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SUR LES DERIVEES POLYDIMENSIONNELLES
D’UNE FONCTION DE PLUSIEURS VARIABLES

PAR

N. Croranescu (Bucarest).

1. — 11 est évident que lorsqu’on veut étendre aux fonctions
de plusieurs variables réelles la définition de la dérivée d’une
fonction d’une seule variable, il faut considérer la limite du

rapport f(M):_f(MI)

pour M — M suivant une direction arbi-

traire, ce qui conduit a la notion de dérivée (linéaire) suivant
une direction donnée, les dérivées partielles apparaissant comme
les composantes suivant des directions privilégiées 1. Mais,
avec ¢a, on n’a pas I'impression d’avoir épuisé toute la richesse
de définitions que peut offrir une fonction de plusieurs variables.
-C’est M. K. BO6GEL 2 qui a montré comment 1l faut étendre aux
fonetions de plusieurs variables la définition de la dérivée en
introduisant les dérivées polydimensionnelles d’une fonction.
Nous allons exposer succinctement la théorie de M. Bogel,
en modifiant légerement sa notation. Sans insister sur les défini-
tions et les conditions d’existence de dérivées polydimension-
nelles, qui sont considérées en elles-mémes dans les Mémoires de
M. Bogel, nous supposerons dans la suite que les fonctions que
nous considérons ont tant des dérivées partielles ordinaires qu’il
est besoin de supposer, car nous avons surtout en vue une

1 Nous avons montré quel parti on peut tirer de la considération systématique de
dérivée suivant une direction arbitraire dans un article inséré dans L’Enseign. mathém.,
XXX, p. 50.

2 K. Boboer, Mehrdimensionale Differentiation von Funk.mehrererreeller Verander-
lichen, Journal fiir die reine und angew. Mathem., B. 170, S. 197 et B. 173, S. 5.
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généralisation trés simple de la notion de dérivée polydimension-
nelle de M. Bogel, qui est dans le méme rapport avec cette
derniére notion que la dérivée suivant une direction arbitraire
avec les dérivées partielles ordinaires. On introduit ainsi certaines
expressions différentielles linéaires qui comportent une définition
intrinseque.

2. — Soit M (x4, ,, ..., x,) un point de 'espace E, & n dimen-
sions rapporté a un systeme Ozy z, ... z, d’axes rectangulaires.
Au point M considérons un n-édre Mz, x, ... z,, paralléle et de
meéme sens que Oz, z, ... z, et désignons par:

LM (z;) la variété linéaire & une dimension (droite) passant
par M et // Ox;;

L (*®z;, #,) la variété linéaire & deux dimensions (plan) passant
par M et // Ox; z;;

L (24, Zay, ..., Zq,) la variété linéaire a k dimensions passant
par M et appartenant au n-édre Mz, , ... z,,.

De cette maniére on attache au point M en tout:

n

DG = 2" —1

1

variétés linéaires, la derniére étant E, lui-méme.
Considérons la variété L% (g, u,, .., Z4) et soit

/ ’
M@ ,z ,.. %

. R ,
ay? Loy un autre point de L™ par conséquent les

)
%
autres n—k coordonnées de M’ étant celles de M. La totalité des
points P (&, &, ..., £,) situés dans L™ (2, , 24, ..., Zq,) et dont
les coordonnées &, , Eogs oo Euk satisfont aux inégalités :
z, £, = x;i i=1,2, .. %,

ou bien les inégalités inverses, déterminent ce qu’on appellera
un intervalle k-dimensionnel dont M et M’ sont les extrémités,

et qui a en tout 2" sommets. Désignons cet intervalle par (M, M')
et sa grandeur par:

kR

M = (2, — a,) (2, ~2,,) - (=, —a,,)
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avec son signe, qu’on regarde comme donnant Porientation de
(M, M'),. Lorsque k£ = n on a I'intervalle (M, M’),, qui est non-
dégénéré. Soit f (z,, z,, ..., x,) ou f (M) une fonction de point
douée de dérivées partielles jusqu’a un certain ordre (<< n) dans
) — F(M)
MM’

pour M’ — M, conduit lorsque M’ appartient & L (z,) a la

of

dérivée partielle e Montrons avec M. Bogel comment on
C
R

une certaine région R de E,. La limite du rapport FM

peut attacher a f(M) une dérivée relative a un intervalle poly-
dimensionnel.

Supposons pour cela que le point M" appartient a la variété
L™ (2g,, ..., 4,). Soient 8§ (m = 1,2, ..., 2" les sommets de
Pintervalle (M, M), les points M et M’ étant aussi des points
S%). Considérons I'expression:

ok
AP M) = N e, f(8W), (1)
m=1

ou g,, = 4 1 selon que le nombre d’arétes qui séparent le sommet
S® du sommet M’ pour une circulation déterminée le long des
arétes du polytope (M, M), est paire ou impaire.

