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CONFÉRENCES INTERNATIONALES DE TOPOLOGIE1

suite)

SUR LA STRUCTURE DES TRANSFORMATIONS

TOPOLOGIQUES DES SURFACES EN ELLES-MÊMES2

PAR

B. de Kerékjârtô (Szeged, Hongrie).

1. — Généralités. — Le problème fondamental de la topologie
est de déterminer les conditions sous lesquelles deux configurations

sont homéomorphes; l'homéomorphie des deux configurations

sera établie par le moyen d'une transformation
topologique (c'est-à-dire biunivoque et bicontinue). Ce problème est
résolu pour les cas des lignes et des surfaces; grâce à ces résultats,
on peut approfondir les recherches concernant les transformations
des surfaces. Alors, les transformations ne seront plus
considérées comme les seuls moyens qui servent à établir l'homéomorphie

de deux surfaces, mais elles deviennent des êtres
autonomes dont la topologie ouvre un champ important de

recherches nouvelles. Il s'agit dans ces recherches —- comme
en toute question d'homéomorphie — de trouver des propriétés
topologiques des transformations.

Une partie considérable de ces problèmes — d'une nature
plutôt combinatoire — concerne la détermination des points

1 Ces conférences ont eu lieu à l'Université de Genève, du 21 au 25 octobre 1935,
sous la présidence de M. Elie Cartan, Membre de l'Institut.

2 Conférence faite le 23 octobre 1935 dans le cycle des Conférences internationales
cles Sciences mathématiques organisées par l'Université de G-enève; série consacrée à
Quelques questions de Géométrie et de Topologie.

L'Enseignement mathém., 35me année, 1936. 20
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invariants, leurs classes et leurs indices. Après les résultats
classiques de MM. Brquwer, Birkhoff et Alexander, c'est
M. J. Nielsen qui a réussi à développer une théorie
systématique de cette catégorie de problèmes par des méthodes
remarquables par leur élégance et leur profondeur [31] h

Une autre partie beaucoup moins développée concerne la
structure des transformations; nous essayons de donner dans
la suite un résumé des problèmes et des résultats concernant la
structure des transformations topologiques, et de signaler leurs
relations avec d'autres questions de mathématiques. Nous
faisons observer que les recherches profondes de MM. Birkhoff
et P. Smith [2, 7], importantes par leurs applications
dynamiques, concernent surtout des transformations analytiques.
Pour cette raison elles n'entrent pas dans le cadre de notre
conférence.

2. — Homéomorphie de deux transformations. — Soient S et S'
deux surfaces homéornorphes, et soient T et T' des transformations

topologiques de ces surfaces en elles-mêmes. Les
transformations T et T' seront dites homéornorphes s'il existe une
transformation topologique t de S en S' telle que T' est la
transformée de T par t:

T' t~ 1 TT

Toutes les transformations topologiques homéornorphes entre
elles forment un seul type topologique de transformations.

Le problème idéal est de reconnaître les conditions sous

lesquelles deux transformations sont homéornorphes. Comme
ce problème ne pourra pas être résolu dans sa généralité, on
cherchera à déterminer des propriétés caractéristiques qui sont
alors communes à toutes les transformations appartenant au
même type topologique. L'ensemble, les classes et les indices
des points invariants sont des caractéristiques ; en voici encore
quelques autres: la propriété d'une transformation d'appartenir

à un groupe continu ou discontinu de transformations,
d'admettre une racine carrée, d'être périodique de période w,

i Les numéros entre crochets renvoient à la liste bibliographique placée à la fin
du Mémoire.
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etc. ; la propriété d'une transformation que les images successives

d'un point (obtenues par l'itération indéfinie de la transformation

et de son inverse) convergent vers un seul point, ou qu'elles
admettent des points d'accumulation dont l'ensemble possède

une structure donnée, ou bien qu'elles forment un ensemble

partout dense sur la surface.
D'une façon analogue, nous définissons l'homéomorphie de

deux ensembles de transformations (T) et (T') dont l'un
comprend des transformations T de la surface S en elle-même,
l'autre des transformations T' de S' en elle-même ; les deux
ensembles seront dits homéomorphes, s'il existe une transformation

topologique t de la surface S en S' telle que les éléments
de (T') soient les transformés des éléments de (T) par t. Cette
définition s'applique, en particulier, si (T) et (T') sont des

groupes, et alors leur homéomorphie entraîne leur isomorphie
boloédrique. Si les ensembles (T) et (T') sont homéomorphes,
toute transformation T est homéomorphe à une transformation
T', et vice versa. Mais on peut construire des exemples simples
montrant que l'homéomorphie de chacune des transformations

(T) avec une transformation de (T') n'entraîne pas l'homéomorphie

des ensembles (T) et (T") parce que la transformation t
établissant l'homéomorphie entre deux éléments correspondants

T et T' n'est pas la même pour tout T.

3. — Représentations conformes. — Bien que le problème
d'homéomorphie de deux transformations ne puisse pas être
résolu généralement, on peut chercher des conditions de nature
topologique sous lesquelles une transformation est homéomorphe
à une transformation donnée de structure simple. M.Brouwer[8]
a posé le problème de caractériser topologiquement les
représentations conformes, c'est-à-dire de déterminer les conditions
sous lesquelles une transformation est homéomorphe à une
représentation conforme. Nous traiterons ce problème plus loin;
ici nous le mentionnons seulement pour expliquer et justifier nos
définitions.

Si S' est une surface analytique, et si T' est une représentation
conforme de S' en elle-même, l'homéomorphie entre T et T'
permet de considérer aussi T comme une représentation conforme.
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Nous transportons, en effet, la métrique de S', c'est-à-dire les

angles et les distances définies en S', sur la surface S, au moyen
de la transformation t qui établit Fhoméomorphie entre T et T'.
La transformation T de S en elle-même est alors une représentation

conforme par rapport à cette métrique de S. On reconnaît
facilement que la propriété d'une transformation d'être homéo-

morphe à une représentation conforme est très restrictive; par
exemple, une transformation de S en elle-même, différente de

l'identité, qui laisse invariants tous les points d'un domaine sur S

ne peut être conforme dans aucune métrique.
Ici on voit immédiatement quelles raisons nous ont obligé à

restreindre la définition de l'homéomorphie de deux transformations

au cas des transformations des surfaces en elles-mêmes.

Car si T est une transformation topologique quelconque d'une
surface S en une autre surface Sx (sans point commun avec S),

on peut la considérer comme une représentation conforme de S

sur Sx; par la transformation T elle-même, nous transportons
une métrique de S, choisie arbitrairement, sur la surface Sx et

par cela T devient une représentation conforme de S sur Sx.

Le caractère topologique des représentations conformes et

biunivoques n'a donc un sens que s'il est restreint au cas des

transformations des surfaces en elles-mêmes.

En ce qui concerne les représentations conformes et non
biunivoques, il faut aussi dire que la détermination de leurs
caractères au point de vue topologique pour le cas des transformations

entre deux surfaces distinctes est complètement résolue

par les surfaces de Riemann et leurs théorèmes d'existence.
Mais le problème de caractériser topologiquement les
transformations des surfaces en elles-mêmes qui sont homéomorphes
à des représentations conformes, est complètement en suspens.
Considérons, par exemple, la question la plus simple suivante:
une transformation (1, n) de la sphère en elle-même, sous quelles
conditions est-elle homéomorphe à une transformation rationnelle

[établie par une fonction rationnelle w R (z)] La
condition que la transformation soit localement biunivoque,
excepté en un nombre fini de points, est évidemment nécessaire;
s'il s'agit d'une transformation entre deux sphères distinctes,
elle est aussi suffisante, mais non pas pour une transformation
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d'une sphère en elle-même. Les recherches de M. Julia [13] sur
l'itération des fonctions rationnelles ont révélé beaucoup de

propriétés topologiques de ces transformations; elles sont aussi

fondamentales pour attaquer la question posée ci-dessus.

4. — Domaine de la transformation. — Pour la recherche de la
structure d'une transformation topologique T qui transforme
une surface S en elle-même, c'est un moyen utile de considérer
les domaines libres et, en particulier, les domaines libres maxima.
On entend par un domaine libre un domaine qui n'a aucun point
commun avec son image; il est appelé maximum s'il n'est pas
un vrai sous-ensemble d'aucun domaine libre. Il faut dire tout
d'abord que l'existence seule d'un domaine libre maximum ne

signifie rien, c'est un fait presque évident pour une transformation

quelconque; c'est le type ou la forme d'un tel domaine et sa

situation sur la surface qui sont souvent importants et même

caractéristiques jusqu'à un certain degré.
Si P est un point quelconque de S non invariant dans la

transformation T, il existe un voisinage de P qui n'a aucun
point commun avec son image, ce voisinage est donc un domaine
libre. En l'augmentant, on peut obtenir un domaine libre maximum.

Ce fait qu'il est devenu maximum peut être dû à deux
circonstances tout à fait différentes ; ou bien la propriété du
domaine d'être libre maximum exprime une propriété concernant
la structure de la transformation ; ou bien une constitution
singulière de la frontière du domaine empêche d'augmenter le
domaine libre. Voici un exemple qui montre la seconde possibilité

; pour la translation x' x + 1, y' y, le domaine
I limité par les lignes:

• y zt 1 — l ^ x g -f* l

] « ± ~4~| sin - Oj-yI> — 1 < y < + 1 (h et y

forme un domaine libre maximum (fig. 1); le fait qu'il est maximum

est dû à la présence des continus de condensation à la
| frontière (les segments y ±1, — 1 < < + 1 sont des

continus de condensation des lignes lx et
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Pour éviter l'inconvénient signalé par cet exemple, nous ne
considérerons dans la suite que les domaines libres maxima dont
les frontières sont formées par des courbes d'ordre fini dans
tout point et telles que les points d'ordre > 2 forment un
ensemble isolé. Nous appelons un domaine de cette sorte un
domaine de la transformation. Pour une surface close il est un
domaine limité par un nombre fini de courbes simples et fermées
dont deux quelconques n'ont au plus qu'un nombre fini de points
communs.

Pour assurer l'existence d'un domaine de la transformation, il
faut restreindre la catégorie des transformations envisagées ;

nous supposons dans la suite que S est une surface orientable à

connexion finie, et T est une transformation à points invariants
isolés. En particulier, nous considérerons les surfaces closes, et
leurs transformations à un nombre fini de points invariants.

Le domaine de la transformation est l'analogue, dans un
certain sens, du domaine fondamental correspondant à un

groupe automorphe. Il n'est pas exactement déterminé par la
transformation, on peut le modifier de maintes façons. Si P

est un point quelconque sur la frontière du domaine, son image
directe ou inverse appartient aussi à la frontière. Si P est un
point de la frontière dont l'image directe appartient à la fron-
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tière, et dont l'image inverse n'appartient pas à la frontière, si,
de plus, P est un point d'ordre 2 de la frontière, c'est-à-dire
si le voisinage de P sur la frontière est formé par un arc simple,
l'image directe de cet arc appartient aussi à la frontière du
domaine. On peut alors remplacer le premier arc par un arc
voisin intérieur au domaine, et l'autre par l'image directe de

celui-ci; par cette modification de la frontière, on a obtenu un
autre domaine de la transformation. Un point invariant de la
transformation peut appartenir à la frontière du domaine de la
transformation, mais non pas à son intérieur.

Concernant le domaine de la transformation, les données
suivantes sont caractéristiques: le nombre de ses contours, son
nombre de connexion, le nombre des points invariants appartenant

à sa frontière et le nombre des domaines complémentaires
sur la surface. Sur une surface à connexion finie, le domaine de
la transformation peut avoir un ou deux domaines complémentaires;

dans le deuxième cas, il a précisément deux contours.
Nous faisons remarquer que la même transformation peut

admettre deux domaines de la transformation de types
différents. Tel est le cas pour une transformation linéaire
hyperbolique de la sphère: z' 2z. Un domaine de la transformation
est formé par la couronne limitée par les deux circonférences
concentriques |i| 1 et |t| 2; un domaine de type différent
est limité par les spirales:

log \z\ arc £ et log | z | — arc 2 -h log 2 ;

ce dernier domaine est à connexion simple, sur son seul contour
il y a deux points invariants (fig. 2). Pour une transformation
linéaire elliptique, le seul type du domaine de la transformation
est limité par deux arcs simples joignant les deux points
invariants, l'un de ces arcs étant l'image de l'autre.

5. — Théorème de translation. — Le théorème de translation
dû à M. Brouwer [9] énonce la propriété suivante d'importance
principale: Pour une transformation topologique du plan en
lui-même conservant le sens et n'admettant pas de point
invariant, il existe un domaine de la transformation limité par deux
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lignes simples et ouvertes. On entend par une ligne simple et
ouverte un ensemble fermé qui est une image topologique de la

ligne droite. Si on projette le plan stéréographiquement sur une

Fig. 2 a,

Fig. 2 b.

sphère, à la transformation donnée du plan correspond une
transformation de la sphère en elle-même à un seul point inva-
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riant; aux lignes simples et ouvertes limitant le domaine de la

transformation correspondent des courbes simples et fermées

passant par le point invariant qui n'ont pas d'autres points

communs; l'une de ces courbes est l'image de l'autre dans la

transformation donnée.

Remarque. — Comme cette conférence ne nous permet pas de

nous occuper des démonstrations, je rappelle que dans deux

notes aux Comptes rendus j'ai esquissé, et dans un mémoire

aux Acta Scient. Math, de Szeged j'ai développé une méthode

systématique qui nous met en état de démontrer, par une
construction simple, à la fois le théorème de translation et le dernier
théorème de Poincaré (voir note 6) [15, 16, 17]. Si on se borne
à démontrer le théorème de translation, on peut éviter la
modification de ma construction que j'ai appelée la déviation de la

ligne construite. La construction nous fournit alors une ligne
brisée composée de segments perpendiculaires dont les sommets
forment une suite divergente. Si elle n'est pas un ensemble

fermé, ses points d'accumulation n'appartenant pas à la ligne
forment une ou deux lignes droites invariantes dans la
transformation. Il ne peut exister deux droites invariantes de directions

distinctes, car leur point commun serait un point invariant
dans la transformation. En recommençant notre construction
à partir d'un segment qui n'est ni parallèle, ni perpendiculaire
à la direction des droites invariantes, notre construction fournit
automatiquement une ligne simple et ouverte qui n'a pas de

point commun avec son image; cette ligne et son image limitent
un domaine de la transformation.

6. — Le dernier théorème géométrique de Poincaré. — Un autre
résultat classique concernant la structure des transformations
est le théorème suivant énoncé par Poincaré [32] et démontré
pour la première fois par M. Birkhoff [1, 3]: Soit S une
couronne limitée par deux circonférences concentriques C± et C2; soit
T une transformation topologique de S en elle-même qui transforme

chacune des circonférences Cx et C2 en elle-même et
déplace leurs points en des sens opposés. Si la transformation T
n'admet pas de point invariant, il y a une courbe simple et fermée
qui se trouve à l'intérieur de son image directe ou inverse.
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Nous indiquons la relation entre ce théorème et le théorème
de translation. Soient (r, 9) des coordonnées polaires dans la
couronne 1 <. r 51 2, 0 < 9 < 2tc, et soit la transformation T
exprimée par les formules r' R(r, 9), 9' 0(r, 9);
déterminons la valeur de 6 (r, 9) pour un point de Cx de telle façon
que 9 < 6 (1, 9) < 9 4- 27T ; pour les points de C2, on aura alors

6(2,9) < 9; c'est l'expression de la condition que T déplace
les points de Cx et de C2 en des sens opposés. Nous
transformons la couronne par les formules y r, ^ 9 + 2kiz
(k 0, ± 1, ± 2, sur la bande 1 < y < 2, — 00 < # < + 00

dans le plan cartésien (x, y), et nous étendons la transformation
de cette bande en elle-même correspondant à T sur le plan
entier pour obtenir une transformation sans point invariant du
plan en lui-même. Le théorème de translation assure l'existence
d'un domaine de la transformation dans le plan; pour démontrer
le théorème de Poingare, il faut trouver un domaine de la
transformation dans la bande qui est périodique en x de
période 2tz. Ma méthode mentionnée ci-dessus permet de construire
un domaine de cette sorte [16,17].

D'une façon similaire, on peut ramener toute transformation T,
d'une surface S en elle-même, conservant le sens à une transformation

du plan sans point invariant. Sur la surface S privée
des points invariants de T, nous construisons la surface de
recouvrement à connexion simple ; la transformation T de cette
surface en elle-même engendrée par la transformation T révèle

une certaine partie des propriétés de la transformation T elle-
même ; ensuite T peut être considérée comme une transformation
du plan en lui-même conservant le sens et n'admettant pas de

point invariant. Ces circonstances montrent la nécessité d'approfondir

l'étude des transformations du plan.

7. — Sur les translations planes. — Soit T une transformation

topologique du plan en lui-même conservant le sens et

n'ayant pas de point invariant. En vertu du théorème de

M. Brouwer, il existe un domaine de la transformation, F,
limité par deux lignes simples et ouvertes; l'ensemble
complémentaire de F sur le plan consiste en deux domaines G et
D. Nous désignons par F^ l'image de F obtenue par la trans-
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formation Tn (n 0, ± 1, ± 2, ...); les domaines Fx, F2,

appartiennent à D, et les domaines F_1? F_2, à G (voir fig. 3).

La réunion des domaines Fn est un domaine A dans lequel la

transformation T est homéomorphe à une translation métrique

Fig. 3.

du plan. Cependant le domaine A n'est pas nécessairement

identique au plan entier; tel est le cas pour la translation:
x' x + 1, y' y, si on prend pour F le domaine limité
par les lignes

et y x — 1
(x > 0)

les images successives de F ne remplissent que le demi-plan
y > 0. Pourtant, pour cette transformation, on peut aussi
construire un tel domaine F dont les images successives
remplissent le plan entier. Mais il y a des transformations pour
lesquelles c'est impossible [10]; tel est le cas dans l'exemple
suivant (voir figure 4):

x' tas x + 1

x' x A- 1

x' — x — 1

2 i/, y + y
y' y

yf y

pour 0^2/^1,
pour y < 0

pour y > 1

Dans cette transformation, les lignes y 0 et y — 1 sont
singulières dans un certain sens que nous allons préciser tout à
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l'heure; un domaine de la transformation ne peut pas
comprendre à la fois des points appartenant aux demi-plans y < 0

et y > 1. Cette transformation ne peut donc pas être homéo-
morphe à une translation métrique.

Nous projetons stéréographiquement le plan sur une sphère
et nous entendons par la distance sphérique de deux points P

et Q du plan la distance sphérique des points qui leur
correspondent sur la sphère. Nous entendons par l'expression que les

puissances de la transformation T sont uniformément continues

au point P la propriété suivante: pour toute quantité positive s,

il existe un S > 0 tel que, Q étant un point quelconque à une
distance de P plus petite que S, les images de ces points, Tn(P)
et Tn(Q), obtenues par la transformation Tn, sont à une distance
sphérique l'une de l'autre inférieure à s, pour n 0, d= 1, ± 2,....
Les points P pour lesquels cette condition se trouve vérifiée, sont
appelés réguliers, les autres singuliers. Dans l'exemple de la
figure 4, les points appartenant aux lignes y 0 et y 1 sont
singuliers, les autres sont réguliers.

On reconnaît immédiatement que pour une translation
métrique, tous les points du plan sont réguliers. J'ai démontré

que cette propriété est caractéristique pour les transformations
homéomorphes à une translation métrique; ce résultat s'exprime
dans le théorème suivant:

La condition nécessaire et suffisante sous laquelle une
transformation topologique du plan en lui-même conservant le sens

et n'admettant pas de point invariant est homéomorphe à une

y.<

J'°
Fig. 4
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translation métrique est qu'elle soit régulière en tout point du

plan [14, 22].

8. — Examen des caractères topologiques des représentations

conformes. — La définition de la régularité d'une transformation
s'applique dans sa forme donnée ci-dessus à une surface close

quelconque; on reconnaît aussi facilement qu'elle se conserve

par une transformation topologique quelconque, et en particulier

qu'elle est indépendante de la métrique spéciale de la
surface. A l'aide de cette notion, on parvient à caractériser de

la manière suivante les représentations conformes et biuni-
voques, manière qui répond au problème posé parM.BROuwER
(n° 3) :

La condition nécessaire et suffisante sous laquelle une
transformation topologique de la surface d'une sphère en elle-même
est homéomorphe à une transformation linéaire (ou homogra-
phique) est que la transformation soit régulière, excepté en un
nombre fini de points, au plus. Elle est homéomorphe à une
transformation elliptique parabolique ou hyperbolique suivant
que le nombre des points singuliers est 0, 1 ou 2 [20, 23].

La condition nécessaire et suffisante pour qu'une transformation

topologique d'une surface close et orientable de genre p> 1

en elle-même, conservant le sens, soit homéomorphe à une
représentation conforme, est que la transformation soit régulière
(en tout point de la surface). Pour p> 1, les transformations
régulières sont périodiques [25, 26, 27].

9. — Le groupe homographique. — Les remarques faites au
n° 2 montrent la nature différente des problèmes qui consistent
à caractériser les transformations linéaires et le groupe des
transformations linéaires à une variable complexe (groupe
homographique). Un critère du groupe homographique donné
par M. Süss [33] est le suivant:

Soit G un groupe de transformations topologiques de la
surface d'une sphère en elle-même conservant le sens, et soit (k)
un système de courbes simples et fermées sur la surface. Pour
deux triples de points (A, B, C) et (A', B', G'), il existe une
transformation de G et une seule qui transforme (A, B, C) en
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(A7, B', C). Par trois points quelconques passe une courbe du
système (k) et une seule. Soient k et k' deux courbes du
système (k) ayant un point B en commun, et soit A un point de k'
distinct de B ; si une transformation de G transforme k7 en lui-
même et laisse les points A et B invariants, elle transforme
aussi k en elle-même. Sous ces conditions, le groupe G est

homéomorphe au groupe homographique, et le système (k) est

homéomorphe au système des circonférences sur la sphère.
Cette solution du problème a l'inconvénient qu'elle introduit

a priori les circonférences au lieu de les définir par le groupe.
Voici un autre système de conditions qui évite cet inconvénient.

Soit G un groupe de transformations topologiques de la
surface d'une sphère en elle-même conservant le sens, et dont
chacune admet au plus un nombre fini de points singuliers. Pour
deux triples de points (A, B, C) et (A7, B7, C7), il existe une
transformation de G qui transforme (A, B, C) en (A7, B7, C7) et

qui varie continuement avec le triple (A7, B7, C7). Les transformations

de G qui laissent un point U invariant et qui sont
régulières excepté au point U, forment un sous-groupe de G.

