce théoréme aux espaces compacts arbitraires [4], et en
méme temps M. BRuscHLINSKY a démontré le fait suivant: on
peut déterminer le premier nombre de Betti d’un espace com-
pact P a partir du groupe des classes des représentations de P
en un cercle S' [7] — de la méme maniére que, d’apres le
théoréme de M. Freudenthal, cela peut se faire pour le nombre
de Betti le plus élevé de P par les représentations de P en la
sphére de dimension correspondante.

Par contre, le role joué par les représentations d’un espace P
4 N dimensions sur les sphéres des dimensions n = 2, 3, ..., N —1
est encore totalement obscur, méme pour le cas des polyédres.
D’une part 1l semble, déja pour r = 2, extrémement douteux
qu’on puisse représenter essentiellement sur S” chaque polyédre
P dont le r-itme nombre de Betti est positif2; d’autre part il est
certain que des représentations essentielles de P sur S2 peuvent

1 On pourrait poser le probléme de caractériser aussi des propriétés plus générales des
ensembles ponctuels de I'espace R+ par des représentations sur S” . M. KURATOWSKI
m’a indiqué derniérement que ce probléme fut traité avec le plus grand succés par
M. EILENBERG pour le cas n = 1: dans un mémoire & paraitre prochainement
M. Eilenberg construit presque toute la topologie des ensembles ponctuels plans sur la
base des représentations sur la circonférence [8]. ’

2 Une telle représentation est possible si la dimension de P n’est pas supérieure a
r + 1 [16, théor. VII].



ki samcsimslmrtsansiinie s B

340 | . H. HOPF

exister, méme s1 le deuxiéme nombre de Betti disparait: cela a
lieu par exemple si P est la sphére a trois dimensions S3 [16].

La question de savoir si la sphére S™ peut étre représentée
essentiellement sur la sphére S™ pour un couple donné N, n (avec
N > n > 1) est encore ouverte; j’ai pu y répondre pour les
cas particuliers N = 4k — 1, n = 2k, k = 1,2, ... et cela par
Paffirmative [17]1. Je considére, pour ma part, la réponse générale
a cette question comme une tache des plus importantes et des
plus attrayantes: non seulement en ce qui concerne la théorie,
mails aussi parce que nous devrions connaitre complétement et
sous chaque point de vue des figures aussi simples et aussi
mportantes que les spheres !

7. — Nous venons de parler de la comparaison de Pespace P
avec les spheéres; il serait presque plus naturel de considérer
comme espace de comparaison, au lieu des sphéres, les figures les
plus simples possibles, les simplexes, et si on le fait on obtient
vraiment un beau succeés. Modifions tout d’abord un peu la
notion d’une représentation «essentielle »: la représentation f
d’un espace P sur un simplexe Q sera dite « relativement essen-
tielle » s1l est impossible de libérer des points de () durecouvre-
ment par 'image de P en modifiant d’une maniere continue f
é'l"intérieur senlement de (), c’est-a-dire en ne modifiant / en
aucun point dont I'image tombe sur la frontiére de Q. Or voici
I’énoncé d’un théoréme de M. ArLExanprorr: La dimension
d’un espace compact P est le plus grand nombre n tel que P
puisse étre représenté relativement-essentiellement sur wun
simplexe a n dimensions [1; 2, p. 373; 19].

Par ce théoréme aussi intuitif qu'important, je terminerai la
partie de ma conférence traitant de la comparaison de deux
espaces a I'aide de leurs représentations réciproques.

8. — Je parleral maintenant des représentations d’un espace
en lui-méme. Déja en considérant les surfaces finies, on remarque
une relation entre ces représentations et la forme des surfaces:
P étant une surface close, 1l est — d’aprés un théoréeme connu sur
le degré de représentation — impossible de la déformer, d’une

~ 1 M. PONTRJAGIN a récemment répondu par la négativé 4 cette question pour chaque
N =n -+ 2> 4. (Communication de M. LEFscHETZ au Congrés intern. des Math,, Oslo,
sept. 1936.)
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facon univoque et continue, en une de ses propres parties; par
contre cela est possible si P admet une frontiére. La propriété
par laquelle se caractérisent ici les surfaces closes s’énonce
sous la forme générale suivante: 'espace P sera dit « clos dans
le sens de ’homotopie » ou encore « essentiel sur lui-méme » si
lidentité — c’est-a-dire la représentation avec f(r) = z pour
chaque point z de P — est une représentation essentielle.

Cette propriété d’étre «clos» me semble une notion assez
immédiate et naturelle. Si 'on considére par exemple un po-
lyédre P, alors se pose le probléme de décider & partir des pro-
priétés combinatoires de P, si P est «clos» dans ce sens ou ne
I’est pas; mais ce probléme n’est pas résolu, pas méme pour les
polyedres; en particulier, il ne semble pas exister des relations
simples entre le groupe fondamental et les groupes de Betti
d’une part, et le fait d’8tre clos au sens de ’homotopie d’autre
part [18; 2, p. 518 et suiv.].

Cependant, M. Hurewicz a résolu un probléme trés voisin,
4 savoir: quels sont les polyédres qui peuvent étre réduits a uw
seul point par une déformation univoque et continue ? La réponse
est la suivante: une telle réduction du polyédre connexe P est pos-
sible et ne I'est que si tous les r-iémes groupes de Betti pour r>1
ainsi que le groupe fondamental de P disparaissent, ¢’est-a-dire
si P coincide par les invarianis classiques de Poincaré avec un
simplexe [21]. C’est un théoréme surprenant qui jette une vive
lumiére sur la valeur des invariants classiques et aussi sur celle
de la nouvelle théorie de I’homotopie de M. HurEwicz !

Mile PANNwITZ et mol avons considéré avec succes une autre
modification du probleme non résolu de caractériser la propriété
d’étre clos: nous appelons un espace « labile » si des déformations
arbitrairement petites suffisent pour le transformer en une de ses
propres parties; un espace labile n’est done, a fortiori, pas clos

au sens de 'homotopie. Or, la labilité d’un polyédre P qui est

partout & n dimensions peut étre caractérisée par une propriété
purement combinatoire, & savoir par l'existence d’une « fron-
tiere » de P — ou la notion de frontiére employée ici appartient
entierement au domaine classique des notions sur lesquelles
repose la théorie de I’homologie. Mais je ne voudrais pas insister
ici sur la définition exacte de cette notion [18; 2, pp. 285 et 524].
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11 est amusant et instructif de construire des exemples pour
ces théorémes; il existe notamment des polyédres a deux
dimensions qui peuvent étre réduits & un point et qui sont labiles
bien qu’ils ne possédent pas d’aréte libre, ¢’est-a-dire bien que,
dans leurs décompositions en simplexes, chaque aréte appar-
tienne au moins a deux triangles [18].

9. — Parmi les propriétés des représentations d’un espace en
lui-méme, c’est existence ou la non-existence des points fizes
qui a toujours retenu spécialement P'attention. Dans le cadre
de notre mise en problémes nous demanderons: quelles sont les
propriétés de la forme d’un espace P qui permettent de décider
si P peut ou non étre transformé en lui-méme sans points fixes ?
La circonférence est un tel espace, tandis que les simplexes
contiennent, d’aprés le célebre théoreme de M. BrRouwEer, des
points fixes pour toute représentation en eux-mémes. De quelle
facon pourrait-on généraliser cetle différence entre une circon-
férence et un simplexe ? Est-ce qu’un certain aspect « cyclique »
d’une figure pourrait étre caractéristique du fait qu’elle peut
étre transformée en elle-méme sans points fixes ? On a quelques
connaissances sur ce sujet mais, malheureusement, elles ne
sont pas bien nombreuses.

La formule sur les points fixes de M. LEFscHETz [26] est
valable, comme je P’ai montré [12; 2, p. 524], non seulement
pour des variétés mais aussi pour des polyedres arbitraires; de
cette formule découle le fait que le théoréme précité de
M. BrRoUWER sur les points fixes des simplexes se laisse étendre
a tous les polyédres qui ont les mémes nombres de Betti que les
simplexes, qui sont, de ce fait, connexes et dont tous les nombres
de Betti de dimension positive disparaissent [2, p. 532].

M. LEFscHETZ a montré, en cutre, que ce théoréme conserve sa

validité si ’on remplace les polyédres par les espaces compacts
qui sont «localement connexes au sens de M. Alexander»
[27, pp- 90 et 359]. La condition suivante est donc nécessaire pour
Pexistence de représentations en eux-mémes sans points fixes
de ces espaces assez généraux: pour un certain r > 1 le r-iéme
nombre de Betti est différent de zéro.

Un exemple, découvert par M. Borsuk, montrera qu’on n’ose
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pas renoncer & I'’hypothése précitée de la connexité locale: il
existe un continu dont tous les r-iémes nombres de Betti pour
r = 1,2, ... disparaissent et qui peut cependant étre transforme
en lui-méme sans point fixe [5]. D’ailleurs, ce continu se trouve
bien dans Iespace a trois dimensions mais pas dans le plan et
il est douteux qu’'un tel exemple existe déja dans le plan; en
d’autres termes, nous ne savons pas — et cette ignorance est
remarquable | — si Paffirmation suivante est exacte: P étant un
continu plan ne décomposant pas le plan et f une représentation
quelconque de P en lui-méme, alors f possede un point fixe.

La condition qu’un nombre de Betti de dimension positive
est différent de zéro n’est pas suffisante pour 'existence de
représentations sans points fixes: par exemple, la variété a
quatre dimensions des points complexes du plan projectif
posséde, pour toute représentation en elle-méme un point fixe,
bien que son deuxiéme et son quatriéme nombre de Betti soient
égaux a un [13]. C’est pour cette raison que les faits suivants,
établis par M. Borsuk, sont trés remarquables: tout polyedre
— et méme, plus généralement, tout espace compact et locale-
ment connexe — dont le premier nombre de Betti ne s’annule
pas peut étre représenté en lui-méme sans point fixe [4]; et la
méme affirmation est vraie aussi pour les polyédres qui sont
situés dans Uespace euclidien o trois dimensions et dont le
deuzriéme nombre de Betti est différent de zéro [6]. Mais si nous
considérons des polyédres arbitraires, alors on ne connait pas
de critére nécessaire et suffisant pour Pexistence de représenta-
tions sans points fixes et cela méme pas si I'on se restreint aux
variétés closes.

10. — On obtient cependant de meilleurs résultats si ’on ne
considere pas des représentations arbitraires de P en lui-méme,
mais — comme dans le probléme de la propriété d’étre « clos »
indiqué plus haut — des « petites transformations », ¢’est-a-dire
des représentations o les distances entre le point et le point-
image sont petites. En premier lieu, on déduit de la formule
généralisée de M. LEFscHETZ que nous venons d’employer, que
seuls les polyédres & caractéristique eulérienne nulle admettent
des transformations arbitrairement petites sans point fixe
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[2, p. 532]. Dans le cas des variétés closes la réciproque de cette
affirmation est aussi vraie, le théoréme suivant est donc valable:
Une variété close admet et n’admet de transformation arbitraire-
ment petite en elle-méme sans point fixe que si sa caractéristique
eulérienne est nulle [10; 2, p. 552]. On sait que cette condition
est satisfaite pour toute variété de dimension impaire, tandis
que parmi les variétés de dimension paire il n’y en a que quelques-
unes qui la remplissent.

Dans une variété (dérivable ') la notion de « petite transforma-
tion sans point fixe » coincide au fond avee la notion de « champ
de directions »; nous pouvons donc énoncer pour les champs
de directions le théoréme formulé plus haut pour les petites
transformations. On obtient alors une généralisation de théo-
remes connus de PoiNcArRE et de M. BRouwgR sur des surfaces
et des spheéres a n dimensions.

11. — Le théoreme sur l'existence de petites transformations
sans point fixe joue un certain role dans les recherches sur les
variéiés de groupes: un espace de groupe admettant des trans-
formations infinitésimales sans points fixes, sa caractéristique
est de ce fait nécessairement nulle. La question de savoir quels
espaces sont des espaces de groupes appartient en principe au
cercle des probléemes que nous traitons ici; car, pour un espace,
le fait de représenter un groupe est une propriété des trans-
formations de I’espace sur lui-méme, et seuls certains espaces
la possedent. Cependant, la théorie que nous exposa M. CARTAN
dans sa conférence ne peut étre appelée une théorie «topolo-
gique »; elle emploie en effet des moyens beaucoup plus difficiles
et beaucoup plus profonds que ceux dont il a fallu se servir pour
les problemes dont j’a1 parlé. La démonstration, par exemple, du
théoréme que, parmi toutes les sphéres, seules celles de dimen-
sions 1 et 3 sont des espaces de groupes, exige presque tout
Pappareil moderne des théories de MM. Cartan et WEYL. Ce
serait une tache extrémement attrayante que de déduire le méme
fait par des moyens «élémentaires», c’est-a-dire purement
topologiques. Nous sommes encore tres loin de la résolution de

1 Dés ici, les variétés que nous considérons doivent satisfaire & certaines conditions
de dérivabilité que nous ne voulons d’ailleurs pas préciser.
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ce probléme; je voudrais cependant indiquer ici quelques
nouveaux résultats de M. STiEFEL qui nous rapprochent, peut-
étre, de la solution de problémes de cet ordre [28, 29].