AW {(M) est une fonction additive d’intervalle, comme on voit
facilement. La limite du rapport:

A®) 7 (M)
B our M’ — M 2
tout en restant dans LY (z,,, ..., 2,,) est par définition, lorsqu’elle

existe, la dérivée k-dimensionnelle de /(M) suivant L™ (z,,, ..., 2,,),
et qu’on désignera par la notation:

o" £ (M)
I bt S 2]
> LK (xq, ’x“k) 3)
I1 y a en tout C* dérivées k-dimensionnelles.
3. — Nous allons compléter les résultats de M. Bogel en

remarquant que 1’on peut étendre la notion de dérivée poly-
dimensionnelle d’une fonction de plusieurs variables de la méme

EIEERSL R S T E
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maniére que la notion de dérivée partielle, en donnant des orien-
tations arbitraires aux variétés linéaires L™ attachées & chaque
point de E, .

Pour cela attachons & chaque point M de E, un n-édre qui
se déduit de Oz, z, ... z,, par le déplacement euclidien le plus
général, et non seulement par une translation comme dans
le cas de M. Bogel. Soit MX, X,..X, ce n-édre et
PO (@, Tagy -y To,) la variété linéaire a k dimensions déter-
minée par MX, , MX,,, ..., MX, . Considérons le point M’ de
L8 (@, oy ey Zy,) et supposons qu’il n’appartient pas & une
variété d’ordre inférieur; on peut attacher aux points M et M’
P'intervalle orienté (M, M’), ou sil’on veut un polytope k-dimen-
sionnel qui est complétement déterminé si MX,; X, ... X, est
donné. Si ’on forme Dlexpression (2) pour cet intervalle, on
définit ainsi une dérivée k-dimensionnelle orientée suivant une
variété linéaire £2 attachée & M et d’orientation quelconque,
ou si I’on veut, une dérivée suivant plusieurs directions donec
poly-directionnelle. Nous allons former ces expressions en suppo-
sant que f(M) admet des dérivées partielles (unidimensionnelles)
jusqu’a I'ordre n, en insistant surtout sur les cas n = 2 et n = 3.

4. — Lorsque n = 2 la seule dérivée nouvelle qui s’introduit
de cette manicre est la dérivée superficielle orientée de f(z,y),
limite du rapport:

f(x/’y’);‘—f(xl’ yl)_f(x2’ y2)+f(m’y) ([.E)
|| MM ] ’

01‘1 M((E, y)v Ml (x17 y1)7 M2 (xza Z/z), M’ (x’a y,) SO].T['/ les Sommets
/N

d’un rectangle attaché & M et tel que (MM,, Oz) = o, o étant

une certaine fonction donnée de M. Si 'on pose: MM, = &,

MM, = k. On a alors:

' =2 + hcose —ksino ; Yy =y + hsin ¢ + kcos ¢ ;
gy =a + hcoso ; Y1 =y + hsino

Xy = & — ksin ¢ ; Yo =y + ksino ; | MM’ || = hk .
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En introduisant ces expressions dans (4), on trouve en faisant
usage de la formule de Taylor, que 1’on a:

(2)
LAy i,y
hk = 0 hk bl(k)( . y)
_ 0z, y) 1 [o%f 2f
_*a‘ggcos2@——2—(gﬁ—oy SlIchp (5)

Dans le cas ¢ = 0 ou ¢ = 7™ considéré par M. Bogel cette

B
dérivée se réduit a: T ITh On constate que cette expression peut,

étre écrite symboliquement:

o2 f(x, y) (bf of . < of . of
\ o e s X _
SO g = {55 C05 9 4 >y sin cp) S\ sine -+ >y cos <p>

a condition de remplacer dans le produit symbolique du second

of  of o*f

membre 5. ete. par —- 70y etc,... Comme les dérivées de

o0y
chaque parenthése sont les dérivées de f(zx, y) suivant les direc-
2 f(z, y)

5 sous les formes
0 £, y)

tions MM,, MM, on peut aussi écrire

suivantes:

e, y)  _ dflz,y) , dflx, y) (5")
(x, y)

dl. . dl =
| 2
__Elﬁi‘g_c_’_g),w a* (df ({E Y ) < df > - 5///)

> L2 (z, y) dl‘ dl =
2
sous cette derniére expression & condition de considérer dans la
seconde dérivation suivant [, ou lcp—l— =, @ comme indépendant
2
de M.
De (5) on déduit facilement que si

?flz, y)
0 2P (2, y)
point M pour au moins deux rectangles distincts, alors f(z, y)

est de la forme a(2? + y?) + bx + cy + d.

