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LA NOTION DE RECOUVREMENT1

PAR I

W. Threlfall (Dresde).

SOMMAIRE: q

1. La notion de variété. — 2. Recouvrement sans ramification. —
3. Existence de la variété universelle de recouvrement. — 4. Unicité de "j

cette variété. — 5. Les surfaces de Riemann et le théorème d'uniformi- j

sation. — 6. Le problème des formes spatiales. — 7. Les variétés-groupes. — j
8. Les groupes de recouvrement. — 9. Les groupes à deux paramètres. 4

Celui qui s'occupe beaucoup de mathématiques remarque,
s'il a quelque expérience, que c'est une science très pauvre 1

en pensées. Il n'y a en mathématiques certainement pas plus
d'idées primaires que de touches à un clavecin. Il n'est pas
donné à un simple mortel d'augmenter à son gré le nombre H

de ces touches. Toute la joie d'un mathématicien c'est de jouer j

sur son clavecin. Le thème musical que nous voulons évoquer <

ici c'est la notion de recouvrement, et nous lui donnerons une 3

extension assez générale pour qu'elle puisse servir de base à j

trois des plus belles théories mathématiques: à la théorie des

fonctions de Riemann, au problème des formes spatiales et à |
la théorie des groupes continus. 1

1. — La notion de variété. |

A toute fonction analytique multiforme dans le plan
complet ou — ce qui revient au même — sur la sphère, correspond

une certaine surface de Riemann qui recouvre la sphère »

i Conférence faite le 23 janvier 1935, au Colloque de l'Université et de l'Ecole
Polytechnique fédérale de Zurich.
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et sur laquelle la fonction est univoque. Soit P un point de la
sphère et P un point de la surface de Riemann superposé à P,
il y aura en général un voisinage de P et un voisinage de P,

qui pourront être mis en correspondance biunivoque et continue;
de plus le voisinage de P recouvrira simplement celui de P.
Mais il existe aussi nécessairement des points où la biunivocité
cesse d'être possible. Ce sont les points de ramification de la
surface de Riemann.

D'ailleurs il ne s'agira pas ici de surfaces de recouvrement de

ce type. Nous nous bornerons à des recouvrements sans
ramifications. Ce sont ceux pour lesquels la correspondance entre
la surface fondamentale et la surface de recouvrement est
biunivoque dans le voisinage de tout point.

Le tore nous fournit l'exemple le plus simple d'une telle surface;
on obtient une surface de recouvrement à deux feuillets sans

ramification en soudant en croix les bords opposés de deux
exemplaires de ce tore qu'on a coupés suivant le même méridien
(fig. 1). Si l'on s'imagine les deux exemplaires situés sur le même
tore fondamental, on aura au lieu des deux méridiens de
coupure une courbe fermée de pénétration. Les points de

L'Enseignement mathém., 34me année, 1935. 15

Fig. 1.
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cette courbe ne sont privilégiés que par le fait de l'immersion
de notre tore dans l'espace ordinaire. Sur notre surface, considérée
comme variété abstraite à deux dimensions, les points de ligne
d'intersection ne se distinguent en aucune façon des autres
points.

On obtient une autre surface de recouvrement en développant
le tore sur un carré, après l'avoir coupé suivant un méridien
et un parallèle; nous prenons une infinité de ces carrés et les

juxtaposons comme dans un échiquier, infini dans toutes les
directions. On retrouve ainsi le réseau bien connu de la théorie
des fonctions doublement périodiques.

Si intuitif que soit ce procédé de soudure, nous ne pourrons
nous en servir pour une théorie rigoureuse possédant le caractère
de généralité que nous voulons lui donner en vue des applications.
Pour parvenir à une notion claire et utile il faut revenir à la
notion de variété à n dimensions. Les éléments dont se compose
une variété, nous les appellerons des points. Mais il s'en
faut de beaucoup que ces points puissent être assimilés à des

points géométriques d'un espace euclidien ordinaire. Bien
au contraire, la notion du point reste complètement abstraite;
cette notion embrasse aussi bien des éléments de fonction
analytique, que des droites de l'espace projectif, des états de

mouvement d'un système mécanique ou des transformations
d'un groupe continu. L'essentiel c'est qu'à chaque point P

correspondent certains sous-ensembles de points qui forment ses

voisinages. Axiomatiquement nous définissons ces

voisinages par les deux propriétés suivantes: *

1° Avec tout voisinage 33 (P) tout sous-ensemble contenant j
33 (P) est également un voisinage de P.

2° Pour tout point il existe au moins un voisinage qui peut jj

être mis en correspondance biunivoque avec l'intérieur d'une
sphère euclidienne à n dimensions de telle sorte que par là les

voisinages soient transformés en voisinages, les voisinages dans

la sphère étant donnés par la métrique euclidienne.
L'axiome 2° équivaut au fait que, dans le voisinage de tout

point, la variété doit se comporter comme un domaine de

l'espace euclidien à n dimensions.
Si deux variétés peuvent être représentées l'une sur l'autre
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par une représentation biunivoque qui conserve les voisinages

on parle d'une représentation topologique; les deux variétés

sont dites topologiquement équivalentes ou encore homéomorphes.

Nous exigeons en outre d'une variété:
3° Qu'elle soit (Tun seul tenant, c'est-à-dire que deux

quelconques de ses points puissent être reliés par un chemin; nous
entendons par chemin une image continue du segment unitaire.

Enonçons encore une fois brièvement les trois axiomes de la
variété:

Ml: Avee tout voisinage d'un point, tout sous-ensemble contenant

ce voisinage est voisinage lui aussi.

M2: Il y a partout des voisinages sphériques.

M3: La variété est dun seul tenant.

Dans cette notion sont comprises toutes les surfaces fermées,
comme la sphère ou le tore, toutes les surfaces ouvertes comme
le plan euclidien ou l'hyperboloïde à une nappe, mais non pas les
surfaces à bords, comme le disque circulaire, la condition M2
n'étant pas satisfaite pour les points du bord. Des exemples
bien connus de variétés à n dimensions sont l'espace euclidien
et l'espace projectif à n dimensions1. D'autres exemples sont les

espaces de groupes continus.

2. — Recouvrement sans ramification.

