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LA NOTION DE RECOUVREMENT !

PAR

W. TuHrRELFALL (Dresde).

SOMMAIRE:

1. La notion de variété. — 2. Recouvrement sans ramification. —
3. Existence de la variété universelle de recouvrement. — 4. Unicité de
cette variété. — 5. Les surfaces de Riemann et le théoréme d’uniformi-
sation. — 6. Lie probleme des formes spatiales. — 7. Les variétés-groupes. —
8. Les groupes de recouvrement. — 9. Les groupes a deux parametres.

Celui qui s’occupe beaucoup de mathématiques remarque,
s’il a quelque expérience, que c’est une science trés pauvre
en pensées. I1 n'y a en mathématiques certainement pas plus
d’idées primaires que de touches a un clavecin. Il n’est pas
donné & un simple mortel d’augmenter a son gré le nombre
de ces touches. Toute la joie d’un mathématicien c¢’est de jouer
sur son clavecin. Le théme musical que nous voulons évoquer
ici ¢’est la notion de recouvrement, et nous lui donnerons une
extension assez générale pour qu’elle puisse servir de base a
trois des plus belles théories mathématiques: a la théorie des
fonctions de Riemann, au probleme des formes spatiales et &
la théorie des groupes continus.

1. — LA NOTION DE VARIETE.

A toute fonction analytique multiforme dans le plan
complet ou — ce qui revient au méme — sur la spheére, corres-
pond une certaine surface de Riemann qui recouvre la sphere

1 Conférence faite le 23 janvier 1935, au Colloque de I’Université et de I’Ecole
Polytechnique fédérale de Zurich.
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et sur laquelle la fonction est univoque. Soit P un point de la
sphére et P un point de la surface de Riemann superposé & P,
il y aura en général un voisinage de P et un voisinage de P,
qui pourront étre mis en correspondance biunivoque et continue;
de plus le voisinage de P recouvrira simplement celui de P.
Mais il existe aussi nécessairement des points ou la biunivocité
cesse d’étre possible. Ce sont les points de ramification de la
surface de Riemann.

D’ailleurs il ne s’agira pas ici de surfaces de recouvrement de
ce type. Nous nous bornerons a des recouvrements sans rami-
fications. Ce sont ceux pour lesquels la correspondance entre
la surface fondamentale et la surface de recouvrement est
biunivoque dans le voisinage de tout point.

Le tore nous fournit I’exemple le plus simple d’une telle surface;
on obtient une surface de recouvrement a deux feuillets sans

Fig. 1.

ramification en soudant en croix les bords opposés de deux
exemplaires de ce tore qu’on a coupés suivant le méme méridien
(fig. 1). Si 'on s’imagine les deux exemplaires situés sur le méme
tore fondamental, on aura au lieu des deux méridiens de
coupure une courbe fermée de pénétration. Les points de

L’Enseignement mathém., 34me année, 1935. ‘ 15
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cette courbe ne sont privilégiés que par le fait de 'immersion
de notre tore dans I’espace ordinaire. Sur notre surface, considérée
comme variété abstraite & deux dimensions, les points de ligne
d’intersection ne se distinguent en aucune fagon des autres
points.

On obtient une autre surface de recouvrement en développant
le tore sur un carré, apres 'avoir coupé suivant un méridien
et un paralléle; nous prenons une infinité de ces carrés et les
juxtaposons comme dans un échiquier, infini dans toutes les
directions. On retrouve ainsi le réseau bien connu de la théorie
des fonctions doublement périodiques.

Si intuitif que soit ce procédé de soudure, nous ne pourrons
nous en servir pour une théorie rigoureuse possédant le caractére
de généralité que nous voulons lut donner en vue des applications.
Pour parvenir & une notion claire et utile il faut revenir a la
notion de variété a n dimensions. Les éléments dont se compose
une variété, nous les appellerons des poitnts. Mais il s’en
faut de beaucoup que ces points puissent étre assimilés a des
points géométriques d'un espace euclidien ordinaire. Bien
au contraire, la notion du point reste complétement abstraite;
cette notion embrasse aussi bien des éléments de fonction
analytique, que des droites de 1’espace projectif, des états de
mouvement d’un systéme meécanique ou des transformations
d’un groupe continu. L’essentiel c’est qu’a chaque point P
correspondent certains sous-ensembles de points qui forment ses
vorsinages. Axiomatiquement nous définissons ces voisi-
nages par les deux propriétés suivantes:

10 Avec tout voisinage L (P) tout sous-ensemble contenant
B (P) est également un voisinage de P.

20 Pour tout point il existe au moins un voisinage qui peut
étre mis en correspondance biunivoque avec l’intérieur d’une
sphére euclidienne & n dimensions de telle sorte que par la les
voisinages soient transformés en voisinages, les voisinages dans
la sphére étant donnés par la métrique euclidienne.

L’axiome 20 équivaut au fait que, dans le voisinage de tout
point, la variété doit se comporter comme un domaine de
I’espace euclidien & n dimensions.

Si deux variétés peuvent étre représentées ’une sur I'autre
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par une représentation biunivoque qui conserve les voisinages
on parle d'une représentation topologique; les deux variétés
sont dites topologiquement équivalentes ou encore homéomorphes.

Nous exigeons en outre d’une variété:

30 Qulelle soit d’un seul tenant, c’est-a-dire que deux quel-
conques de ses points puissent &tre reliés par un chemin; nous
entendons par chemin une image continue du segment unitaire.

Enoncons encore une fois briévement les trois axiomes de la
0arieté : '

M1: Avec tout voisinage d’un point, tout sous-ensemble contenant
ce voisinage est voistnage lul ausst.

M2: Il y a partout des voisinages sphériques.

M3: La variété est d’un seul tenant.

Dans cette notion sont comprises toutes les surfaces fermées,
comme la sphére ou le tore, toutes les surfaces ouvertes comme
le plan euclidien ou ’hyperboloide & une nappe, mais non pas les
surfaces & bords, comme le disque circulaire, la condition M2
n’étant pas satisfaite pour les points du bord. Des exemples
bien connus de variétés a n dimensions sont ’espace euclidien
et 'espace projectif & n dimensions?!. D’autres exemples sont les
espaces de groupes continus.