On voit aisément qu’une variété de groupes & n dimensions
admet non seulement un champ continu de directions, mais
'n champs de ce genre qui sont, en chaque point, linéairement
indépendants; cette circonstance est équivalente au fait suivant:
la variété est « parallélisable », ¢’est-a-dire que 1’on peut introduire
un « parallélisme » des directions, qui satisfait aux exigences
naturelles imposées & une telle notion. La question subsiste de
savoir si la possibilité de ce parallélisme découle déja de I'exis-
tence d’un unique champ de directions, ¢’est-a-dire de la dispari-
tion de la caractéristique. M. StiereL a découvert le fait trés
surprenant que chaque variété orientable a trois dimensions est
parallélisable; mais il pit montrer, d’autre part, par des exemples,
qu’il faut répondre par la négation a la question que je viens
d’énoncer; M. Stiefel démontre en particulier — dans le cadre
de théorémes plus généraux et plus précis — le fait suivant:
Parmi les espaces projectifs réels a n dimensions pour lesquels
onan -+ 1z=0 mod. 16, seuls les espaces des dimensions 1, 3, 7
sont parallélisables 1. Cette méme méthode n’a pas réussi jusqu’a
présent en ce qui concerne le probléeme de la possibilité du
parallélisme des spheres.

Il est donc démontré de fagon purement topologique que,
parmi tous les espaces projectifs, seuls ceux des dimensions
n=1,3,7et 16k —1 avec k =1, 2, ... peuvent éventuellement
étre envisagés comme des espaces de groupes. La théorie de
M. CGarran décide qu’ils doivent étre éliminés tous & I’exception
de n =1 et n == 3. Nous ne savons pas encore s’il existe des
espaces projectifs parallélisables pour n = 16k — 1; Pespace
projectif & sept dimensions, comme d’ailleurs aussi Ia sphére &
sept dimensions, sont parallélisables sans étre cependant espaces
de groupes. On ne sait pas s’il y a, en dehors de 7, encore un
autre nombre de dimensions jouissant de cette propriété.

1 M. EHRESMANN m’a indiqué derniérement qu’il a fait, Iui aussi, — dans un mémoire
qui sera publié prochainement — des recherches sur la possibilité du parallélisme des
espaces réels projectifs et qu’il a obtenu les mémes résultats que M. Stiefel. Sa méthode,
enticrement différente de celle de M. Stiefel, n’embrasse pas non plus les nombres de
dimensions n = 16k — 1. : .

L’Enseignement mathém., 35me année, 1936.
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Le fait que voicl est facile & montrer: pour une sphére S™ ainsi
que pour un espace projectif P" la possibilité de parallélisme est
équivalente a I’existence d’un ensemble % de représentations
topologiques de S™ ou P" sur eux-mémes, ensemble qui est
simplement transitif pour un point (plus exactement: § est un
ensemble de représentations topologiques de S™ ou P" sur
eux-mémes et jouissant de la propriété suivante: il existe un
point e tel que pour chaque point z il y ait dans § une et une
seule représentation /. avec f,.(e) = z; en plus, f, dépend d’une
maniere continue de z et les f, doivent avoir certaines propriétés
de dérivabilité). I’existence d’un tel ensemble de représentations
topologiques d’un espace est un affaiblissement de la propriété
d’étre espace de groupe; c’est méme un affaiblissement considé-
rable; la loi associative notamment ne joue pas de role icl.
Malgré cela, les recherches sur les espaces de groupes « affaiblis »
de cette facon — et peut-étre encore d’autre facon — se révéle-
ront utiles pour le maniement purement topologique des vrais
espaces de groupes.

En tous cas, la question de savoir quelles spheres et quels
espaces projectifs sont parallélisables me semble extrémement
intéressante. Les nombres les plus petits de dimensions pour
lesquels cette question est encore ouverte, sont n = 5 dans le
cas des sphéres, n == 15 dans le cas des espaces projectifs. On
devrait donc s’occuper notamment de S5 et P5. C’est un pro-
bléme tres particulier, mais je ne trouve pas qu’en mathéma-
tiques la « généralité » soit le seul critere pour la valeur d’un
probléme ou d’un théoreme.
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LA GEOMETRIE DES DISTANCES
ET SES RELATIONS AVEC LES AUTRES BRANCHES
DES MATHEMATIQUES !

(GEOMETRIE ELEMENTAIRE, ANALYTIQUE ET AXIOMATIQUE.

ALGEBRE ET ALGEBRE DES VECTEURS. — GREOMETRIE
DIFFERENTIELLE. — (GALCUL DES VARIATIONS)
PAR

Karl MeEnxGER (Vienne).

Le grand progres de la Géométrie au commencement de
I'époque moderne est dii a 'introduction des méthodes analy-
tiques par DEscARTES et FermaT. Cette méthode consiste en la
construction de modéles arithmétiques pour les entités spatiales.
Les points sont définis par des nombres (coordonnées), les
courbes et les surfaces par des équations et la géométrie analy-
tique est I'application de 1’algébre et de I'analyse & ces modeles
arithmétiques.

Cette méthode a enrichi d’un nouveau monde le domaine des
entités géométriques étudiées jusqu’alors et n’a cessé de fournir
depuis sa découverte des problémes sur notre espace. Clest
cette idée encore qui a suggéré la plupart des généralisations
de la conception d’espace: celle de RiemanNN et d’autres qui
ont trouvé application en géométrie différentielle, par exemple
celle de M. FiNsSLER, de méme que celle utilisée dans la géométrie
des nombres par Minkowski. Ces espaces généralisés sont basés
essentiellement sur la représentation de leurs points par des
coordonnées.

1 Conférence faite le 25 octobre 1935 dans le cycle des Conférences internatlionales
des Sciences mathématiques organisées par 1’Université de Genéve; série consacrée a
Quelques questions de Géométrie et de Topologie.
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Malgré son importance historique et ses nombreux avantages
on ne doit cependant pas oublier, me semble-t-il, que d’un point
de vue purement géométrique I’étude des modéles arithmé-
tiques au moyen de ’analyse n’est qu’un procédé entre plusieurs
possibles; ce procédé impose par ailleurs aux recherches des
restrictions assez considérables qui ne sont pas inhérentes a la
nature des figures spatiales.

J’ai été ainsi conduit depuis quelques années a développer
une géométrie qui se passe des modeéles arithmétiques, tout en
s'occupant des problémes relatifs aux notions -classiques:
convexité, courbure, géodésiques, etc. Les points ne sont alors
pas nécessairement définis par des coordonnées, ni les figures
par des équations. La géométrie des distances ou géométrie
métrique est basée sur la donnée d’un ensemble d’éléments
de nature quelconque assujettis & la seule condition qu’a deux
d’entre eux corresponde toujours un certain nombre. Nous
nous placons donc dans I’hypothése d’un de ces espaces
généraux que M. FrEcHET a introduits dans les mathéma-
tiques pour les appliquer au calcul fonctionnel et qui, plus
tard, se sont montrés extrémement féconds pour les recherches
en topologie, en particulier pour les théories de la connexité,
de la dimension, des courbes.

La géométrie des distances ne fait pas partie de la topologie
car elle ne s’occupe pas des transformations homéomorphes, la
distance n’étant pas en général invariante dans une homéo-
morphie. Mais tant par Pétude des espaces généraux que par
ses méthodes elle est assez voisine de la topologie générale
faisant, avec cette derniére, partie de la géométrie « ensembliste »
(mengentheoretische Geometrie).

Bien que récente et peu connue jusqu’a présent, la géométrie
des distances est déja si développée qu'une simple énumération
de tous ses résultats serait impossible en un temps si limité.
Ce que je me propose ici c’est donc seulement de mettre en
évidence quelques-unes de ses liaisons nombreuses et étroites
avec d’autres branches des mathématiques et j’insiste d’autant
plus sur ce point qu’on fait parfois & la géométrie des ensembles
le reproche de se détacher complétement des mathématiques
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classiques et des problémes dont s’occupe la plupart des mathé-
maticiens.

Nous traiterons d’abord briévement de quelques-uns des
rapports entre la géométrie métrique et la géométrie analytique
élémentaire des espaces ordinaires. Des remarques concernant
Palgeébre et I'algébre des vecteurs suivront. Nous passerons
ensuite & I’étude de la convexité dont la théorie générale se lie
étroitement a la géométrie axiomatique de l'espace ordinaire.
Puis, toujours du point de vue des distances, nous introduirons
la notion de courbure qui sera qualifiée pour servir de point de
départ vers une géométrie différentielle. Nous terminerons par
Iétude des lignes géodésiques qui nous fournira des résultats
nouveaux tres généraux relatifs au Caleul des variations.

I. — GEOMETRIE DES DISTANCES ET GEOMETRIE ANALYTIQUE
ELEMENTAIRE.

En géométrie analytique élémentaire on prend comme point
de départ de la théorie des espaces euclidiens a n dimensions
la représentation de chaque point par n nombres xy, ,, ..., T,
réels ou complexes selon qu’il s’agit de I'espace réel ou de
I’espace complexe C,. On appelle carré de la distance des points

(xh 332, (AR xn) et (?/17 y23 A Z/n) le nombre 1

(yg — 20 + (Yo — x>+ - . . + (yn——xn)z (1)
en se réservant de prendre comme distance la racine carrée
positive de I’expression précédente dans le cas ou celle-ci est
non négative. Nous appellerons espace & carrés de distances
complexes * un ensemble d’éléments quelconques tel qu’a tout

1 Pour les espaces unitaires on fixe comme distance le nombre réel
Wy — %) W —x1) + o+ Wy — ) Yy — Xy)

en désignant par; le conjugué & — in du nomibre x = & -+ in. Il est clair que du
point de vue des distances cet espace unitaire & n dimensions est identique & un espace
euclidien réel & 2n dimensions.

2 On peut généraliser cette notion et parler d’un espace a distances empruntées
A un systéme donné S, par exemple & un corps de nombres au sens de 1’algébre abstraite
ou & un groupe abstrait. Pour des applications au calcul des variations j’ai récemment
étudié des espaces dont les distances ne satisfont pas & 'axiome de symeétrie (3,). On
pourrait appeler les espaces satisfaisant aux axiomes (4,) et (4,) espaces a distances
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couple p, ¢ de deux de ses éléments il corresponde un nombre p¢?
(dit carré de la distance de p d q) assujetti aux conditions:

pp® =0, (Aq)
pg = qp* . (Ag)

Dans un espace a carrés de distances complexes tout ensemble
F ne contenant qu’un nombre fini de points, disons & points
D1, Doy -y Ppy €St complétement caractérisé par les k2 carrés des
distances des points de F entre eux, nombres qui peuvent étre
rangés dans une matrice. Il résulte des conditions (A;) et (A,)
que cette matrice est symétrique et que sa diagonale principale
ne contient que des zéros. Une question qui se pose de facon
naturelle est la suivante: Itant donnée wune matrice
| o |l (5,7 = 1,2, .., k) jouissant des deux propriétés men-
tionnées, sous quelles conditions peut-on la réaliser par les
points d’un espace euclidien complexe ou réel, c’est-a-dire
trouver k points ay, a,, ..., @, de cet espace tels que g; a; = a;;
(t,] = 1,2, ..., k)?

Nous allons donner immédiatement la solution du probléme
plus général suivant !: Etant donné un espace & carrés de dis-
tances complexes (. (¢’est-a-dire une matrice de nombres en géné-
ral infinie), établir les conditions nécessaires et suffisantes pour
qu’on puisse 'appliquer sur un sous-ensemble de I’espace eucli-
dierr & n dimensions, et d’abord de I’espace complexe C,. De
fagon précise, nous établirons les conditions pour qu’on puisse
faire correspondre-a chaque point de C un point et un seul de C,
de sorte que (x4, Xy, ..., ) et (yq, ¥y, ..., ¥,) €tant les points

¢

de C, correspondant respectivement aux points p et ¢ de C,

symélriques complexes el réserver le nom d’espace & distances complexes a des
ensembles dont la définition de la distance est assujettie a la condition (4,) seule.

Une étude systématique des espaces & distances non symétriques, par M. NOVAK,
paraitra dans le cahier 8 des Ergebnisse e. mathem. Kolloguiums., Wien, 1936.

1 La caractérisation des espaces euclidiens réels et de leurs sous-ensembles au moyen
des conditions (Ak) et (Ako) se trouve dans mon mémoire Mathem. Annalen, 100, p. 113.
Pour une nouvelle démonstration voir Amer. Journ. of Math., 53,p.721. Des remargques
sur C, et E,,; se trouvent dans Ergebnisse eines mathem. Kolloguiums, 2, p. 34; 4, p.13:
5, p. 10, 16; les critéres de En,_n dans Téhoku Math. Journ., 37, p. 475. La caractérisa;
tion générale des sous-ensembles de C,, et E,, s que nous.allons énoncer est due 4 M. WaLD
et se trouve dans son article, Frgebnisse e. mathem. Kolloquiums, 5, p. 32.
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le nombre pg* donné avec P'espace C satisfasse toujours a la
condition
P =l — ) Yy — 2,2

Appelons déterminant des points p,, ps, ..., p, le nombre

o 1 1 1 ... 1
P) 2 o2
T 0 pip,ap, - - - P1Pp
1 P—z—l;; 0 PzP; R 29 2
A(pla P2s - pk) - - 9 9 2
T psp,psp, 0 - . . Papy,
2 2 2
v ppp,PpP,Prp, - - - U

Pour qu’'un espace a carrés de distances complexes C puisse étre
appliqué sur un sous-ensemble de C, il est nécessaire et suffisant
que

(A?”) A(pPy1, P2y s Ppog) = O pour tout systeme de n + 3 poinis de G

(A(Y,HQ) A(pq, p'z, ey pn».LQ) = 0 pour tout systéme de n - 2 points de C .

