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simplement connexe d’un caractére spécial. Le caractére spécial
consiste en ce que les points étaient des classes de chemins.
Puisque nous avons démontré maintenant I'existence de la
variété, nous pouvons nous débarrasser de son caractére spécial

Fig. 6.

et nous entendrons dorénavant par 9% de nouveau une variété
abstraite. Il est en outre permis dans tous les cas de se figurer
cette variété de recouvrement comme une variété ponctuelle
qui est au-dessus de .

4. — UNICITE DE LA VARIETE DE RECOUVREMENT UNIVERSELLE.

La démonstration d’unicité de la variété de recouvrement
universelle se fait alors de la maniére suivante:

Considérons deux variétés de recouvrement simplement con-
nexes M et MW’ de M. Soit encore une fois O un point fixe de N,
O resp. O’ un point quelconque sur M resp. sur W', situés tous
deux au-dessus de O. Nous allons construire une représentation
de M sur M.

“Soit P un point quelconque de 9%. Nous menons un chemin
OP = 7 (fig. 7), nous le calquons en un chemin OP = u sur M et
nous recalquons ce dernier en un chemin O’'P’ = %’ de M.
Ce procédé est possible, puisque la représentation G de M’ sur
M est localement topologique; nous renoncons ici & la démons-
tration rigoureuse.

Nous avons abouti ainsi & un point P’ bien déterminé, qui sera
Iimage de P. Ce point est indépendant du chemin % choisi. Car,
M étant simplement connexe, deux chemins u et
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¢ partant de O et aboutissant & P peuvent étre déformés I'un
dans I'autre en maintenant O et P fixes. Il en est donc de méme
de u et ¢ sur M, et cette derniére déformation peut étre calquée
de M sur M'; u’ et o' aboutissent done au méme point P’.
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Fig. 7.

Puisque 9t est simplement connexe, la représentation P —~ P’
posséde une inverse univoque et continue; la relation entre
M et M est donc topologique. Deux pomts correspondants
P et P’ étant situées au-dessus du méme point fondamental P,
nous pouvons considérer M et M’ comme une méme variété
de recouvrement, conformément a la définition de la variété de
recouvrement.

Le théoréme d’existence et d’unicité de la variété universelle
de recouvrement est donc compléetement démontré.

Si nous considérons I’ et 9N comme confondus, la
démonstration montre en meéme temps qu’il existe wune
représentation topologique I de la variété M sur elle-méme,
transformant un point O au-dessus de O en un autre point
quelconque O, lui aussi au-dessus de O. Une transformation de
ce genre est d1te une transformation de I en soi
Les transformations de 9 en soi forment un groupe dont I’ordre
est égal au nombre de feuillets du recouvrement (qui d’ailleurs
peut étre infini); ¢’est le groupe de superpositions de M (Deckbewe-
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gungsgruppe). Nous retrouvons I & partir de M en identifiant
les points équivalents par rapport & ce groupe.

Par exemple, le recouvrement universel du tore est le plan
euclidien, car celui-ci est simplement connexe, et les transfor-
mations du plan euclidien en soi sont les translations conservant
le réseau quadratique. Le domaine de discontinuité de ce groupe
de superpositions est un carré dont les cotés opposés sont équiva-
lents; en les indentifiant on a la surface fermée du tore.

Soit dit en passant, le groupe de superpositions de I est tou-
jours isomorphe au groupe fondamental de IR, on pourra donc
sans autre introduire le groupe fondamental comme groupe de
superpositions de la variété de recouvrement universelle.

Ce n’est pas en vain que nous avons insisté avec tant d’énergie
sur le théoréme d’existence et d’unicité. Nous en ferons des
applications importantes a trois des plus beaux problémes
mathématiques: la classification des surfaces de Riemann, des
formes spatiales et des groupes continus.
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5. — LUES SURFACES DE RIEMANN ET LE THEOREME
D’UNIFORMISATION.

En théorie des fonctions il s’agit de surfaces de Riemann?.
Une surface de Riemann y est définie comme une variété a
d e u x dimensions portant une métrique angulaire; la repré-
sentation conforme de deux surfaces de Riemann a donc un sens
bien déterminé. Pour étre plus précis, il faudra donc ajouter aux
trois axiomes de la variété du §1 la condition de
conformité:

Un voisinage de tout point P est rapporté & une variable complexe
quv est appelée uniformisante locale. Clest-d-dire,
le voisinage est représenté sur une partie du plan complexe.
Sotent Q un point du voisinage B(P), t, et to des uniformisantes
locales en P et Q; tq deora éire une fonction analytique
de typ.

11 est permis de parler de fonctions analytiques sur une surface
de Riemann de ce type. Il est également possible de représenter
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1 H. WevL, Die Idee der Riemannschen Fldche (Lieipzig, 1923).
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