2. — RECOUVREMENT SANS RAMIFICATION.

Nous allons maintenant définir les variétés de recouvrement
sans ramification. Nous nous laissons guider dans ce but par
I'exemple du recouvrement du tore. Nous désignerons par la
suite la variété fondamentale par M et celle de recouvrement
par M. Soient P un point de M et Py, P,, ... les points de M situés
au-dessus de P. Sil’on adjoint & chaque point Py, P,, ... le point P
situé au-dessous, on obtient une représentation continue G de M
sur M. Chaque point de N est évidemment 'image d’un point
de M au moins; c’est-a-dire: au-dessus de chaque point de M se

1 D’autres exemples se trouvent e. g. dans les travaux cités plus loin, § 6, et de plus
<{'1:1ns C. EHRESMANN, Sur la topologie de certains espaces.homogénes, Annals of Math.,
35 (1934), p. 396-443.
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trouve au moins un point de M. De plus, si I'on calque un
petit voisinage sphérique d’un point P de la variété fondamentale
sur tous les feuillets de la variété de recouvrement il est clair
que les voisinages résultant de P, P, ... sont représentés par G
topologiquement sur le voisinage fondamental. Dans la fig. 2

O 10 O

)
O,

. oXalo

6 P ¢ % &
of O%F 1 O% | O
Z
Fig. 2. Fig. 3.

on a représenté le tore par un carré dont on a a identifier les cotés
opposés. Dans la fig. 3 on a la division correspondante du plan
avec les points Py, P,, ... situés au-dessus d’un méme point P.

Les deux propriétés de la variété de recouvrement que nous
venons de citer, subsisteraient encore si I’on supprimait un point,
disons P;, de la variété de recouvrement. Pour exclure des éven-
tualités de ce genre, il est nécessaire d’ajouter un nouvel axiome:
Soit Q un point quelconque de B(P) et Q un point situé au-dessus
de Q; nous exigeons que Q appartienne toujours & I'un des voi-
sinages % (P,), B (P,), ... . Considérons par exemple le plan eucli-
dien de la fig. 3 pointé en P,. Les points situés au-dessus de P
sont alors P, P, ..., et les voisinages situés au-dessus de L (P)
sont B(P,), B(Py), ... . L’ensemble de ces voisinages épuise les
points situés au-dessus de B (P), exceptés ceux du voisinage de P;;
le nouvel dxiome n’est donc pas satisfait.

L’exemple du tore nous a donc fourni trois propriétés impor-
tantes. Nous les élevons au grade d’axiomes des variétés de
recouvrement, sans ramification, d’une variété quelconque. Nous
dirons: Une variété M recouvre une variété M s’il existe une




LA NOTION DE RECOUVREMENT 233

représentation continue G de MW sur W ayant les proprietes
sulvantes:

R1: Tout point P de M est Uimage d’un point de M au moins.

R2: Il existe des voisinages B (P,), B(Py), ... des points Py, Py, ...
situés au-dessus d’un point P, qui sont représentés t o p o -
logiquement sur un méme voisinage B(P) de P.

R3: Soit Q un point de BT(P) et Q un point situé au-dessus de Q;

Q appartient alors & U'un des voisinages B (Py), B(Py), ... .

R1 signifie que M recouvre M complétement, R2 que la relation
entre M et M est localement topologique, R3 que M n’a pas de
frontiére; c’est-a-dire que, étant donné dans la variété fonda-
mentale une courbe partant d’un point O, on peut la calquer
sur M de telle sorte qu'elle parte d’un quelconque des points
situés au-dessus de O, sans jamais toucher une frontiére, ce qui
aurait lieu par exemple au point P;, considéré tout a I’heure.

3. — EXISTENCE DE LA VARIETE UNIVERSELLE
DE RECOUVREMENT.

La question suivante se pose: Etant donnée une variété M,
combien possede-t-elle de variétés de recouvrement différentes ?
Il est possible de répondre completement & cette question,
lorsqu’on connait le groupe fondamental de I dans toute sa
structure. La réponse est donnée par le théoréme suivant: «Les
variétés de recouvrement correspondent biunivoquement aux
sous-groupes du groupe fondamental, ou plutdét aux classes de
sous-groupes conjugués.» Ln ce cas deux variélés de recouvrement
de W ne seront pas différentes, st elles admettent une représenta-
& tion topologique U'une sur Uautre, telle que les images des points
situés au-dessus d’'un méme point soient elles-mémes situées au-
dessus de ce point.

Nous ne nous arréterons pas a la démonstration compléte du
théoréme !, mais nous nous bornerons a un cas spécial, particu-

1 Voir H. SEIFERT et W. THRELFALL, Lehrbuch der Topologie (Leipzig, 1934),
chap. VIII. On y trouve aussi les détails supprimés dans la démonstration du texte.
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lierement important: le théoréme d’existence et d'unicité de la
pariété universelle de recouvrement, c¢’est-a-dire:

Toute variété M posséde une variété de recouvrement stmplement
connexe et une seule, qu'on appelle le recouvrement universel M.
Rappelons que simplement connexe signifie qu’il est possible de
resserrer sur un point tout chemin fermé; il est permis que le
chemin se recoupe au cours de la déformation.

Admettons tout d’abord que nous ayons déja construit une
variété de recouvrement simplement connexe M de M. Nous
choisissons sur M un point fixe O et sur % un point O au-dessus
de O. Menons un chemin quelconque w allant de O & P; nous
pourrons le calquer sur M et il conduira 1a du point O & un point
bien déterminé P. Tout chemin w partant de O détermine de cette
maniére univoquement un point P de 9. Quand deux chemins
w, et w, détermineront-ils le méme point P ? Ce sera certainement
le cas lorsqu’il sera possible de déformer w, en w, en maintenant O
et P fixes. Car, puisqu’il est possible de calquer la déformation
sur M, w, et w, devront conduire tous deux au point P (fig. 4).

Wp

O
~

Fig. 4.