Appelons E, . la partie de C, constituée par les points
(T1y ooy Ty Ty gy ey Z,), les nombres zy, ..., x,, étant réels, les
nombres z,,., ..., 2, purement imaginaires, m étant égal a
n-s

9

=

Posons z; == iz; (j =m + 1, m 4 2, ..., n), x; réel. Le

nombre (1) devient alors
(yp—29) %+ ... + (Y, — %) — (yWH_,1 - xm%_l)zu o= Yy — ) ? - (1)

s est la signature de cette forme quadratique. Le E, , est un
espace a carrés de distances complexes tel que, pour chaque
couple p, ¢ de points, pg? soit réel.

Nous dirons que '’ensemble F des k& points py, p,, ..., p, est de
rang r §’il satisfait aux conditions (A}*%) et (A)*3) sans satis-
faire (A";‘*’i), c’est-a-dire si les déterminants de tous les systemes
de r + 2 et de r -- 3 points de I sont nuls, mais s’l existe un
systéme r -~ 1 points dont le déterminant est différent de O.

b
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Pour qu’un espace ol pg? est toujours réel jouisse de la propriété
d’8tre applicable sur un sous-ensemble de E, . il est suffisant
(et évidemment nécessaire) que fout systéme de n -+ 3 poinis
de E jouisse de cette méme propriété; et pour qu'un systéme F
de n -+ 3 points p;, Pa, -y Pposg S0it applicable sur un systéeme
de n + 3 points de E, il faut et il suffit, r désignant le rang
de F, 10 que on ait »r <n et que 2° parmi les systémes de
r 4+ 1 points py, Pa, .- Prsy de F pour lesquels A(py, po, -y
pry) 7 0 il en existe un, tel que la suite des nombres

Alpy) = —1, A(PuPz): A(p13p2ap3)7 ey A (p1s Pss "'rpr-.L'l)

ne contienne pas deux zéros consécutifs et que le nombre N des
changements de signes qu’elle présente aprés la suppression des
zéros éventuels satisfasse & l'inégalité

4«

n S

+(r~—n)§N<_v

o

Pour s = n (= m) Pespace E, ; est évidemment I'espace
n

euclidien réel & n dimensions, le nombre (1°) étant > (y; — x;)?
=1

qui est toujours positif ou nul; on peut donc prendre comme

distance (non négative) la racine carrée positive de cette expres-

sion. K, , joutt en outre de la propriété que ses points sont

métriquement distingués, c’est-a-dire que
p # g implique pg* 5= 0 . (Ay)

Un espace a distances non-négatives et qui distingue métri-
quement les points est ce que M. FrEcHET avait appelé un
espace E. Voici une conséquence importante de la condition (A;):
Une application d’un espace E sur un autre espace E conservant
les distances est nécessairement biunivoque, c¢’est, comme nous
dirons, une congruence. Un espace E qui peut étre appliqué sur
un sous-ensemble d’un espace E est donc applicable sur celui-ci
au moyen d’une congruence et sera dit congruent & ce sous-
ensemble 1

1 C’est ainsi que I’espace unitaire & n dimensions est conoluent a I’espace euclidien
réel a 7n dimensions.
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Le résultat énoncé plus haut contient donc comme cas parti-
culier le théoreme suivant concernant I’espace euclidien réel
E, (=E

Pour qu'un espace E a distances non négatives et distinguant
métriguement les points, soit congruent & un sous-eisemble de E,,
il est nécessaire et suffisant que l'on aut

n,n)

(A(I)H”3) A(pys P2y - Pyig) = 0 pour tout systéme de n -+ 3 pownts de &,
(A{)1+2) A(py, Pas -y Ppyq) = 0 pourtout systéme den + 2 points de K,

(Ak) sgn A(py, Pa - pk) = 1)k+1 ou 0

pour tout systéme de k points de i, ou k = 2, 3, ..., n + 1.

Remarquons qu’un espace E contenant plus de n + 3 points
et satisfaisant aux conditions (A*) pour &k = 2,3, ..., n 41 et
a (APT?) satisfait eo ipsol a la condition (A?*%). Pour qu'un
espace séparable E soit congruent a un sous-ensemble de 1'es-

pace de Hiuerr il faut et il suffit que les conditions (A*) soient
satisfaites pour chaque entier k.

II. — LA THEORIE DE LA CONVEXITE ET SES RELATIONS AVEC
LA GEOMETRIE AXIOMATIQUE.

Passons & I’étude de propriétés plus géométriques de I'espace
et de ses sous-ensembles. Dans ce but nous considérons un
ensemble d’éléments quelconques tel qu’a tout couple d’éléments
(«points») p, ¢ il corresponde un nombre réel pg (« distance »
de p et ¢g) qui satisfait & la condition pp = 0 pour tout p et &
P'inégalité triangulaire pg + gr = pr pour chaque triplet de
points. Nous appellerons un tel ensemble un espace triangulaire.
Particuliérement importants sont les espaces triangulaires a
distances symétriques, non négatives, et qui distinguent meétri-

e . N ¥ . i 12 & .

1 Un espace a distances complexes satisfaisant & la condition (AZT ) ne satisfait
pas nécessairement a la condition (L\ZL+5). On trouvera une étude des svstémes de
n + 3 points non congruents & n + 3 points de E, bien que n 4 2 quelconques de leurs

points soient congruents &4 n + 2 points de E, dans mon mémoire Mathem. Annalen,
100, p. 124. J’ai appelé de tels systémes pseudo-euclidiens.
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quement les points, c’est-a-dire tels que pg = gp > 0 si p=¢
et pp = 0; ou bien, ce qui revient au méme, tels que chaque
triplet de points soit congruent & un triplet de points du plan
(3 un triangle euclidien) !. L’introduction de ces espaces est
due a M. Fricuer. On les appelle espaces métriques ou,
d’aprés M. Bouricanp, espaces distanciés. Comme exemples
d’espaces triangulaires nous avons les espaces euclidiens de
toutes dimensions et ’espace de Hilbert.

I1 est bien naturel lorsqu’on a une inégalité d’étudier les cas
ou elle devient une égalité. Dans le cas d’un espace euclidien
la relation pg + ¢r = pr a lieu pour trois points p, ¢, r distincts
deux & deux, lorsque ¢ est situé sur le segment joignant p et r,
donc entre p et r, et seulement dans ce cas. Posons donc comme
définition pour un espace distancié général qu’un point ¢
est point intermédiaire entre p et r, ou plus simplement est
entre p et rsi p 3% g~ r et pg + gr = pr. Cette notion ne jouit
pas, dans les espaces généraux, de toutes les propriétés qu’elle
possede sur la ligne droite. Considérons par exemple ’espace
distancié constitué par quatre points p, ¢, r, s ayant les
distances pg = gr =rs = sp = 1, pr = ¢gs = 2. Il est clair
que g est entre p et r, et que r est entre ¢ et s, sans que ¢ ou r
soient entre p et s. La relation de point intermédiaire a cependant
assez d’affinités avec la relation bien connue sur la ligne droite
pour que la dénomination de point situé «entre» deux autres
soit justifiée. Ille jouit notamment des propriétés suivantes:
Si g entre p et 7, alors ¢ entre r et p, mais r non entre p et q.
Si g entre p et r, et r entre p et s, alors ¢ entre p et s, et r entre ¢
et s. L’ensemble constitué par p et ¢ et lears points intermédiaires
est fermé.

Nous appelons convexe un sous-ensemble d’un espace dis-
tancié qui contient pour chaque couple de points différents
p et r au moins un point ¢ situé entre p et r. On a alors le théoréeme
sutvant: Un sous-ensemble fermé convexe d’un espace distancié
complet contient pour tout couple de points distincts p et q un
segment qui les joint, c¢’est-a-dire un sous-ensemble contenant

1 Pour un espace & distances non négatives ’inégalité triangulaire équivaut A - la
condition (a3),
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p ¢t ¢ et congruent & un segment de la ligne droite au sens ordi-
naire du mot dont la longueur est égale 3 la distance pg . On
déduit immeédiatement de ce théoreme qu’un sous-ensemble
fermé d’un espace euclidien est convexe §’il est convexe au sens
classique de Minkowsk1 et seulement dans ce cas. Remarquons
d’ailleurs que dans un espace distancié convexe général il peut
arriver que deux points puissent étre joints par plusieurs seg-
ments. La surface d’une sphére & trois dimensions dans laquelle
nous prenons comme distance la longueur du plus petit arc
du grand cercle qui les joint, nous en fournit un exemple.
(C’est un espace convexe et complet, qui contient pour tout
couple de points diamétralement opposés une infinité de seg-
ments qui les joignent.

Du point de vue topologique la notion de convexité est sinon
identique du moins treés voisine de celle de connexité et de
connexité locale. Nous n’avons pas résolu la question de savoir
si ’hypothese — pour un espace distancié compact — d’étre
connexe et localement connexe est non seulement nécessaire
mais encore suffisante pour que l’espace soit homéomorphe a
un espace distancié convexe. Indiquons trois conditions qui
sont suffisantes pour qu'un espace distancié soit homéo-
morphe & un espace convexe: 1° Deux points quelconques
peuvent étre joints par un arc de longueur finie. 20 p et ¢ étant
deux points distinets, la borne inférieure des longueurs de tous
les ares joignant p et g, est > 0. 39 A tout € > 0 donné a 'avance,
il correspond un & > O tel que deux points quelconques dont
la distance est << 3. puissent étre joints par un arc de lon-
gueur << e. En faisant alors correspondre a tout couple de
points p, ¢ de D la borne inférieure des longueurs de tous
les arcs joignant p et ¢ ou, comme nous dirons, la distance
interne de p et ¢, nous cbtenons un espace distancié convexe D’
homéomorphe a D. (Les segments de D’ correspondent aux
arcs géodésiques de D.)?

1 Les notions de point intermédiaire et de convexité et leurs théories sont déve-
loppées dans mon mémoire Mathem. Annalen, 100, p. 75. Une nouvelle démonstration
de I'existence d’un segment sous les conditions mentionnées a été donnée par M. ARON-
szAIN, Ergebnisse e. mathem. Kolloqguiums, 6, p. 45.

2 Cf. mon mémoire dans le Mathem. Annalen, 100, p. 96. Cf. aussi Horr und RINOW,
Comment Math. Helvet., 3.




LA GEOMETRIE DES DISTANCES 357

La théorie de la convexité se relie & 'axiomatique de la géo-
métrie élémentaire, en particulier aux Anordnungsaxiome de
Pascu, HiLserT et de I’école américaine. L’étude des propriétés
découlant de la notion de convexité permet, & partir de ’espace
triangulaire complet, d’obtenir des espaces de plus en plus
particularisés de ce point de vue, et finalement certaines carac-
térisations des espaces linéaires et euclidiens.

Nous dirons, pour esquisser ce chemin, qu'un ensemble dans
un espace distancié est extérienrement convere s’il contient,
pour chaque couple de points p et ¢, au moins un point r tel que
g soit entre p et r. Upn ensemble fermé, a la fois convexe et
extérieurement convexe dans un espace complet contient pour
chaque couple de points différents une «drotte » qui les joint,
c’est-a-dire un sous-ensemble contenant p et g, congruent avec
une droite au sens ordinaire du mot. Pour que tout couple de
points distincts d’un espace complet, convexe et extérieure-
ment convexe détermine une droite et une seule les joignant,
il faut et il suffit que Pespace jouisse de la propriété suivante
que ]’al appelée propriété des deux triplets: Etant donné quatre
points distincts deux & deux, Uexistence de deux triplets linéaires
entraine la linéarité des deux autres triplets. (Nous dirons que le
triplet p, q, r est linéaire lorsqu’un de ses points est situé entre
les deux autres.)

En ajoutant les conditions d’étre complet, convexe et exté-
rieurement convexe aux conditions qui caractérisent les espaces
distanciés congruents aux sous-ensembles des espaces eucli-
diens réels (se reporter au Chapitre I), nous obtenons la caracté-
risation des espaces euclidiens réels eux mémes parmi les
espaces distanciés. Mentionnons encore que le point de départ de
ces recherches fut un théoréme de M. BiepErMANN ! que nous
énoncerons ici de la facon suivante: Pour qu’un espace dis-
tancié compact et convexe soit congruent & un segment, il
faut et il suffit qu’il contienne plus d’un point et que tout triplet
de ses points soit linéaire.

Pour parvenir graduellement des espaces convexes et extérieu-
rement convexes aux espaces linéaires et euclidiens il suffit

1 Cf. Mathem. Annalen, 100, p. 114.
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d’exclure Pexistence dans l'espace de certaines singularités
simples. Il s’agit des deux figures suivantes qui ne se rencontrent
pas dans les espaces linéaires:

1. La fourchette: somme de trois segments pq, qr, gs n’ayant
en commun deux a deux que le point ¢ situé a la fois entre
p et r, et entre p et s.

2. L’étrier: somme de quatre segments pq, qr, rs, ps qui n’ont
en commun que des extrémités et tels que s soit entre p et r,
et r entre ¢ et s.

Si les points ¢ et r d’un étrier sont situés entre p et s, I’étrier
est somme de deux segments de mémes extrémités (a savoir de
p et s), et nous parlerons d’une lentille, par exemple: la somme
de deux demi-grand-cercles d’une sphére. Notons deux configu-
rations particuliéres intéressantes: 19 Le cercle, ensemble
congruent a un cercle au sens ordinaire ou 'on a pris comme
distance de deux points la longueur du plus petit arc qui 8’y
termine. Le cercle constitue un étrier entre deux quelconques
de ses points, il constitue plus particulierement une lentille
entre deux de ses points diamétralement opposés. 20 Le triédre
convexe, somme de trois segments pg, ¢gr, ¢s n’ayant en com-
mun deux & deux que le point ¢ situé a la fois entre p et r,
entre p et s, entre r et s.