Je vais indiquer comment on peut définir les circonférences

par le groupe G. Soient A, B et P trois points fixes, et soit P7 un
point variable. Il y a une transformation dans G et une seule qui
laisse invariants les points A et B et qui transforme P en P7;
cette transformation varie continûment avec P7. Les transformations

correspondant aux diverses positions de P7 forment un
groupe continu simplement transitif sur la surface privée- des

points A et B. Ce sous-groupe de G est commutatif et il est

homéomorphe au groupe des translations d'une surface
cylindrique en elle-même [19]. Il contient donc un sous-groupe clos

d'ordre 1; les trajectoires de ce dernier sous-groupe sont les

circonférences de centres A et B. Par l'étude de ces circonférences
définies par le groupe, on parvient à caractériser le groupe
homographique.

Les groupes des géométries euclidienne et non-euclidiennes

planes peuvent être caractérisés comme des sous-groupes du

groupe homographique; on obtient de cette façon une autre
solution du problème résolu dans l'œuvre célèbre de M. Hilbert
[12]. Je tiens à faire remarquer ici qu'un axiome de M. Hilbert
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appelé « axiome de voisinage » (Axiom der Nachbarschaft) qu'il
a introduit d'abord et qu'il a déduit ensuite de ses autres

axiomes (surtout de l'axiome de « système fermé ») est en relation

avec notre notion de régularité, et de même la notion d'ensemble

de fonctions « également continues » due à Ascoli. La différence
essentielle consiste en ce que nous avons déterminé une
propriété caractéristique d'une seule transformation en appliquant
la condition d'égale continuité à l'ensemble de ses puissances.

10. — La distribution des points singuliers d'une transformation.

— Nous considérons de nouveau les transformations du

plan en lui-même sans point invariant; la recherche de la
distribution de leurs points singuliers est importante en vue de ses

applications.
Nous mentionnons la question suivante qui a été posée en

relation avec des problèmes dynamiques:
Une transformation topologique du plan en lui-même conservant

le sens et n'admettant pas de point invariant peut-elle être

immergée dans un groupe continu d'ordre 1 du plan
La réponse négative découle des remarques suivantes. Si une

transformation sans point invariant appartient à un groupe
continu d'ordre 1, ses points singuliers forment des lignes simples
et ouvertes sans point commun deux à deux. D'autre part, j'ai
construit une transformation dont les points singuliers forment
des lignes avec des points multiples; elle ne peut donc pas
appartenir à un groupe continu d'ordre 1, et de plus, elle n'admet
pas de racine carrée [24]. Il faut alors chercher les conditions
concernant la distribution des points singuliers sous lesquelles
une transformation peut être plongée dans un groupe continu
d'ordre 1.

Voici quelques propriétés générales des points singuliers. Si T
est une transformation topologique du plan sans point invariant
et conservant le sens, les composants de l'ensemble de ses points
singuliers sont des continus non-bornés; par conséquent tout
domaine maximum consistant de points réguliers est à connexion
simple, et s'il est invariant dans T, dans son intérieur la
transformation T est homéomorphe à une translation métrique.

En reprenant les notations du n° 7, désignons par A le domaine
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qui est la réunion des images successives d'un domaine de la
transformation F. Nous disons que À est maximum s'il n'est
pas un vrai sous-ensemble d'un autre domaine A' de la même
sorte. Si A est maximum, tout point de sa frontière est un point
singulier de T, mais la réciproque n'est pas vraie.

Nous appelons deux points singuliers P et Q associés s'il existe
une suite de points P1? P2, convergeant vers P, et une suite

divergente d'entiers nlt n2, tels que la suite Tni(Px), Tn2(P2),...
tende vers Q. Les points associés à un point singulier quelconque
intérieur à A se trouvent sur la frontière de A; ils forment un
ensemble fermé dont les composants sont des continus non-
bornés.

A l'aide de la notion des points singuliers associés, on peut
décrire les propriétés de l'ensemble des points singuliers d'une
transformation donnée.

11. — Groupes continus. — On peut étendre la notion de

régularité aux surfaces et variétés non-compactes de la façon
suivante. Nous ajoutons à la variété S ses éléments de frontière
et nous considérons une famille de voisinages { Y } des points
et des éléments de frontière de S. Une transformation topologique
T de S en lui-même est dite régulière au point P de S, si pour une
famille arbitraire de voisinages {V}, il existe un voisinage Up
de P tel que, pour un point quelconque Q pris dans Up et pour
tout entier ra, l'un au moins des voisinages V contienne à la fois
les points Tn(P) et, Tn(Q). Pour les espaces métriques et

compacts, cette définition est équivalente à celle donnée au
n° 7.

J'ai démontré [21] que toute transformation appartenant à

un groupe continu simplement transitif, d'ordre fini, est régulière
en tout point de l'espace du groupe, et, de plus, la régularité est

uniformément vérifiée pour les transformations du groupe. Cela

veut dire que, dans la définition ci-dessus, on peut choisir le

voisinage Up du point P de telle façon que, pour toute
transformation T du groupe, pour tout point Q de Up et pour tout
entier ai, il y a un, au moins, des voisinages donnés Y contenant
à la fois Tn(P) et Tn(Q). La signification théorique de notre
résultat consiste en ce que les images d'un « petit » voisinage
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obtenues par les transformations du groupe peuvent être regardées

comme une famille de voisinages uniformément « petits »

dans l'espace du groupe. Sa portée pratique consiste en ce que

régularité ou singularité d'une transformation en un point
exprime une propriété de structure, et alors l'existence d'un

point singulier exclut que la transformation appartienne à un

groupe continu simplement transitif. Ensuite, pour qu'une
variété puisse représenter l'espace d'un groupe, il faut qu'elle
admette des transformations régulières arbitrairement petites
sans point invariant.

Il me paraît que le résultat ci-dessus est en relation avec la

proposition suivante qui pour les groupes de transformations
pseudo-conformes a été démontrée par M. H. Gartan [11],
mais qui est encore en suspens pour le cas général: Dans un

groupe continu d'ordre fini, il existe un voisinage de l'identité
qui ne contient aucun sous-groupe.

12. — Applications aux systèmes dynamiques. — En nous
servant des méthodes de Poincaré concernant les relations
entre les systèmes dynamiques et des transformations des

surfaces, nos résultats précédents admettent des applications
aux systèmes dynamiques à deux degrés de liberté. Notre notion
de régularité correspond, en effet, à la stabilité permanente du

système dynamique [4].
Considérons un système dynamique conservatif à deux degrés

de liberté dont les états forment une variété close. Les solutions
correspondant à une valeur de l'énergie peuvent être regardées
comme des trajectoires dont l'ensemble remplit une variété
close à trois dimensions. Une solution (périodique ou non) sera
dite posséder la stabilité permanente si la condition suivante se

trouve vérifiée : en changeant très peu les valeurs initiales de la
solution donnée (correspondant à la valeur t 0 du temps),
on obtient des solutions qui restent infiniment voisines de la
solution primitive pour toute valeur de t (t > 0 et t < 0).

Construisons, d'après Poincaré, une surface de section S et
considérons la transformation T de S en elle-même engendrée
par des intersections consécutives avec les trajectoires. Cette
transformation topologique de la surface S en elle-même est

L'Enseignement mathém., 35me année, 1936. 21
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régulière ou singulière au point P de S suivant que la trajectoire
passant par P vérifie ou non la condition de stabilité permanente.

En appliquant les résultats du n° 8, on obtient, à partir
de là, le théorème suivant:

Si un système conservatif à deux degrés de liberté dont toutes
les solutions vérifient la condition de stabilité permanente admet
une surface de section de genre p > 1, toutes les solutions sont
périodiques.

Nous signalons aussi une application de nos recherches au
problème ergodique. Les recherches profondes de MM. von
Neumann [30] et Birkhoff [5,6] ont conduit à ce résultat
que l'ergodicité d'un système est une conséquence de l'hypothèse
suivante appelée « transivité métrique»: Tout ensemble invariant

dans la transformation, ou son ensemble complémentaire,
est de mesure nulle. M. Morse [29], a démontré qu'une hypothèse

concernant 1'« instabilité uniforme » entraîne la transivité
métrique et, par conséquent, l'ergodicité du système. D'autre
part, j'ai trouvé que pour les systèmes dynamiques à deux
degrés de liberté, l'existence d'une solution, qui possède la
stabilité permanente, exclut l'ergodicité du système, pourvu que
le système admette une surface de section de genre p > 1. Cela
revient à dire qu'une transformation topologique d'une surface
close de genre p > 1 en elle-même admettant un point régulier,
au moins, ne peut pas satisfaire à la condition de transivité
métrique [28].

Dans cet ordre d'idées, j'ai recherché les transformations
asymptotiquement périodiques ; je nomme ainsi des transformations

qui ont des puissances différant de l'identité aussi peu que
l'on veut; j'ai trouvé qu'elles sont périodiques dans le sens strict
pour le cas des surfaces de genre p > 1. Il serait intéressant de

connaître la structure des transformations asymptotiquement
périodiques de la surface d'une sphère en elle-même; sont-elles

homéomorphes à des rotations par un angle incommensurable
à 71, comme les transformations périodiques sont homéomorphes
aux rotations d'angles commensurables à tc Un problème
important, concernant les transformations topologiques d'un
cercle en lui-même, est le suivant: est-il possible que les images
successives d'un point forment un ensemble partout dense dans
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le cercle Pour les transformations dont les points invariants se

trouvent à la frontière, c'est impossible ; cet événement est aussi

exclu si la transformation admet un point régulier dans l'intérieur

du cercle; pour le cas général cette question n'est pas
encore résolue.

Si T est une transformation topologique générale d'une surface

en elle-même, il est possible que tous les points de S soient des

points singuliers de T. La classification des points de S en des

points réguliers et singuliers devient illusoire dans ce cas, et

il faut diviser la surface en des ensembles de « transitivité » dans

lesquels la transformation est régulière; il faut donc remplacer
la notion de régularité, qui était féconde pour caractériser
certaines classes de transformations et de groupes, par une
notion de régularité régionale. Mais il me semble que, pour
certaines classes de transformations, par exemple pour les

transformations analytiques conservant l'aire, on peut établir,
sous des conditions de nature générale, l'existence d'un point
régulier, au moins. Peut-être de cette façon on réussira à démontrer

l'existence d'une solution périodique vérifiant la condition
de stabilité permanente dans le problème restreint des trois
corps.
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SUR LES ESPACES LOCALEMENT HOMOGÈNES1

PAR

Charles Ehresmann (Paris).

Les espaces qui formeront l'objet de cette conférence sont
des espaces analogues aux formes spatiales de Clifford-Klein.
Je rappelle qu'une forme spatiale de Clifford-Klein est un

espace de Riemann à courbure constante; suivant que cette
courbure est nulle, positive ou négative, on aura un espace
localement euclidien, localement sphérique ou localement
hyperbolique. Etant donné un espace localement euclidien, par
exemple, celui-ci est aussi caractérisé par le fait que les déplacements

euclidiens voisins de la transformation identique sont
définis dans un voisinage suffisamment petit de chaque point.
Une généralisation immédiate de cette dernière définition
s'obtient en remplaçant le groupe des déplacements euclidiens

par un groupe de transformations continu et transitif quelconque,
en particulier par un groupe continu et transitif de Lie. On
définit ainsi les espaces localement homogènes que nous allons
étudier. Bien que les résultats que je pourrai indiquer soient
encore incomplets, il m'a semblé que ce sujet méritait d'être
traité ici, parce qu'il touche à la fois à la théorie des groupes
et à la topologie et parce qu'il conduit à des relations entre les

propriétés infinitésimales et les propriétés globales d'un espace.

1. — Avant de préciser la notion d'espace localement homogène,

il sera utile de rappeler la définition d'un groupe de trans-

i Conférence faite le 23 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Gfenève; série consacrée à
Quelques questions de Géométrie et de Topologie.
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formations de Lie au sens local ou au sens global. Soit V une
variété à n dimensions, c'est-à-dire un espace topologique
régulier admettant un système de voisinages dont chacun est

homéomorphe à l'intérieur d'un simplexe à n dimensions. Soit G

un ensemble de transformations topologiques dont chacune est
définie pour tout point d'un domaine D de V, les point de D
étant transformés en des points de Y qui n'appartiennent pas
forcément à D. L'ensemble G forme un groupe continu à r
paramètres au sens local lorsqu'il satisfait aux conditions suivantes:

a) Les éléments de G peuvent être mis en correspondance
biunivoque avec les points d'une variété à r dimensions, que
nous désignerons par (G), telle que, si M' 9 (M, s) est la
transformation correspondant au point s de (G), la fonction

9 (M, s) soit continue par rapport à l'ensemble des points M et s.

b) L'ensemble G contient la transformation identique; soit i
le point correspondant de (G).

c) Il existe dans (G) un voisinage A du point i tel qu'on ait les

propriétés suivantes: Si a est un point de A, il existe dans D des

points M dont les transformés M' 9 (M, a) appartiennent
à D; pour tout point M de cette espèce et pour tout point b

de A, on a:
M" 9 [9 (M a) b] 9 (M c)

Le point c de (G) qui correspond ainsi à l'ensemble des

points a et b est défini par une fonction c — ^(<2, b).

d) Soit a un point de A et M un point quelconque de D tel
que le point M' 9 (M, a) appartienne à D. Il existe dans (G)

un point a~l tel que M 9 (M', a"1).

e) La fonction j(a, b) est continue par rapport à l'ensemble
des points a et 6; le point a-1 est une fonction continue du

point a.

Un groupe G satisfaisant aux conditions précédentes est

appelé groupe de Lie au sens local s'il existe, dans un voisinage
du point i1 un système de coordonnées tel que les coordonnées
du point c ^ (a, b) soient des fonctions analytiques par rapport
aux coordonnées des points a et b.

Le groupe G est dit transitif dans D si tout point M de D

admet un voisinage tel que, M' étant un point quelconque de ce
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voisinage, il existe au moins une transformation de G qui
transforme M en M'. Si G est un groupe continu transitif de Lie

au sens local, il existe des systèmes de coordonnées définis

respectivement dans un voisinage de M0 et dans un voisinage
de i tels que les coordonnées du point M' 9 (M, a) soient
des fonctions analytiques par rapport à l'ensemble des

coordonnées de M et de a, en supposant que M et a appartiennent à

des voisinages suffisamment petits de M0 et de i. Deux systèmes
de coordonnées qui sont définis dans un voisinage de M0 et qui
jouissent de la propriété précédente se déduisent l'un de l'autre

par une transformation analytique.
Un ensemble de transformations topologiques, G, forme un

groupe continu à r paramètres au sens global lorsqu'il satisfait
aux conditions a), e), en supposant que dans l'énoncé de

ces conditions D soit remplacé par V et A par (G). L'ensemble G

forme un groupe de Lie au sens global lorsqu'il définit un groupe
continu à r paramètres au sens global et un groupe de Lie au
sens local. Je signale le théorème suivant:

Etant donné un groupe continu à r paramètres au sens local
dont les transformations sont définies pour tous les points de la
variété V (c'est-à-dire le domaine D est confondu avec V),
Vensemble des transformations dont chacune est le produit d'un
nombre fini de transformations appartenant au voisinage A de i
forme un groupe continu à r paramètres au sens global.

2. — Appelons espace homogène de Lie une variété à n dimensions

dans laquelle est défini un groupe de transformations
continu et transitif de Lie au sens global.

Appelons espace localement homogène de Lie (en général nous
dirons simplement espace localement homogène) une variété E
à n dimensions jouissant des propriétés suivantes:

a) Chaque point M de E appartient à un voisinage VM à

l'intérieur duquel est défini un groupe continu et transitif de Lie
au sens local qui transforme les points de VM en des points de E ;

le voisinage VM sera appelé voisinage élémentaire.
b) Soit d un domaine commun à deux voisinages élémentaires.

Etant donnés les deux groupes de Lie au sens local attachés à

ces voisinages, il existe dans chacun d'eux un voisinage de la
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transformation identique tel que les transformations de l'un
de ces voisinages soient en correspondance biunivoque avec
celles de l'autre, deux transformations correspondantes opérant
de la même façon sur les points de d.

Un espace localement homogène de Lie peut encore être
défini comme étant une variété E à n dimensions qui jouit des

propriétés suivantes :

a) Chaque point M de E appartient à un voisinage VM dans
lequel on a défini un système de coordonnées et un ensemble
de r transformations infinitésimales linéairement indépendantes
qui engendrent un groupe transitif de Lie au sens local.

b) Soit d un domaine commun à deux voisinages élémentaires
VM et VM,. Le changement de coordonnées défini pour les points
de d transforme les r transformations infinitésimales définies
dans VM en r combinaisons linéaires des transformations
infinitésimales définies dans VM/.

Remarquons qu'un espace homogène de Lie est aussi un espace
localement homogène de Lie.

Etant donnés deux points M et M' d'un voisinage élémentaire,
appelons transformation élémentaire de M en M'toute transformation

qui transforme M en M' et qui appartient au groupe
de Lie au sens local attaché à ce voisinage. Si A et B sont deux
points quelconques de E, on montre que A peut être transformé
en B par la succession d'un nombre fini de transformations
élémentaires. Il en résulte que les groupes de Lie, au sens local,
définis respectivement au voisinage de A et au voisinage de B
sont semblables.

La variété d^un espace localement homogène est une variété

analytique. En effet, dans chaque voisinage élémentaire on peut
introduire un système de coordonnées tel que le groupe de Lie,
au sens local correspondant, soit analytique par rapport à ces

coordonnées et par rapport aux paramètres. Le changement de

coordonnées qui en résulte pour un domaine commun à deux
voisinages élémentaires est alors également analytique.

3. — Deux espaces localement homogènes E et E' sont dits
équivalents lorsqu'il existe une transformation topologique de E

en E' telle que, M et M' étant deux points correspondants, les
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transformations infinitésimales définies au voisinage de M soient

transformées en les transformations infinitésimales définies au

voisinage de M'. Les deux espaces E et E' sont dits localement

équivalents lorsqu'il existe un voisinage élémentaire dans E qui
soit équivalent à un voisinage élémentaire dans E'. Le problème
général que nous nous proposons d'étudier s'énonce maintenant
de la façon suivante:

Trouver tous les espaces localement homogènes qui soient localement

équivalents à un espace localement homogène donné: en

d'autres termes, trouver tous les espaces localement homogènes qui
soient le prolongement d'un élément d'espace localement homogène
donné.

Une question intéressante qui se pose aussitôt est la suivante:
Existe-t-il toujours un espace homogène qui soit localement
équivalent à un espace localement homogène donné

Pour répondre à cette question, je rappelle les propriétés
suivantes: Soit H un espace homogène de Lie et G le groupe
de Lie correspondant. Soit g le sous-groupe formé par l'ensemble
des transformations de G qui laissent invariant un point 0
de H. Le sous-groupe g est fermé dans G et n'admet aucun
sous-groupe invariant dans G. Réciproquement étant donnés

un groupe abstrait de Lie, G, et un sous-groupe g qui est fermé
dans G et qui ne contient aucun sous-groupe invariant dans G,

on peut définir un espace homogène H dont le groupe de
transformations Gx est isomorphe à G, le sous-groupe de Gx qui
correspond à g étant le plus grand sous-groupe dont les
transformations laissent invariant un point 0 de H.

Si G est un groupe transitif de Lie au sens local, il existe dans G

un voisinage A de la transformation identique tel que les
transformations qui appartiennent à A et qui laissent invariant un
point 0 forment un sous-groupe continu de Lie au sens local.
Réciproquement soit (G) un groupe abstrait de Lie au sens
local et soit (g) un sous-groupe continu de Lie au sens local.
Si (g) n'admet aucun sous-groupe continu invariant dans (G),
il existe un groupe de transformations continu et transitif de Lie
au sens local, que nous désignerons par Gj, tel que ce groupe soit
localement isomorphe à (G), son sous-groupe qui correspond
par cette isomorphie à (g) étant le plus grand sous-groupe continu
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qui laisse invariant un certain point. D'après le troisième théorème

fondamental de Lie démontré du point de vue global par
M. E. Cartan, la variété (G) peut être considérée comme un
voisinage de l'élément unité d'un groupe abstrait de Lie au sens

global. Désignons ce groupe par (G'); on peut le supposer
simplement connexe; sinon on le remplacerait par son groupe
de recouvrement simplement connexe. Le sous-groupe (g) au
sens local se prolonge dans (G') en un sous-groupe continu de Lie
au sens global; soit (g') ce prolongement. Pour que le groupe G±

puisse être prolongé en un groupe transitif de Lie au sens global,
il faut et il suffît que (gf) soit fermé dans (G'). Or on sait qu'un
groupe de Lie (G') simplement connexe peut avoir des sous-groupes
continus qui ne sont pas fermés dans (G'). Par exemple, un groupe
simple clos, simplement connexe et de rang supérieur à 1 admet
des sous-groupes ouverts à un paramètre; un tel sous-groupe
n'admet évidemment aucun sous-groupe continu invariant dans
le groupe simple donné. Donc il existe effectivement des espaces
localement homogènes qui ne sont localement équivalents à aucun

espace homogène.

Pratiquement il est difficile de reconnaître si un groupe
transitif de Lie au sens local défini dans un certain domaine

par r transformations infinitésimales données peut être prolongé
en un groupe de Lie au sens global. Remarquons seulement

qu'une condition suffisante pour que ce prolongement existe
est que le plus grand sous-groupe au sens local qui laisse invariant
un point 0 ne laisse invariant aucun autre point dans un voisinage

suffisamment petit de 0. M. E. Cartan a déterminé tous
les espaces homogènes de Lie à deux dimensions. On constate

que tout espace localement homogène à deux dimensions est

localement équivalent à un espace homogène. La même question
n'est pas encore résolue dans le cas de trois dimensions et on
n'a jamais déterminé tous les espaces homogènes de Lie à trois
dimensions.

4. — Je signale le théorème suivant:

Si un espace localement homogène de Lie est clos et simplement

connexe, il est équivalent à un espace homogène de Lie.
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On en déduit que tout espace localement homogène clos, dont
le groupe de Poincaré est fini, est localement équivalent à un

espace homogène. Pour démontrer le théorème énoncé, on

applique surtout la propriété suivante: Etant donné un espace
localement homogène E, tout arc AB établit un isomorphisme local

bien déterminé entre les groupes de Lie, au sens local, définis
respectivement au voisinage de A et au voisinage de B ; cet isomorphisme
ne varie pas lorsqu'on déforme Varc AB, les extrémités A et B

restant fixes. En particulier, si l'espace E est simplement connexe,
il existe un isomorphisme local bien déterminé entre les groupes
de Lie au sens local définis respectivement dans les voisinages
de deux points quelconques de E.