Nous allons maintenant définir les variétés de recouvrement
sans ramification. Nous nous laissons guider dans ce but par
l'exemple du recouvrement du tore. Nous désignerons par la
suite la variété fondamentale par 9JÏ et celle de recouvrement
par 3ÏÎ. Soient P un point de 9)î et P1? P2,... les points de 9JÎ situés
au-dessus de P. Si l'on adjoint à chaque point Pl5 P2, le point P
situé au-dessous, on obtient une représentation continue G de
surJDî. Chaque point de 9JÎ est évidemment l'image d'un point
de 3)î au moins; c'est-à-dire: au-dessus de chaque point de 9JÎ se

1 D'autres exemples se trouvent e. g. dans les travaux cités plus loin, § 6, et de plus
dans C. Ehresmann, Sur la topologie de certains espaces.homogènes, Annals of Math.,
35 (1934), p. 396-443.
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trouve au moins un point de sJ)t. De plus, si l'on calque un
petit voisinage sphérique d'un point P de la variété fondamentale
sur tous les feuillets de la variété de recouvrement il est clair
que les voisinages résultant de Pi, P2? ••• sont représentés par G

topologiquement sur le voisinage fondamental. Dans la fig. 2

O O O

a O* O? O

O
t ©? O

a

Fig. 2. Fig. 3.

on a représenté le tore par un carré dont on a à identifier les côtés

opposés. Dans la fig. 3 on a la division correspondante du plan
avec les points Pu ^2? ••• situés au-dessus d'un même point P.

Les deux propriétés de la variété de recouvrement que nous
venons de citer, subsisteraient encore si l'on supprimait un point,
disons Px, de la variété de recouvrement. Pour exclure des
éventualités de ce genre, il est nécessaire d'ajouter un nouvel axiome:
Soit Q un point quelconque de 33 (P) et Q un point situé au-dessus
de Q; nous exigeons que Q appartienne toujours à l'un des

voisinages 33(Px), 33(P2), Considérons par exemple le plan euclidien

de la fig. 3 pointé en Px. Les points situés au-dessus de P

sont alors P2, P3, et les voisinages situés au-dessus de 33 (P)
sont 33(P2), 33(P3), L'ensemble de ces voisinages épuise les

points situés au-dessus de 33 (P), exceptés ceux du voisinage de Px;
le nouvel dxiome n'est donc pas satisfait.

L'exemple du tore nous a donc fourni trois propriétés
importantes. Nous les élevons au grade d'axiomes des variétés de

recouvrement, sans ramification, d'une variété quelconque. Nous
dirons : Une variété 3)t recouvre une variété 3JÏ s'il existe une
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représentation continue G de 5SJI sur 3K ayant les propriétés
suivantes :

RI: Tout point P de M est Vintage d'un point de 3JI au moins.

R2: Il existe des voisinages 33 (P^, 93(P2)? ••• des points P1? P2,

situés au-dessus dun point P, qui sont représentés t o p o -

logique m e n t sur un même voisinage 33 (P) de P.

R3: Soit Q un point de 33 (P) et Q un point situé au-dessus_ de Q;
Q appartient alors à Vun des voisinages 33 (PJ, 33 (P2), ••• •

RI signifie que 3JÏ recouvre 9ÏÏ complètement, R2 que la relation
entre 2)î et 3Jt est localement topologique, R3 que SDÎ n'a pas de

frontière; c'est-à-dire que, étant donné dans la variété
fondamentale une courbe partant d'un point O, on peut la calquer
sur 9Ji de telle sorte qu'elle parte d'un quelconque des points
situés au-dessus de O, sans jamais toucher une frontière, ce qui
aurait lieu par exemple au point P1? considéré tout à l'heure.

3. —- Existence de la variété universelle
DE RECOUVREMENT.

La question suivante se pose: Etant donnée une variété 9Ji,

combien possède-t-elle de variétés de recouvrement différentes
Il est possible de répondre complètement à cette question,
lorsqu'on connaît le groupe fondamental de 9)î dans toute sa

structure. La réponse est donnée par le théorème suivant: «Les
variétés de recouvrement correspondent biunivoquement aux
sous-groupes du groupe fondamental, ou plutôt aux classes de

sous-groupes conjugués. » En ce cas deux variétés de recouvrement
de 3JÎ ne seront pas différentes, si elles admettent une représentation

topologique Vune sur Vautre, telle que les images des points
situés au-dessus d'un même point soient elles-mêmes situées au-
dessus de ce point.

Nous ne nous arrêterons pas à la démonstration complète du
théorème mais nous nous bornerons à un cas spécial, particu-

i Voir H. Seifert et W. Threlfall, Lehrbuch der Topologie (Leipzig, 1934),
chap. VIII. On y trouve aussi les détails supprimés dans la démonstration du texte.
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lièrement important: le théorème d'existence et dunicité de la
variété universelle de recouvrement, c'est-à-dire:

Toute variété 5JI possède une variété de recouvrement simplement
connexe et une seule1 qdon appelle le recouvrement universel M.
Rappelons que simplement connexe signifie qu'il est possible de

resserrer sur un point tout chemin fermé; il est permis que le

chemin se recoupe au cours de la déformation.
Admettons tout d'abord que nous ayons déjà construit une

variété de recouvrement simplement connexe 2JÏ de 3JÏ. Nous
choisissons sur 9DÎ un point fixe 0 et sur 3JÎ un point 0 au-dessus
de 0. Menons un chemin quelconque w allant de 0 à P; nous

pourrons le calquer sur 3JÎ et il conduira là du point 0 à un point
bien déterminé P. Tout chemin w partant de 0 détermine de cette
manière univoquement un point P de 50t. Quand deux chemins

vv1 et w2 détermineront-ils le même point P Ce sera certainement
le cas lorsqu'il sera possible de déformer w1 en w2 en maintenant 0
et P fixes. Car, puisqu'il est possible de calquer la déformation
sur 9Jt, w1 et w2 devront conduire tous deux au point P (fig. 4).

Fig. 4.