Les espaces distanciés sont par définition des espaces E
satisfaisant a la condition (A3), c’est-a-dire des espaces E dont.
chaque triplet de points est congruent a un triangle euclidien.
M. W. A. WiLsoN a récemment étudié?! les espaces I satisfai-
sant aux conditions (A3%) et (A%), c’est-a-dire des espaces E
dont chaque quadruplet de points est congruent & un tétraedre
euclidien — par analogie nous pourrons appeler ces espaces:
espaces tétraédrauxr — et 11 a obtenu le résultat intéressant
suivant: Pour qu'un espace séparable et complet soit congruent
a un espace euclidien ou a I’espace de Hilbert il faut et il suffit
qu’il soit convexe, extérieurement convexe et tétraédral. Ren-
voyons le lecteur en terminant & un mémoire intéressant sur
la sphére a n dimensions par M. L. M. BLUMENTHAL 2.

1 Amer. Journ. of Malth., b54.
2 Amer. Journ. of Math., 57.
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III. — GEOMETRIE DES DISTANCES ET ALGEBRE DES VECTEURS.

Les conditions (A") et (A¥) du chapitre I étant de nature
algébrique, les résultats de cette théorie permettent des appli-
cations dans le domaine de I’algébre. Bornons-nous ici & men-
tionner les beaux résultats de M. L. M. BLUMENTHAL sur les
déterminants *. Nous allons entrer un peu plus dans le détail
en ce qui concerne I’algebre des vecteurs 2.

Désignons par ensemble métrique de vecteurs un ensemble V
d’éléments de nature quelconque appelés vecteurs, tel qu’a
tout couple ¢ et w de ses éléments corresponde un nombre
réel (¢w) assujetti aux conditions

(L) (ow) = (wo)
() o # wimplique (00) + (ww) 2= 2 (ow).

Le nombre (¢w) sera dit : produit scalaire des vectears ¢ et w.
Etant donné k éléments ¢4, ¢,, ..., ¢, de V, nous introduirons
leur déterminant de Gram I’ (¢4, ¢4, ..., ¢3)

(0191) (099q) - - . (91"1;)

(0201) (0200) -« . (020)
I‘(Vla()z: ’ Qk):

(95, 91) (9590) -« - (9p vk)

Un exemple d’ensemble métrique de vecteurs nous est fourni
par la famille des vecteurs d’un espace euclidien & un nombre
quelconque de dimensions, en entendant par produit scalaire de
deux vecteurs le produit scalaire au sens habituel.

A quelles conditions un ensemble métrique de vecteurs V
est-il isomorphe & un ensemble de vecteurs d’un espace euclidien
a n dimensions E, ? C’est-a-dire trouver les conditions pour qu’on
puisse faire correspondre a tout élément de V un vecteur de E,
de facon que ¢’ et w’ étant les vecteurs homologues & deux

1 Bull. Amer. Math. Soc., 37, 38 et Amer. Journ. Math., 56.

2 On trouve la théorie suivante esquissée dans.ma note: Ergebnisse e. mathem.
Kolloquiums, 5, p. 27.
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éléments ¢ et w quelconques de V, on ait toujours (¢w) = (¢" w').
Voici un groupe de conditions a la fois nécessaires et suffisantes:

(T8FY) T (000, 0

s Opig) =

pour tout systéme de n + 1 vecteurs ¢, 05, ..., ¢, de V.
k "
() T ooy, 09, 00y0) 2> 0

pour tout systéme de k (k = 1, 2,..., n) vecteurs ¢;, ¢y, ..., ¢, de V.

De plus, dans le cas ot V consiste en n + 2 vecteurs exacte-
ment, il faut adjoindre aux conditions précédentes la condition

<Fgl+2> F(‘)l‘) (’2, ey O?’HJB) — O .

Pour démontrer ce théoréme, il suffit de se reporter & ce qui a été
fait dans le chapitre 1. Posons comme carré de la distance de deux
éléments ¢ et w de V le nombre w2 = (v¢) + (ww) — 2 (vw).
Nous définissons ainsi un espace E, soit V’; les conditions
(A)), (A,) et (A;) auxquelles doit satisfaire ¢w? sont en effet
des conséquences immeédiates de (I') et (IV). Et la condition
nécessaire et suffisante pour que V soit isomorphe & un en-
semble de vecteurs de l’espace euclidien E, (auxquels on a
donné la méme origine p,) c’est que V' soit applicable sur
Iensemble des extrémités de ces vecteurs. On déduira alors
de (I'™h, (I'y(k = 1,2, ...,n) les conditions (AF"?) et
(A" (k= 2,3, ..., n -~ 1) en tenant compte de la relation

Alpy, Drs woor b)) = (— 215 T (0g, 03, ooy 0p)

——

ou ¢; désigne le vecteur pyp;.

Dans un ensemble métrique de vecteurs satisfaisant a la
condition (I'?) le carré de la distance de deux vecteurs est
toujours non-négatif ! et nous pourrons introduire la notion de

1 0n a
V4 U V4 T
e B
La condition (I'2) n’est autre que l’inégalité de Schwarz (v, v,) (vy vg) > (v; V)2,
Cette condition entraine l’inégalité (vv) + (ww) > 2 (vw). Pour le montrer il suffit
de prouver I’impossibilité de la relation (vv) + (ww) <_2 (vw). Or celle-ci élevée au
carré impliquerait (vv)2 + 2 (vv) (ww) -+ (ww)2 < 4 (vw)2 < & (vv) (ww), d’oul
(v0)2 — 2 (vv) (ww) -+ (ww)2 < 0, ce qui est évidemment impossible, le premier

'(vy, vy) = = (v5 vy) (Vg Vy) — (v Vs)2.
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vecteur intermédiaire. Nous dirons que le vecteur ¢ est entre
les vecteurs u et w lorsqu’on a:
ou bien

Tu,w 20, Tu,e,w) =0, T'u,9)+T(,o)=1TI(@,w)

ou bien

T(u, w) = 0, uo + ow = uw>

en entendant par zy la détermination positive du radical 4/

L’ensemble de vecteurs V peut étre appelé convexe et extérienre-
ment convexe lorsqu’il contient pour tout couple d’éléments u
et w au moins un élément ¢ entre u et w, et au moins un élément x
tel que w soit situé entre u et x. Pour qu’'un ensemble de vec-
teurs V soit isomorphe & ’ensemble de tous les vecteurs de E,,
il faut et il suffit qu’il soit complet, convexe et extérieurement
convexe, que les déterminants de Gram soient nuls pour tout
systéeme de n 4 1 vecteurs et non négatifs pour tout systéme
en contenant moins de n + 1, et enfin qu’il existe n vecteurs
dont le déterminant de Gram est === 0.

Un corollaire intéressant de notre théoréme est que les opé-
rations d’addition de deux vecteurs et de multiplication d’un -
vecteur par un nombre peuvent étre définies dans un ensemble
métrique de vecteurs. En d’autres termes, pour développer
Palgebre des vecteurs il suffit de prendre comme point de départ
la seule notion du produit scalaire au lieu des trois opérations:
addition, multiplication par un nombre et multiplication
scalaire, qui ont servi de bases jusqu’a présent. En effet, étant
donné deux vecteurs u et w et un nombre A nous appellerons Au
le vecteur u' tel que I' (u, u’) = 0 et (uu’) = A (uu), et nous
appellerons u -+ ¢ le vecteur w pour lequel T (u, ¢, w) = 0,
I‘(u, %) = I‘(a, %) :% I'(u, 0) s1 I'(u, ¢) £ 0 et (ww) =
(uw) + (¢ew) st I' (u, v) = O.

L’existence et 'unicité des vecteurs u’ et w et les lois ordi-
naires de ces opérations d’addition et de multiplication par

membre étant egal & [(vv) — (ww)]2. La condition (I'2) permet donc -de préciser (I'1)
sous la forme

v # w implique (v) 4 (ww) > 2 (vw) .

L’Enseignement mathém., 35me année, 1936. d W
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un nombre sont garanties si ’ensemble de vecteurs est complet
convexe et extérieurement convexe et jouit des propriétés (I').

Les recherches de MM. WiLson et BLUMENTHAL mentionnées
a la fin du Chapitre II admettent de méme une traduction dans
le langage de l'algébre des vecteurs. En particulier il découle
du théoreme de M. Wirson (p. 358), comme !’a remarqué
M. BLuMENTHAL, qu'un ensemble de vecteurs séparable et
complet est isomorphe a un espace vectoriel euclidien ou hilber-
tien si les conditions

I' (¢4, ¢5) = 0 pour tout couple ¢, ¢, de vecteurs (I'?)

T' (9105, 95) > 0 pour tout triplet ¢;, v,, 5 de vecteurs (I'3)

sont satisfaites ou, ce qui revient au méme, si tout triplet de
vecteurs est isomorphe & un triplet de vecteurs de E, résultat
qui a été obtenu directement par MM. FrRECHET, v. NEUMANN
et Jorpan 1.

IV. — LA COURBURE DANS LA GEOMETRIE DES DISTANCES
ET LA GEOMETRIE DIFFERENTIELLE.

Nous avons, dans les chapitres précédents, traité, en nous
placant au point de vue de la géométrie des distances, des pro-
blémes ou ’espace et ses sous-ensembles interviennent globale-
ment. Mais cette géométrie permet aussi 'étude des propriéiés
locales des variétés spatiales, et pénetre ainsi dans un domaine
ou a triomphé jusqu’alors brillamment et exclusivement la
méthode analytique; cette méthode s’appliquait si bien a cette
étude qu’on a fini par identifier la théorie des propriétés locales
des figures avec la géométrie différentielle: application de
Panalyse, surtout du calcul différentiel, aux modeles arithmé-
tiques représentant les figures. Et méme M. Bouricanp qui a
eu le mérite en créant sa Géométrie infinitésimale directe d’intro-
duire 'analyse moderne, en particulier la théorie des fonctions
de wvariable réelle, dans ’étude des propriétés géométriques
locales — se borne a I’étude d’espaces ou chaque point est (ou
pourrait étre) caractérisé par un systéme de coordonnées.

1 Annals of Mathem., 36, p. 705, p. 719.
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L’idée d’une géométrie différentielle sans coordonnées semble
encore aujourd’hui presque absurde & la plupart des géometres;
cependant la géométrie des distances a déja résolu le probléme
si important de la courbure d’une facon qui laisse pressentir,
comme nous le disions dans I'introduction, que la méthode
analytique, bien qu’elle ait joué jusqu’alors un role prépondé-
rant, n’est ni la seule possible, ni celle présentant le plus de
généralité, ni peut-étre méme la plus conforme & la nature
géométrique des problémes.

Soit D un espace distancié, ¢, r, s trois de ses points, il
existe trois points ¢’, r’, s’ dans le plan euclidien tels que les
triplets ¢, r, s et ¢, r’, s’ sont congruents. Si p désigne le rayon
du cercle circonscrit au triangle ¢’, r’, s’, — en convenant de
poser p = o siq¢’, 7', s sont en ligne droite — nous appellerons
courbure du triplet ¢, r, s de ’espace distancié et nous dési-

: T
gnerons par x (¢, r, s) 'inverse de cerayon, ¢’est-a-dire . Cette

courbure seranulle quand les trois points seront linéaires (p. 357)
et seulement dans ce cas; et la propriété du segment due &
M. BieperMANN (p. 357) peut alors s’énoncer ainsi: Pour qu’un
arc — c’est-&-dire un espace triangulaire homéomorphe & un
segment — soit congruent & un segment, il faut et il suffit que
tout triplet de points lui appartenant ait une courbure nulle.

Cet énoncé ne correspond pas a celui de la géométrie diffé-
rentielle concernant les propriétés caractéristiques de la droite,
qui fait intervenir une courbure définie en chaque point. Dans
un espace distancié nous pouvons, cependant, aussi introduire
une courbure locale, et cela de la facon suivante 1: Nous dirons
que D a la courbure » (p) au point p, si & tout ¢ > 0 donné a
'avance, il correspond un 8 > 0 tel que pour tout triplet ¢, r, s
de points de D, dont la distance & p est < §, nous ayons
| % (g, 7, 8) —x%(p)| <e.

On peut alors se demander si un arc dont la courbure est
nulle en chaque point est congruent & un segment. Il n’en est
pas nécessairement ainsi: Prenons pour D Pensemble des points z

1 Cette notion de courbure et sa théorie est dévefoppée dans mon mémoire: Mathem..
Annalen, 103.
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de I'intervalle —1 <z <1 et comme distance des points z
et y le nombre

| x — y | si z et y ont le méme signe,

|z | + |y | — 2%y? si x et y sont de signes contraires.

D est alors un espace distancié homéomorphe au segment
— 1 = 2 = 1 de la droite euclidienne, dont la courbure est
nulle en chaque point. Cependant cet arc n’est pas congruent
& un segment, comme le montre la considération du triplet
— 1, 0, 1 dont les points ont deux a deux la méme distance.

J’ai néanmoins démontré par des méthodes purement mé-
triques qu'un arc appartenant @ un espace euclidien dont la
courbure est partout nulle est un segment, et ainsi fut établi un
théoréme de géométrie différentielle sans I'usage du calcul
différentiel.