5. — Par la suite nous porterons notre attention sur les

espaces localement homogènes qui sont localement équivalents
à un espace homogène donné. Soit H un espace homogène de Lie
et G le groupe de transformations correspondant. On démontre
alors le fait suivant:

Si H est la variété de recouvrement simplement connexe de H,
cette variété H définit un espace homogène localement équivalent
à H ; le groupe G correspondant à H est un groupe de recouvrement
(pas forcément simplement connexe) de G.

Appelons automorphisme de l'espace homogène H une
transformation topologique T de H en lui-même telle que la
transformée par T de toute transformation de G appartienne
encore à G. Appelons automorphisme local une transformation
topologique qui transforme un voisinage d'un point A de H en
un voisinage d'un point B de H de telle façon que la transformée
de toute transformation infinitésimale de G soit encore une
transformation infinitésimale de G. On démontre alors le
théorème suivant:

Tout automorphisme local d'un espace homogène simplement
connexe se prolonge en un automorphisme global de cet espace.

La démonstration de ce théorème repose sur le fait suivant :

Si G est un groupe abstrait de Lie au sens global, tout auto-
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morphisme local de (G) se prolonge en un automorphisme global
de (G).

Soit E un espace localement homogène que nous supposons
localement équivalent à un espace homogène simplement
connexe H. Définissons le développement sur H d'un arc de

l'espace E. Nous appelons arc la figure décrite par un point
qui est une fonction continue d'un paramètre variant de 0 à 1.

Soit OA un arc de E. Tout point M de E appartient à un voisinage
élémentaire qui est équivalent à un voisinage d'un point M de H.
En vertu du lemme de Borel-Lebesgue, on peut recouvrir
l'arc OA par une suite d'un nombre fini d'arcs partiels telle que
deux arcs partiels successifs empiètent l'un sur l'autre et telle
que tout arc partiel soit contenu dans un voisinage élémentaire
équivalent à un voisinage dans l'espace H. Soit V0, V1? Vk
cette suite de voisinages; nous pouvons supposer que deux
voisinages successifs n'aient qu'un seul domaine en commun.
Une suite de voisinages de cette espèce sera appelée une chaîne
de voisinages recouvrant l'arc OA. Le voisinage V0 du point O

peut être représenté sur un voisinage V0 d'un point O de H. Le

voisinage Vt est équivalent à un voisinage Vi dans H. Soit d

le domaine commun à V0 et à Vr II est représenté d'une part
sur un domaine d de V0 et d'autre part sur un domaine d'de Vi.
L'automorphisme local qui transforme d'en d se prolonge en un

automorphisme global qui transforme V* en un voisinage Vx.
En répétant cette opération, on pourra représenter la chaîne
de voisinage V0, Vl7 Vk sur une chaîne de voisinages

V0, Vj, V7i. L'arc OA sera représenté sur un arc OA recouvert

par la chaîne de voisinages V0, Vl7 V/?. Nous dirons que
l'arc OA est un développement sur H de l'arc OA; de même

l'arc OA sera appelé un développement sur E de l'arc OA. On

a ainsi le résultat suivant:

Un voisinage du point O de E étant représenté sur un voisinage

d'un point O de H, tout arc OA de E admet un développement bien

déterminé suivant un arc OA de H. Si deux arcs d'origine O et

d'extrémité A sont réductibles l'un à l'autre par déformation

continue, leurs développements conduisent de O au même point A.
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La dernière partie de cet énoncé se démontre en appliquant
le lemme de Borel-Lebesgue à une famille continue d'arcs

d'origine 0 et d'extrémité A. On démontre de même le théorème
suivant :

Un voisinage de 0 étant représenté sur un voisinage de 0, soit OA

un arc quelconque de H. Ou bien Varc OA se développe suivant un

arc bien déterminé OA de E, ou bien il existe sur Varc OA un

point C tel que Varc OC moins le point C se développe suivant une

ligne divergente sur Vespace de recouvrement simplement connexe

de E. Etant donnée sur H une famille continue d' arcs d'origine 0
et d'extrémité A telle que chacun de ces arcs admette sur E un
développement issu de 0, ce développement conduit toujours au
même point A.

Les propriétés précédentes conduisent aux résultats suivants :

Si l'espace localement homogène E est clos et simplement connexe,
il est équivalent à l'espace homogène H. Si E est clos et admet un
groupe de Poincaré fini, l'espace de recouvrement simplement
connexe de E est équivalent à H. Si E est clos et H ouvert, le groupe
de Poincaré de E est infini.

Soit H' un espace homogène localement équivalent à H; si H'
est simplement connexe, il est équivalent à H; si H' n'est pas
simplement connexe, son espace de recouvrement simplement
connexe est équivalent à H.

6. — Considérons maintenant une classe particulièrement
intéressante d'espaces localement homogènes. Un espace E de
cette classe satisfait à la condition suivante qui sera appelée
condition de normalité: L'espace E est localement équivalent à

un espace homogène H que nous supposerons simplement
connexe, et toute ligne divergente sur l'espace de recouvrement
simplement connexe de E se développe suivant une ligne divergente

de H. L'espace E sera appelé espace localement homogène
normal ou encore forme de Clifford de l'espace homogène H. En
particulier, tout espace homogène localement équivalent à H
est normal; on l'appelle forme de Klein de l'espace homogène H.
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De même tout espace localement homogène clos dont le groupe
de Poincaré est fini satisfait à la condition de normalité. On
démontre facilement le théorème suivant:

Soit E un espace normal localement équivalent à Vespace homogène

simplement connexe H ; Vespace H est équivalent à Vespace
de recouvrement simplement connexe de E.

Un voisinage du point 0 de E étant représenté sur un voisinage

équivalent du point 0 de H, tout arc OM de E se développe
suivant un arc déterminé OM de H. La correspondance entre M

et M jouit alors des propriétés suivantes: A tout point M de H
correspond un point déterminé M de E. Les points de H qui
correspondent à un même point M de E forment un ensemble
de points équivalents par rapport à un groupe d'automorphismes
de l'espace H. Ce groupe s'appelle le groupe d'holonomie de

l'espace E. Il est isomorphe au groupe de Poincaré de l'espace E.
De plus il est proprement discontinu dans tout l'espace H et
aucune de ses opérations n'admet de points invariants dans H.
La recherche des formes de Clifford de l'espace H revient ainsi
à la recherche des groupes d'automorphismes de H qui peuvent
être considérés comme des groupes d'holonomie.

Soit r un groupe d'automorphismes de H. Pour que P soit
le groupe d'holonomie d'un espace localement homogène normal
il faut et il suffit que les conditions suivantes soient vérifiées:

a) F est proprement discontinu dans tout l'espace H.
h) Aucune opération de F n'admet des points invariants.
c) Considérons dans H deux voisinages quelconques v et e',

distincts ou confondus. Parmi les voisinages transformés de c

par F, il y a au plus un nombre fini de voisinages qui ont des

points communs avec e'.

Lorsque ces conditions sont vérifiées, les ensembles de points
équivalents par rapport à Y peuvent être considérés comme les

points d'un espace E qui sera une forme de Clifford de H.
La condition c) est vérifiée d'elle-même lorsque Y est un groupe

fini. Cette condition est une conséquence des conditions a) et b)

lorsque F laisse invariante une métrique définie dans H. En
particulier, supposons que H soit un espace riemannien dont la



ESPACES LOCALEMENT HOMOGÈNES 327

métrique est invariante par le groupe G qui opère transitivement
dans H. Lorsqu'un groupe d'automorphismes F laisse invariante
cette métrique riemannienne et satisfait aux conditions a) et b),

c'est le groupe d'holonomie d'un espace riemannien localement

équivalent à H, c'est-à-dire localement applicable sur H. Il
serait intéressant de savoir si la condition c) est toujours une

conséquence des conditions a) et à), lorsque le groupe F est un

groupe d'automorphismes de H. J'ignore la réponse à cette

question. On sait seulement que la condition c) n'est pas
nécessairement une conséquence des conditions a) et b) lorsque F se

compose de transformations topologiques quelconques de H.

7. — La condition de normalité, pour un espace localement

homogène E, peut être remplacée, dans certains cas, par des

conditions plus simples. Considérons en particulier les espaces
riemanniens localement homogènes. On voit facilement que la
condition de normalité est équivalente dans ce cas à la condition
suivante: Dans Vespace E, toute ligne divergente localement

rectifiable a une longueur infinie. Cette condition est encore
équivalente à d'autres conditions, par exemple à la condition
suivante: Sur tout rayon géodésique on peut reporter, à partir de

son origine, une longueur donnée arbitraire. L'équivalence des

deux conditions précédentes s'établit facilement dans le cas
d'un espace riemannien localement homogène. M. Hopf et
M. Rinow ont même démontré cette équivalence pour un
espace de Riemann quelconque.

Dans le cas des espaces localement affines, c'est-à-dire localement

équivalents à l'espace affine, la condition de normalité peut
être remplacée par la suivante: Etant donnée une géodésique
quelconque de Vespace localement affine, un point M qui décrit la
géodésique peut être défini en fonction d'un paramètre s tel que,
dans tout système de coordonnées affines locales, les coordonnées de M
soient des fonctions linéaires de s; Vespace considéré sera alors
normal si à toute valeur de s somprise entre — oo et + oo correspond

un point M de la géodésique donnée.

8. — Lorsqu'un espace riemannien localement équivalent à

un espace riemannien homogène est clos, il est normal; car il n'y
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a pas de lignes divergentes dans cet espace. Mais dans le cas

général, un espace localement homogène clos n'est pas forcément
normal. Les espaces localement homogènes normaux ainsi que
les espaces localement homogènes clos font partie de la classe

plus générale des espaces localement homogènes non prolon-
geables. Un espace localement homogène E est dit non prolon-
geable lorsqu'il n'est pas équivalent à un domaine D d'un
espace localement homogène E', le domaine D ayant des points
frontières dans E'. On démontre facilement le théorème suivant:

Tout espace homogène est non prolongeable.

Il suffit d'appliquer le théorème qui dit que tout arc d'un
espace localement équivalent à un espace homogène H admet
un développement sur H. Il résulte immédiatement de ce théorème

que tout espace localement homogène normal est non prolongeable.

De même il est clair que tout espace clos est non prolongeable.

Il existe des espaces localement homogènes non prolon-
geables (même simplement connexes ou clos) qui ne sont pas
normaux. Par exemple, soit H un espace homogène à 3 dimensions

et considérons un nœud dans cet espace. Tout espace de

recouvrement à plusieurs feuillets de l'espace complémentaire
du nœud est non prolongeable. D'une façon générale, le théorème
relatif au développement d'un arc sur un espace homogène

permet de reconnaître si un espace localement homogène donné
est prolongeable ou non prolongeable. Il serait intéressant de

savoir si tout espace prolongeable est équivalent à un domaine
d'un espace non prolongeable.

9. — Donnons quelques applications des notions et propriétés
générales qui précèdent. Je ne parlerai pas des espaces localement
euclidiens ou localement non euclidiens, car ce sujet est bien

connu. Je signale que les formes de Clifford ou de Klein des

espaces riemanniens homogènes, en particulier des espaces
riemanniens symétriques, ont été considérées par M. E. Cartan
dans plusieurs de ses travaux. Je me propose d'indiquer seulement

quelques propriétés des espaces localement projectifs.
Un espace localement projectif est un espace localement

équivalent à un espace projectif réel. On peut encore le définir de la
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façon suivante: Un espace localement projectif E est une
variété à n dimensions sur laquelle on a défini un système de

courbes appelées géodésiques tel que chaque point de E appartient

à un voisinage qui admet une représentation topologique
sur un domaine de l'espace projectif, les arcs de géodésiques
étant représentés par des segments de droites.

Tout espace localement euclidien, localement non-euclidien
ou localement affine est évidemment un espace localement
projectif. D'une façon générale, si H est un espace homogène et G

le groupe de transformations correspondant, tout sous-groupe
continu G' qui est localement transitif dans un domaine de H
définit un espace homogène H', et tout espace localement
équivalent à H' définit aussi un espace localement équivalent à H.

Soit S l'espace de recouvrement simplement connexe de

l'espace projectif à n dimensions. L'espace S est homéomorphe
à la sphère à n dimensions et recouvre deux fois l'espace
projectif. Un point de S est représenté par l'ensemble de n + 1

quantités X£0, Xaq, X£n, non toutes nulles, le nombre X étant
un nombre positif quelconque. Le groupe d'automorphismes (A)
de l'espace S est le groupe dont la transformation générale est:

x, a.--x- déterminant I a- - 4- 1
lJ 1 I |

L'application d'un résultat général au cas présent donne le
théorème suivant:

Tout espace localement projectif clos et à groupe de Poincaré
fini admet l'espace S pour espace de recouvrement simplement
connexe.

Les espaces de cette classe sont les espaces localement pro-
jectifs normaux. Un espace localement projectif normal peut
aussi être caractérisé par la propriété suivante: Toute géodésique
de l'espace est une courbe fermée.

Tout espace localement projectif normal est défini par un
groupe formé d'un nombre fini de transformations du groupe (A),
chacune de ces transformations étant sans points invariants
dans S. Réciproquement tout groupe fini de cette espèce définit
un espace localement projectif normal. Or tout groupe fini de
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transformations de (A) laisse invariante au moins une forme
quadratique définie en x0, #l5 xni que nous pouvons supposer
être la forme xl ~j~ #î + ••• + xn. Le groupe considéré est
donc un groupe de déplacements sphériques. Donc

Théorème: Tout espace localement projectif normal est
équivalent à un espace localement sphérique normal (forme spatiale
de Clifford à courbure constante positive). En particulier, tout

espace homogène localement équivalent à Vespace projectif est

équivalent à Vespace projectif ou à Vespace sphérique.

Les espaces localement euclidiens ou localement hyperboliques
sont des espaces localement projectifs qui ne sont pas normaux.
Si les géodésiques d'un espace localement projectif sont les

géodésiques d'une métrique riemannienne, cet espace est localement

euclidien ou non-euclidien. Il existe des espaces localement
projectifs, même clos, qui ne sont pas équivalents à des espaces
localement euclidiens ou non-euclidiens. Considérons, par
exemple, dans le plan projectif la transformation x\ — \x0l
x\ x±1 x\ x2 et le groupe T engendré par cette transformation.

Dans le domaine obtenu en enlevant du plan projectif la
droite x0 0 et le point x1 x2 -= 0, le groupe T a les caractères

d'un groupe d'holonomie et définit un espace localement
projectif E. On peut prendre pour domaine fondamental du

groupe T le domaine compris entre les deux coniques
x\ x\ — xl 0 et x\ + xl — X2 x\ 0. On voit donc que
l'espace E est homéomorphe au tore, mais les géodésiques de

cet espace ne peuvent pas être les géodésiques d'une métrique
riemannienne. De plus ces géodésiques ne satisfont pas à la
condition suivante que nous appellerons condition de convexité :

Supposons donnée une famille continue d'arcs géodésiques ABM
Vorigine A étant fixe et Vextrémité Bt étant une fonction continue
d'un paramètre t, définie pour 0 ^ t < 1 ; si Bt tend vers un
point Bx lorsque t tend vers 1, Varc géodésique ABt tend vers un
arc géodésique ABX. Remarquons que les géodésiques d'un
espace riemannien normal satisfont à cette condition ainsi que
les géodésiques d'un espace localement projectif normal ou d'un
espace localement affine normal. Un espace localement projectif
qui satisfait à la condition de convexité sera appelé convexe.
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Les géodésiques issues d'un point remplissent tout l'espace. On

peut démontrer le théorème suivant:

&espace de recouvrement simplement connexe d'un espace
localement projectif convexe est équivalent à l'espace sphérique S

ou bien à un domaine convexe de l'espace projectif.

Réciproquement, soit D un domaine convexe de l'espace
projectif, c'est-à-dire un domaine satisfaisant à notre condition
de convexité. Soit Y un groupe de transformations projectives
qui transforme D en lui-même, qui est proprement discontinu
dans D et dont les transformations n'admettent pas de points
invariants dans D. On sait qu'on peut définir dans D une
métrique en prenant pour distance de deux points M et M' le

logarithme du rapport anharmonique des points M, M' et des

deux points d'intersection de la droite MM' avec la frontière
de D. Cette métrique est invariante par Y. L'ensemble des

points équivalents à un point de D par rapport au groupe Y

peut donc être considéré comme le point général d'un espace
localement projectif; celui-ci sera convexe et admettra D pour
espace de recouvrement simplement connexe. Dans ce
raisonnement on a supposé que D n'est pas l'espace affine.

10. — Considérons plus spécialement les espaces localement
projectifs convexes à deux dimensions. Faisons abstraction des

espaces localement projectifs normaux, c'est-à-dire de l'espace
sphérique à deux dimensions et du plan projectif. Soit E un
espace localement projectif clos. Son espace de recouvrement
simplement connexe est équivalent à un domaine convexe D
du plan projectif; appelons C la frontière de D. L'espace E sera
défini par un groupe projectif Y qui a les caractères d'un groupe
d'holonomie dans le domaine D; ce groupe Y est d'ailleurs infini.
On montre alors que les seuls cas qui peuvent se présenter sont
les suivants : 1° C est une droite et D est le plan affine ; 2° G se

compose de deux droites et D est le demi-plan affine; 3° G se

compose de trois segments de droites et D est l'intérieur d'un
triangle; 4° G se compose d'un segment de droite et d'un arc
de courbe tel que les transformés par Y de tout point de cet
arc forment un ensemble partout dense sur cet arc; 5° les
transformés de tout point de C (peut-être à l'exception d'un point)
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forment un ensemble partout dense sur C. Supposons que C

soit composé d'arcs analytiques. Alors la partie non rectiligne
de C est à courbure projective constante. On peut en déduire

que les seuls cas possibles sont les trois premiers cas et le
cinquième cas où D est l'intérieur d'une conique. On a par conséquent

le résultat suivant:

Si un espace localement projectif à deux dimensions est convexe
et clos, il est équivalent à Vespace sphérique, ou bien à Vespace

projectif, ou bien à un espace localement hyperbolique, ou bien à

un espace localement affine normal, ou bien son espace de recouvrement

simplement connexe est équivalent soit au demi-plan affine,
soit à Vintérieur d'un triangle, soit à un domaine convexe du plan
projectif dont la frontière contient des arcs non analytiques.

Il paraît probable que le dernier cas ne peut pas se présenter.
On a de même le résultat suivant :

Si un espace localement affine à deux dimensions est convexe
et clos, il est normal, ou bien son espace de recouvrement simplement
connexe est équivalent soit au demi-plan affine, soit à un domaine
du plan affine limité par deux demi-droites issues d'un point,
soit à un domaine convexe du plan affine dont la frontière contient
des arcs non analytiques.

Plus généralement on peut démontrer que les deux énoncés

précédents sont encore valables pour les espaces localement
projectifs ou pour les espaces localement affines qui sont convexes

et non prolongeâmes. Remarquons cependant qu'un espace
localement hyperbolique normal est prolongeable en tant
qu'espace localement projectif lorsque le groupe T correspondant

est proprement discontinu sur la conique C.

11. — Il est intéressant de considérer également les espaces
localement projectifs complexes. L'espace projectif complexe
est simplement connexe. Dans le cas d'un nombre pair de dimensions,

l'espace projectif complexe n'admet pas de forme de

Clifford autre que lui-même. Dans le cas d'un nombre impair
de dimensions complexes, il existe une forme de Clifford
distincte de l'espace projectif complexe. Cette forme de Clifford est
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non orientable, et elle peut aussi être considérée comme une
forme de Clifford de l'espace hermitien elliptique.

On détermine encore facilement les espaces localement,
conformes normaux. On peut démontrer que ceux-ci sont aussi

équivalents aux espaces localement sphériques normaux.
Pour terminer remarquons que les espaces localement homogènes

considérés sont des cas particuliers des espaces non holo-
nomes définis d'une façon générale par M. E. Cartan. Ce sont les

espaces non holonomes correspondant à un groupe transitif
de Lie G tels que les déplacements infinitésimaux attachés aux
différents vecteurs infinitésimaux de l'espace satisfont aux
équations de structure du groupe G. L'étude des espaces localement

homogènes est ainsi le premier pas dans l'étude des

propriétés globales des espaces non holonomes.
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QUELQUES PROBLÈMES

DE LA THÉORIE DES REPRÉSENTATIONS

CONTINUES 1

PAR

H. Hopf (Zurich).

1. — Gomme but des recherches topologiques on assigne
souvent l'étude d'une certaine classe de propriétés concernant
la forme et la position des figures géométriques, propriétés qui sont
invariantes pour les représentations topologiques, c'est-à-dire
biunivoques et continues dans les deux sens. C'est bien la
définition usuelle, mais elle n'est certainement pas complète.
Car ce sont non seulement les propriétés des figures
géométriques qui doivent être étudiées, mais aussi les propriétés des

représentations topologiques ou, plus généralement, des
représentations univoques et continues elles-mêmes. Comme les figures,
ces représentations elles-mêmes aussi forment un domaine important

et fécond pour les recherches des topologues — il suffit de

nous rappeler les conférences intéressantes que nous entendîmes
dernièrement de MM. de Kerékjârtô et Nielsen, ainsi que
quelques travaux classiques de M. Brouwer. L'indication de

cette distinction de deux parties différentes de la topologie
n'entraîne heureusement pas de scission de notre science en

deux branches particulières qui seraient peu liées entre elles;
tout au contraire, il existe entre elles des rapports étroits: par

i Conférence faite le 25 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Genève; série consacrée à

Quelques questions de Géométrie et de Topologie.
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exemple, les propriétés de toutes les représentations d'un

espace P en un autre espace fixe Q — c'est-à-dire les propriétés
de 1'« espace (abstrait) des représentations » Qp — sont en

même temps, comme M. Kuratowski nous l'a rappelé, des

propriétés de P même, qui donnent des renseignements importants

sur la forme de P.

Je voudrais exposer ici ces rapports entre la « topologie des

représentations » et la « topologie de la forme » et cela en traitant
deux catégories de problèmes: une première catégorie se rapportant

à la possibilité de comparer entre elles les formes de deux

espaces
1 P et Q en considérant les représentations de P sur Q

et celles de Q sur P, une seconde concernant les relations entre
la forme d'un espace P et les représentations de P sur lui-même 2.