Si, au contraire, wx et w2 ne peuvent être déformés l'un dans

l'autre, w1 et w2 ne conduiront pas au même point. Car admettons

que les deux chemins conduisent de 0 à P; il sera alors possible,
puisque par hypothèse 9JÎ est simplement connexe, de les
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déformer l'un dans l'autre. Cette déformation, nous la recalquerons

sur 9JI ; on devrait donc, contrairement à l'hypothèse, pouvoir
déformer w1 en w2. Les points de 9JÏ correspondent donc biuni-
voquement aux classes de chemins de 2)î, déformables l'un dans

l'autre.
Nous allons utiliser inversement ce résultat pour construire

une variété de recouvrement simplement connexe. Nous choisissons

sur tyl un point fixe 0 et nous menons à partir de 0 tous
les chemins possibles conduisant à tous les points possibles de 9Jt.

Nous répartirons tous ces chemins en classes. Deux chemins a et b

appartiendront à la même classe si premièrement ils conduisent
au même point P et secondement s'il est possible de les déformer
l'un dans l'autre, en maintenant 0 et P fixes.

Ce sont ces classes de chemins que nous introduirons par
définition comme les points de la variété de recouvrement 2JI à

construire. C'est ici que nous utilisons le caractère abstrait de

notre définition de la variété. Il y aura, en général, plusieurs
classes de chemins P2, P2, qui correspondront au même point P
de 3JÎ. Nous dirons que Pi, P2, sont situés au-dessus de P. De

plus nous devrons définir maintenant ce qu'on entend par
voisinage des points introduits, car sans cela l'ensemble
de points 2JI ne serait pas une variété. Soit P un point de

9Jt, c'est-à-dire une classe de chemins conduisant de 0 à un
point P de 3K. Nous considérons un voisinage sphérique 33 (P),
et menons à partir de P tous les chemins conduisant à tous les

points de 33(P) et ceci sans sortir de 33 (P). Soit S — PQ un de ces
chemins et a un élément de la classe P (fig. 5); parcourons

0
Fig. 5.
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d'abord le chemin a, puis S, et nous obtiendrons ainsi un chemin
a S auquel correspondra un point bien déterminé Q de 9)i. Les
points ainsi construits sur les points de 33 (P) formeront un
voisinage 33 (P). La définition est telle qu'à des chemins voisins
sur 3)ï correspondent des points voisins de 3Jt. Il est clair que les

points de 33 (P) correspondent biunivoquement aux points de

3^(P) et que de plus cette correspondance de 33 (P) à 33 (P) conserve
les voisinages. 33 (P) est donc homéomorphe à 33 (P) et par conséquent

homéomorphe à l'intérieur d'une sphère à n dimensions.
La condition M2 du § 1 est donc satisfaite. Pour satisfaire à Ml,
nous dirons aussi que tout sous-ensemble de 3Jt contenant 33 (P)
est un voisinage de P. Finalement il est possible de relier deux
points de 3JÎ par une courbe. Une des extrémités de la courbe est
donnée par un chemin OP et l'autre par un chemin OQ. Le fait
qu'il est possible de relier les points P Q veut dire qu'il est
possible de déformer OP en OQ d'une manière continue. Mais il
suffit pour cela de contracter ces deux chemins sur le point 0.
9Ji est donc bien une variété.

Nous allons démontrer maintenant que 3Jf est une variété de

recouvrement de 3Ji. L'axiome RI est satisfait, puisqu'il
est possible de relier par un chemin tout point P de 3)1 au point 0.
La classe de chemins correspondante est un point au-dessus de P.

L'existence des voisinages 33(P), 33(Px), 33(P2),... découle
immédiatement de leur construction. R3 est également satisfait. Soit
Q un point de 33(P) et Q un point au-dessus de Q; Q est donc
déterminé par un chemin OQ w. Si nous relions par un chemin v

dans 33 (P) le point Q au point P, le chemin w. v détermine un
point P au-dessus de P. Q est alors dans le voisinage 33 (P); car le
chemin w e e_1 définit un point Q' au-dessus de Q, appartenant
au voisinage 33(P). Mais, puisqu'il est possible de déformer
w e e_1 en w, on a Q' Q.

Il reste à montrer que 9JI est simplement connexe. Une courbe
fermée k de est engendrée par une suite continue de chemins
de 3JÏ partant de 0 et aboutissant aux points d'une courbe
fermée k (fig. 6). Or, si nous contractons uniformément tous ces

chemins sur le point 0, cela revient à déformer la courbe k

en un point.
Nous avons donc construit une variété de recouvrement
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simplement connexe d'un caractère spécial. Le caractère spécial
consiste en ce que les points étaient des classes de chemins.

Puisque nous avons démontré maintenant l'existence de la

variété, nous pouvons nous débarrasser de son caractère spécial

et nous entendrons dorénavant par 9JI de nouveau une variété
abstraite. Il est en outre permis dans tous les cas de se figurer
cette variété de recouvrement comme une variété ponctuelle
qui est au-dessus de SDÎ.

j 4. — Unicité de la variété de recouvrement universelle.

| La démonstration d'unicité de la variété de recouvrement
universelle se fait alors de la manière suivante:

S Considérons deux variétés de recouvrement simplement con-

Inexes

3JÎ et -äft' de 9JÎ. Soit encore une fois 0 un point fixe de 30î,

0 resp. 0' un point quelconque sur 9)i resp. sur S#', situés tous
deux au-dessus de 0. Nous allons construire une représentation
de 9JÎ sur 9JÏ'.

Soit P un point quelconque de 9JL Nous menons un chemin
0 P ïï (fig. 7), nous le calquons en un chemin OP u sur M et
nous recalquons ce dernier en un chemin O'P' u! de 3JT.

Ce procédé est possible, puisque la représentation G de 9JÎ' sur
Èl est localement topologique; nous renonçons ici à la démonstration

rigoureuse.
Nous avons abouti ainsi à un point P' bien déterminé, qui sera

Pimage de P. Ce point est indépendant du chemin ü choisi. Car,
3JÎ étant simplement connexe, deux chemins ü et
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ê partant de 0 et aboutissant à P peuvent être déformés l'un
dans l'autre en maintenant 0 et P fixes. Il en est donc de même
de u et v sur 9JI, et cette dernière déformation peut être calquée
de 3)£ sur 2JÎ'; u' et v' aboutissent donc au même point P'.

u

0

u

u 9
v
VL

DTD=~!P
V

Fig. 7.