Comparé avec la définition classique de la courbure, la défi-
nition métrique est plus générale dans ce sens qu’elle s’applique
aux espaces distanciés généraux. Mais dans le cas des espaces
euclidiens MM. HaupT et ALt ont remarqué ' que ma définition
de la courbure était plus restrictive que la définition classique.
Si ’arc y = y (x) du plan euclidien admet au point p, = (x,, ¥,)
une courbure % (p,) au sens précédemment mentionné — disons
une courbure métrique la dérivée seconde y”(z,) existe et

y” (%)

la courbure classique — est égale a x(p,). Inversement,
[1 4 y"2(zo) ]

un arc peut posséder au point p, = (x,, y,) une courbure au sens

classique —2 ,(x") 5, sans posséder une courbure métrique;
) [1 -+ y'2(xg) ] ) ) . '
celle-ci est en effet une fonction continue du point ce qui n’est

pas nécessairement le cas pour la courbure classique, comme

le montre ’exemple de la courbe y = x* sin ~%pour le point
M. Avt a modifié 2 de la facon suivante la notion de la courbure

métrique: au lieu de considérer des triplets ¢, r, s ou les trois
points sont variables, il se borne a la considération des triplets

1 Cf. Ergebnisse e. mathem. Kolloquiums, 3, p. 4.
2 Dans sa thése présentée 4 Vienne. Voir aussi: Ergebnisse e. mathem. Kolloquiums,

3, p. 5 et &, p. 4.
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p, ¢, r ou deux points seuls sont variables. Il dit que D a la
courbure x (p) au point p, »(p) étant un nombre fini, si1 & tout
¢ > 0 donné & 'avance, il correspond un 3 > O tel que, pour
tout couple de points ¢, r, dont la distance & p est < 3, nous
ayons | »(p, ¢, r) — »(p) | < e. Cette définition (valable dans
~ tout espace distancié) appliquée aux courbes d’un espace eucli-
dien est un peu plus générale que la définition classique ®.
M. ALT a montré que la condition nécessaire et suffisante pour
que la courbe y = f(x) — ou f est une fonction définie dans
un voisinage de x, qui n’admet pas une dérivée infinie pour
x = x, — possede au point (z,, ¥, = f(x,)) une courbure, & son
sens, c’est que f'(xz,) existe et que les deux expressions

T =1 w) L@ =T

tendent toutes deux vers une limite finie, ces deux limites étant
eégales 2, quand x tend vers x,; f et | désignent respectivement
la dérivée supérieure et inférieure de la fonction f (celles-ci
pouvant prendre les valeurs + oo et — o).

M. Pauc a montré récemment qu’en prenant comme définition
de la dérivée seconde pour la valeur z = z,, la limite finie, si
elle existe, de I’expression

flzg + B) — flz)  flzo + k) — f (%)
h k
(h — k)
2

quand % et k£ tendent indépendamment I'un de I’autre vers 0,
cette nouvelle définition coincide avec la définition classique
lorsque f'(z) existe dans un voisinage de z, L’existence de

I M. GODEL a proposé la définition suivante qui est encore plus générale: Disons
que I’arc D a la courbure « (p) au point p, si & tout - > 0 donné & I’avance, il correspond
un 3 > 0 tel que, pour tout couple de points q,r, de part et d’autre de p, dont la distance
a p est <$§, nous ayons |z (p, ¢, 7) — x (p) | < -.

2 M. Pauc a remarqué que quand f’(xo) et les limites des deux expressions men-
tionnees existent, ces deux limites sont nécessairement égales; si A désigne leur valeut
1A

commune, la courbure de M. Alt a comme valeur — .
1+ £2 (x0)%/2
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/" (x,) dans ce sens entraine ’existence de f' (x,) et celle de la
a1

[1+ 2 ()]

M. Pauc a démontré par ailleurs que dans un espace euclidien,

s1 un continu £ quelconque admet en un point p, une courbure
de Avrt, un voisinage de p, sur k est un arc rectifiable; ce qui
permet 1’énoncé suivant qui nous rapproche de la définition
classique: Pour qu’un continu k& d’un espace euclidien posséde en
un point p, une courbure de ALT = x(p,) il faut et il suffit
qu'un voisinage de p, sur k soit un arc rectifiable, admettant
-une tangente ¢, en p,, et qu’en se limitant aux points p ou la
tangente ¢ existe, 'expression Aw: As(Aa = angle tt,, As = lon-
gueur de 1’arc pp,) ait une limite égale a » (p,) lorsque p tend
Vers po.

Donnons un exemple d’un arc possédant en un point une
courbure de ALT sans posséder une courbure classique. 11 suffit de

courbure de M. Alt qui a alors comme expression

considérer les points p, = (% : %> etq, = (:ni ,% >, n=1,2,..
ad mnf.) (situés sur la parabole y = 22) et la somme de deux lignes
polygonales P1y P2y P3s -y Pns Pntty -+ et 91y 92y -y Gns Int1s -
complétée par le point 0. L’arc obtenu posséde en ce dernier point
une courbure au sens de M. Alt, égale a 2; il ne peut posséder
une courbure classique dans ce point, car la fonction y = f ()
représentant cet arc posseéde dans tout voisinage de 0, des points
ou f’ () n’existe pas. La dérivée seconde au sens classique n’est
pas définie pour x = 0, tandis qu’elle I’est au sens plus large
mentionné plus haut.

Au point de vue de la métrique interne (p. 362) les arcs ne
présentent qu’un intérét assez faible. Un arc D satisfait aux
trois conditions mentionnées (p. 363) «’1l est rectifiable et dans
ce cas seulement. Or, en faisant correspondre aux couples de
points d’un arc rectifiable quelconque leur distance interne,
nous obtenons un espace D’ congruent a un segment dont la
longueur est égale a celle de I’arc, donc un espace dont la courbure
est 0 en chaque point.

Par contre, 'intérét de la métrique interne devient prépon-
dérant pour les espaces de dimension supérieure, et déja pour

1 Il s’ensuit que la valeur A, rencontrée plus haut, n’est autre que [f” (xo)].
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les surfaces. Si D est une surface comme celles que 1’on considére
dans la géométrie différentielle, il correspond & chaque point p
de D un nombre % (p) appelé la courbure totale de D au point p,
a savoir le produit des deux courbures principales des sections
planes de D. Ce nombre, d’aprés un résultat célebre de Gauss,
ne dépend que de la métrique interne de D; si D; et D, sont deux
surfaces telles que les espaces convexes D; et D,, portant les
métriques internes de D; et D,, soient congruents, alors les
nombres & (p;) et k (p,) sont toujours égaux pour deux points
p; de Dy et p, de D, qui se correspondent par cette congruence.
On connait, d’ailleurs, les nombreuses définitions de k& (p) se
basant sur la métrique interne de D, dues & Gauss et & ses
successeurs. Mais n’est-il pas possible, demandais-je, de définir
cette courbure par la simple considération des quadruplets de
points de D, comme nous venons de faire pour la courbure des
courbes ?

La plus simple généralisation de cette derniére qui se présente,
ne méne pas a la solution du probléeme, méme dans le cas ou D
est un sous-ensemble d’un espace euclidien; car si I’on fait alors
correspondre & quatre points de D le rayon de la sphere cir-
conscrite et si 'on fait un passage & la limite analogue a celui
que nous avons employé pour les courbes, on obtient un
nombre qui ne dépend pas uniquement de la métrique interne
de D.

M. WaLp a cependant réussi récemment a résoudre le pro-
bléeme au moyen de l'idée suivante ': Il dit que l’espace dis-
tancié D" a la courbure de surface »(p) au point p, lorsqu’aucun
voisinage de p n’est linéaire et lorsqu’a tout e > 0 il corres-
pond un & > 0 tel que tout quadruplet de points ¢, r, s, ¢ de
D’, dont les distances & p sont < 3, soit congruent & un qua-
druplet de points de S, avec [k— x(p)| << ; S, désigne la
surface d’une sphére a trois dimensions de courbure totale

k = —3 (r rayon réel ou imaginaire) portant la métrique interne,

donc ou l'on a pris comme distance de deux points p’ et p”
la longueur du plus petit arc de grand cercle passant par p’

L Cf. C. R., 201, p. 918. Voir aussi: Ergebnisse e. mathem. Kolloquiums, 6, p. 29 et
cahier 7, p. 24.
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et p”. St D’ est une surface comme celles que 1’on considére
en géométrie différentielle, la courbure totale & (p) en tout
point p est égale a la courbure de surface » (p) de D’ au point p.
La définition de WALD qui ne nécessite pas la représentation des
points par des coordonnées, peut donc servir a introduire de
facon bien naturelle et extrémement simple la notion importante
de courbure.

Les surfaces de Gauss sont donc des espaces compacts et
convexes admettant en chaque point une courbure de surface
% (p) au sens de M. WaLp. Mais encore plus important et plus
remarquable est, me semble-t-il, le théoréme inverse démontré
par M. WaLp.

Tout espace distancié compact et convexe qui admet une
courbure de surface en chaque point, est une surface de Gauss.
En se basant sur la seule hypothése qu'un espace distancié
général est compact, convexe et admet en chaque point une
courbure de surface au sens de M. WaLD, celui-ci peut démontrer
que ’espace est localement homéomorphe a 'intérieur d’un cercle,
que deux points assez voisins peuvent toujours étre joints par
un seul segment, qu’on peut introduire des angles et des coor-
données polaires p, ¢, et que la longueur d’un petit arc

e =rp(t), o= o) 0=1=1)
o (t) et ¢ (¢t) étant deux fonctions dérivables de ¢, est égale a 1

1 1

o0 + 62 e, 00 92(0)]* dt,
0

ou G (p, @) est la solution de I’équation différentielle

02G
d o2 = —x(p, 9 . Gle, 9

2
satisfaisant aux conditions G (0, ¢) = 0, %—g (0, 9) =1 et on

% (p, ©) désigne la courbure de surface de D’ au point (p, o).
On a donc le théoréme fondamental suivant:

Pour qu’un espace distancié compact soit une surface de
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Gauss, il est nécessaire et suffisant qu’il soit convexe et admetie une
courbure de surface en chaque point. '

Ce théoréme montre que la géométrie des distances fournit
une nouvelle base a I’étude des propriétés métriques locales des
surfaces.

V. — GEOMETRIE DES DISTANCES ET CALCUL DES VARIATIONS.

Soit donné un espace distancié. Un ensemble fini ordonné
de points py, ps, -.., p, est appelé polygone (et polygone fermé
si p; = p).- Nous considérons des courbes continues dans
I’espace donné. C étant I'image continue d’un intervalle
« <t < B, nous appelons sous-polygone de C I'image
P = {py, psy .., P} (par la méme représentation) d’un en-
semble fini ordonné de nombres v; < v, < ... < vy, de [« B].
Par v (P) nous désignons le plus grand des nombres v; ., — v;.

Soit donnée une fonction F (p; ¢, r) des triplets de points
(¢ = r). Cette fonction permet l’introduction d’une nouvelle
métrique si nous prenons pour chaque couple de points ¢, r,
au lieu de la distance ¢ qu’ils ont dans D, le nombre
d(g,r) =F(q;q,7).qr 8i g==r, et d(q,q) = 0. Soit D (F)
Pespace a distances réelles qu’on obtient ainsi. En attribuant,
étant donné un point p, & g et rla distance d, (¢, 7) = F (p; ¢, r)gr
si ¢ #r, et d,(q, g = 0 nous obtenons un autre espace a dis-
tances reelles que nous appellerons I'espace tangent D_(F) de
D (F) au point p. Pour le polygone P nous considérerons outre
sa longueur [(P) = X p;p;., dans D, ses longueurs dans D (F)
et dans D, (F), & savoir les nombres

h—1
AP, F} = Sj F,(Pﬁ? P;» pi+1) - PiPijyq -

i=1

et
h

|
o

A (P F) = F(p; Pi» Pipy) PiPyyy -

1M

I
=N

1

La borne supérieure finie ou infinie des nombres I(P) pour
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tous les sous-polygones de C est appelée la longueur [(C)
de C. On dit que C est rectifiable si [(C) est fini.

Imposons a la fonction IF les conditions suivantes pour chaque
courbe rectifiable C:

1. F (p; q, r) est bornée pour tous les triplets p, q, r d’un voisi-
nage de C.

2. L’ensemble de tous les points p de C pour lesquels ’oscillation
de I’ est > 0, est de mesure linéaire 0, ¢’est-a-dire il peut étre
couvert par des sphéres, en nombre fini ou infini, dont la somme

‘des diametres soit aussi petite que 'on voudra. Par I'oscillation

o (p) de F au point p nous entendrons la borne supérieure de
tous les nombres ¢ pour lesquels il existe dans tout voisinage de p
quatre points p’, p”’, q, r tels que 1 F(p';59,1)—F(p"; q,7) ] = o.
Les points pour lesquels ¢ (p) > 0, sont les points de disconti-
nuité de F par rapport a la premiere des trois variables.

3. L’ensemble des points p de C pour lesquels t.(p) est > 0 est
de mesure linéaire 0. Par 7. (p) nous entendons la limite pour
o — 0 de la borne supérieure des nombres t(g) pour les points ¢
dont la distance & p est < p. Nous désignons ici par t(g) la
borne supérieure des nombres t pour lesquels il existe un poly-
gone P = { py, py, ..., pn } avec p; = ¢ et tel qu’on ait

AP, F) < dipy, py) — 71d(prs Pyl |-

On a 7 (p) = 0 pour tout point p et =(p) =0 dans le cas et
seulement dans le cas ou

Flip;p,9pg+Flp; ¢, Ngr SF(p; q, r)pr

pour tout couple g, r.

4. z.(p) est fint en tout point p de C.

b. Pour tout polygone fermé P qui est assez voisin d’un point p
de discontinuité de ¥, on a 1 (P, F) = 0.