2. — Avant d'aborder le premier de ces points, celui de la
comparaison de deux espaces par leurs représentations
réciproques, j'introduirai une notion qui a fait ses preuves en

ces matières: la représentation / de l'espace P sur l'espace Q
sera dite « essentielle » si pour chaque modification continue de la
représentation /, tout l'espace Q reste image de P; en d'autres
termes, s'il est impossible de libérer une partie de Q du
recouvrement par l'image de P, par une modification continue de la
représentation /.

En faisant des hypothèses très générales sur P et Q il est
possible de représenter ces espaces l'un sur l'autre d'une manière
continue; mais sous quelles conditions existe-t-il une représentation

essentielle de P sur Q On montre par exemple facilement
que toute surface close peut être représentée essentiellement
sur la surface sphérique, tandis que chaque représentation d'une
surface sphérique sur une surface close et orientable de genre
supérieur est non-essentielle. Ce dernier fait est un cas particulier

du théorème plus général suivant: P et Q étant des
variétés closes et orientables à n dimensions, une condition

1 Par un « espace » nous entendons toujours un espace métrique.
2 Par une «représentation » nous entendons toujours une représentation univoque

et continue. Nous appelons / une représentation de P en Q si l'image f (P) est sous-
ensemble de Q; si l'on a, en particulier, / (P) Q, alors f sera dite une représentation
de P sur Q.
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nécessaire pour que P soit représentable essentiellement sur Q,
est l'existence des relations suivantes

pv — qr r — 1,2,..., n — 1

où pr et qr désignent les r-ièmes nombres de Betti de P et Q [13]1.
Ce théorème, bien entendu, est valable pour des çariétés closes

de la même dimension ; les exemples suivants montreront qu'il
ne peut pas, sans autre, être étendu à des paires plus générales
d'espaces P et Q: une circonférence P peut évidemment être
représentée essentiellement sur une lemniscate Q, bien qu'on
ait p1 1, q1 2; il existe aussi des représentations
essentielles de la sphère à trois dimensions P sur la sphère à deux
dimensions Q, bien qu'on ait p2 — 0, q2 1 [16]. Je crois
cependant qu'une loi plus générale se manifeste par le théorème
précité, une loi dont le contenu exact et le domaine de validité ne
sont pas encore connus, mais qui pourrait s'énoncer à peu près
de la façon suivante: si l'espace P a, dans un certain sens, une
structure topologique « plus simple » que l'espace Q, alors P

n'est pas représentable essentiellement sur Q. Mais la
détermination exacte du sens de la notion de « simplicité » qui intervient

ici nous manque encore. C'est précisément ici l'un des

problèmes principaux que j'ai en vue. Nous indiquerons dans la
suite (n° 5, n° 7) d'autres apparitions de la même loi.

3. — Restons-en pour l'instant aux variétés closes à n dimensions

P et Q; alors le fait qu'une représentation de P sur Q est

essentielle équivaut au fait que lé degré de cette représentation
n'est pas nul [23; 11]; et l'on peut joindre au théorème susmentionné

sur les représentations essentielles d'autres théorèmes

sur le degré de représentation qui sont, en partie, plus précis:
M. H. Kneser a démontré la formule suivante pour n 2,

c'est-à-dire pour les surfaces closes, où c désigne le degré d'une
représentation de P sur Q et p, q les genres de P, Q [24]:

p — i ^ | c | • [q — lj (pour p > 0)

i Les chiffres entre crochets renvoient à la bibliographie qui se trouve à la fin de
cet exposé.
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D'autre part, comme il existe des représentations pour tout c

satisfaisant à l'inégalité de M. Kneser, cette formule donne

d'amples renseignements sur le rapport entre les propriétés
de la forme de P et Q, d'une part, et les représentations possibles

de l'autre.
On ne connaît pas de théorème aussi précis pour les dimensions*

supérieures. On connaît cependant certaines propriétés des

variétés closes et orientables à n dimensions, par exemple le

fait que voici: si l'on peut représenter, avec le degré 1, P sur Q,

ainsi que Q sur P, alors tous les invariants d'homologie — les

groupes de Betti et l'anneau d'intersection de M. Alexander —
coïncident pour P et Q [13]. Le problème reste ouvert de savoir
si deux variétés, représentables l'une sur l'autre avec le degré 1,

sont aussi homéomorphes. Ce problème est d'ailleurs étroitement
apparenté avec cet autre problème, posé par MM. Kuratowski
et Ulam [25] et resté ouvert lui aussi: soient P et Q des variétés
closes et supposons qu'il existe, pour chaque s positif, une

représentation / telle que l'ensemble (q) pour chaque point q
de Q ait un diamètre inférieur à s; P et Q sont-elles alors

homéomorphes
Le théorème indiqué plus haut, sur la possibilité des

représentations réciproques avec le degré 1, mérite une attention
particulière dans le cas où Q est la sphère Sn à n dimensions.
On voit aisément que chaque variété (close et orientable) à

n dimensions P peut être représentée sur Sn avec le degré 1 ;

l'énoncé du théorème est alors le suivant: si l'on peut
représenter Sn sur P avec le degré 1, alors P a les mêmes invariants
d'homologie que la sphère Sn; et il est facile de montrer que,
en plus, le groupe fondamental de P disparaît lui aussi

[11, théor. VIII]. La fameuse hypothèse de Poincaré dit que
la sphère Sn se distingue de toutes les autres variétés closes à

n dimensions par le fait que le groupe fondamental ainsi que tous
les r-ièmes groupes de Betti (pour 1 ^ r ^ ri — 1) disparaissent;
si cette hypothèse est exacte, alors P aussi est homéomorphe
à la sphère. On voit que la justesse de l'hypothèse de Poincaré
entraînerait aussi celle de l'hypothèse suivante, énoncée par
M. Kneser (en rapport avec certaines recherches sur l'axioma-
tique des variétés) [22, p. 10]: « La seule variété close à n dimen-
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sions sur laquelle la sphère à n dimensions peut être représentée
avec le degré 1, est la sphère elle-même ». Dernièrement,
M. Hurewicz a annoncé une démonstration du fait que,
inversement, l'hypothèse de Poincaré découle de celle de M. Kneser,

que les deux sont, par conséquent, équivalentes [21].

4. — Je tiens d'ailleurs à faire observer que cette remarque
de M. Hurewicz doit être placée dans le cadre de ses recherches

systématiques sur les représentations des sphères Sn en un
espace 0: celles-ci forment le noyau de sa nouvelle théorie des

« groupes d'homotopie à un nombre supérieur de dimensions »

[20; 21]; cette théorie semble représenter un progrès très important

dans le domaine dont je parle ici. Malheureusement, je ne
connais pas encore cette théorie assez à fond pour pouvoir
l'exposer ici; je n'indiquerai par la suite qu'un de ses beaux
théorèmes (N° 8).

5. — Par contre, depuis quelques années, les représentations
d'un espace P en la sphère Sn ont été employées pour examiner P
lui-même et cela a donné des résultats satisfaisants dans le cas
où P est à n dimensions lui aussi. J'ai pu montrer pour commencer

que la condition nécessaire et suffisante pour qu'un polyèdre
à n dimensions P puisse être représenté essentiellement sur Sn

est qu'il contienne un cycle à n dimensions (d'un domaine de

coefficients quelconque) différent de zéro [14; 15; 2, p. 514].
Ce théorème fut étendu par M. Alexandroff à des espaces

compacts arbitraires [1, p. 223]. M. Freudenthal enfin a

porté ces recherches à leur achèvement en démontrant le fait
suivant: les propriétés d'homologie à n dimensions d'un espace

compact à n dimensions P sont équivalentes aux propriétés des

classes d'homotopie des représentations de P en la sphère Sn;

comme M. Freudenthal l'a montré, ces classes d'homotopie
peuvent en effet être conçues comme éléments d'un groupe, et

ce groupe, d'une part, le ft-ième groupe de Betti de P de l'autre,
se déterminent réciproquement d'une façon univoque [9].

Le théorème que voici de M. Borsuk mérite aussi d'être
mentionné dans cet ordre d'idées, et cela autant à cause de son

intuitive simplicité qu'à cause de sa démonstration élémentaire :

P étant un ensemble fermé et borné de l'espace euclidien à
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n + 1 dimensions Rn+1, il partage Rn 11 et ne le partage que s'il
existe une représentation essentielle de P sur Sn [3; 2, p. 405]1.

6. — Ce théorème dépasse un peu le cadre des théorèmes

précités: ici la dimension de P peut être supérieure à n, à savoir

égale à n + 1 (il est vrai que cette différence s'affaiblit du fait
que P se trouve dans Rn+1). En général, on est peu renseigné sur
la signification des représentations d'un espace P, à dimension

supérieure à n7 sur la sphère à n dimensions; les efforts pour
caractériser aussi par ces représentations les groupes de Betti
inférieurs de P, sont restés jusqu'à présent sans succès.

C'est uniquement dans le cas n 1 qu'on peut, dans les

théorèmes précités, renoncer à l'hypothèse que P aussi est
à n dimensions: j'avais démontré qu'un polyèdre de dimension

arbitraire peut être représenté essentiellement sur la
circonférence, et ne peut l'être que si son premier nombre
de Betti est non nul [16, théor. Va; 2, p. 518]. M. Borsuk a

étendu ce théorème aux espaces compacts arbitraires [4], et en
même temps M. Bruschlinsky a démontré le fait suivant: on

peut déterminer le premier nombre de Betti d'un espace compact

P à partir du groupe des classes des représentations de P

en un cercle S1 [7] — de la même manière que, d'après le
théorème de M. Freudenthal, cela peut se faire pour le nombre
de Betti le plus élevé de P par les représentations de P en la
sphère de dimension correspondante.

Par contre, le rôle joué par les représentations d'un espace P
à N dimensions sur les sphères des dimensions n — 2, 3, N — 1

est encore totalement obscur, même pour le cas des polyèdres.
D'une part il semble, déjà pour r 2, extrêmement douteux
qu'on puisse représenter essentiellement sur Sr chaque polyèdre
P dont le r-ième nombre de Betti est positif2; d'autre part il est
certain que des représentations essentielles de P sur S2 peuvent

1 On pourrait poser le problème cle caractériser aussi des propriétés plus générales des
ensembles ponctuels de l'espace Rw+r par des représentations sur Sw. M. Kuratowski
m'a indiqué dernièrement que ce problème fut traité avec le plus grand succès par
M. Eilenberg pour le cas n 1 : dans un mémoire à paraître prochainement
M. Eilenberg construit presque toute la topologie des ensembles ponctuels plans sur la
base des représentations sur la circonférence [8'|.

2 Une telle représentation est possible si la dimension de P n'est pas supérieure à
r + 1 [16, théor. VII].
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exister, même si le deuxième nombre de Betti disparaît: cela a
lieu par exemple si P est la sphère à trois dimensions S3 [16].

La question de savoir si la sphère SN peut être représentée
essentiellement sur la sphère Sn pour un couple donné N, n (avec
N > n > 1) est encore ouverte; j'ai pu y répondre pour les

cas particuliers N 4k — 1, n. — 2k, k 1,2,... et cela par
l'affirmative [17]V Je considère, pour ma part, la réponse générale
à cette question comme une tâche des plus importantes et des

plus attrayantes: non seulement en ce qui concerne la théorie,
mais aussi parce que nous devrions connaître complètement et
sous chaque point de vue des figures aussi simples et aussi

importantes que les sphères

7. — Nous venons de parler de la comparaison de l'espace P

avec les sphères; il serait presque plus naturel de considérer
comme espace de comparaison, au lieu des sphères, les figures les

plus simples possibles, les simplexes, et si on le fait on obtient
vraiment un beau succès. Modifions tout d'abord un peu la
notion d'une représentation «essentielle)): la représentation /
d'un espace P sur un simplexe Q sera dite « relativement essentielle

» s'il est impossible de libérer des points de Q du recouvrement

par l'image de P en modifiant d'une manière continue /
à Y intérieur seulement de Q, c'est-à-dire en ne modifiant / en

aucun point dont l'image tombe sur la frontière de Q. Or voici
l'énoncé d'un théorème de M. Alexandroff: La dimension
d'un espace compact P est le plus grand nombre n tel que P

puisse être représenté relativement-essentiellement sur un
simplexe à n dimensions [1; 2, p. 373; 19].

Par ce théorème aussi intuitif qu'important, je terminerai la
partie de ma conférence traitant de la comparaison de deux

espaces à l'aide de leurs représentations réciproques.

8* — Je parlerai maintenant des représentations d'un espace
en lui-même. Déjà en considérant les surfaces finies, on remarque
une relation entre ces représentations et la forme des surfaces:
P étant une surface close, il est —- d'après un théorème connu sur
le degré de représentation — impossible de la déformer, d'une

i M. Pontrjagin a récemment répondu par la négative à cette question pour chaque
N n + 2>4. (Communication de M. Lefsciietz au Congrès intern, des Math,, Oslo,
sept. 1936.)
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façon univoque et continue, en une de ses propres parties; par
contre cela est possible si P admet une frontière. La propriété

par laquelle se caractérisent ici les surfaces closes s'énonce

sous la forme générale suivante: l'espace P sera dit « clos dans

le sens de l'homotopie » ou encore « essentiel sur lui-même» si

l'identité — c'est-à-dire la représentation avec f(x) — x pour
chaque point x de P — est une représentation essentielle.

Cette propriété d'être « clos » me semble une notion assez

immédiate et naturelle. Si l'on considère par exemple un
polyèdre P, alors se pose le problème de décider à partir des

propriétés combinatoires de P, si P est « clos » dans ce sens ou ne

l'est pas; mais ce problème n'est pas résolu, pas même pour les

polyèdres; en particulier, il ne semble pas exister des relations

simples entre le groupe fondamental et les groupes de Betti
d'une part, et le fait d'être clos au sens de l'homotopie d'autre

part [18; 2, p. 518 et suiv.].
Cependant, M. Hurewicz a résolu un problème très voisin,

à savoir: quels sont les polyèdres qui peuvent être réduits à un
seul point par une déformation univoque et continue La réponse
est la suivante : une telle réduction du polyèdre connexe P est
possible et ne l'est que si tous les r-ièmes groupes de Betti pour r^ i
ainsi que le groupe fondamental de P disparaissent, c'est-à-dire
si P coïncide par les invariants classiques de Poincaré avec un
simplexe [21]. C'est un théorème surprenant qui jette une vive
lumière sur la valeur des invariants classiques et aussi sur celle
de la nouvelle théorie de l'homotopie de M. Hurewicz i

Mlle Pannwitz et moi avons considéré avec succès une autre
modification du problème non résolu de caractériser la propriété
d'être clos: nous appelons un espace « labile » si des déformations
arbitrairement petites suffisent pour le transformer en une de ses

propres parties; un espace labile n'est donc, a fortiori, pas clos

au sens de l'homotopie. Or, la labilité d'un polyèdre P qui est

partout à n dimensions peut être caractérisée par une propriété
purement combinatoire, à savoir par l'existence d'une « frontière

» de P — où la notion de frontière employée ici appartient
entièrement au domaine classique des notions sur lesquelles
repose la théorie de l'homologie. Mais je ne voudrais pas insister
ici sur la définition exacte de cette notion [18; 2, pp. 285 et 524].
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11 est amusant et instructif de construire des exemples pour
ces théorèmes; il existe notamment des polyèdres à deux
dimensions qui peuvent être réduits à un point et qui sont labiles
bien qu'ils ne possèdent pas d'arête libre, c'est-à-dire bien que,
dans leurs décompositions en simplexes, chaque arête appartienne

au moins à deux triangles [18].

9. — Parmi les propriétés des représentations d'un espace en

lui-même, c'est l'existence ou la non-existence des points fixes
qui a toujours retenu spécialement l'attention. Dans le cadre
de notre mise en problèmes nous demanderons: quelles sont les

propriétés de la forme d'un espace P qui permettent de décider
si P peut ou non être transformé en lui-même sans points fixes
La circonférence est un tel espace, tandis que les simplexes
contiennent, d'après le célèbre théorème de M. Brouwer, des

points fixes pour toute représentation en eux-mêmes. De quelle
façon pourrait-on généraliser cette différence entre une
circonférence et un simplexe Est-ce qu'un certain aspect « cyclique »

d'une figure pourrait être caractéristique du fait qu'elle peut
être transformée en elle-même sans points fixes On a quelques
connaissances sur ce sujet mais, malheureusement, elles ne
sont pas bien nombreuses.

La formule sur les points fixes de M. Lefschetz [26] est

valable, comme je l'ai montré [12; 2, p. 524], non seulement

pour des variétés mais aussi pour des polyèdres arbitraires; de

cette formule découle le fait que le théorème précité de

M. Brouwer sur les points fixes des simplexes se laisse étendre
à tous les polyèdres qui ont les mêmes nombres de Betti que les

simplexes, qui sont, de ce fait, connexes et dont tous les nombres
de Betti de dimension positive disparaissent [2, p. 532].
M. Lefschetz a montré, en outre, que ce théorème conserve sa

validité si l'on remplace les polyèdres par les espaces compacts
qui sont « localement connexes au sens de M. Alexander »

[27, pp. 90 et 359]. La condition suivante est donc nécessaire pour
l'existence de représentations en eux-mêmes sans points fixes
de ces espaces assez généraux: pour un certain r ^ 1 le r-ième
nombre de Betti est différent de zéro.

Un exemple, découvert par M. Borsuk, montrera qu'on n'ose



REPRÉSENTATIONS CONTINUES 343

pas renoncer à l'hypothèse précitée de la connexité locale: il
existe un continu dont tous les r-ièmes nombres de Betti pour
r 1, 2, disparaissent et qui peut cependant être transformé
en lui-même sans point fixe [5]. D'ailleurs, ce continu se trouve
bien dans l'espace à trois dimensions mais pas dans le plan et

il est douteux qu'un tel exemple existe déjà dans le plan; en

d'autres termes, nous ne savons pas — et cette ignorance est

remarquable — si l'affirmation suivante est exacte: P étant un
continu plan ne décomposant pas le plan et / une représentation
quelconque de P en lui-même, alors / possède un point fixe.

La condition qu'un nombre de Betti de dimension positive
est différent de zéro n'est pas suffisante pour l'existence de

représentations sans points fixes: par exemple, la variété à

quatre dimensions des points complexes du plan projectif
possède, pour toute représentation en elle-même un point fixe,
bien que son deuxième et son quatrième nombre de Betti soient

égaux à un [13]. C'est pour cette raison que les faits suivants,
établis par M. Borsuk, sont très remarquables: tout polyèdre
— et même, plus généralement, tout espace compact et localement

connexe — dont le premier nombre de Betti ne s'annule

pas peut être représenté en lui-même sans point fixe [4]; et la
même affirmation est vraie aussi pour les polyèdres qui sont
situés dans Vespace euclidien à trois dimensions et dont le
deuxième nombre de Betti est différent de zéro [6]. Mais si nous
considérons des polyèdres arbitraires, alors on ne connaît pas
de critère nécessaire et suffisant pour l'existence de représentations

sans points fixes et cela même pas si l'on se restreint aux
variétés closes.

10. — On obtient cependant de meilleurs résultats si l'on ne
considère pas des représentations arbitraires de P en lui-même,
mais — comme dans le problème de la propriété d'être « clos »

indiqué plus haut — des « petites transformations », c'est-à-dire
des représentations où les distances entre le point et le point-
image sont petites. En premier lieu, on déduit de la formule
généralisée de M. Lefschetz que nous venons d'employer, que
seuls les polyèdres à caractéristique eulérienne nulle admettent
des transformations arbitrairement petites sans point fixe
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[2, p. 532]. Dans le cas des variétés closes la réciproque de cette
affirmation est aussi vraie, le théorème suivant est donc valable:
Une variété close admet et n'admet de transformation arbitrairement

petite en elle-même sans point fixe que si sa caractéristique
eulérienne est nulle [10; 2, p. 552]. On sait que cette condition
est satisfaite pour toute variété de dimension impaire, tandis
que parmi les variétés de dimension paire il n'y en a que quelques-
unes qui la remplissent.

Dans une variété (dérivable x) la notion de « petite transformation

sans point fixe » coïncide au fond avec la notion de « champ
de directions)); nous pouvons donc énoncer pour les champs
de directions le théorème formulé plus haut pour les petites
transformations. On obtient alors une généralisation de
théorèmes connus de Poincaré et de M. Brouwer sur des surfaces

et des sphères à n dimensions.

11. — Le théorème sur l'existence de petites transformations
sans point fixe joue un certain rôle dans les recherches sur les

variétés de groupes: un espace de groupe admettant des

transformations infinitésimales sans points fixes, sa caractéristique
est de ce fait nécessairement nulle. La question de savoir quels

espaces sont des espaces de groupes appartient en principe au
cercle des problèmes que nous traitons ici; car, pour un espace,
le fait de représenter un groupe est une propriété des

transformations de l'espace sur lui-même, et seuls certains espaces
la possèdent. Cependant, la théorie que nous exposa M. Cartan
dans sa conférence ne peut être appelée une théorie « topologique

»; elle emploie en effet des moyens beaucoup plus difficiles
et beaucoup plus profonds que ceux dont il a fallu se servir pour
les problèmes dont j'ai parlé. La démonstration, par exemple, du
théorème que, parmi toutes les sphères, seules celles de dimensions

1 et 3 sont des espaces de groupes, exige presque tout
l'appareil moderne des théories de MM. Cartan et Weyl. Ce

serait une tâche extrêmement attrayante que de déduire le même

fait par des moyens « élémentaires », c'est-à-dire purement
topologiques. Nous sommes encore très loin de la résolution de

i Dès ici, les variétés que nous considérons doivent satisfaire à certaines conditions
de dérivabilité que nous ne voulons d'ailleurs pas préciser.
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ce problème; je voudrais cependant indiquer ici quelques

nouveaux résultats de M. Stiefel qui nous rapprochent, peut-
être, de la solution de problèmes de cet ordre [28, 29].