Si, au contraire, w; et w, ne peuvent étre déformés I'un dans
I’autre, w, et w, ne conduiront pas au méme point. Car admettons
que les deux chemins conduisent de O a P; il sera alors possible,
puisque par hypothese M est simplem ent connexe, de les
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déformer 'un dans Pautre. Cette déformation, nous la recalque-
rons sur M; on devrait done, contrairement & ’hypothese, pouvoir
déformer w; en w,. Les points de M correspondent donc biuni-
voquement aux classes de chemins de M, déformables 'un dans
Pautre.

Nous allons utiliser inversement ce résultat pour construire
une variété de recouvrement simplement connexe. Nous choisks-
sons sur P un point fixe O et nous menons & partir de O tous
les chemins possibles conduisant a tous les points possibles de IN.
Nous répartirons tous ces chemins en classes. Deux chemins a et b
appartiendront & la méme classe si premiérement ils conduisent
au méme point P et secondement §’il est possible de les déformer
I'un dans I'autre, en maintenant O et P fixes.

Ce sont ces classes de chemins que nous introduirons par défi-
nition comme les points de la variété de recouvrement M a
construire. C’est ici que nous utilisons le caractére abstrait de
notre définition de la variété. Il y aura, en général, plusieurs
classes de chemins P,, P, . .. qui correspondront au méme point P
de . Nous dirons que Pl, P,, ... sont situés au-dessus de P. De
plus nous devrons définir maintenant ce qu'on entend par
volsinage des points introduits, car sans cela I’ensemble

de points M ne serait pas une variété. Soit P un point de
M, c’est-a-dire une classe de chemins conduisant de O & un
' point P de M. Nous considérons un voisinage sphérique B (P),
. et menons & partir de P tous les chemins conduisant & tous les
. points de B(P) et ceci sans sortir de B (P). Soit § = PQ un de ces
chemins et ¢ un élément de la classe P (fig. 5); parcourons

Fig. 5.




236 W. THRELFALL

d’abord le chemin a, puis 3, et nous obtiendrons ainsi un chemin
a3 auquel correspondra un point bien déterminé Q de %t. Les
points ainsi construits sur les points de LB(P) formeront un
voisinage B(P). La définition est telle qu’a des chemins voisins
sur M correspondent des points voisins de M. I1 est clair que les
points de B(P) correspondent biunivoquement aux points de
B(P) et que de plus cette correspondance de B (P) & B(P) conserve
les voisinages. L (P) est donc homéomorphe & B(P) et par consé-
quent homéomorphe & l'intérieur d’une sphére & n dimensions.
La condition M2 du § 1 est donc satisfaite. Pour satisfaire a M1,
nous dirons aussi que tout sous-ensemble de M contenant L (P)
est un voisinage de P. Finalement il est possible de relier deux
points de I par une courbe. Une des extrémités de la courbe est
donnée par un chemin OP et Pautre par un chemin OQ. Le fait
qu’il est possible de relier les points P Q veut dire qu’il est pos-
sible de déformer OP en OQ d’une maniére continue. Mais il
suffit pour cela de contracter ces deux chemins sur le point O.
M est done bien une variété.

Nous allons démontrer maintenant que I est une variété de
recouvrement de W. L’axiome R1 est satisfait, puisqu’il
est possible de relier par un chemin tout point P de MM au point O.
La classe de chemins correspondante est un point au-dessus de P.
L’existence des voisinages L (P), B(P,), B(P,), ... découle immé-
diatement de leur construction. R3 est également satisfait. Soit
Q un point de B(P) et Q un point au-dessus de Q; Q est donc
déterminé par un chemin OQ = w. Sinous relions par un chemin ¢
dans B(P) le point Q au pomnt P, le chemin w. ¢ détermine un
point P au-dessus de P. Q est alors dans le voisinage B (P); car le
chemin w ¢ ¢~! définit un point Q' au-dessus de Q, appartenant
au voisinage %(—). Mais, puisqu’il est possible de déformer
weoten w, on a Q' —Q

11 reste & montrer que M est simplement connexe. Une courbe
fermée k de M est engendrée par une suite continue de chemins
de M partant de O et aboutissant aux points d’une courbe
fermée k (fig. 6). Or, si nous contractons uniformément tous ces
chemins sur le point O, cela revient a déformer la courbe k
en un point.

Nous avons donc construit une variété de recouvrement
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simplement connexe d’un caractére spécial. Le caractére spécial
consiste en ce que les points étaient des classes de chemins.
Puisque nous avons démontré maintenant I'existence de la
variété, nous pouvons nous débarrasser de son caractére spécial

Fig. 6.

et nous entendrons dorénavant par 9% de nouveau une variété
abstraite. Il est en outre permis dans tous les cas de se figurer
cette variété de recouvrement comme une variété ponctuelle
qui est au-dessus de .

4. — UNICITE DE LA VARIETE DE RECOUVREMENT UNIVERSELLE.

La démonstration d’unicité de la variété de recouvrement
universelle se fait alors de la maniére suivante:

Considérons deux variétés de recouvrement simplement con-
nexes M et MW’ de M. Soit encore une fois O un point fixe de N,
O resp. O’ un point quelconque sur M resp. sur W', situés tous
deux au-dessus de O. Nous allons construire une représentation
de M sur M.

“Soit P un point quelconque de 9%. Nous menons un chemin
OP = 7 (fig. 7), nous le calquons en un chemin OP = u sur M et
nous recalquons ce dernier en un chemin O’'P’ = %’ de M.
Ce procédé est possible, puisque la représentation G de M’ sur
M est localement topologique; nous renoncons ici & la démons-
tration rigoureuse.

Nous avons abouti ainsi & un point P’ bien déterminé, qui sera
Iimage de P. Ce point est indépendant du chemin % choisi. Car,
M étant simplement connexe, deux chemins u et
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¢ partant de O et aboutissant & P peuvent étre déformés I'un
dans I'autre en maintenant O et P fixes. Il en est donc de méme
de u et ¢ sur M, et cette derniére déformation peut étre calquée
de M sur M'; u’ et o' aboutissent done au méme point P’.

U
5 7
i
_ u
0 =%
/4
O.errrﬂTH [T I 7
v
Fig. 7.

Puisque 9t est simplement connexe, la représentation P —~ P’
posséde une inverse univoque et continue; la relation entre
M et M est donc topologique. Deux pomts correspondants
P et P’ étant situées au-dessus du méme point fondamental P,
nous pouvons considérer M et M’ comme une méme variété
de recouvrement, conformément a la définition de la variété de
recouvrement.