Ces hypotheéses sur la fonction F étant admises on a le théo-
réeme suivant:

Pour chaque suite Py, P,, ... de sous-polygones d’une courbe
continue rectifiable pour laquelle on a lim v (P,) = 0, les nombres
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A (P, F) convergent vers un nombre fini. Cetie limite est la méme
pour toutes les suites de sous-polygones de C assujelties & la
condition que v — 0. Nous la désignerons par i (C, F). Pour
chaque » > 0 donné, n (C, F) est une fonctionnelle semicontinue
inférieurement sur ’ensemble de toutes les courbes de longueur =< .
Si, d’ailleurs, pour chaque A > 0 donné, les longueurs de toutes
les courbes C pour lesquelles ) (C, F) =< A, sont bornées, chaque
classe compléte de courbes rectifiables contient une courbe pour
laguelle la fonctionnelle A (C, F) atteint son minimum.

Quel est l'avantage de cette généralisation des théorémes
d’existence du calcul des variations ? Tout d’abord, la forme
métrique met en évidence que I’hypothése de la nature carté-
sienne de I’espace (& savoir la représentation des points par un
groupe de coordonnées), hypotheése considérée jusqu’alors
comme base des problémes du calcul des variations, n’est pas
liée & I’essence du probléme. Dans tous les espaces distanciés
se posent des questions concernant I’extremum des fonctionnelles
de courbes, données par des intégrales curvilignes. Mais méme en
Pappliquant aux espaces euclidiens, donc au cas classique, notre
théoreme, outre une grande simplicité dans les démonstrations,
semble apporter un progres !, car les conditions imposées & F
méme dans les profonds théoréemes de M. ToNrLLi sont plus
restrictives que les notres. Considérons, pour nous en rendre
compte, nos cing hypothéses sur F dans le cas ou I’espace
distancié donné est un espace euclidien & n dimensions 2.

Dans les problémes classiques, il correspond a chaque point
p = (1, &y, ..., x,) de cet espace (ou d’un certain domaine)
et a chaque direction 8 = (z;:2:...:2,) un nombre
F(p,8) = Flay, ..., zy;2,...,2,) :%F(xl, s @ik, L k)

~ pour E> 0.

1 Je viens d’apprendre que dans le cas euclidien M. BOULIGAND a récemment (Mém.
de la Soc. Roy. des Sc. de Liége, 3me sér., t. 19) considéré, pour les fonctions continues
et quasi-régulicres partout, des sommes riemaniennes ainsi que nous venons de le faire
dans le cas général, et a ainsi obtenu une démonstration tres élégante d’un théoréme
d’existence. M. BouLicaND, tout en se bornant aux fonctions positivement définies,
s’est bien apercu de la portée de sa méthode. La ndtre était en germe dans des recherches
sur la longueur des arcs (Mathem. Annalen, 103) et nous I’avons exposée dans un article
de Fundam. Mathem., 25, et dans une note aux C. R. Paris, 21.X.1935.

2 Cf. ma note, C. R., 200, p. 705. ‘
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Pour appliquer notre théorie posons pour trois points p, g, r
donnés (q = r) F(g;q, r) = F(p, 3, ou 3, désigne la
direction de la demi-droite partant de ¢ et passant par r. Les
hypotheses 1 et 2 sont réalisées si, pour chaque courbe recti-
fiable C, la fonction F(p, 8,) est bornée dans un voisinage
de C et continue sur C sauf pour les points d’un ensemble de mesure
linéaire 0, c’est-a-dire d’un ensemble qu’on peut recouvrir au
moyen d’une suite dénombrable de sphéres dont la somme des
diameétres est arbitrairement petite. La quasi-régularité = (p) =
de la fonction F au point p (qui par la condition 3 est postulée
pour presque tous les points p) s’exprime maintenant par
Pimégalité suivante valable pour chaque triplet de points p, ¢, r:

F(p, 8y pg + Flp, 30 ar 2 F (p, 3,) pr .

Pour voir la signification de cette propriété, nous désignons,
pour chaque droite orientée & passant par p, par es le point

de 3 dont la distance & p est égale a et qui est situé

1
o | F(p, 9) |
sur le rayon positif ou négatif de § suivant le signe de F(p, 3),

c’est-a-dire nous construisons I'indicatrice E de F au point p dans
le sens ou, pour des fonctions définies, M. CARATHEODORY l'a
introduite. Pour que F soit quasi-réguliére au point p, il faut et 1l
suffit alors, comme I’a démontré M. Avt, qu’il existe une collinéa-
tion © qui transforme I’hypersurface indicatrice E du point p,
c¢’est-a-dire I’ensemble de tous les points eg, en une surface convexe
a n — 1 dimensions = (E) telle que m (p) soit situé a I'intérieur
de = (E) et que w (es) soit situé sur le semi-rayon positif de
7 {3) par rapport a = (p). Il est clair que la régularité de I au
noint p signifie la convexité projective de I'’hypersurface indi-
catrice E du point p. Si F (p, §) est non négative pour chaque
droite & passant par p, la convexité projective n’est rien d’autre
que la convexité au sens ordinaire.

Remarquons en terminant que la méthode exposée permet
aussi® d’étendre le champ des courbes de comparaison et 'intro-
duction des courbes non rectifiables dans le calcul des variations2.

1 Cf. ma Note C."R. Paris, t. 202, p. 1648,
2 Je tiens & remercier M. Pauc de son aide dans la rédaction de cet article et pour
plusieurs remarques qu’il m’a communiquées a ce sujet.




LE 10e CONGRES INTERNATIONAL
DES MATHEMATICIENS

Oslo, 13-18 juillet 1936

par H. Feusr.

La Norveége a donné a la Science deux des plus grands mathéma-
ticiens du XIXe siécle, Niels Henrik ABEL (1802-1829) et Sophus Lik
(1842-1899). Elle posséde a I’heure actuelle une élite de géometres
dont les travaux sont trés appréciés dans le monde entier. Aussi
est-ce aux applaudissements unanimes de I’assemblée, qu’a la séance
de cloture du Congres de Zurich, le 13 septembre 1932 les mathéma-
ticiens aocueﬂhrent I’invitation presentee par le Professeur Guldberg
de se rendre & Oslo en 1936.

Le Congrés s’est tenu a Oslo, du 13 au 18 juillet, conformément
au programme que nous avons reproduit dans un précédent fascicule
(34me année, n°s 5-6, p. 377-379). Plus de cinq cents mathématiciens,
accompagnés de prés de deux cents membres de leurs familles et
représentant 35 pays, ont répondu a I’appel du Comité d’organisation
présidé d’abord par le regretté Alf GULDBERG, puis par le Professeur
STORMER.

La participation au Congrés doit étre considérée comme tres
satisfaisante si ’on tient compte des difficultés économiques et
politiques du temps présent. Les restrictions budgétaires atteignent
non seulement les particuliers, mais encore de nombreuses institutions
qui, par le passé, pouvaient prendre a leur charge tout ou partie
des frais de leurs délégués. Au dernier moment, les mathématiciens
russes ont été empéchés de quitter leur pays, alors que bon nombre
d’entre eux avaient annoncé des communications. L’Italie s’est
abstenue officiellement en raison des sanctions.

D’éminents géomeétres ont été invités a faire des conférences
générales sur les progreés récents dans les principaux domaines des
mathématiques Plus de deux cents-communications ont été présentées
dans les séances de sections.

Organisé avec soin, le CGongrés d’Oslo laissera le meilleur souvenir
a tous les partlclpants tant au point de vue des travaux scientifiques
qu’a celui des relations personnelles entre savants cultivant le méme
domaine de la science.

Réceptions et excursions. — Le contact entre congressistes a été
largement facﬂlte par les nombreuses réceptions officielles, les récep-
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tions privées et les excursions. C’est par une réception a I’Aula de
I’Université que le Congrés a débuté le lundi 13 juillet, & 20 heures.

Le lendemain, a 17 h. 30, S. M. L Ror a recu les membres du
Congreés au Palais Royal. En traversant la belle promenade publique
qui se trouve devant le palais, les invités ont pu admirer le monument
élevé en 1902 a la mémoire de Niels Henrik ABEL L.

Le mercredi soir, Diner de gala offert par la Ville d’Oslo & 1’'Hotel
Bristol.

Le jeudi, de 16 a 24 heures, excursion sur le fjord d’Oslo avec le
paquebot transatlantique, Stavanger-Fjord, de la « Norske Ameri-
kalinje ». S. A. R. LE Prince HeriTier, Président d’honneur du
Congres, et S. A. R. Lo Princesse HEriTiERE ont bien voulu prendre
part a I’excursion. A 18 h., un diner était servi dans les quatre belles
salles & manger du transatlantique.

Rappelons aussi les réceptions et les excursions organisées par le
Comité des dames pour les familles des congressistes.

Des excursions plus vastes a travers la Norvege ont eu lieu apres
le Congres sous les auspices de ’Agence de voyage Bennett.

SEANCES GENERALES

Séance solennelle d’ouverture.

La séance solennelle d’ouverture a eu lieu a P’Aula, le mardi
14 juillet, en présence de S. M. L Ror. Le Gouvernement était
représenté par M. Halvdan Konr, Ministre des Affaires étrangéres et
M. Nils Hyermrverr, Ministre de I’Instruction publique.

M. le Prof. C. StormER, Président du Comité d’organisation,
souhaite la bienvenue aux congressistes et remercie S. M. LE Ror
ainsi que les représentants des autorités gouvernementales et muni-
cipales d’avoir bien voulu, par leur présence, rehausser I’éclat de la
séance d’ouverture. Il y voit un témoignage de l'intérét que le pays
tout entier porte aux sciences mathématiques. 1l tient a rappeler la
mémoire de son regretté collegue, M. le Prof. Alf GULDBERG, premier
président du Comité d’organisation, décédé le 15 février 1936, dans
sa 70me année.

M. H. Konr, Ministre des Affaires étrangeres, apporte les souhaits
de bienvenue du Gouvernement. Il est heureux de voir réunis dans
la capitale norvégienne tant de savants venus de toutes les parties
du monde pour y exposer les résultats de leurs recherches.

M. le Prof. FueTER, Président du Congrés de Zurich, propose de
confier la présidence du Congres a M. le Prof. C. STORMER, qui est
nommé par acclamations.

Voir L’Ens. Math., 4¢ année, 1902, p. 445-447.
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Sur la proposition de M. StorMER, M. le Prof. Edgar B. ScurerLprop
est nommé Secrétaire-général du Congrés. L’assemblée désigne ensuite
les vice-présidents chargés de présider les séances générales. Ce sont
MM. Harald Bomr (Copenhague), T. CarreEMaN (Stockholm),
M. Fusiwara (Tohoku), Gaston Juria (Paris), Salomon LEFSCHETZ
(Princeton, U.S.A.), F. Linoeror (Helsingfors), K. MENGER (Vienne),
G. PoLya (Zurich), Erhard Scamipr (Berlin), J. A. ScaouTEN (Delft),
W. Srerpinski (Varsovie) et E. T. WairTaAkER (Edinburgh).

Pour la premiére fois le Congres est appelé a décerner les deux
Priz internationaux de Mathématigues consistant en deux médailles
en or et destinées & récompenser deux jeunes savants qui se sonb
particulierement distingués par leurs recherches. On sait que ces prix
sont assurés par un fonds, géré par I’Institut royal canadien et
constitué par le solde des sommes réunies par feu le Prof. FieLDs
en faveur du Congrés de Toronto (1924). Soumis préalablement au
Comité de I’Union internationale Mathématique, les statuts de cette
fondation ont été approuvés par le Congres de Zurich.

M. le Prof. C. CaratHEODORY (Munich) rapporte au nom de la
Commission chargée de se prononcer sur le choix des lauréats. Les
deux Médailles Fields sont attribuées, ’une, au mathématicien finlan-
dais M. L. Anrronrs, éleve du Prof. Nevanlinna, pour ses impor-
tantes contributions a la Théorie des fonctions, P’autre, a
M. J. DoucLas, jeune savant américain de la Harvard University,
pour sa résolution du Probléeme de Plateau. M. le Prof. E. CARTAN,
remplacant M. SEvERI, président de la Commission Fields, remet
les médailles aux deux lauréats.

Conférences générales.

Les conférences générales ont débuté le mardi matin 14 juillet, &
10 heures, par un exposé de M. STORMER sur ses belles recherches
concernant les orbites des électrons et les applications aux raijes
cosmiques et aux aurores boréales (Programme for the quantitative
discussion of electron orbits in the field of a magnetic dipole, with
application to cosmic rays and kindred phenomena).

Puis vint la conférence de M. Fuerer, intitulée « Die Theorie der
reguléren Funktionen einer Quaternionenvariablen », dans laquelle il
donne un apercu de ses récents travaux.

Le mercredi 15 juillet a eu lieu I'inauguration d’un Buste de Sophus
Lie offert a I’Université d’Oslo et présenté par M. J. Sejersted
BOopTkERr, président du Comité d’initiative. A cette occasion,
M. E. Carran a fait une trés belle conférence intitulée « Quelques
apergus sur le role de la théorie des groupes de Sophus Lie dans le
développement de la géométrie moderne ».

Les conférences se sont poursuivies tous les matins jusqu’au
samedi 18 juillet. Nous devons nous borner & en donner la liste:
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C. L. SieceL (Frankfurt a. M.), Analytische Theorie der quadra-
tischen Formen.