On voit aisément qu'une variété de groupes à n dimensions
admet non seulement un champ continu de directions, mais

n champs de ce genre qui sont, en chaque point, linéairement
indépendants; cette circonstance est équivalente au fait suivant:
la variété est « parallélisable », c'est-à-dire que l'on peut introduire
un « parallélisme » des directions, qui satisfait aux exigences
naturelles imposées à une telle notion. La question subsiste de

savoir si la possibilité de ce parallélisme découle déjà de l'existence

d'un unique champ de directions, c'est-à-dire de la disparition

de la caractéristique. M. Stiefel a découvert le fait très

surprenant que chaque variété orientable à trois dimensions est

parallélisable; mais il pût montrer, d'autre part, par des exemples,
qu'il faut répondre par la négation à la question que je viens
d'énoncer; M. Stiefel démontre en particulier — dans le cadre
de théorèmes plus généraux et plus précis — le fait suivant:
Parmi les espaces projectifs réels à n dimensions pour lesquels
on a n -f~ 1 0 mod. 16, seuls les espaces des dimensions 1, 3, 7

sont parallélisables 1. Cette même méthode n'a pas réussi jusqu'à
présent en ce qui concerne le problème de la possibilité du
parallélisme des sphères.

Il est donc démontré de façon purement topologique que,
parmi tous les espaces projectifs, seuls ceux des dimensions
n 1, 3, 7 et 16Ä: —1 avec k — 1, 2, peuvent éventuellement
être envisagés comme des espaces de groupes. La théorie de
M. Cartan décide qu'ils doivent être éliminés tous à l'exception
de n 1 et n =----- 3. f^ous ne savons pas encore s'il existe des

espaces projectifs parallélisables pour n 16& — 1; l'espace
projectif à sept dimensions, comme d'ailleurs aussi la sphère à

sept dimensions, sont parallélisables sans être cependant espaces
de groupes. On ne sait pas s'il y a, en dehors de 7, encore un
autre nombre de dimensions jouissant de cette propriété.

1 M. Ehresmann m'a indiqué dernièrement qu'il a fait, lui aussi, — dans un mémoire
qui sera publié prochainement — des recherches sur la possibilité du parallélisme des
espaces réels projectifs et qu'il a obtenu les mêmes résultats que M. Stiefel. Sa méthode,entièrement différente de celle de M. Stiefel, n'embrasse pas non plus les nombres de
dimensions n 16k — 1.
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Le fait que voici est facile à montrer: pour une sphère Sn ainsi

que pour un espace projectif Pn la possibilité de parallélisme est

équivalente à l'existence d'un ensemble $ de représentations
topologiques de Sn ou Pn sur eux-mêmes, ensemble qui est

simplement transitif pour un point (plus exactement: % est un
ensemble de représentations topologiques de Sn ou Pn sur
eux-mêmes et jouissant de la propriété suivante: il existe un
point e tel que pour chaque point x il y ait dans % une et une
seule représentation jx avec fx(e) x; en plus, fx dépend d'une
manière continue de x et les fx doivent avoir certaines propriétés
de dérivabilité). L'existence d'un tel ensemble de représentations
topologiques d'un espace est un affaiblissement de la propriété
d'être espace de groupe; c'est même un affaiblissement considérable;

la loi associative notamment ne joue pas de rôle ici.
Malgré cela, les recherches sur les espaces de groupes « affaiblis »

de cette façon -— et peut-être encore d'autre façon — se révéleront

utiles pour le maniement purement topologique des vrais

espaces de groupes.
En tous cas, la question de savoir quelles sphères et quels

espaces projectifs sont parallélisables me semble extrêmement
intéressante. Les nombres les plus petits de dimensions pour
lesquels cette question est encore ouverte, sont n 5 dans le

cas des sphères, n — 15 dans le cas des espaces projectifs. On
devrait donc s'occuper notamment de S5 et P15. C'est un
problème très particulier, mais je ne trouve pas qu'en mathématiques

la « généralité » soit le seul critère pour la valeur d'un
problème ou d'un théorème.
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LA GÉOMÉTRIE DES DISTANCES

ET SES RELATIONS AVEC LES AUTRES BRANCHES

DES MATHÉMATIQUES1

(Géométrie élémentaire, analytique et axiomatiqiie.
Algèbre et algèbre des vecteurs. — Géométrie

différentielle. — Calcul des variations)

PAR

Karl Menger (Vienne).

Le grand progrès de la Géométrie au commencement de

l'époque moderne est dû à l'introduction des méthodes analytiques

par Descartes et Fermât. Cette méthode consiste en la
construction de modèles arithmétiques pour les entités spatiales.
Les points sont définis par des nombres (coordonnées), les

courbes et les surfaces par des équations et la géométrie analytique

est l'application de l'algèbre et de l'analyse à ces modèles

arithmétiques.
Cette méthode a enrichi d'un nouveau monde le domaine des

entités géométriques étudiées jusqu'alors et n'a cessé de fournir
depuis sa découverte des problèmes sur notre espace. C'est

cette idée encore qui a suggéré la plupart des généralisations
de la conception d'espace: celle de Riemann et d'autres qui
ont trouvé application en géométrie différentielle, par exemple
celle de M. Finsler, de même que celle utilisée dans la géométrie
des nombres par Minkowski. Ces espaces généralisés sont basés

essentiellement sur la représentation de leurs points par des

coordonnées.

i Conférence faite le 25 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Genève; série consacrée à

Quelques questions de Géométrie et de Topologie.
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Malgré son importance historique et ses nombreux avantages
on ne doit cependant pas oublier, me semble-t-il, que d'un point
de vue purement géométrique l'étude des modèles arithmétiques

au moyen de l'analyse n'est qu'un procédé entre plusieurs
possibles; ce procédé impose par ailleurs aux recherches des

restrictions assez considérables qui ne sont pas inhérentes à la
nature des figures spatiales.

J'ai été ainsi conduit depuis quelques années à développer
une géométrie qui se passe des modèles arithmétiques, tout en

s'occupant des problèmes relatifs aux notions classiques:
convexité, courbure, géodésiques, etc. Les points ne sont alors

pas nécessairement définis par des coordonnées, ni les figures

par des équations. La géométrie des distances ou géométrie
métrique est basée sur la donnée d'un ensemble d'éléments
de nature quelconque assujettis à la seule condition qu'à deux
d'entre eux corresponde toujours un certain nombre. Nous

nous plaçons donc dans l'hypothèse d'un de ces espaces
généraux que M. Fréchet a introduits dans les mathématiques

pour les appliquer au calcul fonctionnel et qui, plus
tard, se sont montrés extrêmement féconds pour les recherches
en topologie, en particulier pour les théories de la connexité,
de la dimension, des courbes.

La géométrie des distances ne fait pas partie de la topologie
car elle ne s'occupe pas des transformations homéomorphes, la
distance n'étant pas en général invariante dans une homéo-
morphie. Mais tant par l'étude des espaces généraux que par
ses méthodes elle est assez voisine de la topologie générale
faisant, avec cette dernière, partie de la géométrie « ensembliste »

(mengentheoretische Geometrie).

Bien que récente et peu connue jusqu'à présent, la géométrie
des distances est déjà si développée qu'une simple énumération
de tous ses résultats serait impossible en un temps si limité.
Ce que je me propose ici c'est donc seulement de mettre en
évidence quelques-unes de ses liaisons nombreuses et étroites
avec d'autres branches des mathématiques et j'insiste d'autant
plus sur ce point qu'on fait parfois à la géométrie des ensembles
le reproche de se détacher complètement des mathématiques
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classiques et des problèmes dont s'occupe la plupart des
mathématiciens.

Nous traiterons d'abord brièvement de quelques-uns des

rapports entre la géométrie métrique et la géométrie analytique
élémentaire des espaces ordinaires. Des remarques concernant
l'algèbre et l'algèbre des vecteurs suivront. Nous passerons
ensuite à l'étude de la convexité dont la théorie générale se lie
étroitement à la géométrie axiomatique de l'espace ordinaire.
Puis, toujours du point de vue des distances, nous introduirons
la notion de courbure qui sera qualifiée pour servir de point de

départ vers une géométrie différentielle. Nous terminerons par
l'étude des lignes géodésiques qui nous fournira des résultats
nouveaux très généraux relatifs au Calcul des variations.

I. — Géométrie des distances et géométrie an alytique
ÉLÉMENTAIRE.

En géométrie analytique élémentaire on prend comme point
de départ de la théorie des espaces euclidiens à n dimensions
la représentation de chaque point par n nombres xti x2, xn
réels ou complexes selon qu'il s'agit de 3'espace réel ou de

l'espace complexe Cn. On appelle carré de la distance des points
(xly x2% xn) et (yv 2/2, yn) le nombre 1

(vi — xii2 + (y* — + • • « + (yn — xn)2 (P

en se réservant de prendre comme distance la racine carrée

positive de l'expression précédente dans le cas où celle-ci est

non négative. Nous appellerons espace à carrés de distances

complexes 2 un ensemble d'éléments quelconques tel qu'à tout

1 Pour les espaces unitaires on fixe comme distance le nombre réel

(y1 — %) (Vi —- Xi) N + (Un — xn) (Vn —

en désignant par x le conjugué l —4% du nombre x £ -f i-n- Il est clair que du
point de vue des distances cet espace unitaire à n dimensions est identique à un espace
euclidien réel à 2n dimensions.

2 On peut généraliser cette notion et parler d'un espace à distances empruntées
à un système donné S, par exemple à un corps de nombres au sens de l'algèbre abstraite
ou à un groupe abstrait. Pour des applications au calcul des variations j'ai récemment;
étudié des espaces dont les distances ne satisfont pas à l'axiome de symétrie (â2). On
pourrait appeler les espaces satisfaisant aux axiomes (âx) et (â2) espaces à distances
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couple p, q de deux de ses éléments il corresponde un nombre pq2

(dit carré de la distance de p ci q) assujetti aux conditions:

Ïp2 o (M

m2 Tpz - (*.)

Dans un espace à carrés de distances complexes tout ensemble

F ne contenant qu'un nombre fini de points, disons k points
Pii P21 ~"> Pki es^ complètement caractérisé par les lê carrés des

distances des points de F entre eux, nombres qui peuvent être

rangés dans une matrice. Il résulte des conditions (A^ et (A2)

que cette matrice est symétrique et que sa diagonale principale
ne contient que des zéros. Une question qui se pose de façon
naturelle est la suivante : Etant donnée une matrice
|| a.. || j 1? 2, k) jouissant des deux propriétés
mentionnées, sous quelles conditions peut-on la réaliser par les

points d'un espace euclidien complexe ou réel, c'est-à-dire
trouver k points al7 a2l ak de cet espace tels que at a) ai?-

(i,j 1, 2, k)?Nous allons donner immédiatement la solution du problème
plus général suivant 1: Etant donné un espace à carrés de
distances complexes G (c'est-à-dire une matrice de nombres en général

infinie), établir les conditions nécessaires et suffisantes pour
qu'on puisse l'appliquer sur un sous-ensemble de l'espace euclidien

à n dimensions, et d'abord de l'espace complexe Cn. De
façon précise, nous établirons les conditions pour qu'on puisse
faire correspondre à chaque point de C un point et un seul de Cn
de sorte que (%, x2, xn) et (yv ?/2, yn) étant les points
de Cn correspondant respectivement aux points p et q de C,

symétriques complexes et réserver le nom d'espace à distances complexes à des
ensembles dont la définition de la distance est assujettie à la condition (z^) seule.

Une étude systématique des espaces à distances non symétriques, par M. Novak,
paraîtra dans le cahier 8 des Ergebnisse e. mathem. Kolloquiums., Wien, 1936.

1 La caractérisation des espaces euclidiens réels et de leurs sous-ensembles au moyen
des conditions (àk) et (&k0) se trouve dans mon mémoire Mathem. Annalen, 100, p. 113.
Pour une nouvelle démonstration voir Amer. Journ. of Math., 53, p. 721. Des remarques
sur C2 et E2,i se trouvent dans Ergebnisse eines mathem. Kolloquiums, 2, p. 34; 4, p.13:
5. p. 10, 16; les critères de Ew>_n dans Tôhoku Math. Journ., 37, p. 475. La caractérisation

générale des sous-ensembles de Gn et Ew>s que nous,allons énoncer est due à M.Wald
et se trouve dans son article, Ergebnisse e. mathem. Kolloquiums, 5, p. 32.
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le nombre pq2 donné avec l'espace C satisfasse toujours à la
condition

pq2 (vi — xi)2 + + (yn — xn)2 •

Appelons déterminant des points /q, /?2, pk le nombre

o 1 1 1 1

^{Pl, P2, - : Pk)

1 0 Pip\pip\ • • • PiPk

1 p%p\ o p%p\ p2p\

t Pzp\PZP[ 0 • • • PzP\

i Kp'IKP'IKPI

Pour qu'un espace à carrés de distances complexes C puisse être

appliqué sur un sous-ensemble de Cn il est nécessaire et suffisant
que

(Aq+0) A(p1?p2, pn 3) 0 pour tout système de n + 3 points de G

(A?+2) A (pj, p2, ...5 pnA o) 0 pour tout système de n 4" 2 points de G

Appelons En la partie de Cn constituée par les points
(x1: xm, xm+u xn), les nombres %, xm étant réels, les
nombres xmJrl, xn purement imaginaires, m étant égal à

- • Posons x- — ix- (j m 1, m + 2, n), x- réel. Le

nombre (1) devient alors

(Vi — xi)2 + - + (ym — xm)2— (ym+1 - r ^ 2
xm H-1 > (y-n

s est la signature de cette forme quadratique. Le En est un
espace à carrés de distances complexes tel que, pour chaque
couple p, q de points, pq2 soit réel.

Nous dirons que l'ensemble F des k points /q, p2, pk est de

rang r s'il satisfait aux conditions (AJ+2) et (A£+3) sans satisfaire

(A£+1), c'est-à-dire si les déterminants de tous les systèmes
de r -f 2 et de r 4- 3 points de F sont nuls, .mais s'il existe un
système r + 1 points dont le déterminant est différent de 0.
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Pour qu'un espace où pq2 est toujours réel jouisse de la propriété
d'être applicable sur un sous-ensemble de En s il est suffisant

(et évidemment nécessaire) que tout système de n -f~ 3 points
de E jouisse de cette même propriété; et pour qu'un système F

de ft + 3 points pv p2, pn+3 soit applicable sur un système
de ft + 3 points de En s il faut et il suffit, r désignant le rang
de F, 1° que l'on ait r < n et que 2° parmi les systèmes de

r + 1 points p1? p2, pr+i de F pour lesquels A (p1? p2f
pr+i) 0 il en existe un, tel que la suite des nombres

A (Pi) 1
• A (pi, p2), A (p1, p2, Ps) 5 ••• j A (p1, p2, > Pr-j_ 1

ne contienne pas deux zéros consécutifs et que le nombre N des

changements de signes qu'elle présente après la suppression des

zéros éventuels satisfasse à l'inégalité

n + s n s

-y- + (r— n) £M ^ -y-
Pour .v - • ,1-•_ m)l'espace En s est évidemment l'espace

n

euclidien réel à n dimensions, le nombre (F) étant V (y^ — x,-)2

qui est toujours positif ou nul; on peut donc prendre comme
distance (non négative) la racine carrée positive de cette expression.

En n jouit en outre de la propriété que ses points sont
métriquement distingués, c'est-à-dire que

p ^zz q implique pq2 ^ 0 (A3)

Un espace à distances non-négatives et qui distingue
métriquement les points est ce que M. Fréchet avait appelé un
espace E. Voici une conséquence importante de la condition A3) :

Une application d'un espace E sur un autre espace E conservant
les distances est nécessairement biunivoque, c'est, comme nous
dirons, une congruence. Un espace E qui peut être appliqué sur
un sous-ensemble d'un espace E est donc applicable sur celui-ci
au moyen d'une congruence et sera dit congruent à ce sous-
ensemble F

1 C'est ainsi que l'espace unitaire à n dimensions est congruent à l'espace euclidien
réel à 2n dimensions.
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Le résultat énoncé plus haut contient donc comme cas
particulier le théorème suivant concernant l'espace euclidien réel

E„(=
Pour qu'un espace E à distances non négatives et distinguant

métriquement les points, soit congruent à un sous-ensemble de En
il est nécessaire et suffisant que Con ait

(A?+3) A(Pi> p2 pn+ o) 0 pour tout système de n-f 3 points de E

(A0" + 2) A(Pl, p2, Pn^o) 0 pour tout système de n -{- 2 points de E

(Ak) sgn A(Pl, p2 pk) (— l)k+1 ou 0

pour tout système de k points de E, où k 2 3 n | 1

Remarquons qu'un espace E contenant plus de n -f- 3 points
et satisfaisant aux conditions (Aft) pour k 2, 3, n + 1 et
à (A?+2) satisfait eo ipso1 à la condition (A? + 3). Pour qu'un
espace séparable E soit congruent à un sous-ensemble de

l'espace de Hilbert il faut et il suffit que les conditions (Ak) soient
satisfaites pour chaque entier k.

II. — La théorie de la convexité et ses relations avec
LA GÉOMÉTRIE AXIOMATIQUE.

Passons à l'étude de propriétés plus géométriques de l'espace
et de ses sous-ensembles. Dans ce but nous considérons un
ensemble d'éléments quelconques tel qu'à tout couple d'éléments
(« points ») p, q il corresponde un nombre réel pq (« distance »

de p et q) qui satisfait à la condition pp 0 pour tout p et à

l'inégalité triangulaire pq + qr > pr pour chaque triplet de

points. Nous appellerons un tel ensemble un espace triangulaire.
Particulièrement importants sont les espaces triangulaires à

distances symétriques, non négatives, et qui distinguent métri-

i Un espace à distances complexes satisfaisant à la condition (AJ • ne satisfait

pas nécessairement à la condition (aJ+3). On trouvera une étude des systèmes de

n + 3 points non congruents à n + 3 points de Ew bien que n -f 2 quelconques de leurs
points soient congruents à n-f 2 points de En dans mon mémoire Mathem. Annalen,
100, p. 124. J'ai appelé de tels systèmes pseudo-euclidiens.
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quement les points, c'est-à-dire tels que pq qp > 0 si p ^ g

et pp 0; ou bien, ce qui revient au même, tels que chaque

triplet de points soit congruent à un triplet de points du plan
(à un triangle euclidien) 1. L'introduction de ces espaces est

due à M. Fréchet. On les appelle espaces métriques ou,
d'après M. Bouligand, espaces distanciés. Comme exemples

d'espaces triangulaires nous avons les espaces euclidiens de

toutes dimensions et l'espace de Hilbert.
Il est bien naturel lorsqu'on a une inégalité d'étudier les cas

où elle devient une égalité. Dans le cas d'un espace euclidien
la relation pq + qr1 ^ & lieu pour trois points p, q, r distincts
deux à deux, lorsque q est situé sur le segment joignant p et r,
donc entre p et r, et seulement dans ce cas. Posons donc comme
définition pour un espace distancié général qu'un point q

est point intermédiaire entre p et r, ou plus simplement est

entre p et r si p ^ q ^ r et pq + qr pr. Cette notion ne jouit
pas, dans les espaces généraux, de toutes les propriétés qu'elle
possède sur la ligne droite. Considérons par exemple l'espace
distancié constitué par quatre points p, g, r, ,9 ayant les

distances pq ~qÉ ^ Sp 1, jjf qS 2. Il est clair
que q est entre p et r, et que r est entre q et 5, sans que q ou r
soient entre p et «9. La relation de point intermédiaire a cependant
assez d'affinités avec la relation bien connue sur la ligne droite
pour que la dénomination de point situé « entre » deux autres
soit justifiée. Elle jouit notamment des propriétés suivantes:
Si q entre p et r, alors q entre r et p, mais r non entre p et q.
Si q entre p et r, et r entre p et s} alors q entre p et «9, et r entre q
et s. L'ensemble constitué par p et q et leurs points intermédiaires
est fermé.

Nous appelons convexe un sous-ensemble d'un, espace
distancié qui contient pour chaque couple de points différents
p et r au moins un point q situé entre p et r. On a alors le théorème
suivant: Un sous-ensemble fermé convexe d'un espace distancié
complet contient pour tout couple de points distincts p et q un
segment qui les joint, c'est-à-dire un sous-ensemble contenant

i Pour un espace à distances non négatives l'inégalité triangulaire équivaut à la
condition (A3).
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p et g et congruent à un segment de la ligne droite au sens
ordinaire du mot dont la longueur est égale à la distance pq 1. On

déduit immédiatement de ce théorème qu'un sous-ensemble
fermé d'un espace euclidien est convexe s'il est convexe au sens

classique de Minkowski et seulement dans ce cas. Remarquons
d'ailleurs que dans un espace distancié convexe général il peut
arriver que deux points puissent être joints par plusieurs
segments. La surface d'une sphère à trois dimensions dans laquelle
nous prenons comme distance la longueur du plus petit arc
du grand cercle qui les joint, nous en fournit un exemple.
C'est un espace convexe et complet, qui contient pour tout
couple de points diamétralement opposés une infinité de
segments qui les joignent.

Du point de vue topologique la notion de convexité est sinon
identique du moins très voisine de celle de connexité et de
connexité locale. Nous n'avons pas résolu la question de savoir
si l'hypothèse — pour un espace distancié compact — d'être
connexe et localement connexe est non seulement nécessaire
mais encore suffisante pour que l'espace soit homéomorphe à

un espace distancié convexe. Indiquons trois conditions qui
sont suffisantes pour qu'un espace distancié soit
homéomorphe à un espace convexe: 1° Deux points quelconques
peuvent être joints par un arc de longueur finie. 2° p et q étant
deux points distincts, la borne inférieure des longueurs de tous
les arcs joignant p et g, est > 0. 3° A tout s > 0 donné à l'avance,
il correspond un S > 0 tel que deux points quelconques dont
la distance est < S. puissent être joints par un arc de

longueur < s. En faisant alors correspondre à tout couple de

points /?, q de D la borne inférieure des longueurs de tous
les arcs joignant p et q ou, comme nous dirons, la distance
interne de p et g, nous obtenons un espace distancié convexe D'
homéomorphe à D. (Les segments de D' correspondent aux
arcs géodésiques de D.)2

1 Les notions de point intermédiaire et de convexité et leurs théories sont
développées dans mon mémoire Mathem. Annalen, 100, p. 75. Une nouvelle démonstration
de l'existence d'un segment sous les conditions mentionnées a été donnée par M. Aron-
szajn, Ergebnisse e. mathem. Kolloquiums, 6, p. 45.

2 Cf. mon mémoire dans le Mathem. Annalen, 100, p. 96. Cf. aussi Hopf und Rinow,
Comment Math. ]lelret.. 3.
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La théorie de la convexité se relie à l'axiomatique de la
géométrie élémentaire, en particulier aux Anordnungsaxiome de

Pasch, Hilbert et de l'école américaine. L'étude des propriétés
découlant de la notion de convexité permet, à partir de l'espace

triangulaire complet, d'obtenir des espaces de plus en plus
particularisés de ce point de vue, et finalement certaines carac-
térisations des espaces linéaires et euclidiens.