= 0 en chaque

5. — On peut généraliser encore plus ce résultat: attachons
pour cela & chaque point M un parallélogramme MM,M’M, tel
que:

AN /N
(MM17 Ox) - ¢, (MM27 Ox) - (‘I”
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et cherchons dans ce cas la limite de Pexpression (4) lorsque
M’ — M. On trouve facilement que cette limite, qu’on désignera

o2 f(x, y)

t.
, Y5 @, 4})63

par la notation T

?flz,y) _ 1
Oz, ¥ @, q)) sin ($ — o)

lbzzbfy n (e + ¢) + 5 C0s @ cos g + % sin ¢ sin ¢] (6)

ou sous forme symbolique:

iz, y) 1 daf o df _ 1 | d*(ﬂ) o)
oz, ¥ ¢, b sin (¢ — @) dly - dly  sin (¢ — @) dly\dL

avec la méme convention du paragraphe précédent pour le

symbole 7—
Si Ion pose: tg o = a(z,y); tg ¢ = b (2, y), on déduit de (6)
que:

0((17, Yy, ¢, kl))ﬁb——a

*fle,y) 1 [D—DZJ;Jr( + b) t’zgera D;’;} (6”)

ce qui montre que les caractéristiques de I’équation différentielle
linéaire aux dérivées partielles du second ordre:

2/, y)
=0 (7
oz, y; ¢, 9) )
ont pour équations:

dy _ LYy

@"“a(xsy)a dx_“b(x’y)'

Inversement, le premier membre de toute équation différen-
tielle linéaire aux dérivées partielles du second ordre & carac-
téristiques réelles et distinctes, peut étre mis sous la forme (7),
¢'est-a-dire qu'on peut lui donner une définition directe.

6. — Sil'on passe aux fonctions de trois variables, les dérivées
qui s’introduisent ainsi sont les dérivées superficielles et spatiales.
Soit MXYZ le triedre attaché au point M et (o, B, v; o', B/, v';
a”, B”, ¥") ses cosinus directeurs par rapport a Ozyz. Construi-
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sons sur ce triedre un parallélépipéde dont M’ soit le sommet
opposé a M. Cherchons la dérivée de la fonction f (z, ¥, z) suivant
le rectangle MM;M,M; du plan MXY. Soient &, k, [ les coordon-
nées de M’ par rapport & MXYZ. Alors:

My(x + ah,y + Bh, 2 + vh) , My(x + o'k, ...)
My{z + ah + o'k, ...

et on trouve facilement que la limite de I’expression:

A(z)f(x s Y, 3) _ (M) — f(M;) — f(M;) + f{M) (8)
hk hk

pour A2k% — 0O est:

fle, y, z) 0%
0 2D (x, y) " ou

oo Ly Tl (a4 g

ou d’une maniére symbolique:

Rile, g, 8) _ (L 0F  g0f L ) (2, g, o
bﬁ@)(x, y) < +B + z) . ( ox BOy sz)

_ af  df _ d* [ df :
T, " dl, dly<Ell_x>' )

De la méme maniére on trouve les expressions des deux autres
dérivées superficielles:

*flx, y, 2) o Ol y, 2
0 2R (y | 2) 02 2z, 2)

Pour trouver l'expression de la dérivée spatiale de f(x, y, z)
suivant le parallélépipede MM, M,M;M ,M'M_M;, c’est-a-dire rela-
tive a l'intervalle (M, M’); défini par M’ et le triedre MXYZ,
écrivons l’expression:

A (M)
hkl

sous la forme suivante:

APy [Af)f(M’) AEQ)J‘(M)J
== 7 —_— |,

Rkl  hk Rk
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AP (M) étant Pexpression (8) relative & la face MXY et AP (M)
étant une expression analogue relative & la face parallele.

Comme la limite est indépendante, lorsqu’elle existe, de la
maniére dont A, k, | — 0, faisons d’abord Ak —- 0. Comme,
d’autre part:

T LI {1 ¥

hE =0 hk 0 22 (z, )
Ai‘z) f (M) _ D2 f(Ml_4

hk+0  hk 0 L2 (2, y)

M, étant le sommet situé sur MZ du parallélépipéde, il en résulte
que :

AP ar M)\ a* df (M) (1)
Jm e = dlz< > £ (5 y)> — [dl Tdl |
ou sous Pautre forme symbolique:

flz,y, 2 _ ,0f of L0
Y e R G AR

: ( f+ B f ;é) X (a’/%—%— B”O; + y"0f> - ()

Dés lors, il est facile d’écrire dans le cas général I'expression de

o) (M)
0 f(h) (q:al, cee s xuk)

pour une fonction ayant des dérivées partielles des £ premiers
ordres, en décomposant au besoin Iexpression de A®f(M) qui
contiennent 2" termes en deux expressions contenant chacune
2%1 termes, et procédant comme plus haut. On peut, par consé-
quent, écrire:

o) f (M) o d¥ ( d* (df(M)> >
_ _ )
b,ﬁ( )(qu’ - a“k) dlx " dlx dlxul

8 “p—1

en regardant dans les dérivations successives les divers cosinus
directeurs comme indépendants de M. |

Nous n’insistons pas ici sur les conséquences qu’on peut tirer
relativement aux équations aux dérivées partielles & caracté-
ristiques réelles. |
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