O. VEBLEN (Princeton), Spinors and projective Geometry.

J. NieLsen (Copenhague), Topologie der Flichenabbildungen.

E. Hecke (Hamburg), Neuere Fortschritte in der Theorie der
elliptischen Modulfunktionen.

O. NEuGEBAUER (Copenhague), Ueber vorgriechische Mathematik
und ihre Stellung zur griechischen.

C. W. OsegnN (Stockholm), Probleme der geometrischen Optik.

V. ByerkNEsS (Oslo), New Lines in Hydrodynamics.

H. Hasse (Gottingen), Ueber die Riemannsche Vermutung in
Funktionenkdrpern.

G. D. Birknorr (Cambridge, Mass.), On the Foundations of
Quantum Mechanics.

L. J. MorpeLL (Manchester), Minkowski’s Theorems and Hypo-
theses on Linear Forms.

I.. Anvrors (Helsingfors), Geometrie der Riemannschen Flachen.

J. G. van pEr Corputr (Groningen), Diophantische Approxima-
tionen.

S. Banacu (Lwow), Le role de la théorie des opérations de I’analyse.

M. FricueT (Paris), Mélanges mathématiques.

N. Wiener (Cambridge, Mass.), Tauberian Gap Theorems.

O. Ore (New Haven, Conn.), The Decomposition Theorems
Algebra.

Séance de cléture.
Résolutions.

Le samedi 18 juillet, a 17 heures, les congressistes se sont réunis
une derniére fois dans ’Aula de I’Université, sous la présidence de
M. le Prof. StOrmMER, assisté de M. le Prof. ScHieLproP, Secrétaire
général, pour prendre connaissance des résolutions et donner leur
avis sur le choix du siege du prochain congrés.

I. — On sait qu’a la suite de I’opposition manifestée par quelques
mathématiciens & I’égard de I’ Union Internationale Mathématique, une
commigsion avait été constituée a Zurich pour étudier a nouveau les
rapports entre les mathématiciens des différents pays et pour faire
rapport au Gongres d’Oslo. Elle était composée de MM. Severi, prési-
dent, Alexandroff, Blaschke, Bohr, Féjér, Julia, Mordell, Terradas,
de la Vallée-Poussin, Veblen, et Zaremba. M. C. JuLia, rapporteur,
donne lecture du texte adopté par la commission:

« La Commission nommée par le Congrés de Zurich a vivement

- regretté ’absence de son président M. Severi. Elle n’a pu, pour

diverses raisons, arriver a un accord unanime sur la question d’une
organisation internationale des mathématiciens. Elle souhaite que
dans D'avenir la question posée puisse recevoir une solution. »




LE CONGRES D’OSLO 377

I1I. — La Section VIII propose le maintien de la Commission inter-
nationale de I'Enseignement mathématique. — M. H. Frur rapporte
au nom de la section.

La Commission a été constituée & Rome, en 1908, a la suite d’une
résolution du quatritme Congrés international des Mathématiciens;
elle a été confirmée en 1912 a4 Cambridge, en 1928 a Bologne et en
1932 & Zurich. Présidée successivement par MM. Félix KLEIN,
D.-E. SmitH et J. HapamaRrD, elle a publié de nombreuses études
d’un grand intérét sur ’enseignement des mathématiques dans les
principaux pays. Au moment ou, dans d’autres domaines, la coopé-
ration internationale rencontre encore des obstacles, nous sommes
heureux de pouvoir faire constater ici que les travaux de la Commis-
sion ont pu se poursuivre dans un excellent esprit de compréhension
et de collaboration.

A T'ordre du jour de la réunion d’Oslo figurait la présentation, par
les délégations nationales, des rapports sur Les tendances actuelles de
Pensergnement mathématiqgue. Aprés avoir pris connaissance de ces
rapports, la Section VIII a décidé, a 'unanimité, de soumettre la
résolution suivante a l’approbation du Congres:

Le Congres invite la Commission internationale de I’ Enseignement
Mathématigue & poursuivre ses travaux. Les objets & meltre & U'étude
seront fixés par le Comité Central. (Adopté & 'unanimité.)

I11. — Médaille Fields. — Deux médailles en or seront distribuées
au prochain congrés a deux mathématiciens qui se seront distingués
par leurs travaux. Sur la proposition du Comité du Congrés, la
Commission de la Médaille Fields est composée comme suit: M. HArD Y,
président, et MM. Arvexanprorr, HEeckk, Juria, Levi-CiviTa;
suppléants: MM. LEFscHETZ et NEVANLINNA.

IV. — Lieu du prochain congrés. — M. le Prof. EiseNuArT, parlant
au nom de I’ American Mathematical Society », invite le Congrés a
venir aux Etats-Unis en 1940, le choix de la ville étant laissé aux
soins de la Société Mathématique américaine

« The American Mathematical Society hereby extends to the
International Congress of Mathematicians now in session in Oslo
an Invitation to hold the next congress in the United States of
America, the place of meeting to be determined later by the Society.
This invitation is presented by the official delegates of the Society
in accordance with action taken by the Council of the Society, viz.
Chairman, L. P. Eisenhart, .G. D. Birkhoff, H. F. Blichfeldt,
S. Lefschetz, M. Morse, V. Snyder, O. Veblen, N. Wiener. »

Cette invitation est acceptée par acclamations.

*
* _ *

[’Enseignement mathém., 35me année, 1936. P4
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M. J. A. ScHOUTEN remercie, au nom des congressistes, le Gou-
vernement norvégien, les autorités municipales d’Oslo, le Comité
d’organisation et les divers comités de 'accueil qu’ils ont fait aux
mathématiciens étrangers et a leurs familles. Il tient & les féliciter
de ’excellente organisation du Congres. (Applaudissements prolongés).

Apres avoir exprimé sa reconnaissance & tous ceux qui, par leurs
travaux, ont contribué a la réussite des séances générales et des
séances de sections, le président déclare clos le dixieme Congres
international des mathématiciens.

SEANCES DES SECTIONS

Liste des communications.

Section I: Algébre et Théorie des Nombres.

Présidence : MM. Nagell, Rella, Jarnik, Gut.

WEevYL, Princeton, N. J. — Faktorensysteme und Riemannsche Matrizen.

ManLER, Groningen. — Pseudobewertungen.

Kraircuik, Bruxelles. — Les grands nombres premiers.

Gur, Ziirich. — Uber Erweiterungen von unendlichen algebraischen
Zahlkorpern.

NaceLL, Uppsala. — Sur la grandeur des diviseurs premiers d’une classe
de polynomes cubiques.

BerestrOM, Uppsala. — Die Berechnung einer Basis eines kubischen
Kérpers nach G. T. Woronoj.

JARNIK, Prague. — Zur Theorie der Diophantischen Approximationen.

MorpELL, Manchester. — Note on the four integer cubes problem.

Fusiwara, Tohoku. — Ein Problem aus der Theorie der Diophantischen
Approximationen.

PertERrsoN, Hdsselby Villastad. — Eine Irreduzibilititsmethode ganzzah-
liger Polynome.

Riesz, Lund. — Volumes mixtes et facteurs invariants dans la théorie
des modules.

LuseLski. — Verallgemeinerung des Galoisschen Satzes iiber algebraische
Auflésbarkeit. ' '

NeuMANN, Cambridge, England. — Identical relations in groups.

Pérya, Zirich. — Kombinatorische Anzahlbestimmungen fiir Permuta-
tionsgruppen und chemische Verbindungen.

Rapo, Cambridge, England. — Some recent results in combinatorial
analysis. ‘

KorINEK, Praha. — La décomposition d’un groupe en produit direct des
sous-groupes.

Hirscu, Cambridge, England. — On a class of infinite soluble groups.

Piccarp, Neuchdtel. — Les substitutions qui sont des transformées réci-
proques.

- Burcknaror, Zirich. — Uber lineare inhomogene Substitutionsgruppen.
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Brun, Trondheim. — Uber die Moglichkeit fiir = eine Gesetzméissigkeit in
den Dezimalen zu entdecken.

HorreiTER, Wien. — Uber die Approximation von komplexen Zahlen.

ReLLA, Wien. — Uber den absoluten Betrag von Matrizen.

Taussky, Cambridge, England. — Some problems of topological algebra.

OLDENBURGER, Chicago. — Non-singular multilinear forms and non-
singular p-ic forms.

MANDELBROJT, Clermont-Ferrand. — Sur le théoréme de Grace.

Erpos, Budapest. — On some additive properties of integers.

Rigesz, Lund. — Modules réciproques.

BirkHOFF, Garrett, Cambridge, Mass. — Order and the inclusion relation.

Seetion II: Analyse.

IT a.
Présidence: MM. Mandelbrojt, Menger, Bateman, Brelot.

DracH, Paris. — Sur «’Intégration logique » des équations dynamiques.

TamBs Lycug, Trondheim. — Sur la solution d’une équation différentielle
du premier ordre.

Riksz, Lund. — Intégrale de Riemann-Liouville et solution invariantive
du probleme de Cauchy pour I’équation des ondes.

MENGER, Wien. — Metric methods in calculus of variations.

MogrsEg, Princeton. — Functional topology and abstract variational theory.

LEPAGE, Bruxelles. — Sur les équations de Monge-Ampére provenant du
calcul des variations.

Wazewskl1, Cracopie. — Une propriété de caractere intégral de I’équation

1 0z(x, y)
W) A, g 22U _

0y

x

BIRKHOFF, Garrett Cambridge, Mass. — Product integration of non-linear
differential equations.

Ascrirsson, Island. — Ein Mittelwertsatz fir Losungen der partiellen
n

- : . 02 02 :
Differentialgleichung 2 u;— ——L; = 0, angewandt fiir zwei
i—1\9%; 0y,

1

Potentialfunktionen.

Duswt, Praha. — Sur les noyaux des équations intégrales homogénes pour
quelques classes de polyndmes.

WippERr, Cambridge, Mass. — An integral equation of Stieltjes.

Barnerr and MENDEL, Cincinnati. — On an integral equation quadratic
in the unknown function.
Bapzescu, Cluj. — Sur une série de Laurent identiquement nulle.

ZAREMBA, Cracopie. — Sur une propriété des caractéristiques des équations.
aux dérivées partielles; linéaires et du deuxiéme ordre.

SCHAUDER, Lwdw. — Nichtlineare partielle Differentialgleichungen vom
hyperbolischen Typus.

JANET, Caen. — Sur les systémes de deux équations aux dérivées partielles
a deux fonctions inconnues.
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Riesz, Lund. — Potentiels de divers ordres et leurs fonctions de Green.

FrostMAn, Lund. — Le principe de variation de Gauss et les fonctions
sousharmoniques.

Prrkins, Hanoger, New Hampshire. — Mean value theorems, with appli-
cations in the theory of harmonic, subharmonic and superharmonic
functions.

Mazur und Scuaupir, Lwiéw. — Uber ein Prinzip in der Variations-
rechnung.

STERNBERG, Jérusalem. — Erweiterte Integralgleichungen.

IT &.

Présidence : MM. Saxer, Milloux, Speiser, Selberg.

SPEISER, Ziirich — Zur geometrischen Funktionentheorie.

MiLrLoux, Bordeauz. — Sur quelques points de la théorie des fonctions
meéromorphes dans un cercle.

ULrricH, Giessen. — Zum Umkehrproblem der Wertverteilungslehre:

CarTwRIGHT, Cambridge, England. — On analytic functions with non-
isolated essential sigularities.

SELBERG, Oslo. — Abelsche Integrale und endlichvieldeutige analytische
Funktionen.

JunniLa, Helsinki. — Uber das Anwachsen einer analytischen Funktion in
gegebenen Punktfolgen. -

Paatero, Helsinki. — Uber analytische Transformationen welche zwei
Paare von Randbogen ineinander tiberfiihren.

Pescur, Jena. — Uber die Schlichtheit analytischer Funktionen.

CooPER, Belfast. — A class of divergent series.

OBRECHKOFF, Softa. — Sur les fonctions méromorphes qui sont limites
des fonctions rationnelles.

Pranas CorRBELLA, Zaragoza. — Sur quelques propriétés différentielles des
riemanniennes des fonctions analytiques de plusieurs variabhles.

Beunke, Miinster (Westf.). — Der Kontinuitatssatz und die Regularkon-
vexitat.

WALKER, Starkeille. — The higher singularities of algebraic curves.

TackuinDp, Uppsala. — Sur les classes quasi-analytiques des solutions
de ’équation de la chaleur.

Framant, Strasbourg. — Familles compactes de fonctions dans les classes
quasi-analytiques (D). |

Sippici, Hyderabad. — On the theory of an infinite system of non-linear
integral equations.

Murct AumeDp, Le Caire. — On the uniformation of algebraic curves.

Porrox, Paris. — Irréductibilité de certaines intégrales abéliennes aux
transcendantes élémentaires.

MAYR, Graz. — Uber die Losung algebraischer Gleichungssysteme durch
hypergeometrische Funktionen.

Devismi, Tours (lue par M. Paul DELENS). — Sur une généralisation des

polyndmes de Gegenbauer.
SAN Juan, Madrid. — Sur le probleme de Watson.
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IT c.

Présidence : MM. Tchakaloff, Cramér, Karamata, Noérlund.

Nystrou, Helsinki. — Instrumentelle Auswertung von Stieltjesintegralen.

TcrAKALOFF, Sofia. — Uber eine Darstellung des Newtonschen Differenzen-
quotienten und ihre Anwendungen.

WEINSTEIN, Genéve. — Einige Ungleichungen fiir Doppelintegrale.

MuLuOLLAND, Newcastle. — The length of a curve and the area of a
curved surface as continuous functionals.

Racris, Bucarest. — Sur le calcul aux différences.