Nous dirons, pour esquisser ce chemin, qu'un ensemble dans

un espace distancié est extérieurement convexe s'il contient,
pour chaque couple de points p et <7, au moins un point r tel que
q soit entre p et r. Un ensemble fermé, à la fois convexe et
extérieurement convexe dans un espace complet contient pour
chaque couple de points différents une « droite » qui les joint,
c'est-à-dire un sous-ensemble contenant p et <7, congruent avec
une droite au sens ordinaire du mot. Pour que tout couple de

points distincts d'un espace complet, convexe et extérieurement

convexe détermine une droite et une seule les joignant,
il faut et il suffit que l'espace jouisse de la propriété suivante
que j'ai appelée propriété des deux triplets: Etant donné quatre
points distincts deux à deux, Vexistence de deux triplets linéaires
entraine la linéarité des deux autres triplets. (Nous dirons que le

triplet 7), <7, r est linéaire lorsqu'un de ses points est situé entre
les deux autres.)

En ajoutant les conditions d'être complet, convexe et
extérieurement convexe aux conditions qui caractérisent les espaces
distanciés congruents aux sous-ensembles des espaces euclidiens

réels (se reporter au Chapitre I), nous obtenons la caracté-
risation des espaces euclidiens réels eux mêmes parmi les

espaces distanciés. Mentionnons encore que le point de départ de
ces recherches fut un théorème de M. Biedermann 1

que nous
énoncerons ici de la façon suivante: Pour qu'un espace
distancié compact et convexe soit congruent à un segment, il
faut et il suffit qu'il contienne plus d'un point et que tout triplet
de ses points soit linéaire.

Pour parvenir graduellement des espaces convexes et extérieurement

convexes aux espaces linéaires et euclidiens il suffit

1 Cf. Mathem. Annalen, 100, p. 114.
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d'exclure l'existence dans l'espace de certaines singularités
simples. Il s'agit des deux figures suivantes qui ne se rencontrent
pas dans les espaces linéaires:

1. La fourchette: somme de trois segments pq, qr1 qs n'ayant
en commun deux à deux que le point q situé à la fois entre

p et r, et entre p et s.

2. Uétrier: somme de quatre segments pq, gr, rs, ps qui n'ont
en commun que des extrémités et tels que s soit entre p et r,
et r entre q et s.

Si les points q et r d'un étrier sont situés entre p et l'étrier
est somme de deux segments de mêmes extrémités (à savoir de

p et s), et nous parlerons d'une lentille, par exemple: la somme
de deux demi-grand-cercles d'une sphère. Notons deux configurations

particulières intéressantes: 1° Le cercle, ensemble

congruent à un cercle au sens ordinaire où l'on a pris comme
distance de deux points la longueur du plus petit arc qui s'y
termine. Le cercle constitue un étrier entre deux quelconques
de ses points, il constitue plus particulièrement une lentille
entre deux de ses points diamétralement opposés. 2° Le trièdre

convexe, somme de trois segments pq, gr, qs n'ayant en commun

deux à deux que le point q situé à la fois entre p et r,.
entre p et s, entre r et s.

Les espaces distanciés sont par définition des espaces E
satisfaisant à la condition (A3), c'est-à-dire des espaces E dont
chaque triplet de points est congruent à un triangle euclidien.
M. W. A. Wilson a récemment étudié1 les espaces E satisfaisant

aux conditions (A3) et (A4), c'est-à-dire des espaces E

dont chaque quadruplet de points est congruent à un tétraèdre
euclidien — par analogie nous pourrons appeler ces espaces:

espaces tétraédrciux — et il a obtenu le résultat intéressant
suivant : Pour qu'un espace séparable et complet soit congruent
à un espace euclidien ou à l'espace de Hilbert il faut et il suffit
qu'il soit convexe, extérieurement convexe et tétraédral.
Renvoyons le lecteur en terminant à un mémoire intéressant sur
la sphère à n dimensions par M. L. M. Blumenthal 2.

1 Amer. Journ. of Math., 54.
2 Amer. Journ. of Math., 57.
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III. — Géométrie des distances et algèbre des vecteurs.

Les conditions (Ak) et (A?) du chapitre I étant de nature

algébrique, les résultats de cette théorie permettent des

applications dans le domaine de l'algèbre. Bornons-nous ici à

mentionner les beaux résultats de M. L. M. Blumenthal sur les

déterminants L Nous allons entrer un peu plus dans le détail

en ce qui concerne l'algèbre des vecteurs 2.

Désignons par ensemble métrique de vecteurs un ensemble V
d'éléments de nature quelconque appelés vecteurs, tel qu'à

tout couple v et w de ses éléments corresponde un nombre

réel (vw) assujetti aux conditions

(F) (vw) (wv)

(r') ç =A w implique (vv) -f (ww) 2 (vw).

Le nombre (vw) sera dit : produit scalaire des vecteurs v et w.

Etant donné k éléments tq, v2, vk de Y, nous introduirons
leur déterminant de Gram F (cq, v2y vk)

K f i) (Cif2) • • («W
(«V'i) (c2C2) • • • (<W

(vkvi) (vkv2) • • (vkvk)

Un exemple d'ensemble métrique de vecteurs nous est fourni
par la famille des vecteurs d'un espace euclidien à un nombre
quelconque de dimensions, en entendant par produit scalaire de

deux vecteurs le produit scalaire au sens habituel.
A quelles conditions un ensemble métrique de vecteurs V

est-il isomorphe à un ensemble de vecteurs d'un espace euclidien
à n dimensions En C'est-à-dire trouver les conditions pour qu'on
puisse faire correspondre à tout élément de Y un vecteur de En
de façon que v' et wr étant les vecteurs homologues à deux

1 Bull. Amer. Math. Soc., 37, 38 et Amer. Journ. Math., 56.
2 On trouve la théorie suivante esquissée dans. ma note: Ergebnisse e. mathem.

Kolloquiums, 5, p. 27.
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éléments v et w quelconques de V, on ait toujours (vw) — (v' w').
Voici un groupe de conditions à la fois nécessaires et suffisantes:

(i?*1) r (Plc2,pb+1) o

pour tout système de n + 1 vecteurs v17 c2, t\n ;
de V.

(r0) r cx, c2,..., pfo) o

pour tout système de k {k 1,2,..., u) vecteurs cl7 e2, de V.

De plus, dans le cas où V consiste en a + 2 vecteurs exactement,

il faut adjoindre aux conditions précédentes la condition

(r?+2) tk, c2, VhS) o

Pour démontrer ce théorème, il suffit de se reporter à ce qui a été

fait dans le chapitre I. Posons comme carré de la distance de deux
éléments v et w de V le nombre me2 (vv) + (ww) — 2 (vw).
Nous définissons ainsi un espace E, soit V'; les conditions
(Ax), (À2) et (A3) auxquelles doit satisfaire vw2 sont en effet
des conséquences immédiates de (T) et (T'). Et la condition
nécessaire et suffisante pour que V soit isomorphe à un
ensemble de vecteurs de l'espace euclidien En (auxquels on a

donné la même origine p0) c'est que V' soit applicable sur
l'ensemble des extrémités de ces vecteurs. On déduira alors
de (P?2-1), (Pk) (k 1, 2, n) les conditions (A?+2) et
(Ak) (k 2, 3, r -j- 1) en tenant compte de la relation

A (p0, Pl,ph)(—2)'{r(p1,
>~

où vi désigne le vecteur pQpt.
Dans un ensemble métrique de vecteurs satisfaisant à la

condition (T2) le carré de la distance de deux vecteurs est

toujours non-négatif 1 et nous pourrons introduire la notion de

i On a

r(^' ^ l (?,£) (£$ I <®1®1><®.®*) ~ <«1®.)«-

La condition (r^) n'est autre que l'inégalité de Schwarz (% rx) (v2 v2) > v2)2.

Cette condition entraîne l'inégalité (vv) + (ww) > 2 (vw). Pour le montrer il suffit
de prouver l'impossibilité de la relation (vv) + (ww) <c 2 (vw). Or celle-ci élevée au
carré impliquerait (vv)2 + 2 (vv) (ww) + (ww)2 < 4 (vw)'2 < 4 (vv) (ww), d'où
(vv)2 — 2 (vv) (ww) +" (ww)2 < 0, ce qui est évidemment impossible, le premier
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vecteur intermédiaire. Nous dirons que le vecteur est entre

les vecteurs uetwlorsqu'ona:

ou bien

r [u.«') o, r (u,v, w)o, r p) + r (e, «-) r («, »>)

ou bien

r (u, w) o, + w uw '

en entendant par ^ la détermination positive du radical Viî/2-
L'ensemble de vecteurs V peut être appelé convexe et extérieurement

convexe lorsqu'il contient pour tout couple d'éléments u
et w au moins un élément v entre u et w, et au moins un élément x
tel que w soit situé entre u et x. Pour qu'un ensemble de

vecteurs V soit isomorphe à l'ensemble de tous les vecteurs de En
il faut et il suffit qu'il soit complet, convexe et extérieurement
convexe, que les déterminants de Gram soient nuls pour tout
système de n + 1 vecteurs et non négatifs pour tout système
en contenant moins de n + 1, et enfin qu'il existe n vecteurs
dont le déterminant de Gram est ^ 0.

Un corollaire intéressant de notre théorème est que les
opérations d'addition de deux vecteurs et de multiplication d'un
vecteur par un nombre peuvent être définies dans un ensemble

métrique de vecteurs. En d'autres termes, pour développer
Valgèbre des vecteurs il suffit de prendre comme point de départ
la seule notion du produit scalaire au lieu des trois opérations:
addition, multiplication par un nombre et multiplication
scalaire, qui ont servi de bases jusqu'à présent. En effet, étant
donné deux vecteurs u et w et un nombre X nous appellerons \u
le vecteur u' tel que F (u, u') 0 et (uur) X (uu), et nous
appellerons u + ç le vecteur w pour lequel F (u, v, w) 0,

y) " y) " 1" s* r(w> v) ^ o et (ww)

(uw) + (vw) si r (u, v) 0.

L'existence et l'unicité des vecteurs u' et w et les lois
ordinaires de ces opérations d'addition et de multiplication par

membre étant égal à [(w) — (ww)]2. La condition (r*) permet donc "de préciser (ri)
sous la forme

v -w implique (vv) -f (w) > 2 (vw)

L'Enseignement mathém., 35me année, 1936. 24
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un nombre sont garanties si l'ensemble de vecteurs est complet
convexe et extérieurement convexe et jouit des propriétés (Ffe).

Les recherches de MM. Wilson et Blumenthal mentionnées
à la fin du Chapitre II admettent de même une traduction dans
le langage de l'algèbre des vecteurs. En particulier il découle
du théorème de M. Wilson (p. 358), comme l'a remarqué
M. Blumenthal, qu'un ensemble de vecteurs séparable et

complet est isomorphe à un espace vectoriel euclidien ou hilber-
tien si les conditions

F (pj, ç2) 0 pour tout couple c2 de vecteurs (r2)

F (v1 ç2 5
P3) Si 0 pour tout triplet v1, v2, c3 de vecteurs (r3)

sont satisfaites ou, ce qui revient au même, si tout triplet de

vecteurs est isomorphe à un triplet de vecteurs de En, résultat
qui a été obtenu directement par MM. Fréchet, v. Neumann
et Jordan 1.

IV. — La courbure dans la géométrie des distances
et la géométrie différentielle.

Nous avons, dans les chapitres précédents, traité, en nous
plaçant au point de vue de la géométrie des distances, des
problèmes où l'espace et ses sous-ensembles interviennent globalement.

Mais cette géométrie permet aussi l'étude des propriétés
locales des variétés spatiales, et pénètre ainsi dans un domaine
où a triomphé jusqu'alors brillamment et exclusivement la
méthode analytique; cette méthode s'appliquait si bien à cette
étude qu'on a fini par identifier la théorie des propriétés locales
des figures avec la géométrie différentielle : application de

l'analyse, surtout du calcul différentiel, aux modèles arithmétiques

représentant les figures. Et même M. Bouligand qui a

eu le mérite en créant sa Géométrie infinitésimale directe d'introduire

l'analyse moderne, en particulier la théorie des fonctions
de variable réelle, dans l'étude des propriétés géométriques
locales — se borne à l'étude d'espaces où chaque point est (ou

pourrait être) caractérisé par un système de coordonnées.

1 Annals of Mathem., 36, p. 705, p. 719.
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L'idée d'une géométrie différentielle sans coordonnées semble

encore aujourd'hui presque absurde à la plupart des géomètres;

cependant la géométrie des distances a déjà résolu le problème
si important de la courbure d'une façon qui laisse pressentir,
comme nous le disions dans l'introduction, que la méthode

analytique, bien qu'elle ait joué jusqu'alors un rôle prépondérant,

n'est ni la seule possible, ni celle présentant le plus de

généralité, ni peut-être même la plus conforme à la nature
géométrique des problèmes.

Soit D un espace distancié, q, r, s trois de ses points, il
existe trois points q\ r', s' dans le plan euclidien tels que les

triplets q, r, s et q', r', s' sont congruents. Si p désigne le rayon
du cercle circonscrit au triangle q', r', s', — en convenant de

poser p oo si g', r', s' sont en ligne droite — nous appellerons
courbure du triplet q, r, s de l'espace distancié et nous dési-

gnerons par x (q, r, s) l'inverse de ce rayon, c'est-à-dire —. Cette
P

courbure sera nulle quand les trois points seront linéaires (p. 357)
et seulement dans ce cas; et la propriété du segment due à
M. Biedermann (p. 357) peut alors s'énoncer ainsi: Pour qu'un
arc — c'est-à-dire un espace triangulaire homéomorphe à un
segment — soit congruent à un segment, il faut et il suffît que
tout triplet de points lui appartenant ait une courbure nulle.

Cet énoncé ne correspond pas à celui de la géométrie
différentielle concernant les propriétés caractéristiques de la droite,
qui fait intervenir une courbure définie en chaque point. Dans
un espace distancié nous pouvons, cependant, aussi introduire
une courbure locale, et cela de la façon suivante 1

: Nous dirons
que D a la courbure x (p) au point p, si à tout s > 0 donné à

l'avance, il correspond un S > 0 tel que pour tout triplet q, r, s-

de points de D, dont la distance à p est < S, nous ayons
I y- (q, — y (p) | < s.

On peut alors se demander si un arc dont la courbure est
nulle en chaque point est congruent à un segment. Il n'en est
pas nécessairement ainsi: Prenons pour D l'ensemble des points x

i Cette notion de courbure et sa théorie est développée dans mon mémoire: Math -mAnnalen, 103.
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de l'intervalle — 1 < x < 1 et comme distance des points x
et y le nombre

I x — y I si x et y ont le même signe,

1^1 + I V I x2V2 si x et y sont de signes contraires.

D est alors un espace distancié homéomorphe au segment
— 1 x 1 de la droite euclidienne, dont la courbure est
nulle en chaque point. Cependant cet arc n'est pas congruent
à un segment, comme le montre la considération du triplet
— 1, 0, 1 dont les points ont deux à deux la même distance.

J'ai néanmoins démontré par des méthodes purement
métriques qu'zm arc appartenant à un espace euclidien dont la
courbure est partout nulle est un segment, et ainsi fut établi un
théorème de géométrie différentielle sans l'usage du calcul
différentiel.

Comparé avec la définition classique de la courbure, la
définition métrique est plus générale dans ce sens qu'elle s'applique
aux espaces distanciés généraux. Mais dans le cas des espaces
euclidiens MM. Haupt et Alt ont remarqué 1 que ma définition
de la courbure était plus restrictive que la définition classique.
Si l'arc y y (x) du plan euclidien admet au point p0 (#0, y0)

une courbure x (p0) au sens précédemment mentionné — disons

une courbure métrique — la dérivée seconde y" (x0) existe et

la courbure classique y est égale à x (p0). Inversement,
[1 -f y'2 (x0)] 12

un arc peut posséder au point p0 (x0, y0) une courbure au sens

classique -—y ^—jr sans posséder une courbure métrique;
[1 -f yf2{xo)] 2

celle-ci est en effet une fonction continue du point ce qui n'est

pas nécessairement le cas pour la courbure classique, comme
1

le montre l'exemple de la courbe y x4 sin — pour le point

P (0,0).
M. Alt a modifié 2 de la façon suivante la notion de la courbure

métrique: au lieu de considérer des triplets q1 r, s où les trois
points sont variables, il se borne à la considération des triplets

1 Cf. Ergebnisse e. mathem. Kolloquiums, 3, p. 4.
2 Dans sa thèse présentée à Vienne. Voir aussi: Ergebnisse e. mathem. Kolloquiums,

3, p. 5 et 4, p. 4.
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p, q, r où deux points seuls sont variables. Il dit que D a la
courbure x (p) au point p, x (p) étant un nombre fini, si à tout
s > 0 donné à l'avance, il correspond un S > 0 tel que, pour
tout couple de points g, r, dont la distance à p est < S, nous

ayons | x(/>, q1 r) — x(p) j< s. Cette définition (valable dans

tout espace distancié) appliquée aux courbes d'un espace euclidien

est un peu plus générale que la définition classique1.
M. Alt a montré que la condition nécessaire et suffisante pour
que la courbe y j(x) — où / est une fonction définie dans

un voisinage de x0 qui n'admet pas une dérivée infinie pour
x x0 — possède au point (x0, y0 f(x0)) une courbure, à son

sens, c'est que /' (x0) existe et que les deux expressions

7 m - rM et /(*) — /' (*o)

x — x0 x — x0

tendent toutes deux vers une limite finie, ces deux limites étant
égales 2, quand x tend vers x0 ; f et f_ désignent respectivement
la dérivée supérieure et inférieure de la fonction / (celles-ci
pouvant prendre les valeurs -j- oo et — oo

M. Pauc a montré récemment qu'en prenant comme définition
de la dérivée seconde pour la valeur x x0, la limite finie, si
elle existe, de l'expression

/ (x0 + h) — / (x0) _ / (x0 + k) — f (x0)

2

quand h et k tendent indépendamment l'un de l'autre vers 0,
cette nouvelle définition coïncide avec la définition classique
lorsque f (x) existe dans un voisinage de x0. L'existence de

1 M. Oödel a proposé la définition suivante qui est encore plus générale: Disons
que l'arc D a la courbure * (p) au point p, si à tout e > 0 donné à l'avance, il correspond
un S > 0 tel que, pour tout couple de points q,r, de part et d'autre de p, dont la distance
à p est < I, nous ayons | -x (p, q, r) — * (p) | < e.

2 M. Pauc a remarqué que quand f'(xo) et les limites des deux expressions
mentionnées existent, ces deux limites sont nécessairement égales; si A désigne leur valeur
commune, la courbure de M. Alt a comme valeur ^

[1 + n (X0)]3/2



366 K. MENGER

f" (Xq) dans ce sens entraîne l'existence de /' (^0) et celle de la

courbure de M. Alt qui a alors comme expression —^ ^ ^ ^

».

1

[i + r*(x0)]8/a

M. Pauc a démontré par ailleurs que dans un espace euclidien,
si un continu k quelconque admet en un point p0 une courbure
de Alt, un voisinage de p0 sur k est un arc rectifiable; ce qui
permet l'énoncé suivant qui nous rapproche de la définition
classique: Pour qu'un continu k d'un espace euclidien possède en
un point p0 une courbure de Alt — x-(Po) il faut et il suffit
qu'un voisinage de p0 sur k soit un arc rectifiable, admettant
une tangente t0 en p0l et qu'en se limitant aux points p où la
tangente t existe, l'expression A oc: As(Aol angle tt0, As

longueur de l'arc pp0) ait une limite égale à x (p0) lorsque p tend
vers p0.

Donnons un exemple d'un arc possédant en un point une
courbure de Alt sans posséder une courbure classique. Il suffit de

considérer les points pn (A, Ejet n 1,2,...
ad inf.) (situés sur la parabole y x2) et la somme de deux lignes
polygonales pu p2, p3,pn,pn+1,et qx, q2, qn,

complétée par le point 0. L'arc obtenu possède en ce dernier point
une courbure au sens de M. Alt, égale à 2; il ne peut posséder
une courbure classique dans ce point, car la fonction y f (x)
représentant cet arc possède dans tout voisinage de 0, des points
où f (x) n'existe pas. La dérivée seconde au sens classique n'est

pas définie pour x 0, tandis qu'elle l'est au sens plus large
mentionné plus haut.

Au point de vue de la métrique interne (p. 362) les arcs ne

présentent qu'un intérêt assez faible. Un arc D satisfait aux
trois conditions mentionnées (p. 363) s'il est rectifiable et dans

ce cas seulement. Or, en faisant correspondre aux couples de

points d'un arc rectifiable quelconque leur distance interne,
nous obtenons un espace Dr congruent à un segment dont la
longueur est égale à celle de l'arc, donc un espace dont la courbure
est 0 en chaque point.

Par contre, l'intérêt de la métrique interne devient prépondérant

pour les espaces de dimension supérieure, et déjà pour

i H s'ensuit que la valeur A, rencontrée plus haut, n'est autre que |/"(x0)|
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les surfaces. Si D est une surface comme celles que l'on considère

dans la géométrie différentielle, il correspond à chaque point p
de D un nombre k (p) appelé la courbure totale de D au point p,
à savoir le produit des deux courbures principales des sections

planes de D. Ce nombre, d'après un résultat célèbre de Gauss,
ne dépend que de la métrique interne de D ; si Dx et D2 sont deux
surfaces telles que les espaces convexes D* et D2, portant les

métriques internes de Dx et D2, soient congruents, alors les

nombres k (px) et k (p2) sont toujours égaux pour deux points
px de Dx et p2 de D2 qui se correspondent par cette congruence.
On connaît, d'ailleurs, les nombreuses définitions de k (p) se

basant sur la métrique interne de D, dues à Gauss et à ses

successeurs. Mais n'est-il pas possible, demandais-je, de définir
cette courbure par la simple considération des quadruplets de

points de D, comme nous venons de faire pour la courbure des

courbes
La plus simple généralisation de cette dernière qui se présente,

ne mène pas à la solution du problème, même dans le cas où D
est un sous-ensemble d'un espace euclidien; car si l'on fait alors

correspondre à quatre points de D le rayon de la sphère
circonscrite et si l'on fait un passage à la limite analogue à celui

que nous avons employé pour les courbes, on obtient un
nombre qui ne dépend pas uniquement de la métrique interne
de D.