Puisque 3)V est simplement connexe, la représentation P —>- P'
possède une inverse univoque et continue; la relation entre
9JÎ et sjjT est donc topologique. Deux points correspondants
P et P' étant situées au-dessus du même point fondamental P,
nous pouvons considérer 9JI et 3JT comme une même variété
de recouvrement, conformément à la définition de la variété de

recouvrement.
Le théorème d'existence et d'unicité de la variété universelle

de recouvrement est donc complètement démontré.
Si nous considérons SDL et comme confondus, la

démonstration montre en même temps qu'il existe une
représentation topologique F de la variété sj)l sur elle-même,
transformant un point 0 au-dessus de 0 en un autre point
quelconque 0', lui aussi au-dessus de 0. Une transformation de

ce genre est dite une transformation de 9JÎ en soi.
Les transformations de 9JÎ en soi forment un groupe dont l'ordre
est égal au nombre de feuillets du recouvrement (qui d'ailleurs
peut être infini) ; c'est le groupe de superpositions de (Deckbewe-
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gungsgruppe). Nous retrouvons à partir de 9JÏ en identifiant
les points équivalents par rapport à ce groupe.

Par exemple, le recouvrement universel du tore est le plan
euclidien, car celui-ci est simplement connexe, et les transformations

du plan euclidien en soi sont les translations conservant
le réseau quadratique. Le domaine de discontinuité de ce groupe
de superpositions est un carré dont les côtés opposés sont équivalents;

en les indentifiant on a la surface fermée du tore.
Soit dit en passant, le groupe de superpositions de 3JÎ est

toujours isomorphe au groupe fondamental de 3DÎ, on pourra donc
sans autre introduire le groupe fondamental comme groupe de

superpositions de la variété de recouvrement universelle.
Ce n'est pas en vain que nous avons insisté avec tant d'énergie

sur le théorème d'existence et d'unicité. Nous en ferons des

applications importantes à trois des plus beaux problèmes
mathématiques: la classification des surfaces de Riemann, des

formes spatiales et des groupes continus.

5. — Les surfaces de Riemann et le théorème
d'uniformisation.

En théorie des fonctions il s'agit de surfaces de Riemann1.
Une surface de Riemann y est définie comme une variété à

deux dimensions portant une métrique angulaire; la
représentation conforme de deux surfaces de Riemann a donc un sens
bien déterminé. Pour être plus précis, il faudra donc ajouter aux
trois axiomes de la variété du §1 la condition de
conformité:

Un voisinage de tout point P est rapporté à une variable complexe
qui est appelée uniformisante locale. Cest-à-dire,
le voisinage est représenté sur une partie du plan complexe.
Soient Q un point du voisinage 33(P), tP et tQ des uniformisantes
locales en P et Q ; tQ devra être une fonction analytique
de tP.

Il est permis de parler de fonctions analytiques sur une surface
de Riemann de ce type. Il est également possible de représenter

1 H. Weyl, Die Idee der Riemannschen Fläche (Leipzig, 1923).
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conformément deux surfaces de Riemann l'une sur l'autre.
Nous ne distinguerons pas l'une de l'autre deux surfaces de

Riemann admettant entr'elles une représentation conforme.
Une conséquence immédiate de cette définition de la surface

de Riemann est que toute variété de recouvrement d'une surface
de Riemann est elle-même une surface de Riemann. Car si les

points Pi? Pa, ••• sont au-dessus de P, il suffit de transporter
l'uniformisante locale de P à ces points. Pour toute surface de

Riemann il existe en particulier une surface de recouvrement 9)i

universelle, univoquement déterminée, comme nous venons de le
voir. En partant de cette dernière on retrouve la surface
fondamentale 2)t en appliquant le groupe de superpositions de 9JÎ et en
identifiant les points équivalents. Il est clair que ce groupe
est un groupe discontinu de représentations conformes, sans

points fixes.
Le problème de la classification des surfaces de Riemann se

scinde maintenant en deux questions partielles:

1° Trouver toutes les surfaces de Riemann simplement connexes.

II0 Trouver tous les groupes de transformations conformes,
discontinus, sans points fixes qui transforment chacune de ces

surfaces de Riemann simplement connexes en elles-mêmes.

Le premier problème est le problème fondamental de la
théorie de l'uniformisation. Nous y répondons par le théorème
d'uniformisation de Poincaré et de Koebe: Il existe trois surfaces
de Riemann simplement connexes, la sphère des nombres
complexes, le plan des nombres complexes et l'intérieur du
cercle unité.

La résolution de la première question facilite la réponse à la
seconde. Nous savons qu'une transformation conforme d'une
de ces trois surfaces est une transformation linéaire. Nous
obtiendrons donc toutes les surfaces de Riemann à partir de ces

trois, en leur appliquant tous les groupes possibles discontinus,
de transformations linéaires, sans points fixes.

Toute surface de Riemann est, il est vrai, une variété à deux
dimensions, mais par contre toute variété à deux dimensions
n'est pas une surface de Riemann. Les variétés à deux dimensions
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non orientables en sont exclues; car l'uniformisante locale

détermine en chaque point une orientation. Les uniformisantes
locales des points voisins s'obtenant par transformations
analytiques de l'une dans l'autre, l'orientation est cohérente sur
toute la surface, puisque les transformations analytiques ne

renversent pas le sens de l'orientation. De plus, toute surface de

Riemann peut être triangulée, c'est-à-dire qu'on peut la recouvrir

par un ensemble dénombrable de triangles1.
Inversement toute variété à deux dimensions orientable

sera une surface de Riemann s'il est possible de la trianguler.
On démontre cette proposition en construisant une surface

homéomorphe à la surface donnée recouvrant en tout ou en

partie la sphère, et qui peut être ramifiée en certains points.
On peut effectuer très simplement cette construction de la façon
suivante: Soit donnée une certaine triangulation de la surface

topologique à laquelle nous donnons une certaine orientation.
De même, nous donnons une orientation déterminée à la sphère
sur laquelle nous voulons appliquer la surface. Nous choisissons

pour chaque sommet de notre triangulation un point sur notre
sphère. Ce choix est arbitraire sauf que trois quelconques de ces

points ne doivent jamais être situés sur le même grand cercle
(on peut les prendre par exemple tous sur un même parallèle).
Alors, nous représentons chaque triangle de la triangulation
donnée de la surface par le triangle sphérique qui est déterminé

par les trois points correspondants aux trois sommets. Cette
représentation est biunivoque, si l'on exige que l'orientation
donnée de la surface et l'orientation donnée de la sphère soient
transformées l'une dans l'autre. La représentation de tous les

triangles engendre une représentation de toute la surface sur la
sphère comme nous la cherchons.