McSuANE, Charlottespille. — A non-absolutely convergent integration
process.

SineH, Lucknow. — On some properties of a non-differentiable function.

Giiris, Sunderland. — Some combinatorial properties of measurable
linear sets.

Mazur und Onrricz, Lwéw. — Polynomische Operationen in abstrakten
Réaumen.

Youne, Cambridge, England. — Remarks on the convergence problem of
Fourier series of periodic and almost periodic functions, and on
Parseval’s equation.

Topp, Belfast. — Transfinite superposition of absolutely continuous
functions.

OrrorDp, Cambridge, England. — The uniqueness of the representation
of a function by a trigonometric integral. -

Lesa, Warszawa. — Sur les séries de polyndmes homogenes de deux
variables.

OBRECHKOFF, Sofia. — Sur quelques classes de polyndmes et sur le
développement en séries suivant ces polyndmes.

KaramaTA, Beograd. — Uber allgemeine Umkehrsiatze der Limitierungs-
verfahren.

Kaczmarz, Lwow. — On the orthogonal series.

Mazur, Lwow. — HEinige Probleme aus der Limitierungstheorie.

Younc, Cambridge, England. — An inequality of the Holder type
connected with Stieltjes integration.

SToNE, Cambridge, Mass. — Some remarks on linear functionals.

Kotue, Miinster in W. — Uber die Auflosung von Gleichungen mit
unendlichvielen Unbekannten in linearen topologischen R&umen.

SIERPINSKI, Warzawa. — Sur un probléme concernant les fonctions

de premiére classe.

Seetion III: Géo_métrie et Topologie.

11T a.

Présidence : MM. Veblen, Nielsen, Newman, Straszewicz, Freudenthal.

ZarankiEwicz, Warszawa. — Zur lokalen Zerschneidung des Raumes.
SzPILRAIN, Warszawa. — La dimension et la mesure.

Marty, Marseille. — Sur la théorie du groupe fondamental.
WHaiTEHEAD, Oxford. — Equivalent sets of elements in a free group.
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NewmAN, Cambridge & WHITEHEAD, Ozford. — On the group of a certain

Linkage.
KirEkIARTO, Szeged. — Topologie des transformations.
Borsuk, Varsopie. — Uber Addition der Abbildungsklassen.
HaantiEs, Delft. — Halblineare Transformationen.
GEPPERT, Giessen. — Uber den gemischten Inhalt zweier Bereiche.

RaTiB et WinN, Le Caire. — Généralisation d’une réduction restreinte de
M. Errera, relative au théoréme des quatres couleurs.

Morzxin, Jerusalenm. — Contribution a la théorie des graphes.

RAFAEL, Liege. — Asynthetic property of the nine inflexion points of an
ordinary plain cubic.

Morzkin, Jerusalem. — Sur le produit des espaces métriques.

FrREUDENTHAL, Amsterdam. — Teilweise geordnete lineare Réume.

SYNGE, Toronto. — On the connectivity of spaces of positive curvature.

- TorrANCE, Cleveland. — Tangent lines and planes in topological spaces.

PonTrIAGIN, Moscou, lue par M. Lefschetz, Princeton. — Sur les transfor-
mations des sphéres en sphéres.

Kaurmann, Cambridge, England. — On homologies in general spaces.

EiLenBERG, Warszawa. —— Sur les espaces multicohérents.

TuisAvLt, Le Mans. — Sur une nouvelle sphére associée au tétraédre.

CouranTt, New-York. — Uber das Problem von Plateau.

Stoinow, Cernautt. — Sur la définition des surfaces de Riemann.

MorrEY, Baltimore. — Planar positions.

Bypzovsky, Prague. — Décomposition d’une transformaticn quadratique
involutive dans I’espace a n dimensions.

PapaioanNou, Athénes. — Sur les courbes ayant le méme axe anhar-
monique.

IIT &.

Présidence : MM. Blaschke, Tzitzéica, Cartan, Kérékjarto.

SNYDER, Jthaca, N. Y. — Certain Cremona transformations in Sy belonging
multiply to a nonlinear line complex.

opEAUX, Liége. — Sur les involutions cycliques appartenant a une
variété algébrique. '

HaenzeL, Karlsruhe. — Neue Eigenschaften der linearen Strahlenkon-
gruenz.

Birkuorr, Garrett, Cambridge, Mass. — (Generalized convergence.

ScaouTEN, Delft. — Uber die Theorie des geometrischen Objektes.

GowraB, Cracopie. — Uber das Anholonomititsobjekt von Schouten und

_ pan Dantzig.

Brascuke, Hamburg. — Integralgeometrie.

vAN DaNtzic, Wassenaar. — Uber den Tensorialkalkiil.

Hravaty, Praha. — Invariants conformes, géométrie de M. Weyl et celle
de M. Konig.

Bourap Bry, Le Caire. — Sur les formes des équations a trois variables
représentables par des abaques coniques a simple alignement.

Bourap Bey, Le Caire. — Sur la symétrie nomographique et les formes

canoniques des équations & quatre variables représentables par des
abaques a double alignement.
FencurL, Kobenhayn. — Beitrige zur Théorie der konvexen Korper.
MusskELMAN, Cleveland. — Circles connected with three or more lines.
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BARBILIAN, Bucarest. — Die von einer Quantic induzierte Riemannsche
Metrik.

LocuER, Winterthur. — Struktur der Axiome der projektiven Geometrie.

KEREKIARTO, Szeged. — Sur la géométrie hyperbolique. »

Mogritz, Seattle, Wash. — A Napier theorem for quadrantal triangles.

MENGER, Wien. — New ways in differential geometry.

TzitzEicA, Bucarest. — Sur la géométrie différentielle de I’équation de
Laplace. '

GiveEns, Princeton, N. Y. — Tensor coordinates of linear spaces.

PaNTAZI, Bucarest. — Sur certains réseaux projectivement déformables.

Hurewicz, Amsterdam. — Lokaler Zusammenhang und stetige Abbil-
dungen.

Section IV: Calcul des Probabilités. Assurances. Statistique mathématique.
Présidence: MM. Elderton, Riebesell, Bowley, Steffensen.

GuLDBERG, Oslo. — Uber das Urnen-Schema von Polya. (Im wesentlichen
nach einer hinterlassenen Untersuchung von Prof. Dr. Alf Guldberg.)

BowLey, Haslemere. — The standard deviation of Gini’s mean difference.

Morina, New York.— Laplacian expansion for Hermitian-Laplace functions
of high order.

RieBESELL, Berlin. — Die mittlere Abweichung bei nichtnormaler Ver-
teilung und ihre Bedeutung in der Versicherungspraxis.

Borer, Paris. — Quelques remarques sur Papplication du calcul des pro-
babilités aux jeux de hasard.

BowLey, Haslemere. On slightly asymetrical frequency curves.

Breror, Alger. — Sur I'influence des erreurs de mesure en statistique.

FeELLER, Stockholm. — Existenzsatze fiir stochastische Prozesse.

MiLicEr-GRUZEWSKA, Warszawa. — On the probable error of a function
of a finite number of equivalent variables.

Onicescu, Bucarest. — Les chaines statistiques.

Wouip, Stockholm. — On multi-dimensional distributions.

GumsEL, Lyon. — Die grossten Werte einer Verteilung.

GumBEL, Lyon. — Das Grenzalter.

CrAMER, Stockholm. — Some theorems connected with the « Central Limit
Theorem » in probability. ,

Lukéhcs, Wien. — Uber gewisse Funktionen der Kommutationswerte, die
vom Alter unabhingig sind.

MEemELL, Oslo. — Integration zusammengesetzter Funktionen mit An-
wendung auf versicherungsmathematische Probleme.

Potron, Paris. — Conditions des équilibres production-consommation et
prix-salaires.

RipEr, St. Louis. — Certain moment functions for Fisher’s k-statistics

in samples from a finite population.
Worp, Stockholm. — On the mean difference at random samples.
SAKELLARIOU, Athénes. — Uber eine allgemeine Formel der Sozialver-
sicherungsmathematik.
Avr, Wien. — Uber die Messbarkeit des Nutzens.
Boenm, Berlin. — Eine wahrscheinlichkeitstheoretische Methode zur
Analyse von wirtschaftlichen Zeitreihen. '
CoreLAND, Ann Arbor. — Sequences with after-effect.
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FrEcrET, Paris. — Sur quelques idées modernes dans la Théorie des
probabilités.

Friscu, Oslo. — Price index comparisons between structually different
markets.

LINDER, Bern. — Uber die Berechnung der Wahrscheinlichkeiten aus den
Beobachtungszahlen.

Section V: Physique mathématique. Astronomie.
Présidence : MM. Milne, Oséen, Hartree, Lemaitre.

vaN Dantzic, Wassenaar. — Uber das Verhiltnis von Geometrie und
Physik.

MiLNE, Oxford. — The inverse square law of gravitation.

McCrEeA, London. — Some astrophysical problems concerning the scattering
of light.

Ruse, Edinburgh. — On the geometry of the electro-magnetic six vector,

the electromagnetic energy tensor, the Hertzian tensor and the
Dirac equations.

CoNnway, Dublin. — Quaternion view of the electron wave equation.

NoEeTHER, Tomsk. — Uber elektrische Drahtwellen.

RossevLanDp, Oslo. — On the construction of a differential analyzer.

HartrEE, Manchester. — Application of the differential analyzer to the
solution of partial differential equations.

Tuompson, Ozford. — The mechanical instability of the crystal lattice.

Lemaitre, Louvain. — Results of calculations of asymptotic trajectories
in the field of a magnetic dipole with applications to cosmic radiation.

VarrArta, Cambridge, Mass. — Results of calculations of asymptotic

trajectories in the field of a magnetic dipole with applications to
cosmic radiation.

SvoBoDA, Praha, lue par M. Horak. -— Les essais expérimentaux des
méthodes pour calculer le radiant du courant météorique des trajets
observés.

HorAx, Praha. — Sur P’égalité de la masse inerte et de la masse pesante.

J. TuowmiNeN, Helsinki. — Resultate numerischer Berechnungen einiger
Sternmodelle.

SYNGE, Toronto. — Limitations on the behaviour of an expanding universe.

Drumaux, Gand. — La vitesse radiale des nébuleuses extragalactiques.

BremekAanMP, Delft. — Uber die Carsonsche Integralgleichung.

Section VI: Mécanique.
Présidence : MM. Filon, Drach.

MzerLiN, Gand. — Sur certains mouvements des fluides parfaits.

VAvrcovict, Bucarest. — Sur le sillage derriére un obstacle circulaire.

BATEMAN, Pasadena. — Associated Airy functions in elasticity and hydro-
dynamics.

GraN OussoN, Trondheim. — Beitrag zur Biegetheorie kreisformiger
Platten verdnderlicher Dicke.

NemENYI, Kébenhavn. — Beitrdge zur Membran-theorie der Schalen.

OMARA, Le Caire. — Sur les actions dynamiques d’un courant translo-

circulation sur un profil & points de rebroussement.
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METRAL, Paris. — Démonstrations nouvelles de propriétés du gyroscope.
Lr Roux, Rennes. — Lia mécanique invariante.
WaAVRE, Genéve. — Remarques sur la détermination des corps & partir de

leur potentiel newtonien.
HaMEL, Berlin. — Raumliche Strahlen mit konstanter Geschwindigkeit.
REIsSNER, Berlin. — Erzwungene Schwingungen eines massebehafteten
elastischen Halbraumes. (Beitrag zur Theorie der Baugrund-
forschung.)

Section VII. Philosophie et Histoire des mathématiques.
Présidence : MM. Fraenkel, Spiess.

PETER, Budapest. — Uber rekursive Funktionen der zweiten Stufe.

CavaIiLLEs, Paris. — Formalisme et expression d’une structure mathé-
matique.

SKOLEM, Bergen. — Hine Bemerkung zum Entscheidungsproblem.

ErrERA, Bruxelles. — Sur la notion de compatibilité et les rapports entre
Pintuitionisme et le formalisme.

Sp1Ess, Basel. — Die wissenschaftliche Korrespondenz der \fathematllxer
Bemoulh

LocHER, Winterthur. — Goethes Stellung zur Mathematik.

ARcHIBALD, Progidence, R. I. — New information concerning James
Joseph Sylvester. |

Ganpz, New York. — The invention of the decimal fractions and the
exposition of the exponential calculus by Immanuel Bonfils (c. 1350).

SiNcH, Lucknow. — The history of magic-squares in India.

HELGAARD Oslo. — Zahlen in einem Papyrusfetzen in der Osloer-Papyrus-
Sammluno ?

VoGEL, Miinchen. — Zur Tradition der babylonischen Mathematik.

JELITAI, Budapest. — Zur Geschichte der Mathematik in Ungarn.

Section VIII: Enseignement.
Présidence: M. H. Fehr.

VIII a.
Commission internationale de I’Enseignement mathématique :

1. Rapport sommaire sur la Commission par H. Frnr, secrét.-général.
2. Les tendances actuelles de lenseignement mathématique dans les
divers pays. Rapports présentés par les délégations nationales 1.

3. Discussions sur ces rapports.
4. Séance administrative.
VIII 5.
Présidence: M. Boulad Bey.

FairtaorNE, Farnborough, Hants. — The demonstration of qualitative
propertle% of differential equations by means of cinematograph
films. (With film.)

PrzisraM, Wien. —- Beliebiges Wurzelziehen als Rechnungsart ohne

Logallthmen

1 Ces rapports seront reproduits in extenso dans un prochain fascicule de L’Ensei-
gnement Mathématique.
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