M. Wald a cependant réussi récemment à résoudre le
problème au moyen de l'idée suivante1: Il dit que l'espace dis-
tancié D' a la courbure de surface x(p) au point p, lorsqu'aucun
voisinage de p n'est linéaire et lorsqu'à tout s > 0 il correspond

un S > 0 tel que tout quadruplet de points g, r, s, t de

D', dont les distances à p sont < S, soit congruent à un
quadruplet de points de Sk avec | k — x (p) | < s ; Sk désigne la
surface d'une sphère à trois dimensions de courbure totale
k (r rayon réel ou imaginaire) portant la métrique interne,
donc où l'on a pris comme distance de deux points p' et p"
la longueur du plus petit arc de grand cercle passant par p'

1 Cf. C. R., 201, p. 918. Voir aussi: Ergebnisse e. mathem. Kolloquiums, 6, p. 29 et
cahier 7, p. 24.
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et p". Si D' est une surface comme celles que l'on considère
en géométrie différentielle, la courbure totale k (p) en tout
point p est égale à la courbure de surface x (p) de D' au point p.
La définition de Wald qui ne nécessite pas la représentation des

points par des coordonnées, peut donc servir à introduire de

façon bien naturelle et extrêmement simple la notion importante
de courbure.

Les surfaces de Gauss sont donc des espaces compacts et
convexes admettant en chaque point une courbure de surface

x (p) au sens de M. Wald. Mais encore plus important et plus
remarquable est, me semble-t-il, le théorème inverse démontré

par M. Wald.
Tout espace distancié compact et convexe qui admet une

courbure de surface en chaque point, est une surface de Gauss.
En se basant sur la seule hypothèse qu'un espace distancié
général est compact, convexe et admet en chaque point une
courbure de surface au sens de M. Wald, celui-ci peut démontrer

que l'espace est localement homéomorphe à l'intérieur d'un cercle,

que deux points assez voisins peuvent toujours être joints par
un seul segment, qu'on peut introduire des angles et des
coordonnées polaires p, 9, et que la longueur d'un petit arc

p p(t) <p cp(t) (0 g tg 1)

p (t) et 9 (t) étant deux fonctions dérivables de t, est égale à

1

f[p'2(t) + G*(p,ç) cp'2 (i) ]
2 dt,

0

où G (p, 9) est la solution de l'équation différentielle

y^ — x (p, 9) G (p, 9)

ô2G
satisfaisant aux conditions G (0, 9) 0, -y- (0, 9) 1 et où

x (p, 9) désigne la courbure de surface de D' au point (p, 9).
On a donc le théorème fondamental suivant:

Pour qu'un espace distancié compact soit une surface de
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Gauss, il est nécessaire et sufßsant qu'il soit convexe et admette une

courbure de surface en chaque point.

Ce théorème montre que la géométrie des distances fournit
une nouvelle base à l'étude des propriétés métriques locales des

surfaces.

V. — Géométrie des distances et calcul des variations.

Soit donné un espace distancié. Un ensemble fini ordonné
de points pl7 p2, pk est appelé polygone (et polygone fermé
si px — ph). Nous considérons des courbes continues dans

l'espace donné. C étant l'image continue d'un intervalle
a < t < ß, nous appelons sous-polygone de C l'image
P ~ {Pii P21 Pk} (Par mame représentation) d'un
ensemble fini ordonné de nombres y1 < y2 < < y& de [a, ß].
Par v (P) nous désignons le plus grand des nombres ji+i — y^.

Soit donnée une fonction F (p; g, r) des triplets de points
(q Ar). Cette fonction permet l'introduction d'une nouvelle
métrique si nous prenons pour chaque couple de points q, r,
au lieu de la distance qr qu'ils ont dans D, le nombre
d (q, r) F (g; g, r) ^ si qA r, et d (g, q) 0. Soit D (F)
l'espace à distances réelles qu'on obtient ainsi. En attribuant,
étant donné un point p, à g et r la distance dp (g, r) F (p ; g, r)
si g r, et dp(g, g) 0 nous obtenons un autre espace à
distances réelles que nous appellerons l'espace tangent Dp(F) de
D (F) au point p. Pour le polygone P nous considérerons outre
sa longueur l(P) llpipi+i dans D, ses longueurs dans D(F)
et dans Dp(F), à savoir les nombres

k-i
À(P, F) y F (p.-Pi,. PÏPÎIi

i=1

et
k-i

xP(p> F) 2 F (P ; pi+i)PiPi+i
i=1

La borne supérieure finie ou infinie des nombres l(P) pour
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tous les sous-polygones de C est appelée la longueur 1(C)
de C. On dit que G est rectifiable si 1(C) est fini.

Imposons à la fonction F les conditions suivantes pour chaque
courbe rectifiable C:

1. F (p; q, r) est bornée pour tous les triplets p, q, r d'un voisinage

de C.

2. L'ensemble de tous les points p de C pour lesquels Voscillation
de F est > 0, est de mesure linéaire 0, c'est-à-dire il peut être
couvert par des sphères, en nombre fini ou infini, dont la somme
des diamètres soit aussi petite que l'on voudra. Par l'oscillation
g (p) de F au point p nous entendrons la borne supérieure de

tous les nombres g pour lesquels il existe dans tout voisinage de p
quatre points pf p", g, r tels que | F (p'm,q,r) — F (p" ; y, r) j > <7.

Les points pour lesquels g (p) > 0, sont les points de discontinuité

de F par rapport à la première des trois variables.

3. L'ensemble des points p de C pour lesquels Tc(p) est > 0 est

de mesure linéaire 0. Par tG(p) nous entendons la limite pour
p —>- 0 de la borne supérieure des nombres i(q) pour les points q

dont la distance à p est < p. Nous désignons ici par t (q) la
borne supérieure des nombres t pour lesquels il existe un polygone

P «a {px, p2, pn} avec pi — q et tel qu'on ait

yp, F) ^ d(pl9 Pn) — T I d(Pl, Pn) I

On a t (p) 22. 0 pour tout point p et t (p) 0 dans le cas et
seulement dans le cas où

F (p; P, q) pq + F (p ; q, r) qr S F (p ; q, r) pr

pour tout couple </, r.

4. tG(p) est fini en tout point p de C.

5. Pour tout polygone fermé P qui est assez voisin d'un point p
de discontinuité de F, on a X (P, F) > 0.

Ces hypothèses sur la fonction F étant admises on a le théorème

suivant:

Pour chaque suite Px, P2, de sous-polygones d'une courbe

continue rectifiable pour laquelle on a lim v (Pn) — 0, les nombres
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X(Pn, F) convergent vers un nombre fini. Cette limite est la même

pour toutes les suites de sous-polygones de C assujetties à la
condition que v —0. Nous la désignerons par X(C, F). Pour
chaque X > 0 donné, X (C, F) est une fonctionnelle semicontinue

inférieurement sur Vensemble de toutes les courbes de longueur < X.

Si, d'ailleurs, pour chaque X > 0 donné, les longueurs de toutes
les courbes C pour lesquelles X (C, F) X, sont bornées, chaque
classe complète de courbes rectifiables contient une courbe pour
laquelle la fonctionnelle X(C, F) atteint son minimum.

Quel est l'avantage de cette généralisation des théorèmes
d'existence du calcul des variations Tout d'abord, la forme
métrique met en évidence que l'hypothèse de la nature
cartésienne de l'espace (à savoir la représentation des points par un
groupe de coordonnées), hypothèse considérée jusqu'alors
comme base des problèmes du calcul des variations, n'est pas
liée à l'essence du problème. Dans tous les espaces distanciés
se posent des questions concernant l'extremum des fonctionnelles
de courbes, données par des intégrales curvilignes. Mais même en
l'appliquant aux espaces euclidiens, donc au cas classique, notre
théorème, outre une grande simplicité dans les démonstrations,
semble apporter un progrès \ car les conditions imposées à F
même dans les profonds théorèmes de M. Tonelli sont plus
restrictives que les nôtres. Considérons, pour nous en rendre
compte, nos cinq hypothèses sur F dans le cas où l'espace
distancié donné est un espace euclidien à n dimensions 2.

Dans les problèmes classiques, il correspond à chaque point
p (%, x2, xn) de cet espace (ou d'un certain domaine)
et à chaque direction S (x[ : x2 : ...:xn) un nombre

F(p,8) F (x1 xn\x[,...,xn)=Ef(«1s

pour k > 0

1 Je viens d'apprendre que dans le cas euclidien M. Boulioand a récemment (Mem.
de la Soc. Roy. des Se. de Liège, 3me sér., t. 19) considéré, pour les fonctions continues
et quasi-régulières partout, des sommes riemaniennes ainsi que nous venons de le faire
dans le cas général, et a ainsi obtenu une démonstration très élégante d'un théorème
d'existence. M. Bouligand, tout en se bornant aux fonctions positivement définies,
s'est bien aperçu de la portée de sa méthode. La nôtre était en germe dans des recherches
sur la longueur des arcs Mathem. Annalen, 103) et nous l'avons exposée dans un article
de Fundam. Mathem., '25, et dans une note aux C. R. Paris, 21.X.1935.

2 Cf. ma note, C. R., 200, p. 705.
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Pour appliquer notre théorie posons pour trois points p, q, r
donnés (q ^ r) F (g ; g, r) F (p, Sgr) où 8gr désigne la
direction de la demi-droite partant de q et passant par r. Les

hypothèses 1 et 2 sont réalisées si, pour chaque courbe recti-
fiable C, la fonction F (p, 8gr) est bornée dans un voisinage
de C et continue sur C sauf pour les points d'un ensemble de mesure
linéaire 0, c'est-à-dire d'un ensemble qu'on peut recouvrir au

moyen d'une suite dénombrable de sphères dont la somme des

diamètres est arbitrairement petite. La quasi-régularité t (p) 0

de la fonction F au point p (qui par la condition 3 est postulée

pour presque tous les points p) s'exprime maintenant par
l'inégalité suivante valable pour chaque triplet de points p, g, r:

F (P spa) PI + F (p sgr) qr > F (p spr) pr

Pour voir la signification de cette propriété, nous désignons,

pour chaque droite orientée 8 passant par p, par le point
de 8 dont la distance à p est égale à

—âj~[
es^ S1^u^

sur le rayon positif ou négatif de 8 suivant le signe de F (p, 8),
c'est-à-dire nous construisons Vindicatrice E de F au point p dans
le sens où, pour des fonctions définies, M. Carathéodory l'a
introduite. Pour que F soit quasi-régulière au point p, il faut et il
suffit alors, comme l'a démontré M. Alt, qu'il existe une collinéa-
tion tu qui transforme l'hypersurface indicatrice E du point p,
c'est-à-dire l'ensemble de tous les points en une surface convexe
à n — 1 dimensions iz (E) telle que iz (p) soit situé à l'intérieur
de tu (E) et que tu {e§) soit situé sur le semi-rayon positif de

tu (S) par rapport à iz (p). Il est clair que la régularité de F au
point p signifie la convexité projective de l'hypersurface
indicatrice E du point p. Si F (p, S) est non négative pour chaque
droite 8 passant par p, la convexité projective n'est rien d'autre

que la convexité au sens ordinaire.
Remarquons en terminant que la méthode exposée permet

aussi1 d'étendre le champ des courbes de comparaison et
l'introduction des courbes non rectifiables dans le calcul des variations2.

1 Cf. ma Note C.'R. Paris, t. 202, p. 1648.
2 Je tiens à remercier M. Pauc de son aide dans la rédaction de cet article et pour

plusieurs remarques qu'il m'a communiquées à ce sujet.



LE 10e CONGRÈS INTERNATIONAL
DES MATHÉMATICIENS

Oslo, 13-18 juillet 1936

par H. Fehr.

La Norvège a donné à la Science deux des plus grands mathématiciens

du XIXe siècle, Niels Henrik Abel (1802-1829) et Sophus Lie
(1842-1899). Elle possède à l'heure actuelle une élite de géomètres
dont les travaux sont très appréciés dans le monde entier. Aussi
est-ce aux applaudissements unanimes de l'assemblée, qu'à la séance
de clôture du Congrès de Zurich, le 13 septembre 1932, les mathématiciens

accueillirent l'invitation présentée par le Professeur Guldberg
de se rendre à Oslo en 1936.

Le Congrès s'est tenu à Oslo, du 13 au 18 juillet, conformément
au programme que nous avons reproduit dans un précédent fascicule
(34me année, nos 5-6, p. 377-379). Plus de cinq cents mathématiciens,
accompagnés de près de deux cents membres de leurs familles et
représentant 35 pays, ont répondu à l'appel du Comité d'organisation
présidé d'abord par le regretté Alf Guldberg, puis par le Professeur
Störmer.

La participation au Congrès doit être considérée comme très
satisfaisante si l'on tient compte des difficultés économiques et
politiques du temps présent. Les restrictions budgétaires atteignent
non seulement les particuliers, mais encore de nombreuses institutions
qui, par le passé, pouvaient prendre à leur charge tout ou partie
des frais de leurs délégués. Au dernier moment, les mathématiciens
russes ont été empêchés de quitter leur pays, alors que bon nombre
d'entre eux avaient annoncé des communications. L'Italie s'est
abstenue officiellement en raison des sanctions.

D'éminents géomètres ont été invités à faire des conférences
générales sur les progrès récents dans les principaux domaines des
mathématiques. Plus de deux cents-communications ont été présentées
dans les séances de sections.

Organisé avec soin, le Congrès d'Oslo laissera le meilleur souvenir
à tous les participants, tant au point de vue des travaux scientifiques
qu'à celui des relations personnelles entre savants cultivant le même
domaine de la science.

Réceptions et excursions. — Le contact entre congressistes a été
largement facilité par les nombreuses réceptions officielles, les récep-
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tions privées et les excursions. C'est par une réception à l'Aula de
l'Université que le Congrès a débuté le lundi 13 juillet, à 20 heures.

Le lendemain, à 17 h. 30, S. M. le Roi a reçu les membres du
Congrès au Palais Royal. En traversant la belle promenade publique
qui se trouve devant le palais, les invités ont pu admirer le monument
élevé en 1902 à la mémoire de Niels Henrik Abel 1.

Le mercredi soir, Dîner de gala offert par la Ville d'Oslo à l'Hôtel
Bristol.

Le jeudi, de 16 à 24 heures, excursion sur le fjord d'Oslo avec le
paquebot transatlantique, Stavanger-Fjord, de la « Norske Ameri-
kalinje ». S. A. R. le Prince Héritier, Président d'honneur du
Congrès, et S. A. R. la Princesse Héritière ont bien voulu prendre
part à l'excursion. A 18 h., un dîner était servi dans les quatre belles
salles à manger du transatlantique.

Rappelons aussi les réceptions et les excursions organisées par le
Comité des dames pour les familles des congressistes.

Des excursions plus vastes à travers la Norvège ont eu lieu après
le Congrès sous les auspices de l'Agence de voyage Bennett.

SÉANCES GÉNÉRALES

Séance solennelle d'ouverture.

La séance solennelle d'ouverture a eu lieu à l'Aula, le mardi
14 juillet, en présence de S. M. le Roi. Le Gouvernement était
représenté par M. Halvdan Koht, Ministre des Affaires étrangères et
M. Nils Hjelmtveit, Ministre de l'Instruction publique.

M. le Prof. C. Störmer, Président du Comité d'organisation,
souhaite la bienvenue aux congressistes et remercie S. M. le Roi
ainsi que les représentants des autorités gouvernementales et
municipales d'avoir bien voulu, par leur présence, rehausser l'éclat de la
séance d'ouverture. Il y voit un témoignage de l'intérêt que le pays
tout entier porte aux sciences mathématiques. II tient à rappeler la
mémoire de son regretté collègue, M. le Prof. Alf Guldberg, premier
président du Comité d'organisation, décédé le 15 février 1936, dans
sa 70me année.

M. H. Koht, Ministre des Affaires étrangères, apporte les souhaits
de bienvenue du Gouvernement. Il est heureux de voir réunis dans
la capitale norvégienne tant de savants venus de toutes les parties
du monde pour y exposer les résultats de leurs recherches.

M. le Prof. Fueter, Président du Congrès de Zurich, propose de

confier la présidence du Congrès à M. le Prof. C. Störmer, qui est
nommé par acclamations.

Voir L'Eus. Math., 4e année, 1902, p. 445-447.
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Sur la proposition de M. Störmer, M. le Prof. Edgar B. Schieldrop
est nommé Secrétaire-général du Congrès. L'assemblée désigne ensuite
les vice-présidents chargés de présider les séances générales. Ce sont
MM. Harald Bohr (Copenhague), T. Carleman (Stockholm),
M. Fujiwara (Tohoku), Gaston Julia (Paris), Salomon Lefschetz
(Princeton, U.S.A.), F. Lindelöf (Helsingfors), K. Menger (Vienne),
G. Polya (Zurich), Erhard Schmidt (Berlin), J. A. Schouten (Delft),
W. Sierpinski (Varsovie) et E. T. Whittaker (Edinburgh).

Pour la première fois le Congrès est appelé à décerner les deux
Prix internationaux de Mathématiques consistant en deux médailles
en or et destinées à récompenser deux jeunes savants qui se sont
particulièrement distingués par leurs recherches. On sait que ces prix
sont assurés par un fonds, géré par l'Institut royal canadien et
constitué par le solde des sommes réunies par feu le Prof. Fields
en faveur du Congrès de Toronto (1924). Soumis préalablement au
Comité de l'Union internationale Mathématique, les statuts de cette
fondation ont été approuvés par le Congrès de Zurich.

M. le Prof. C. Carathéodory (Munich) rapporte au nom de la
Commission chargée de se prononcer sur le choix des lauréats. Les
deux Médailles Fields sont attribuées, l'une, au mathématicien finlandais

M. L. Ahlfohrs, élève du Prof. Nevanlinna, pour ses importantes

contributions à la Théorie des fonctions, l'autre, à

M. J. Douglas, jeune savant américain de la Harvard University,
pour sa résolution du Problème de Plateau. M. le Prof. E. Cartan,
remplaçant M. Severi, président de la Commission Fields, remet
les médailles aux deux lauréats.

Conférences générales.

Les conférences générales ont débuté le mardi matin 14 juillet, à
10 heures, par un exposé de M. Störmer sur ses belles recherches
concernant les orbites des électrons et les applications aux raies
cosmiques et aux aurores boréales (Programme for the quantitative
discussion of electron orbits in the field of a magnetic dipole, with
application to cosmic rays and kindred phenomena).

Puis vint la conférence de M. Fueter, intitulée « Die Theorie der
regulären Funktionen einer Quaternionenvariablen », dans laquelle il
donne un aperçu de ses récents travaux.

Le mercredi 15 juillet a eu lieu l'inauguration d'un Buste de Sophus
Lie offert à l'Université d'Oslo et présenté par M. J. Sejersted
Bödtker, président du Comité d'initiative. A cette occasion,
M. E. Cartan a fait une très belle conférence intitulée « Quelques
aperçus sur le rôle de la théorie des groupes de Sophus Lie dans le
développement de la géométrie moderne ».

Les conférences se sont poursuivies tous les matins jusqu'au
samedi 18 juillet. Nous devons nous borner, à en donner la liste:
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G. L. Siegel (Frankfurt a. M.), Analytische Theorie der quadra¬

tischen Formen.
0. Veblen (Princeton), Spinors and projective Geometry.
J. Nielsen (Copenhague), Topologie der Flächenabbildungen.
E. Hecke (Hamburg), Neuere Fortschritte in der Theorie der

elliptischen Modulfunktionen.
O. Neugebauer (Copenhague), Ueber vorgriechische Mathematik

und ihre Stellung zur griechischen.
C. W. Oseen (Stockholm), Probleme der geometrischen Optik.
V. Bjerknes (Oslo), New Lines in Hydrodynamics.
H. Hasse (Göttingen), Ueber die Riemannsche Vermutung in

Funktionenkörpern.
G. D. Birkhoff (Cambridge, Mass.), On the Foundations of

Quantum Mechanics.
L. J. Mordell (Manchester), Minkowski's Theorems and Hypo¬

theses on Linear Forms.
L. Ahlfors (Helsingfors), Geometrie der Riemannschen Flächen.
J. G. van der Corput (Groningen), Diophantische Approxima¬

tionen.
S. Banach (Lwow), Le rôle de la théorie des opérations de l'analyse.
M. Fréchet (Paris), Mélanges mathématiques.
N. Wiener (Cambridge, Mass.), Tauberian Gap Theorems.
Ö. Ore (New Haven, Conn.), The Decomposition Theorems

Algebra.

Séance de cloture.
Résolutions.

Le samedi 18 juillet, à 17 heures, les congressistes se sont réunis
une dernière fois dans l'Aula de l'Université, sous la présidence de
M. le Prof. Störmer, assisté de M. le Prof. Schieldrop, Secrétaire
général, pour prendre connaissance des résolutions et donner leur
avis sur le choix du siège du prochain congrès.

L — On sait qu'à la suite de l'opposition manifestée par quelques
mathématiciens à l'égard de V Union Internationale Mathématique, une
commission avait été constituée à Zurich pour étudier à nouveau les

rapports entre les mathématiciens des différents pays et. pour faire
rapport au Congrès d'Oslo. Elle était composée de MM. Severi, président,

Alexandroff, Blaschke, Bohr, Féjèr, Julia, Mordell, Terradas,
de la Vallée-Poussin, Vehlen, et Zaremba. M. C. Julia, rapporteur,
donne lecture du texte adopté par la commission:

« La Commission nommée par le Congrès de Zurich a vivement
regretté l'absence de son président M. Severi. Elle n'a pu, pour
diverses raisons, arriver à un accord unanime sur la question d'une
organisation internationale des mathématiciens. Elle souhaite que
dans l'avenir la question posée puisse recevoir une solution. »
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II. — La Section VIII propose le maintien de la Commission
internationale de VEnseignement mathématique. — M. H. Fehr rapporte
au nom de la section.

La Commission a été constituée à Rome, en 1908, à la suite d'une
résolution du quatrième Congrès international des Mathématiciens;
elle a été confirmée en 1912 à Cambridge, en 1928 à Bologne et en
1932 à Zurich. Présidée successivement par MM. Félix Klein,
D.-E. Smith et J. Hadamard, elle a publié de nombreuses études
d'un grand intérêt sur l'enseignement des mathématiques dans les

principaux pays. Au moment où, dans d'autres domaines, la coopération

internationale rencontre encore des obstacles, nous sommes
heureux de pouvoir faire constater ici que les travaux de la Commission

ont pu se poursuivre dans un excellent esprit de compréhension
et de collaboration.