Le théoréme d’existence et d’unicité de la variété universelle
de recouvrement est donc compléetement démontré.

Si nous considérons I’ et 9N comme confondus, la
démonstration montre en meéme temps qu’il existe wune
représentation topologique I de la variété M sur elle-méme,
transformant un point O au-dessus de O en un autre point
quelconque O, lui aussi au-dessus de O. Une transformation de
ce genre est d1te une transformation de I en soi
Les transformations de 9 en soi forment un groupe dont I’ordre
est égal au nombre de feuillets du recouvrement (qui d’ailleurs
peut étre infini); ¢’est le groupe de superpositions de M (Deckbewe-
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gungsgruppe). Nous retrouvons I & partir de M en identifiant
les points équivalents par rapport & ce groupe.

Par exemple, le recouvrement universel du tore est le plan
euclidien, car celui-ci est simplement connexe, et les transfor-
mations du plan euclidien en soi sont les translations conservant
le réseau quadratique. Le domaine de discontinuité de ce groupe
de superpositions est un carré dont les cotés opposés sont équiva-
lents; en les indentifiant on a la surface fermée du tore.

Soit dit en passant, le groupe de superpositions de I est tou-
jours isomorphe au groupe fondamental de IR, on pourra donc
sans autre introduire le groupe fondamental comme groupe de
superpositions de la variété de recouvrement universelle.

Ce n’est pas en vain que nous avons insisté avec tant d’énergie
sur le théoréme d’existence et d’unicité. Nous en ferons des
applications importantes a trois des plus beaux problémes
mathématiques: la classification des surfaces de Riemann, des
formes spatiales et des groupes continus.

,..
TS

R R

@

5. — LUES SURFACES DE RIEMANN ET LE THEOREME
D’UNIFORMISATION.

En théorie des fonctions il s’agit de surfaces de Riemann?.
Une surface de Riemann y est définie comme une variété a
d e u x dimensions portant une métrique angulaire; la repré-
sentation conforme de deux surfaces de Riemann a donc un sens
bien déterminé. Pour étre plus précis, il faudra donc ajouter aux
trois axiomes de la variété du §1 la condition de
conformité:

Un voisinage de tout point P est rapporté & une variable complexe
quv est appelée uniformisante locale. Clest-d-dire,
le voisinage est représenté sur une partie du plan complexe.
Sotent Q un point du voisinage B(P), t, et to des uniformisantes
locales en P et Q; tq deora éire une fonction analytique
de typ.

11 est permis de parler de fonctions analytiques sur une surface
de Riemann de ce type. Il est également possible de représenter

T T3
GV o

o
R

LA
R RSN

1 H. WevL, Die Idee der Riemannschen Fldche (Lieipzig, 1923).
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conformément deux surfaces de Riemann l'une sur ['autre.
Nous ne distinguerons pas Pune de lautre deux surfaces de
Riemann admettant entr’elles une représentation conforme.

Une conséquence immédiate de cette définition de la surface
de Riemann est que toute variété de recouvrement d’une surface
de Riemann est elle-méme une surface de Riemann. Car si les
points P;, P,, ... sont au-dessus de P, il suffit de transporter
Puniformisante locale de P & ces points. Pour toute surface de
Riemann il existe en particulier une surface de recouvrement i
universelle, univoquement déterminée, comme nous venons de le
voir. En partant de cette derniére on retrouve la surface fonda-
mentale M en appliquant le groupe de superpositions de M et en
identifiant les points équivalents. Il est clair que ce groupe
est un groupe discontinu de représentations conformes, sans
points fixes.

Le probleme de la classification des surfaces de Riemann se
scinde maintenant en deux questions partielles:

Io Trouver toutes les surfaces de Riemann simplement connezxes.

IIo Trouver tous les groupes de transformations conformes,
discontinus, sans poinis fizes qui transforment chacune de ces
surfaces de Riemann simplement connexes en elles-mémes.

Le premier probleme est le probléeme fondamental de la
théorie de I'uniformisation. Nous y répondons par le théoreme
d’uniformisation de Poincaré et de Koebe: Il existe trois surfaces
de Riemann simplement connexes, la sphére des nombres
complexes, le plan des nombres complexes et l'intérieur du
cercle unité.

La résolution de la premiere question facilite la réponse a la
seconde. Nous savons qu'une transformation conforme d’une
de ces trois surfaces est une transformation lin éaire. Nous
obtiendrons donc toutes les surfaces de Riemann a partir de ces
trois, en leur appliquant tous les groupes possibles discontinus,
de transformations linéaires, sans points fixes.

Toute surface de Riemann est, il est vrai, une variété a deux
dimensions, mais par contre toute variété a deux dimensions
n’est pas une surface de Riemann. Les variétés a deux dimensions
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non orientables en sont exclues; car l'uniformisante locale
détermine en chaque point une orientation. Les uniformisantes
locales des points voisins s’obtenant par transformations
analytiques de 'une dans I’autre, I'orientation est cohérente sur
toute la surface, puisque les transformations analytiques ne
renversent pas le sens de 'orientation. De plus. toute surface de
Riemann peut &tre triangulée, ¢’est-a-dire qu’on peut la recouvrir
par un ensemble dénombrable de triangles?.

Inversement toute variété & deux dimensions orientable
sera une surface de Riemann s’il est possible de la trianguler.
On démontre cette proposition en construisant une surface
homéomorphe & la surface donnée recouvrant en tout ou en
partie la sphére, et qui peut étre ramifiée en certains points.
On peut effectuer trés simplement cette construction de la facon
suivante: Soit donnée une certaine triangulation de la surface
topologique a laquelle nous donnons une certaine orientation.
De méme, nous donnons une orientation déterminée a la sphere
sur laquelle nous voulons appliquer la surface. Nous choisissons
pour chaque sommet de notre triangulation un point sur notre
sphére. Ce choix est arbitraire sauf que trois quelconques de ces
points ne doivent jamais étre situés sur le méme grand cercle
(on peut les prendre par exemple tous sur un méme paralléle).
Alors, nous représentons chaque triangle de la triangulation
donnée de la surface par le triangle sphérique qui est déterminé
par les trois points correspondants aux trois sommets. Cette
représentation est biunivoque, si I'on exige que I’orientation
donnée de la surface et Porientation donnée de la sphére soient
transformées 'une dans ’autre. La représentation de tous les
triangles engendre une représentation de toute la surface sur la
sphére comme nous la cherchons.