La théorie des fonctions comme on la traite d'habitude, ne part
pas de la surface de Riemann, mais bien de la fonction analytique
qui est donnée par une série de puissances. Les éléments de cette
fonction analytique sont alors les points de la surface de Riemann.
En définissant des voisinages dans l'ensemble de ces points on
en fait une variété à deux dimensions qui est une surface de

i T. Radö, TJeber den Begriff der Iliemaimsclien. Fläche. Acta Litt. Sei. Szeged, 2
(1925), p. 101-121.
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Riemann dans le sens expliqué plus haut1. Mais on a besoin d'une
démonstration spéciale pour être sûr que toute surface de
recouvrement est une surface de Riemann elle-même, engendrée par
une fonction analytique.

6. — Problème des formes spatiales.

Les formes spatiales de deux et de plusieurs dimensions sont
en rapport immédiat avec les surfaces de Riemann. Une forme
spatiale est une variété à n dimensions munie d'une métrique
de Riemann, qui dans le voisinage de tout point est congruente à

celle d'un espace ou bien sphérique ou euclidien ou hyperbolique.
On distinguera donc les différents cas des formes spatiales
sphériques, euclidiennes et hyperboliques.

Nous avons de nouveau le théorème: Une variété de recouvrement

d'une forme spatiale est encore une forme spatiale, puisqu'il

est possible de calquer la métrique de la variété fondamentale

sur la variété de recouvrement.
Il suffira donc d'étudier les deux points suivants pour trouver

toutes les formes spatiales:

1° Les formes spatiales simplement connexes,
II0 Leurs groupes discontinus de transformations congruentes sans

point fixe. Nous appellerons ces groupes aussi les groupes
discontinus de mouvements 2.

La première question qui est l'analogue du problème
d'uniformisation est résolue par le théorème de H. Hopf 3 qui dit:
Il n'existe pour toutes les dimensions que trois formes spatiales
simplement connexes, à savoir: l'espace sphérique, l'espace
euclidien, l'espace hyperbolique. La démonstration de ce

théorème ne présente pas autant de difficultés que celle du
théorème d'uniformisation. Faisons l'hypothèse, qui sera réduite
à l'absurde, qu'il existe deux formes spatiales et ïïî2
euclidiennes, simplement connexes. Nous menons à partir d'un
point de 3)4 toutes les lignes géodésiques possibles et nous

1 H. Weyl, toc. cit.
2 D'après M. E. Cartan ce sont les groupes d'holonomie; c. f. E. Cartan, La

géométrie des espaces de Riemann. Paris, 1928, p. 72.
s H. Hopf, Zum Clifford-Kleinschen Raumproblem. Math. Ann., 95 (1925), p. 313-339.
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faisons de même pour un point 02 de 3Jt2. Nous construisons une

représentation de ï)^ sur en représentant Ox sur 02 et les

lignes géodésiques sur les lignes géodésiques. On peut démontrer

que cette représentation est congruente.
Quant aux groupes discontinus de mouvements des formes

spatiales simplement connexes dont les autres formes spatiales
sont les domaines de discontinuité, nous n'avons de résultats
complets que pour les espaces à deux et à trois dimensions. Pour
les formes à trois dimensions on connaît à fond les formes

spatiales sphériques et euclidiennes 1, alors que nous n'avons

que des exemples de formes hyperboliques 2.

C'est la notion de surface de Riemann qui a posé le problème
des formes spatiales: il suffit d'exiger de la représentation
conforme du voisinage d'un point qu'elle soit en plus congruente.
Mais le rôle profond du problème de formes spatiales ne repose
pas sur cette relation avec la théorie des fonctions; au contraire,
il est en relation avec le problème cosmologique de l'espace;
on peut en effet se demander à quel type de variété l'espace de

notre intuition et de la physique appartient Le rôle privilégié
qu'a joué la métrique sphérique, euclidienne et hyperbolique
et qui d'ailleurs paraissait arbitraire se voit éclairé du même

coup. Car ces trois variétés sont justement les seules variétés
simplement connexes où l'on puisse faire de la géométrie au sens

ordinaire, c'est-à-dire les seules variétés qui admettent un groupe
continu de transformations topologiques respectant les conditions

de mobilité de Lie-Helmholtz.

7. — Variétés-groupes.

Une variété à n dimensions 5DÎ est dite groupe continu
lorsque, à chaque couple de points A et B donnés dans cet ordre

1 H. Hopf, Zum Clifford-Kleinschen Raumproblem, I. c.
W. Threlfall u. H. Seifert, Topologische Untersuchung der Discontinuitäts-

bereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes.
I. Math. Ann., 104 (1'930), p. 1-70; II. Math. Ann., 107 (1932), p. 543-586.

W. ITantzsche u. H. Wendt, Dreidimensionale euklidische Raumformen. Math
Ann., 110 (1934), p. 593-611.

W. Nowacki, Die dreidimensionalen geschlossenen und offenen euklidischen
Raumformen. Comm. Math. Helv., vol. 7, 1934, p. 81.

2 C. Weber u. H. Seifert, Die beiden Dodekaederräume, Math. Ztschr., 37 (1933),
p. 238-253.

F. Loebell, Beispiele geschlossener dreidimensionaler Clifford-Kleinschen Räume
negativer Krümmung. Ber. Sächs. Akad. Wiss., 83 (1931).
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correspond un troisième point G, le produit de A et B. Nous
écrirons

C — AB

Cette multiplication doit satisfaire aux axiomes ordinaires du

groupe, c'est-à-dire à l'unicité, l'associativité, l'existence de

l'élément unité et de l'élément inverse. Cette liaison devra être
de plus continue, c'est-à-dire que C variera d'une manière
continue, s'il en est de même de A et B, et si A varie d'une
manière continue, il en sera de même de A-1. Le groupe est dit
d'ordre n si la variété est à n dimensions.

