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252 W. THRELFALL

9. — (GROUPES A DEUX PARAMETRES.

Appliquons maintenant notre procédé de construction aux
groupes d’ordre 2 1. Un groupe d’ordre 2 est engendré par deux
transformations infinitésimales u et v. D’aprés le deuxieme
théoréeme principal, il existe une relation de la forme

U Xxv=oau-+ 3v;

a et B sont les constantes de structure que nous venons de désigner
par ¢, dans le cas des groupes d’ordre n. On peut satisfaire
dans ce cas simple aux deux conditions de I’anneau infinitésimal
pour t o ut couple «, . Il suffit de poser v.x U = — au — fv,
et I'identité de Jacobi est satisfaite d’elle-méme.

De combien de maniéres essentiellement différentes peut-on
choisir « et 3 ? Nous verrons qu’il n’y en aura que deux.

Ier cas: Les deux coefficients sont nuls: « = B = 0.

On a alors
uxv=2~o. (I)

IIme cas: Un coefficient au moins, disons o, est différent de 0.
I1 est alors possible d’introduire de nouveaux vecteurs
fondamentaux

u = au + Bv, vV = — .

En les introduisant dans la relation de définition de Panneau

infinitésimal, il vient |
W XV =uxvVv=au-+ Bv=1u (IT)

(I) et (II) sont donc les seuls anneaux infinitésimaux essen-
tiellement différents. De méme il n’y aura done que deux groupes
d’ordre 2 simplement connexes, différents.

On trouve aisément pour le premier une réalisation par des
transformations linéaires. Le fait que le symbole du crochet
s’annule exprime la permutabilité des transformations infi-

1 B. voN KreREKIARTGO, Geometrische Theorie der zweigliedrigen kontinuierlichen
Gruppen. Abhandl. Math. Semin. Hamburg Univ., 8(1930), p. 107-114.
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nitésimales de base, u et v. Il s’en suit que tout le groupe est
abélien. Or, les translations du plan

=z + a )
y =y + b

forment un groupe abélien d’ordre 2.

Et cette réalisation est déja la réalisation réguliere que seule
nous avions jusqu’ici considérée. Le plan des a et b est la
variété-groupe, a = b = 0 I’élément unité.

Pour obtenir une réalisation du deuxiéme cas rappellons-
nous le groupe suivant de transformations linéaires & une

variable
2 = ax + b (@ > 0) (I1")

Ce groupe d’ordre 2 n’est pas abélien; il est donc différent du
groupe des translations, et comme il existe au plus deux groupes
simplement connexes d’ordre 2, le groupe considéré doit
appartenir au deuxiéme anneau infinitésimal. Ceci se voit
d’ailleurs immédiatement. Car comme transformations infini-
tésimales engendrant le groupe on peut choisir deux trans-
formations qui sont données sur la droite des z par

dz dz
—d‘a*—x-—-X, %—-——1——Y.

Le symbole du ecrochet en déduit la transformation
§ nfinitésimale
DXy oY

Y———X=1=Y.
ox ox

(XY) =
§ La variété-groupe est le demi-plan des a, b (¢ > 0), et I’élément
B unité E le point @ = 1, b = 0. Les vecteurs de support E corres-
pondant aux deux transformations infinitésimales, nous les
| désignons par |
—vV et u

pour tomber directement sur la forme (11):

— (VXU =uxv=mu.
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Il n’y a dans ce groupe, ’élément unité excepté, aucun
élément permutable avec tous les autres. Le centre est formé
du seul élément unité, il n’a donc pas de sous-groupes inva-
riants discontinus. Par conséquent, pour le groupe de germe (II),
le groupe simplement connexe est le seul groupe qui existe.

I1 en est autrement du cas (I). Ici, le sous-groupe invariant
discontinu peut étre formé ou bien du seul élément unité, ou
bien du groupe discontinu de translations dans une, ou dans deux
directions. On arrivera respectivement aux domaines fonda-
mentaux des fonctions ou simplement périodiques ou doublement
périodiques. Le groupe facteur relatif au sous-groupe invariant
discontinu sera dans les deux cas

' = x + a (mod 1)
y = x4+ b

} groupe du cylindre

J

ou

' =z + a (mod 1)
translations du tore.
y' =y + b (mod 1)

La variété-groupe est dans le premier cas un cylindre infini
dans les deux directions, dans le deuxiéme le tore. Nous avons
vu plus haut que le tore était la seule surface fermée susceptible
d’étre une variété-groupe; nous venons de voir qu’en effet le tore
est une variété-groupe. Il y a donc en tout trois groupes différents
de germe (I).
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