La théorie des fonctions comme on la traite d’habitude, ne part,
pas de la surface de Riemann, mais bien de la fonction analytique
qui est donnée par une série de puissances. Les éléments de cette
fonction analytique sont alors les points de la surface de Riemann.
En définissant des voisinages dans I’ensemble de ces points on
en fait une variété & deux dimensions qui est une surface de

1 T. RADO, Ueber den Begriff der Riemannschen Fliche. Acta Litt. Sci. Szeged, 2
(1925), p. 101-121.
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Riemann dans le sens expliqué plus haut!. Mais on a besoin d’une
démonstration spéciale pour étre stir que toute surface de recou-
vrement est une surface de Riemann elle-méme, engendrée par
une fonction analytique.

0. — PROBLEME DES FORMES SPATIALES.

Les formes spatiales de deux et de plusieurs dimensions sont
en rapport immédiat avec les surfaces de Riemann. Une forme
spatiale est une variété a n dimensions munie d’une métrique
de Riemann, qui dans le voisinage de tout point est congruente a
celle d’'un espace ou bien sphérique ou euclidien ou hyperbolique.
On distinguera donc les différents cas des formes spatiales
sphériques, euclidiennes et hyperboliques.

Nous avons de nouveau le théoréme: Une variété de recouvre-
ment d’une forme spatiale est encore une forme spatiale, puis-
qu’il est possible de calquer la métrique de la variété fondamen-
tale sur la variété de recouvrement.

Il suffira donc d’étudier les deux points suivants pour trouver
toutes les formes spatiales:

[0 Les formes spatiales stmplement connezxes,

110 Leurs groupes discontinus de transformations congruentes sans
point fixe. Nous appellerons ces groupes aussi les groupes
discontinus de mouvements 2.

La premiére question qui est I'analogue du probléme d’uni-

formisation est résolue par le théoréme de H. Hopf3 qui dit:
11 n’existe pour toutes les dimensions que trois formes spatiales
simplement connexes, a savoir: l’espace sphérique, I’espace
euclidien, 1’espace hyperbolique. La démonstration de ce
théoréme ne présente pas autant de difficultés que celle du
théoreme d’uniformisation. Faisons ’hypothese, qui sera réduite
a absurde, qu’il existe deux formes spatiales M, et M, eucli-
diennes, simplement connexes. Nous menons & partir d’'un
point O, de N; toutes les lignes géodésiques possibles et nous

1 H. WEYL, loc. cit.

2 D’aprés M. E. Cartan ce sont les groupes d’holonomie; ¢. f. E. CARTAN, La géo-
méirie des espaces de Riemann. Paris, 1928, p. 72.

3 H. Hoprr, Zum Clifford-Kleinschen Raumproblem. Math. Ann., 95 (1925), p. 313-239.
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faisons de méme pour un point O, de M,. Nous construisons une
représentation de M, sur M, en représentant O, sur O, et les
lignes géodésiques sur les lignes géodésiques. On peut démontrer
que cette représentation est congruente.

Quant aux groupes discontinus de mouvements des formes
spatiales simplement connexes dont les autres formes spatiales
sont les domaines de discontinuité, nous n’avons de résultats
complets que pour les espaces & deux et & trois dimensions. Pour
les formes & trois dimensions on connait a fond les formes
spatiales sphériques et euclidiennes!, alors que nous n’avons
que des exemples de formes hyperboliques 2.

(C’est la notion de surface de Riemann qui a posé le probleme
des formes spatiales: il suffit d’exiger de la représentation
conforme du voisinage d’un point qu’elle soit en plus congruente.
Mais le role profond du probléme de formes spatiales ne repose
pas sur cette relation avec la théorie des fonctions; aucontraire,
il est en relation avec le probleme cosmologique de 1’espace;
on peut en effet se demander & quel type de variété I'espace de
notre intuition et de la physique appartient ? Le rdle privilégié
qu’a joué la métrique sphérique, euclidienne et hyperbolique
et qui d’ailleurs paraissait arbitraire se voit éclairé du méme
coup. Car ces trois variétés sont justement les seules variétés
simplement connexes ou I’on puisse faire de la géométrie au sens
ordinaire, ¢’est-a-dire les seules variétés qui admettent un groupe
continu de transformations topologiques respectant les condi-
tions de mobilité de Lie-Helmholtz.

7. — VARIETES-GROUPES.

Une variété & n dimensions M est dite groupe continu
lorsque, & chaque couple de points A et B donnés dans cet ordre

1 H. Hopr, Zum Clifford-Kleinschen Raumproblem, 1. c.

W. THRELFALL u. H. SEIFert, Topologische Untersuchung der Discontinuitits-
bereiche endlicher Bewegungsgruppen des dreidimensionalen sphirischen Raumes.
I. Math. Ann., 104 (1930), p. 1-70; II. Math. Ann., 107 (1932), p. 543-586.

W. HantzscHE u. H. WENDT, Dreidimensionale euklidische Raumformen. Math.
Ann., 110 (1934), p. 593-611.

W. Nowacki, Die dreidimensionalen geschlossenen und offenen euklidischen Raum-
formen. Comm. Math. Helv., vol. 7, 1934, p. 81.

2 C. WEBER u. H. SEIrERrT, Die beiden Dodekaederraume, Math. Ztschr., 37 (1933),
pD. 238-253. )

F. LoeseLL, Beispiele geschlossener dreidimensionaler Clifford-Kleinschen Riume
negativer Krimmung. Ber. Sdchs. Akad. Wiss., 83 (1931).
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correspond un troisieme point C, le produit de A et B. Nous

écrirons
C = AB .