Les rotations rigides de l'espace euclidien autour d'un point 0
sont un exemple d'un groupe continu. Une rotation est ici
déterminée par un axe orienté, c'est-à-dire par un rayon issu
de 0, et par un angle de rotation 9, variant de 0 à n. Si nous
portons sur le rayon le segment OP cp nous représentons par là
les rotations autour de 0 biunivoquement sur les points de la
sphère massive de rayon m La biunivocité ne fait défaut que
pour les points frontières de cette sphère: Comme à des points
frontières diamétralement opposés correspondent des rotations
d'angle n autour du même axe de sens opposé, il faudra, puisque
ces deux rotations sont confondues, identifier ces deux points
frontières, pour obtenir la variété-groupe 3JÎ. Ce procédé
d'identification bien connu nous conduit à l'espace projectif x. Le groupe
continu se présente ici comme l'espace projectif ^3.

Il est d'ailleurs possible de considérer le groupe continu comme
un groupe de transformations de notre variété-groupe. A cet
effet nous faisons correspondre à A la transformation

X — XA

X étant un point variable. Ceci est une correspondance biuni-
voque. Car tout point Y est l'image bien déterminée d'un point,
à savoir du point YA_1. Cette représentation est de plus sans

points fixes, pourvu que A ne coïncide pas avec l'élément unité
du groupe. Car de X XA nous tirons A E. Le groupe de

transformations ainsi défini est holoédriquement isomorphe au

groupe donné 9JI. Cette interprétation du groupe est analogue

1 On trouve la démonstration p. 54 du cours de Topologie cité plus haut (p. 233),
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à la représentation bien connue, dite régulière, d'un groupe
d'ordre fini r par un groupe de permutations de r indices;
les permutations de la représentation régulière sont, comme
on le sait bien, les lignes ou les colonnes du « carré de Cayley »

du groupe. La seule différence est qu'il s'agit ici d'un groupe
dont les éléments forment un ensemble continu.

Il existe des variétés qui ne sont pas des variétés-groupes.
Il est facile de voir que les variétés non orientables nous en
donnent un exemple. Car, soit w un chemin fermé partant du

point unité E de la variété-groupe et © une petite sphère de

centre E, nous pourrons faire varier © le long de w en y appliquant
les transformations correspondant aux points de w. De retour à

notre point de départ, la transformation redevient l'identité;
l'orientation de © ne s'est donc pas renversée pendant le parcours
de la sphère ©. Deuxièmement, le groupe continu ne possédant
pas de points fixes, la variété doit admettre des représentations
en soi sans paints fixes, voisines de l'identité. C'est pour cette
raison que la sphère à deux dimensions ne peut être une variété-
groupe. Une troisième condition nécessaire est que le groupe
fondamental d'une variété-groupe soit abélien. En effet, soient a
et b deux chemins fermés partant du point E ; si nous effectuons

alors sur a la suite des transformations correspondant a tous
les points de 6, la courbe a revient à sa position primitive,

l

Fig. 8.

L'Enseignement mathém., 34me année, 1935.
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puisque la transformation revient à l'identité. Le chemin a

peut donc être déformé dans le chemin bab~{. Mais ceci signifie l.

que les classes de chemins représentées par a et b sont permutables

(fig. 8). Donc, parmi les surfaces fermées à deux dimensions

le tore orientable entre seul en ligne de compte comme
variété-groupe.

8. — Groupes de recouvrement.

Nous allons appliquer aux groupes continus la notion de

recouvrement et montrerons que toute variété de recouvrement
2K d'un groupe continu est encore un groupe continu 3Jt. II
est nécessaire pour la démonstration de définir le produit de

deux points A et B de 3JÎ, ce que nous ferons de la manière
suivante: Nous choisissons un point E au-dessus de E et relions C

E à A par un chemin a. Soit a le chemin obtenu en calquant a

sur 9JI et soit A son point final. Au-dessous de B se trouve un
point B. La transformation X —XB qui lui correspond trans- :|

forme le chemin a en un chemin a' qui conduit de B à AB (fig. 9). |

A AB

£ B

Fig. 9.

Soit a' le chemin au-dessus de a' et partant du_point B. C'est

son point final que nous appellerons le produit C AB. Cette
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définition est indépendante du choix de a: si au lieu d'effectuer
la construction avec a on partait d'un chemin oc, allant également
de E à A, les deux chemins â-1ôc et a-1 a et par conséquent aussi
le chemin a'-1 oc' qui est engendré de a-1 oc par la transformation B
seraient des chemins fermés. Ces deux derniers chemins étant
déformables l'un dans l'autre, puisque toute transformation B

est une déformation, les deux chemins de recouvrement, a-1 oc

et â'_1ôV sont aussi déformables l'un dans l'autre. Puisque ä-1 öc

est fermé, â/_1â' le sera aussi. Donc, le point final de a' est le
même que celui de oc'. Le produit C est donc défini de façon
univoque.

Pour démontrer complètement que SJJÎ est une variété-groupe,
il faudrait encore prouver que les axiomes du groupe sont satisfaits

pour la multiplication des points de 3JÎ que nous avons
introduite. Nous ne nous y arrêterons pas.

Soit 9JÎ la variété de recouvrement universelle de Wl. Si à tout
point X de 9JÏ nous faisons correspondre le point situé au-dessous,
X de 9JÏ, nous faisons par là une représentation homéomorphe
(mériédriquement isomorphe) du groupe 5DÎ sur le groupe 9Jt. Car
le produit A B est au-dessus du produit A B. D'après le théorème
d'homéomorphie de la théorie des groupes tous les points de 9JJ,

situés au-dessus de l'élément unité E de 3Jt, forment un sous-

groupe invariant sJt de 9JÎ, et 3JÏ est le groupe facteur

m/Yl

Les points situés au-dessus d'un point A de 9JÎ forment une
classe de restes de ce groupe facteur. On a donc

m 1 + âïÂ + +

où A est un certain point au-dessus de A, B au-dessus deB, etc.
Les classes de restes forment un ensemble continu correspondant
à l'ensemble continu des points de 5DL 9£ est par contre un
ensemble fini ou dénombrable d'éléments de 9JÏ.

