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6 J. HADAMARD

doit, semble-t-il, s’appliquer spécialement & certaines des condi-
tions définies, pendant que d’autres doivent étre plutot nommeées
« conditions initiales », les premieres se comportant d’une fagon
trés différente des secondes.

Avant méme de résoudre des problémes de cette espéce, on
doit se demander quels sont ceux qu’il convient de se poser,
autrement dit, de quelle nature sont les conditions définies
propres a déterminer une solution. Ce premier aspect du sujet
est le seul auquel seront consacrées les réunions qui vont
suivre, et il suffira amplement a les occuper toutes.

Pour I’Analyse classique, la question était censée comporter
une premiere réponse, simple et générale, donnée par le théoreme
de Cauchy pour lequel on posséde la célebre et belle démonstra-
tion de Sophie KowarLewski. En se bornant, pour prendre le
cas le plus intéressant, a une équation du second ordre, et en
appelant z, z,, ..., z, les variables indépendantes, ce théoréme
s’énonce de la maniére suivante: st 'équation aux dérivées par-
tielles

u 2w L k=012, ..,n
F<x,x1,...,xn,u,—~ >:O ( . ) (1)

0L, dx; 0y, Xy =
. . . ;e du .
peut étre résolue par rapport a la dérivée 5530 Soul
2 u du 2u ,
= f(a U, — - 1
> 22 f(aza Ly, y Ly ’ bxl ’ bxlbxk> ) ( )

la fonction f contenant ou pouvant contenir toutes les variables
indépendantes, la fonction inconnue u, toules ses dérivées du pre-
mier ou du second ordre a 'exception de celle qui figure au premier
membre et étant fonction holomorphe de ces quantités, cette équation
admet une solution et une seule holomorphe en x, X4, ..., X, satis-
faisant aux conditions |

u = glxy, ..., x,),




ek

e C i

H AR

LE CAS HYPERBOLIQUE _ 7

pour x =0, g et h étant des fonctions holomorphes données de
Xy, Xgy eery Xpe : | )

Plus généralement, au lieu de I’hyperplan z = 0, on peut .

considérer une hypersurface |

S(@, @1, vy ;) = 0 ‘ (S)
et, en chaque point de cette hypersurface, se donner la valeur de
I'inconnue u et d’une de ses dérivées premiéres (convenablement
choisie, c’est-a-dire dans une direction non tangente a S).
Telles seront les conditions définies que 1’on adjoindra & ’équa-
tion aux dérivées partielles indéfinie (1) pour déterminer u; le
probléme de Cauchy ainsi posé se ramene évidemment, par une
transformation ponctuelle, au précédent, auquel il se réduit
lorsque la surface qui porte les données, c’est-a-dire la surface S,
est le plan z = 0.

La surface S étant elle-méme supposée analytique et sans
point régulier dans la région Q que 'on considére, le probléme
admettra, en général, une solution et une seule. On sait en effet
que les données de Cauchy permettent de calculer successivement,
en chaque point de S, les valeurs numériques de toutes les
dérivées partielles de u et d’en déduire, pour cette quantité,
un développement de Taylor, lequel se trouve étre convergent.

Il y a toutefois un cas d’exception, a savoir celui ou la surface S
est caractéristique, c’est-a-dire, physiquement parlant, représente
la propagation d’une onde compatible avec I’équation (1). Si

cette derniére est linéaire, ou, tout au moins, linéaire par rapport
aux dérivées secondes, soit

02y 5, kh=0,1,2, .., B
Ay FH =0, ( : ) @)

la condition qui définit les caractéristiques s’obtient en rempla-

r 3 0%y
cant, dans les termes du second ordre, chacune des dérivées

0x; 0%

i R

par le produit correspondant de deux indéterminées v;vy,, ce
qui donne une forme quadratique, la forme caractéristique

A= 2ZAuvv, . | (3)
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et prenant pour vy, v, ..., v, les dérivées partielles (du premier

: ou  ou ou ; .. -
ordre) — .., — . Le résultat ainsi obtenu doit étre nul

oz’ day’ ox,

pour que S soit caractéristique. S’il en est ainsi, on a bien une
exception au théoréme fondamental; mais cette exception
confirme, en un sens, la regle; car le probléme qui consiste a
trouver u et, tout d’abord, a en calculer les dérivées successives
en chaque point de S est, en général impossible et, §’il n’est pas
impossible, est nécessairement indéterminé, absolument comme
il arrive pour un systeme de n équations du premier degré a n
mconnues dont le déterminant est nul.

Ce cas mis a part, il faut encore observer que, comme pour
les équations différentielles ordinaires, la solution n’est ainsi
formée et son existence établie que localement, ¢’est-a-dire, dans
le premier cas envisagé tout a I’heure, pour z inférieur a un
certain nombre positif o« et, dans le second, pour les points
suffisamment voisins de S. On pourra d’ailleurs habituellement
faire, mais seulement jusqu’a une certaine limite, que I’on ne
peut méme pas assigner a priori, le prolongement analytique
de ce premier élément de solution, ainsi qu’il arrive pour les
équations différentielles ordinaires.

I1

Les contemporains de Cauchy et leurs successeurs immédiats
ont considéré le résultat ainsi obtenu comme donnant une pre-
miére réponse définitive a la question. On avait d’autant moins
de raisons d’en douter qu’on avait ’exemple tout analogue des
équations différentielles ordinaires. Une équation différentielle
du second ordre |

d? d

admet en général une solution et une seule correspondant a des
conditions inittales données, savoir que pour £ = @, ¥ prenne une

r d 4 d /4 .
valeur numérique donnée b et d—i une valeur numeérique

donnée b’ (sauf pour certains systémes exceptionnels de valeurs
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