Cette multiplication doit satisfaire aux axiomes ordinaires du
groupe, c’est-a-dire & D'unicité, l'associativité, I'existence de
I’élément unité et de I’élément inverse. Cette liaison devra étre
de plus continue, c’est-a-dire que C variera d’une maniére
continue, s’il en est de méme de A et B, et si A varie d’une
maniere continue, 1l en sera de méme de A-'. Le groupe est dit
d’ordre n si la variété est & n dimensions.

Les rotations rigides de I’espace euclidien autour d’un point O
sont un exemple d'un groupe continu. Une rotation est ici
déterminée par un axe orienté, c¢’est-a-dire par un rayon issu
de O, et par un angle de rotation ¢, variant de 0 & =. Si nous
portons sur le rayon le segment OP = ¢ nous représentons par la
les rotations autour de O biunivoquement sur les points de la
sphére massive de rayon w. La biunivocité ne fait défaut que
pour les points frontieres de cette sphére: Comme & des points
frontieres diamétralement opposés correspondent des rotations
d’angle 7 autour du méme axe de sens opposé, il faudra, puisque
ces deux rotations sont confondues, identifier ces deux points
frontieres, pour obtenir la variété-groupe M. Ce procédé d’iden-
tification bien connu nous conduit a I’espace projectif 1. Le groupe
continu se présente ici comme I’espace projectif .

I1 est d’ailleurs possible de considérer le groupe continu comme
un groupe de transformations de notre variété-groupe. A cet
effet nous faisons correspondre & A la transformation

X — XA,

X étant un point variable. Ceci est une correspondance biuni-
voque. Gar tout point Y est I'image bien déterminée d’un point,
a savoir du point YA-!. Cette représentation est de plus sans
points fixes, pourvu que A ne coincide pas avec 1’élément unité
du groupe. Car de X = XA nous tirons A = E. Le groupe de
transformations ainsi défini est holoédriquement isomorphe au
groupe donné M. Cette interprétation du groupe est analogue

1 On trouve la démonstration p. 54 du cours de Topologie cité plus haut (p. 233).
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a la représentation bien connue, dite réguliére, d’'un groupe
d’ordre fini r par un groupe de permutations de r indices;.
les permutations de la représentation réguliére sont, comme
on le sait bien, les lignes ou les colonnes du «carré de Cayley »
du groupe. La seule différence est qu’il s’agit ici d’'un groupe
dont les éléments forment un ensemble continu.

Il existe des variétés qui ne sont pas des variétés-groupes.
Il est facile de voir que les variétés non orientables nous en
donnent un exemple. Car, soit w un chemin fermé partant du
point unité E de la variété-groupe et © une petite sphére de
centre K, nous pourrons faire varier & le long de w eny appliquant
les transformations correspondant aux points de w. De retour a
notre point de départ, la transformation redevient 'identité;
Porientation de © ne s’est donc pas renversée pendant le parcours
de la sphére ©. Deuxiémement, le groupe continu ne possédant
pas de points fixes, la variété doit admettre des représentations
en sol sans points fixes, voisines de I’identité. C’est pour cette
raison que la sphére & deux dimensions ne peut étre une variété-
groupe. Une troisiéme condition nécessaire est que le groupe
fondamental d’une variété-groupe soit abélien. En effet, soient a
et b deux chemins fermés partant du point E; si nous effectuons

Fig. 8.

alors sur @ la suite des transformations correspondant & tous
les points de b, la courbe a revient a sa position primitive,

I’Enseignement mathém., 34me année, 1935. 1A
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puisque la transformation revient & 1’'identité. Le chemin a
peut donc étre déformé dans le chemin bab~!. Mais ceci signifie
que les classes de chemins représentées par a et b sont permu-
tables (fig. 8). Done, parmi les surfaces fermées & deux dimen-
sions le tore orientable entre seul en ligne de compte comme
variété-groupe.

8. — GROUPES DE RECOUVREMENT.

Nous allons appliquer aux groupes continus la notion de
recouvrement et montrerons que toute variété de recouvrement
M d’un groupe continu P est encore un groupe continu M. 11
est nécessaire pour la démonstration de définir le produit de
deux points A et B de M, ce que nous ferons de la maniére
suivante: Nous choisissons un point E au-dessus de E et relions
E &4 A par un chemin @. Soit a le chemin obtenu en calquant a
sur M et soit A son point final. Au-dessous de B se trouve un
point B. La transformation X — XB qui lul correspond trans-

forme le chemin a en un chemin a’ qui conduit de B a AB (fig. 9).

ﬁ& 237 49&’
/3 B
A AB
E B
Fig. 9.

Soit @’ le chemin au-dessus de a’ et partant du point B. Cest
son point final que nous appellerons le produit C = AB. Cette
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définition est indépendante du choix de a: si au lieu d’effectuer
la construction avec @ on partait d’un chemin «, allant également
de E & A, les deux chemins a~!'% et a~! « et par conséquent aussi
le chemin a1 o’ qui est engendré de a~! o par la transformation B
seraient des chemins fermés. Ces deux derniers chemins étant
déformables 'un dans Pautre, puisque toute transformation B
est une déformation, les deux chemins de recouvrement, a~!a
et a’~'a’ sont aussi déformables I'un dans I’autre. Puisque a '«
est fermé, a’~1«’ le sera aussi. Donc, le point final de a’ est le
méme que celui de «’. Le produit C est donc défini de facon
univoque.

Pour démontrer complétement que M est une variété-groupe,
il faudrait encore prouver que les axiomes du groupe sont satis-
faits pour la multiplication des points de 9t que nous avons
introduite. Nous ne nous y arréterons pas.

Soit 9 la variété de recouvrement universelle de M. Si & tout
point X de I nous faisons correspondre le point situé au-dessous,
X de M, nous faisons par la une représentation homéomorphe
(mériédriquement isomorphe) du groupe 9 sur le groupe M. Car
le produit A B est au-dessus du produit A B. D’aprés le théoréme
d’homéomorphie de la théorie des groupes tous les points de I,
situés au-dessus de I’élément unité E de I, forment un sous-
groupe invariant Nt de M, et M est le groupe facteur

m = M/% .
Les points situés au-dessus d’un point A de M forment une
classe de restes de ce groupe facteur. On a donc
M=N+RNA +MNB + ...,

ol A est un certain point au-dessus de A, B au-dessus de B, etc.
Les classes de restes forment un ensemble continu correspondant,
i I’ensemble continu des points de M. N est par contre un en-
semble fini ou dénombrable d’éléments de .