La recherche de tous les groupes continus revient maintenant

1° à trouver tous les groupes simplement connexes et

II0 à déterminer leurs sous-groupes invariants discontinus.
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La dernière proposition se simplifie quand on se rappelle qu'un

sous-groupe invariant discontinu appartient nécessairement au
centre du groupe 5Jf. Le fait que SJÎ est un sous-groupe invariant
signifie que

X-1 Nx A N2

où Nx et N2 sont des éléments de et A un élément quelconque
de sJJi. Si on pose en particulier A E, on a N2 Nx. Si A varie
d'une manière continue alors que Nx reste fixe, N2 varie également
en une manière continue. Mais, puisque nous avions au début
N2 b* Nls il en sera toujours ainsi, étant un ensemble discontinu.

Nx est par conséquent permutable avec chaque point A de 9JÎ.

Le premier problème qui consistait à trouver tous les groupes
simplement connexes peut être encore réduit. D'après un théorème

de 0. Schreier1 sJJi est déjà complètement déterminé par
un voisinage arbitrairement petit de l'élément unité E. Un tel
voisinage de l'élément unité est dit un germe de groupe. Deux

groupes simplement connexes sont donc égaux dans toute leur
étendue aussitôt qu'ils possèdent le même germe.

C'est la classification de tous les germes de groupes qui constitue

le problème fondamental de la théorie de Lie. Il est vrai
que nous devrons encore faire certaines hypothèses de dériva-
bilité sur la variété-groupe, avant de pouvoir appliquer les
théorèmes de Lie. Un des «problèmes parisiens» de D. Hilbert2
consiste à décider si ces hypothèses sont nécessaires ou bien
satisfaites d'elles-mêmes. Ce problème a été très poussé ces

dernières années, mais non pas complètement résolu.
Nous admettons qu'il existe dans le germe du groupe un système

de coordonnées.

ai, a2 an

tel que les transformations du groupe possèdent des dérivées
continues du deuxième ordre. En vertu du premier théorème

principal de la théorie de Lie le germe du groupe peut être

1 0. Schreier, Die Verwandtschaft stetiger Gruppen im grossen. Abh. math. Semin.
Hamburg. Univ., 5 (1927), p. 233-244.

2 Sur les Problèmes futurs des Mathématiques, § V, Compte rendu du 2e Congrès
international des Mathématiciens, Paris, 1900, p. 78.
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engendré par n transformations infinitésimales. Dans notre

variété-groupe ces transformations seront données par vecteurs

U1;u2,...,un
1

;j attachés au point E h Nous considérons maintenant l'ensemble
ij de toutes les transformations infinitésimales du groupe; elles

y forment la gerbe de vecteurs de support E. La transformation
j qu'on obtient à partir de deux de nos vecteurs u et v par le
tj symbole du crochet appartient d'après le deuxième théorème
•

j principal de Lie encore au groupe.
j Revenons à l'exemple des rotations rigides de

l'espace euclidien 9î autour d'un point fixe 0. Un élément A de
j ce groupe est représenté analytiquement par une transformation
j orthogonale des coordonnées cartésiennes x2, x3:

;
3

xi2
j k=i

j Le groupe étant d'ordre 3, les 9 coefficients cLik dépendent de
j 3 paramètres a1? a2, a3. On peut choisir comme tels les trois
j composantes du vecteur que nous avons adjoint à la rotation,
j a1? a2, a3 sont donc proportionnels aux cosinus directeurs de l'axe
I et la longueur du vecteur est égale à l'angle de rotation 9. Les

-j paramètres sont alors des coordonnées de la variété-groupe, au
moins dans le voisinage de l'élément unité (%, a2, a3 (0, 0, 0).

:'j Nous n'avons pas besoin d'exprimer les par ax, a2, a3 ni à

[v donner explicitement la transformation de la variété-groupe
M qui correspond à l'élément A (a1? a2, a3).

Nous considérons le sous-groupe d'ordre 1 qui contient toutes
1 les rotations autour d'un axe fixe. Le sous-groupe se figure par

un segment de droite

1 cq u{t a\ + al + a\ fÇ 7r2

I de la variété-groupe La transformation infinitésimale qui
I engendre ce sous-groupe est donnée dans la variété-

1 Des caractères gras désigneront dans ce qui suit des vecteurs.
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groupe ^3 par le vecteur u à composantes

da^
dt

et dans l'espace euclidien 3Ï par la « rotation
infinitésimale »

dxX __ dOCn
~tr~ ^2*^3 ~ Xj 5 Adx =: U%XX X2

dx3 „U%Xi UXX2 — Xg

Le sens de ces équations est de donner, jusqu'aux membres
d'ordre (dt)2 près, les composantes du déplacement, dx± X1dt,
etc. d'un point, aussitôt qu'on connaît ses coordonnées xl7 x2, x3
et les valeurs da± uxdt, da2 u2dt, da3 u3dt des paramètres
correspondant à la rotation, dite infinitésimale.

Soit maintenant

.dxt
—- 3=3= p3^2 — v2x3 \1 etc.

une autre rotation infinitésimale. L'opération du crochet donne
la rotation infinitésimale

dxi y /ôXj y ôYi x \

— (wgCi — iq.e2)^2 — (%?3 — vxuz)xz etc.

Cette rotation infinitésimale est représentée dans ^3 par le

vecteur.
dax— (Wgp2 — M2p3) ^ etC.

C'est un vecteur que nous désignerons par

W — U X V

Choisissons pour engendrer notre groupe, les trois vecteurs

Ux «= (1, 0, 0) U2 (0, 1, 0) U3 (0, 0, 1)
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correspondant à trois rotations infinitésimales autour de trois

axes orthogonaux. Alors, on a

Ui x u2 u3 u2 x u3 ux u3 x ux u2

Ce que notre exemple nous a enseigné, c'est comment deux

vecteurs u et v déterminent complètement un troisième vecteur

que nous pourrons appeler le produit de u et v. Ce produit satisfait
aux règles de calcul suivantes :

U X V — V X u

(u x v) x w + (V x w) x u + (w x u) x v 0 (Identité de Jacobi).