A l'ordre du jour de la réunion d'Oslo figurait la présentation, par
les délégations nationales, des rapports sur Les tendances actuelles de

Venseignement mathématique. Après avoir pris connaissance de ces

rapports, la Section VIII a décidé, à l'unanimité, de soumettre la
résolution suivante à l'approbation du Congrès:

Le Congrès invite la Commission internationale de VEnseignement
Mathématique à poursuivre ses travaux. Les objets à mettre ci Vétude
seront fixés par le Comité Central. (Adopté à l'unanimité.)

III. — Médaille Fields. — Deux médailles en or seront distribuées
au prochain congrès à deux mathématiciens qui se seront distingués
par leurs travaux. Sur la proposition du Comité du Congrès, la
Commission de la Médaille Fields est composée comme suit: M. Hardy,
président, et MM. Alexandroff, Hecke, Julia, Levi-Cïvita;
suppléants: MM. Lefschetz et Nevanlinna.

IV. — Lieu du prochain congrès. — M. le Prof. Eisenhart, parlant
au nom de 1'« American Mathematical Society », invite le Congrès à
venir aux Etats-Unis en 1940, le choix de la ville étant laissé aux
soins de la Société Mathématique américaine

« The American Mathematical Society hereby extends to the
International Congress of Mathematicians now in session in Oslo
an invitation to hold the next congress in the United States of
America, the place of meeting to he determined later by the Society.
This invitation is presented by the official delegates of the Society
in accordance with action taken by the Council of the Society, viz.
Chairman, L. P. Eisenhart, G. D. Birkhoff, H. F. Blichfeïdt,
S. Lefschetz, M. Morse, V. Snyder, O. Vehlen, N. Wiener. »

Cette invitation est acceptée par acclamations.

r/Enseignement mathém., 35me année, 1936. 25
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M. J. A. Schouten remercie, au nom des congressistes, le
Gouvernement norvégien, les autorités municipales d'Oslo, le Comité
d'organisation et les divers comités de l'accueil qu'ils ont fait aux
mathématiciens étrangers et à leurs familles. Il tient à les féliciter
de l'excellente organisation du Congrès. (Applaudissements prolongés).

Après avoir exprimé sa reconnaissance à tous ceux qui, par leurs
travaux, ont contribué à la réussite des séances générales et des
séances de sections, le président déclare clos le dixième Congrès
international des mathématiciens.

SÉANCES DES SECTIONS

Liste des communications.

Section I: Algèbre et Théorie des Nombres.

Présidence : MM. Nagell, Relia, Jarnik, Gut.

Weyl, Princeton, N. J. — Faktorensysteme und Riemannsche Matrizen.
Mahler, Groningen. — Pseudobewertungen.
Kraitchik, Bruxelles. — Les grands nombres premiers.
Gut, Zürich. — Über Erweiterungen von unendlichen algebraischen

Zahlkörpern.
Nagell, Uppsala. — Sur la grandeur des diviseurs premiers d'une classe

de polynômes cubiques.
Bergström, Uppsala. — Die Berechnung einer Basis eines kubischen

Körpers nach G. T. Woronoj.
Jarnik, Prague. — Zur Theorie der Diophantischen Approximationen.
Mord ell, Manchester. — Note on the four integer cubes problem.
Fujiwara, Tohoku. — Ein Problem aus der Theorie der Diophantischen

Approximationen.
Petterson, Hässelby Villastad. — Eine Irreduzibilitätsmethode ganzzah¬

liger Polynome.
Riesz, Lund. — Volumes mixtes et facteurs invariants dans la théorie

des modules.
Lubelski. — Verallgemeinerung des Galoisschen Satzes über algebraische

Auflösbarkeit.
Neumann, Cambridge, England. — Identical relations in groups.
Pölya, Zürich. — Kombinatorische Anzahlbestimmungen für Permuta¬

tionsgruppen und chemische Verbindungen.
Rado, Cambridge, England. — Some recent results in combinatorial

analysis.
Korinek, Praha. — La, décomposition d'un groupe en produit direct des

sous-groupes.
Hirsch, Cambridge, England. — On a class of infinite soluble groups.
Piccard, Neuchâtel. — Les substitutions qui sont des transformées réci¬

proques.
Burckhardt, Zürich. — Über lineare inhomogene Substitutionsgruppen.
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Brun, Trondheim. — Über die Möglichkeit für tt eine Gesetzmässigkeit in
den Dezimalen zu entdecken.

Hofreiter, Wien. — Über die Approximation von komplexen Zahlen.

Rella, Wien. — Über den absoluten Betrag von Matrizen.
Taussky, Cambridge, England. — Some problems of topological algebra.

Oldenburger, Chicago. — Non-singular multilinear forms and non-
singular p-io, forms.

Mandelbrojt, Clermont-Ferrand. — Sur le théorème de Grace.

Erdös, Budapest. — On some additive properties of integers.
Riesz, Lund. — Modules réciproques.
Birkhoff, Garrett, Cambridge, Mass. — Order and the inclusion relation.

Section II: Analyse.

II a.

Présidence: MM. Mandelbrojt, Menger, Bateman, Brelot.

Drach, Paris. — Sur n l'Intégration logique » des équations dynamiques.
Tambs Lyche, Trondheim. — Sur la solution d'une équation différentielle

du premier ordre.
Riesz, Lund. — Intégrale de Riemann-Liouville et solution invariantive

du problème de Cauchy pour l'équation des ondes.
Menger, Wien. — Metrie methods in calculus of variations.
Morse, Princeton. — Functional topology and abstract variational theory.
Lepage, Bruxelles. — Sur les équations de Monge-Ampère provenant du

calcul des variations.
Wazewski, Cracovie. — Une propriété de caractère intégral de l'équation

y
Birkhoff, Garrett Cambridge, Mass. — Product integration of non-linear

differential equations.
Âsgeirsson, Island. — Ein Mittelwertsatz für Lösungen der partiellen

^
u u\

Differentialgleichung ^ ^ ^ ] 0, angewandt für zwei
t-i \d«i dU

Potentialfunktionen.
Dusl, Praha. — Sur les noyaux des équations intégrales homogènes pour

quelques classes de polynômes.
Widder, Cambridge, Mass. — An integral equation of Stieltjes.
Barnett and Mendel, Cincinnati. — On an integral equation quadratic

in the unknown function.
Badescu, Cluj. — Sur une série de Laurent identiquement nulle.
Zaremba, Cracovie. — Sur une propriété des caractéristiques des équations

aux dérivées partielles, linéaires et du deuxième ordre.
Schauder, Lwôw. — Nichtlineare partielle Differentialgleichungen vom

hyperbolischen Typus.
Janet, Caen. — Sur les systèmes de deux équations aux dérivées partielles

à deux fonctions inconnues.
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Riesz, Lund. — Potentiels de divers ordres et leurs fonctions de Green.
Frostman, Lund. — Le principe de variation de Gauss et les fonctions

sousharmoniques.
Perkins, Hanover, New Hampshire. — Mean value theorems, with appli¬

cations in the theory of harmonic, subharmonic and superharmonic
functions.

Mazur und Schauder, Lwôw. — Über ein Prinzip in der Variations¬
rechnung.

Sternberg, Jérusalem. — Erweiterte Integralgleichungen.

II h.

Présidence : MM. Saxer, Milloux, Speiser, Seiberg.

Speiser, Zürich — Zur geometrischen Funktionentheorie.
Milloux, Bordeaux. — Sur quelques points de ]a théorie des fonctions

méromorphes dans un cercle.
Ullrich, Giessen. —- Zum Umkehrproblem der Wertverteilungslehre:
Cartwright, Cambridge, England. — On analytic functions with non¬

isolated essential sigularities.
Selberg, Oslo. — Abelsche Integrale und endlichvieldeutige analytische

Funktionen.
Junnila, Helsinki. — Über das Anwachsen einer analytischen Funktion in

gegebenen Punktfolgen. -

Paatero, Helsinki. — Über analytische Transformationen welche zwei
Paare von Randbogen ineinander überführen.

Peschl, Jena. —- Über die Schlichtheit analytischer Funktionen.
Cooper, Belfast. — A class of divergent series.

Obrechkoff, Sofia. — Sur les fonctions méromorphes qui sont limites
des fonctions rationnelles.

Planas Corbella, Zaragoza. — Sur quelques propriétés différentielles des
riemanniennes des fonctions analytiques de plusieurs variables.

Behnke, Münster (Westf.). — Der Kontinuitätssatz und die Regulärkon¬
vexität.

Walker, Starkville. — The higher singularities of algebraic curves.
Tacklind, Uppsala. — Sur les classes quasi-analytiques des solutions

de l'équation de la chaleur.

Flamant, Strasbourg. — Familles compactes de fonctions dans les classes

quasi-analytiques (D).
Siddigi, Hyderabad. — On the theory of an infinite system of non-linear

integral equations.
Murci Ahmed, Le Caire. On the uniformation of algebraic curves.

Potron, Paris. — Irréductibilité de certaines intégrales abéliennes aux
transcendantes élémentaires.

Mayr, Graz. — Über die Lösung algebraischer Gleichungssysteme durch
hypergeometrische Funktionen.

Devisme, Tours (lue par M. Paul Delens). — Sur une généralisation des

polynômes de Gegenbauer.
San Juan, Madrid. — Sur le problème de Watson.
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II <?.

Présidence: MM. Tchakaloff, Gramer, Karamata, Nörlund.

Nyström, Helsinki. — Instrumen telle Auswertung von Stieltjesintegralen.
Tchakaloff, Sofia. — Über eine Darstellung des Newtonschen Differenzen¬

quotienten und ihre Anwendungen.
Weinstein, Genève. — Einige Ungleichungen für Doppelintegrale.
Mulholland, Newcastle. — The length of a curve and the area of a

curved surface as continuous functionals.
Raclis, Bucarest. — Sur le calcul aux différences.
McShane, Charlottesville. — A non-absolutely convergent integration

process.
Singh, Lucknow. •— On some properties of a non-differentiable function.
Gillis, Sunderland. — Some combinatorial properties of measurable

linear sets.
Mazur und Orlicz, Lwôw. — Polynomische Operationen in abstrakten

Räumen.
Young, Cambridge, England. — Remarks on the convergence problem of

Fourier series of periodic and almost periodic functions, and on
Parseval's equation.

Todd, Belfast. — Transfmite superposition of absolutely continuous
functions.

Offord, Cambridge, England. — The uniqueness of the representation
of a function by a trigonometric integral.

Leja, Warszawa. — Sur les séries de polynômes homogènes de deux
variables.

Obrechkoff, Sofia. — Sur quelques classes de polynômes et sur le
développement en séries suivant ces polynômes.

Karamata, Beograd. — Über allgemeine Umkehrsätze der Limitierungs-
verfahren.

Kaczmarz, Lwôw. — On the orthogonal series.
Mazur, Lwôw. — Einige Probleme aus der Limitierungstheorie.
Young, Cambridge, England. — An inequality of the Holder type

connected with Stieltjes integration.
Stone, Cambridge, Mass. — Some remarks on linear functionals.
Kothe, Münster in W. — Über die Auflösung von Gleichungen mit

unendlichvielen Unbekannten in linearen topologischen Räumen.
Si er pin ski, Warzawa. — Sur un problème concernant les fonctions

de première classe.

Section III: Géométrie et Topologie.

Ill a.

Présidence: MM. Veblen, Nielsen, Newman, Straszewicz, Freudenthal.

Zarankiewicz, Warszawa. — Zur lokalen Zerschneidung des Raumes.
Szpilrajn, Warszawa. — La dimension et la mesure.
Marty, Marseille. — Sur la théorie du groupe fondamental.
Whitehead, Oxford. — Equivalent sets of elements in a free group.
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Newman, Cambridge & Whitehead, Oxford. — On the group of a certain
Linkage.

Kérékjârto, Szeged. — Topologie des transformations.
Borsuk, Varsovie. — Über Addition der Abbildungsklassen.
Haantjes, Delft. — Halblineare Transformationen.
Geppert, Giessen. — Über den gemischten Inhalt zweier Bereiche.
Ratib et Winn, Le Caire. — Généralisation d'une réduction restreinte de

M. Errera, relative au théorème des quatres couleurs.
Motzkin, Jerusalenm. — Contribution à la théorie des graphes.
Rafael, Liege. — Asynthetic property of the nine inflexion points of an

ordinary plain cubic.
Motzkin, Jerusalem. — Sur le produit des espaces métriques.
Freudenthal, Amsterdam. — Teilweise geordnete lineare Räume.
Synge, Toronto. — On the connectivity of spaces of positive curvature.
Torrance, Cleveland. — Tangent lines and planes in topological spaces.
Pontrjagin, Moscou, lue par M. Lefschetz, Princeton. — Sur les transfor¬

mations des sphères en sphères.
Kaufmann, Cambridge, England. — On homologies in general spaces.
Eilenberg, Wa,rszawa. — Sur les espaces multicohérents.
Thébault, Le Mans. — Sur une nouvelle sphère associée au tétraèdre.
Courant, New-York. — Über das Problem von Plateau.
Stoilow, Cernauti. — Sur la définition des surfaces de Riemann.
Morley, Baltimore. — Planar positions.
Bydzovsky, Prague. — Décomposition d'une transformation quadratique

involutive dans l'espace à n dimensions.
Papaïoannou, Athènes. — Sur les courbes ayant le même axe anhar-

monique.
III b.

Présidence: MM. Blaschke, Tzitzéica, Cardan, Kérékjârto.

Snyder, Ithaca, N. Y. — Certain Cremona transformations in Sn belonging
multiply to a nonlinear line complex.

God eaux, Liège. — Sur les involutions cycliques appartenant à une
variété algébrique.

Haenzel, Karlsruhe. — Neue Eigenschaften der linearen Strahlenkon¬
gruenz.

Birkhoff, Garrett, Cambridge, Mass. — Generalized convergence.
Schouten, Delft. — Über die Theorie des geometrischen Objektes.
Golab, Cracovie. — Über das Anholonomitätsobjekt von Schouten und

van Dantzig.
Blaschke, Hamburg. — Integralgeometrie.
van Dantzig, Wassenaar. — Über den Tensorialkalkül.
Hlavaty, Praha. — Invariants conformes, géométrie de M. Weyl et celle

de M. König.
Boulad Bey, Le Caire. — Sur les formes des équations à trois variables

représentables par des abaques coniques à simple alignement.
Boulad Bey, Le Caire. — Sur la symétrie nomographique et les formes

canoniques des équations à quatre variables représentables par des

abaques à double alignement.
Fenchel, Kobenhavn. — Beiträge zur Théorie der konvexen Körper.
Musselman, Cleveland. — Circles connected with three or more lines.
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Barbilian, Bucarest. — Die von einer Quantic induzierte Riemannsche
Metrik.

Locher, Winterthur. — Struktur der Axiome der projektiven Geometrie.
Kérékjarto, Szeged. — Sur la géométrie hyperbolique.
Moritz, Seattle, Wash. — A Napier theorem for quadrantal triangles.
Menger, Wien. — New ways in differential geometry.
Tzitzéica, Bucarest. — Sur la géométrie différentielle de l'équation de

Laplace.
Givens, Princeton, N. Y. — Tensor coordinates of linear spaces.
Pantazi, Bucarest. — Sur certains réseaux projectivement déformables.
Hurewicz, Amsterdam. — Lokaler Zusammenhang und stetige Abbil¬

dungen.

Section IV: Calcul des Probabilités. Assurances. Statistique mathématique.
Présidence: MM. Elderton, Riebesell, Bowley, Steffensen.

Guldberg, Oslo. — Über das Urnen-Schema von Polya. (Im wesentlichen
nach einer hinterlassen en Untersuchung von Prof. Dr. Alf Guldberg.)

Bowley, Haslemere. — The standard deviation of Gini's mean difference.
Molina, New York. — Laplacian expansion for Hermitian-Laplace functions

of high order.
Riebesell, Berlin. — Die mittlere Abweichung bei nichtnormaler Ver¬

teilung und ihre Bedeutung in der Versicherungspraxis.
Borel, Paris. — Quelques remarques sur l'application du calcul des pro¬

babilités aux jeux de hasard.
Bowley, Haslemere. — On slightly asymetrical frequency curves.
Brelot, Alger. — Sur l'influence des erreurs de mesure en statistique.
Feller, Stockholm. — Existenzsätze für stochastische Prozesse.
Milicer-Gruzewska, Warszawa. — On the probable error of a function

of a finite number of equivalent variables.
Onicescu, Bucarest. — Les chaînes statistiques.
Wold, Stockholm. — On multi-dimensional distributions.
Gumbel, Lyon. — Die grössten Werte einer Verteilung.
Gumbel, Lyon. — Das Grenzalter.
Gramer, Stockholm. — Some theorems connected with the «Central Limit

Theorem » in probability.
Lukâcs, Wien. — Über gewisse Funktionen der Kommutationswerte, die

vom Alter unabhängig sind.
Meid ell, Oslo. — Integration zusammengesetzter Funktionen mit An¬

wendung auf versicherungsmathematische Probleme.
Potron, Paris. — Conditions des équilibres production-consommation et

prix-salaires.
Rider, St. Louis. — Certain moment functions for Fisher's ^-statistics

in samples from a finite population.
Wold, Stockholm. — On the mean difference at random samples.
Sakellariou, Athènes. — Über eine allgemeine Formel der Sozialver¬

sicherungsmathematik.
Alt, Wien. — Über die Messbarkeit des Nutzens.
Boehm, Berlin. — Eine wahrscheinlichkeitstheoretische Methode zur

Analyse von wirtschaftlichen Zeitreihen.
Copeland, Ann Arbor. — Sequences with after-effect.
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Fréchet, Paris. — Sur quelques idées modernes dans la Théorie des

probabilités.
Frisch, Oslo. — Price index comparisons between structually different

markets.
Linder, Bern. — Über die Berechnung der Wahrscheinlichkeiten aus den

Beobachtungszahlen.

Section V: Physique mathématique. Astronomie.
Présidence : MM. Milne, Oséen, Hartree, Lemaître.

van Dantzig, Wassenaar. — Über das Verhältnis von Geometrie und
Physik.

Milne, Oxford. — The inverse square law of gravitation.
McCrea, London. — Some astrophysical problems concerning the scattering

of light.
Ruse, Edinburgh. — On the geometry of the electro-magnetic six vector,

the electromagnetic energy tensor, the Hertzian tensor and the
Dirac equations.

Conway, Dublin. — Quaternion view of the electron wave equation.
Noether, Tomsk. — Über elektrische Drahtwellen.
Rosseland, Oslo. — On the construction of a differential analyzer.
H art ree, Manchester. — Application of the differential analyzer to the

solution of partial differential equations.
Thompson, Oxford. — The mechanical instability of the crystal lattice.
Lemaître, J^ouvain. — Results of calculations of asymptotic trajectories

in the field of a magnetic dipole with applications to cosmic radiation.
Val i.arta. Cambridge, Mass. — Results of calculations of asymptotic

trajectories in the field of a magnetic dipole with applications to
cosmic radiation.

Svoboda, Praha, lue par M. Horâk. — Les essais expérimentaux des
méthodes pour calculer le radiant du courant météorique des trajets
observés.

Horâk, Praha. — Sur l'égalité de la masse inerte et de la masse pesante.
J. Tuominen, Helsinki. — Resultate numerischer Berechnungen einiger

Sternmodelle.
Synge, Toronto. — Limitations on the behaviour of an expanding universe.
Drumaux, Gand. — La vitesse radiale des nébuleuses extragalactiques.
Bremekamp, Delft. — Über die Carsonsche Integralgleichung.

Section VI: Mécanique.

Présidence : MM. Filon, Drach.

Merlin, Gand. — Sur certains mouvements des fluides parfaits.
Vâlcovici, Bucarest. — Sur le sillage derrière un obstacle circulaire.
Bateman, Pasadena.— Associated Airy functions in elasticity and hydro¬

dynamics.
Gran Olsson, Trondheim. — Beitrag zur Biegetheorie kreisförmiger

Platten veränderlicher Dicke.
Neményi, Köbenhavn. — Beiträge zur Membran-theorie der Schalen.
Omara, Le Caire. — Sur les actions dynamiques d'un courant translo-

circulation sur un profil à points de rebroussement.
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Métral, Paris. — Démonstrations nouvelles de propriétés du gyroscope.
Le Roux. Rennes. — La mécanique invariante.
Wavre, Genève. — Remarques sur la détermination des corps à partir de

leur potentiel newtonien.
Hamel, Rerlin. — Räumliche Strahlen mit konstanter Geschwindigkeit.
Reissner, Rerlin. — Erzwungene Schwingungen eines massebehafteten

elastischen Halbraumes. (Beitrag zur Theorie der
Baugrundforschung.)

Section VII. Philosophie et Histoire des mathématiques.
Présidence: MM. Fraenkel, Spiess.

Péter, Rudapest. — Über rekursive Funktionen der zweiten Stufe.
Cavailles, Paris. — Formalisme et expression d'une structure mathé¬

matique.
Skolem, Rergen. — Eine Bemerkung zum Entscheidungsproblem.
Errera, Rruxelles. — Sur la notion de compatibilité et les rapports entre

l'intuitionisme et le formalisme.
Spiess, Basel. — Die wissenschaftliche Korrespondenz der Mathematiker

Bernoulli.
Locher, Winterthur. — Goethes Stellung zur Mathematik.
Archibald, Providence, R. I. — New information concerning James

Joseph Sylvester.
Gandz, New York. — The invention of the decimal fractions and the

exposition of the exponential calculus by Immanuel Bonfils (c. 1350).
Singh, Lucknow. — The history of magic-squares in India.
Heegaard, Oslo.— Zahlen in einem Papyrusfetzen in der Osloer-Papyrus-

Sammlung
Vogel, München. — Zur Tradition der babylonischen Mathematik.
Jelitai, Budapest. — Zur Geschichte der Mathematik in Ungarn.

Section VIII: Enseignement.
Présidence : M. H. Fehr.

VIII a.

Commission internationale de l'Enseignement mathématique:

1. Rapport sommaire sur la Commission par H. Fehr, secrét.-général.
2. Les tendances actuelles de l'enseignement mathématique dans les

divers pays. Rapports présentés par les délégations nationales L
3. Discussions sur ces rapports.
4. Séance administrative.

VIII h.

Présidence : M. Boulad Bey.

Fairtiiorne, Farnhorough, Hants. — The demonstration of qualitative
properties of differential equations by means of cinematograph
films. (With film.)

Przibram, Wien. — Beliebiges Wurzelziehen als Rechnungsart ohne
Logarithmen.

i Ces rapports seront reproduits in extenso dans un prochain fascicule de L'Enseignement

Mathématique.
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