La recherche de tous les groupes continus revient maintenant

1o a trouver tous les groupes simplement connexes et

110 a déterminer leurs sous-groupes invartants discontinus.
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La derniére proposition se simplifie quand on se rappelle qu’un
sous-groupe invariant discontinu appartient nécessairement au
centre du groupe M. Le fait que N est un sous-groupe invariant
signifie que

AIN,A =N,

ot N, et N, sont des éléments de % et A un element quelconque
de 9Jt Si on pose en particulier A = E, on a N2 — N,. Si A varie
d’une maniére continue alors que N, reste fixe, N, varie également
en une maniere continue. Mais, puisque nous avions au début
N, = Nl, il en sera toujours ainsi, 9% étant un ensemble discon-
tinu. N, est par conséquent permutable avec chaque point A de 9.

Le premier probléme qui consistait a trouver tous les groupes
simplement connexes peut étre encore réduit. D’apres un théo-
reme de O. Schreier ! I est déja complétement déterminé par
un voisinage arbitrairement petit de ’élément unité E. Un tel
voisinage de I’élément unité est dit un germe de groupe. Deux
groupes simplement connexes sont donc égaux dans toute leur
étendue aussitdot qu’ils possédent le méme germe.

C’est la classification de tous les germes de groupes qui cons-
titue le probléme fondamental de la théorie de Lie. Il est vrai
que nous devrons encore faire certaines hypothéses de dériva-
bilité sur la variété-groupe, avant de pouvoir appliquer les théo-
réemes de Lie. Un des «problémes parisiens» de D. Hilbert 2
consiste a décider si ces hypotheses sont nécessaires ou bien
satisfaites d’elles-mémes. Ce probléme a été trés poussé ces
derniéres années, mais non pas completement résolu.

Nous admettons qu’il existe dans le germe du groupe un systéme

de coordonnées.
gy, Ay, ooy @

tel que les transformations du groupe possédent des dérivées
continues du deuxiéme ordre. En vertu du premier théoréme
principal de la théorie de Lie le germe du groupe peut étre

1 Q. ScuREIER, Die Verwandlschaft stetiger Gruppen im grossen. Abh. math. Semin.
Hamburg. Univ., 5 (1927), p. 233-%44,

2 Sur les Problémes futurs des Mathématiques, § V, Compte rendu du 2¢ Congrés
international des Mathématiciens, Paris, 1900, p. 78.
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engendré par n transformations infinitésimales. Dans notre
variété-groupe ces transformations seront données par n vecteurs

U, Uy, ..o, U,
attachés au point E 1. Nous considérons maintenant I’ensemble
de toutes les transformations infinitésimales du groupe; elles
forment la gerbe de vecteurs de support E. La transformation
qu’on obtient & partir de deux de nos vecteurs u et v par le
symbole du crochet appartient d’aprés le deuxiéme théoréme
principal de Lie encore au groupe.

Revenons & l'exemple des rotations rigides de
’espace euclidien 3t autour d’un point fixe O. Un élément A de
ce groupe est représenté analytiquement par une transformation
orthogonale des coordonnées cartésiennes x;, Ty, Z3: '

3 ,

' N

x;, = Z %p Ty
h—1

Le groupe étant d’ordre 3, les 9 coefficients o;; dépendent de
3 parametres a,, @y, a;. On peut choisir comme tels les trois
composantes du vecteur que nous avons adjoint a la rotation.
ay, Ay, a5 sont donc proportionnels aux cosinus directeurs de I’axe
et la longueur du vecteur est égale a I’angle de rotation ¢. Les
parametres sont alors des coordonnées de la variété-groupe, au
moins dans le voisinage de I’élément unité (a,, a,, a3) = (0, 0, 0).
Nous n’avons pas besoin d’exprimer les ay par a,, a,, a; ni a
donner explicitement la transformation de la variété-groupe pe
qui correspond & l’élément A = (a,, a,, a;).

Nous considérons le sous-groupe d’ordre 1 qui contient toutes
les rotations autour d’un axe fixe. Le sous-groupe se figure par
un segment de droite

2 2 2
a, = u.t, a1+a2+a3§n2

de la variété-groupe . La transformation infinitésimale qui
engendre ce sous-groupe est donnée dans la variété-

1 Des caractéres gras désigneront dans ce qui suit des vecteurs.
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groupe P par le vecteur u & composantes

da.

1

@ =

et dansl’espace euclidien N par la «rotation infi-
nitésimale »

dry, dz,

E" - u3CL‘2 — u2x3 == X]. 3 E; = ulx3 i ugxl = Xz 5
dxy
—dZ' — ule i ulxz = X3 .

Le sens de ces équations est de donner, jusqu’aux membres
d’ordre (dt)? prés, les composantes du déplacement, dz; = X, dt,
etc. d’'un point, aussitdt qu’on connait ses coordonnées x;, 5, T3
et les valeurs da, = u,dt, da, = u,dt, da; = usdt des parameétres
correspondant a la rotation, dite infinitésimale.

Soit maintenant

une autre rotation infinitésimale. I.’opération du crochet donne
la rotation infinitésimale

dr; 0 Xy oY, .
o= DX =

1

1

= (U0 — Uy 9p) Xy — (g 05 — pug)xg , ete.

Cette rotation infinitésimale est représentée dans [ par le
vecteur.

(C’est un vecteur que nous désignerons par

W=1u-XxpyWVv,

Choisissons pour engendrer notre groupe, les trois vecteurs

ul—‘:(l; 07 O), u2:(0a 17 0): u3:—'(0, O, 1)’




1
I
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correspondant & trois rotations infinitésimales autour de trois
axes orthogonaux. Alors, on a

u1Xu2:u3, u2><u3———ll1, u3><u1:112.

Ce que notre exemple nous a enseigné, ¢’est comment deux
vecteurs u et v déterminent complétement un troisiéme vecteur
que nous pourrons appeler le produit dew et v. Ce produit satisfait
aux régles de calcul suivantes:

UXvVv=—vXxXu,
MXV)XW+ (VW xu+ (wxu) xv=0 (Identitéde Jacobi).