Ce sont des formules douées d'un sens bien connu du calcul
de vecteurs dans l'exemple des rotations rigides. Mais elles
subsistent encore pour un groupe quelconque.

D'une manière tout à fait générale, nous appellerons anneau
infinitésimal toute gerbe de vecteurs dans laquelle on a défini
une multiplication satisfaisant à ces deux conditions. Il est clair
que la classification de tous les anneaux infinitésimaux possibles
est une affaire purement algébrique.

Si ui sont les transformations infinitésimales engendrant le

germe du groupe il y aura alors ~^n (n — 1) relations

n

uix «s S
1=1

par lesquelles l'anneau infinitésimal est complètement déterminé.
Dans la théorie de Lie les c\k sont appelés les coefficients de

structure.
Supposons que nous ayons trouvé un anneau infinitésimal. Le

troisième théorème principal de Lie nous permet d'en tirer un
germe de groupe. Et de là on arrive à un groupe entier 9JI d'après
un théorème de E. Cartan, et par conséquent à un groupe
simplement connexe 9JÎ. Finalement, en appliquant à 9JÏ les sous-
groupes invariants discontinus nous trouverons tous les autres
groupes, ayant le même germe 1.

i Pour les §§7 et 8, cf. E. Cartan, La théorie des groupes finis et continus et
l'Analysis situs, Mémorial des Science s mathém., XLII (1934) et E. Cartan, La
topologie des espaces représentatifs des groupes de Lie, Conférence faite le 22 octobre
1935 dans le cycle des Conférences internationales des Sciencss mathématiques
organisées par l'Université de G-enève. L'Enseignement mathématique, 1936.
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9. — Groupes à deux paramètres.

Appliquons maintenant notre procédé de construction aux
groupes d'ordre 2 h Un groupe d'ordre 2 est engendré par deux
transformations infinitésimales u et v. D'après le deuxième
théorème principal, il existe une relation de la forme

u X V -- au ~r ßv ;

oc et ß sont les constantes de structure que nous venons de désigner

par c\k dans le cas des groupes d'ordre n. On peut satisfaire
dans ce cas simple aux deux conditions de l'anneau infinitésimal
pour tout couple oc, ß. Il suffit de poser v X Ua — ocu — ßv,
et l'identité de Jacobi est satisfaite d'elle-même.

De combien de manières essentiellement différentes peut-on
choisir a et ß Nous verrons qu'il n'y en aura que deux.

Ier cas: Les deux coefficients sont nuls: oc ß 0.

On a alors
u X v 0 (I)

IIme cas: Un coefficient au moins, disons oc, est différent de 0.

Il est alors possible d'introduire de nouveaux vecteurs
fondamentaux

vu' — au + ßv v' —
a

En les introduisant dans la relation de définition de l'anneau
infinitésimal, il vient

u' X v' U X V au + ßv u' (II)

(I) et (II) sont donc les seuls anneaux infinitésimaux
essentiellement différents. De même il n'y aura donc que deux groupes
d'ordre 2 simplement connexes, différents.

On trouve aisément pour le premier une réalisation par des

transformations linéaires. Le fait que le symbole du crochet
s'annule exprime la permutabilité des transformations infi-

i B. yon Kerékjârto, Geometrische Theorie der zweigliedrigen kontinuierlichen
Gruppen. Abhandl. Math. Semin. Hamburg Univ., 8(1930), p. 107-114.
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nitésimales de base, u et v. Il s'en suit que tout le groupe est

abélien. Or, les translations du plan

x' x + a

y' y + b

forment un groupe abélien d'ordre 2.

Et cette réalisation est déjà la réalisation régulière que seule

nous avions jusqu'ici considérée. Le plan des a et b est la
variété-groupe, a b 0 l'élément unité.

Pour obtenir une réalisation du deuxième cas rappelions-
nous le groupe suivant de transformations linéaires à une
variable

x' — ax + b (a > 0) (IT)

Ce groupe d'ordre 2 n'est pas abélien; il est donc différent du

groupe des translations, et comme il existe au plus deux groupes
simplement connexes d'ordre 2, le groupe considéré doit
appartenir au deuxième anneau infinitésimal. Ceci se voit
d'ailleurs immédiatement. Car comme transformations
infinitésimales engendrant le groupe on peut choisir deux
transformations qui sont données sur la droite des x par

dx v dx
ÄT x X' dF

1 Y-

Le symbole du crochet en déduit la transformation
infinitésimale

(XY) ~Y— — X 1 Y
bx bx

La variété-groupe est le demi-plan des a, b (a > 0), et l'élément
unité E le point a 1, b 0. Les vecteurs de support E
correspondant aux deux transformations infinitésimales, nous les
désignons par

— v et u

pour tomber directement sur la forme (II):

— (VXU)=UXV=:U
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Il n'y a dans ce groupe, l'élément unité excepté, aucun
élément permutable avec tous les autres. Le centre est formé
du seul élément unité, il n'a donc pas de sous-groupes
invariants discontinus. Par conséquent, pour le groupe de germe (II),
le groupe simplement connexe est le seul groupe qui existe.

Il en est autrement du cas (I). Ici, le sous-groupe invariant |
discontinu peut être formé ou bien du seul élément unité, ou jj

bien du groupe discontinu de translations dans une, ou dans deux *

directions. On arrivera respectivement aux domaines fonda- |
mentaux des fonctions ou simplement périodiques ou doublement |
périodiques. Le groupe facteur relatif au sous-groupe invariant |
discontinu sera dans les deux cas $

x' x + a (mod 1) 1 £
f groupe du cylindre |

y' x + b J |
;

OU I
x' x + a (mod 1) 1 |

\ translations du tore. I
y' y + b (mod 1) J |

La variété-groupe est dans le premier cas un cylindre infini |
dans les deux directions, dans le deuxième le tore. Nous avons |
vu plus haut que le tore était la seule surface fermée susceptible 1

d'être une variété-groupe; nous venons de voir qu'en effet le tore j

est une variété-groupe. Il y a donc en tout trois groupes différents
de germe (I).
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