Ce sont des formules douées d’un sens bien connu du calcul
de vecteurs dans ’exemple des rotations rigides. Mais elles sub-
sistent encore pour un groupe quelconque.

D’une maniere tout & fait générale, nous appellerons anneau
infinitésimal toute gerbe de vecteurs dans laquelle on a défini
une multiplication satisfaisant a ces deux conditions. Il est clair
que la classification de tous les anneaux infinitésimaux possibles
est une affaire purement algébrique.

Si w; sont les transformations infinitésimales engendrant le

germe du groupe 1l y aura alors %n (n—1) relations

par lesquelles ’anneau infinitésimal est complétement déterminé.
Dans la théorie de Lie les cl, sont appelés les coefficients de
structure.

Supposons que nous ayons trouvé un anneau infinitésimal. Le
troisitme théoreme principal de Lie nous permet d’en tirer un
germe de groupe. Et de 14 on arrive & un groupe entier M d’aprés
un théoréme de E. Cartan, et par conséquent & un groupe
simplement connexe M. F 1nalement en appliquant a 9t les sous-
groupes invariants discontinus nous trouverons tous les autres
groupes, ayant le méme germe 1.

1 Pour les §§ 7 et 8, cf. B. CARTAN, La théorie des groupes finis et continus et

I'Analysis situs, Mémorial des Sciences mathém., XLII (1934) et E. CARTAN, La
t topologie des espaces représentatifs des groupes de Lie, Conférence faite le 22 octobre

1935 dans le cycle des Conférences internationales des Sciencss mathématiques orga-
nisées par ’Université de Genéve. L’Enseignement mathématique, 1936.
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9. — (GROUPES A DEUX PARAMETRES.

Appliquons maintenant notre procédé de construction aux
groupes d’ordre 2 1. Un groupe d’ordre 2 est engendré par deux
transformations infinitésimales u et v. D’aprés le deuxieme
théoréeme principal, il existe une relation de la forme

U Xxv=oau-+ 3v;

a et B sont les constantes de structure que nous venons de désigner
par ¢, dans le cas des groupes d’ordre n. On peut satisfaire
dans ce cas simple aux deux conditions de I’anneau infinitésimal
pour t o ut couple «, . Il suffit de poser v.x U = — au — fv,
et I'identité de Jacobi est satisfaite d’elle-méme.

De combien de maniéres essentiellement différentes peut-on
choisir « et 3 ? Nous verrons qu’il n’y en aura que deux.

Ier cas: Les deux coefficients sont nuls: « = B = 0.

On a alors
uxv=2~o. (I)

IIme cas: Un coefficient au moins, disons o, est différent de 0.
I1 est alors possible d’introduire de nouveaux vecteurs
fondamentaux

u = au + Bv, vV = — .

En les introduisant dans la relation de définition de Panneau

infinitésimal, il vient |
W XV =uxvVv=au-+ Bv=1u (IT)

(I) et (II) sont donc les seuls anneaux infinitésimaux essen-
tiellement différents. De méme il n’y aura done que deux groupes
d’ordre 2 simplement connexes, différents.

On trouve aisément pour le premier une réalisation par des
transformations linéaires. Le fait que le symbole du crochet
s’annule exprime la permutabilité des transformations infi-

1 B. voN KreREKIARTGO, Geometrische Theorie der zweigliedrigen kontinuierlichen
Gruppen. Abhandl. Math. Semin. Hamburg Univ., 8(1930), p. 107-114.
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nitésimales de base, u et v. Il s’en suit que tout le groupe est
abélien. Or, les translations du plan

=z + a )
y =y + b

forment un groupe abélien d’ordre 2.

Et cette réalisation est déja la réalisation réguliere que seule
nous avions jusqu’ici considérée. Le plan des a et b est la
variété-groupe, a = b = 0 I’élément unité.

Pour obtenir une réalisation du deuxiéme cas rappellons-
nous le groupe suivant de transformations linéaires & une

variable
2 = ax + b (@ > 0) (I1")

Ce groupe d’ordre 2 n’est pas abélien; il est donc différent du
groupe des translations, et comme il existe au plus deux groupes
simplement connexes d’ordre 2, le groupe considéré doit
appartenir au deuxiéme anneau infinitésimal. Ceci se voit
d’ailleurs immédiatement. Car comme transformations infini-
tésimales engendrant le groupe on peut choisir deux trans-
formations qui sont données sur la droite des z par

dz dz
—d‘a*—x-—-X, %—-——1——Y.

Le symbole du ecrochet en déduit la transformation
§ nfinitésimale
DXy oY

Y———X=1=Y.
ox ox

(XY) =
§ La variété-groupe est le demi-plan des a, b (¢ > 0), et I’élément
B unité E le point @ = 1, b = 0. Les vecteurs de support E corres-
pondant aux deux transformations infinitésimales, nous les
| désignons par |
—vV et u

pour tomber directement sur la forme (11):

— (VXU =uxv=mu.
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Il n’y a dans ce groupe, ’élément unité excepté, aucun
élément permutable avec tous les autres. Le centre est formé
du seul élément unité, il n’a donc pas de sous-groupes inva-
riants discontinus. Par conséquent, pour le groupe de germe (II),
le groupe simplement connexe est le seul groupe qui existe.

I1 en est autrement du cas (I). Ici, le sous-groupe invariant
discontinu peut étre formé ou bien du seul élément unité, ou
bien du groupe discontinu de translations dans une, ou dans deux
directions. On arrivera respectivement aux domaines fonda-
mentaux des fonctions ou simplement périodiques ou doublement
périodiques. Le groupe facteur relatif au sous-groupe invariant
discontinu sera dans les deux cas

' = x + a (mod 1)
y = x4+ b

} groupe du cylindre

J

ou

' =z + a (mod 1)
translations du tore.
y' =y + b (mod 1)

La variété-groupe est dans le premier cas un cylindre infini
dans les deux directions, dans le deuxiéme le tore. Nous avons
vu plus haut que le tore était la seule surface fermée susceptible
d’étre une variété-groupe; nous venons de voir qu’en effet le tore
est une variété-groupe. Il y a donc en tout trois groupes différents
de germe (I).
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