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SUR LA MESURE DES GRANDEURS1

PAR

Henri Lebesgue, Membre de PInstitut (Paris).

VII. — Intégration et Derivation.

94. — La théorie des grandeurs qui constitue le précédent
chapitre avait été préparée par des recherches de Cauchy, sur ce

qu'il appelait des grandeurs concomitantes, par les travaux
destinés à éclaircir les notions d'aire, de volume, de mesure,
aussi par des études sur les opérations fonctionnelles linéaires;
mais c'est à l'occasion de l'intégration des fonctions les plus
générales qu'elle a été définitivement édifiée par la collaboration
de nombreux savants. Ceci ne doit pas surprendre, car nous
avons vu, dès l'abord, que calcul infinitésimal et théorie des

grandeurs avaient certains buts communs; d'autre part, en se

plaçant dans le cas le plus général, c'est-à-dire dans celui où l'on
part du moindre nombre de prémisses, on ne peut plus raisonner

que sur ce qui est essentiel, fondamental, dans la question et on a

quelque chance d'en éclaircir le point de départ. Avoir fourni
cette théorie élémentaire des grandeurs sera peut-être, après

tout, le plus substantiel des résultats des travaux sur l'intégration

des fonctions discontinues.
Du point de vue pédagogique auquel nous nous plaçons ici,

la théorie des grandeurs doit influer sur la présentation des

opérations d'intégration et de dérivation. L'exposé qui va être
esquissé est fait en vue d'étudiants qui entendent parler pour la
première fois de ces opérations fonctionnelles prises dans leur

i Voir L'Enseignement mathématique, XXXIe année, p. 173-206. — XXXIIe année
p. 23-51. — XXXIIIe année, p. 22-48; p. 177-213; p. 270-284.
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sens général; certains des paragraphes antérieurs (72, 75 à 77,

82) étaient d'ailleurs relatifs à l'enseignement à donner aux
mêmes étudiants de Facultés. Nous n'indiquerons que le début
de l'exposé, en nous préoccupant à peu près uniquement du

fond; dans un enseignement véritable on aurait à prendre bien
des précautions de forme et, par exemple, on ne s'occuperait

pas dès l'abord de l'espace à n dimensions.
On a vu que, parmi les nombres considérés par les physiciens,

certains étaient attachés à des points, certains autres à des corps
étendus, d'où deux notions mathématiques: fonctions d'une ou
plusieurs variables, grandeurs. Tant qu'ils sont déterminables

physiquement, ces nombres ont une certaine continuité de façon
qu'à deux points ou deux corps pratiquement indiscernables
soient attachés le même nombre. Nous aurons tout d'abord à

traduire ces faits physiques en énoncés purement logiques.
Nous aurons aussi à examiner quel emploi les physiciens font

des nombres qu'ils déterminent et, pour cela, nous devons porter
notre attention sur ce que les physiciens appellent une grandeur
dérivée.

Considérons un corps C, les physiciens lui attachent une
masse M, un volume V et une densité (ou densité moyenne) 8.

Les deux premiers nombres se déterminent séparément
expérimentalement et le troisième en résulte arithmétiquement par la
formule de définition :

on dit que la masse et le volume sont des grandeurs directement
mesurables et la densité une grandeur dérivée pour souligner la
différence entre ces nombres. On remarquera que, dans la phrase
précédente, le mot grandeur est correctement employé (au sens
du chapitre précédent) quand on l'applique à la masse et au
volume et incorrectement pour ]a densité; il est clair, par
exemple, que si l'on partage un corps en deux corps partiels, la
densité du corps total n'est pas la somme des densités des corps
partiels. Nous éviterons donc cet emploi du mot grandeur.

Pour que M et V soient déterminés, il faut avoir choisi des
unités de masse et de volume, mais aucun choix nouveau n'est à
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faire pour S; c'est ce que l'on exprime encore en disant que
l'unité de densité est une unité dérivée. Un corps aura une
densité égale à 1, donc égale à la densité unité, en particulier si
M 1 et V 1; c'est là le sens d'une phrase telle que celle-ci:
quand l'unité de masse est le gramme, et l'unité de volume le
centimètre cube, l'unité de densité est le gramme par centimètre
cube.

La densité moyenne d'un corps est particulièrement intéressante

quand elle est la même pour tous les corps partiels que l'on
peut découper dans le corps donné, c'est-à-dire lorsque celui-ci
est homogène quant à la masse. Lorsqu'il n'en est pas ainsi,
les physiciens définissent une densité en chaque point P du corps:
c'est la densité moyenne des corps découpés autour de P et
assez petits pour être pratiquement homogènes. Nous aurons à

préciser mathématiquement l'opération qui fournit cette densité,
cette opération sera la dérivation. L'opération inverse, permettant
le calcul de M à partir de V et de 8, sera Vintégration.

Pour abréger, j'examinerai ici directement le cas de l'espace kk
dimensions, après avoir rappelé les éléments de géométrie à

k dimensions dont on a besoin.

95. — Sur une courbe, sur une surface, dans l'espace ordinaire,
un point est déterminé par une, deux, trois coordonnées; par
analogie, nous appellerons point d'un espace à k dimensions, un
ensemble de k valeurs numériques rangées dans un certain ordre,

xt7 x2, xk, ou, en abrégé, (x^. Les valeurs des sont dites les

coordonnées; quand on dit que ces coordonnées sont
rectangulaires, on exprime tout simplement que l'expression

sera appelée la distance des deux points (xj, (x[). Nous emploierons

uniquement des coordonnées rectangulaires.
Les formules

ai "h 2 X3 '
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seront alors dites formules du passage des coordonnées
rectangulaires (Xj) aux coordonnées rectangulaires (XJ si la distance

de.(^) à (x[) est toujours égale à celle de (XJ à (X-). Un calcul
immédiat donne les conditions d'orthogonalité sous la forme:

i=1 i=l
De là résulte, à la façon classique, que le déterminant À des

a\ est égal à ± 1, puis les formules du changement de coordonnées

résolues par rapport aux xi et enfin les conditions d'orthogo-
nalité sous la seconde forme.

Les formules du changement de coordonnées peuvent aussi
être considérées comme définissant une transformation
ponctuelle, celle-ci est dite être un déplacement quand A 1.

Supposons qu'il en soit ainsi.
Si on a a\ + 1, pour chaque valeur de i, donc, d'après les

conditions d'orthogonalité, a{ 0 pour i ^ /, le déplacement
est dit une translation.

Si on a a) + 1, pour une valeur de &, donc a{ 0 et a] 0

pour cette valeur de i, et si les a sont nuls, le déplacement
est appelé une rotation autour de l'axe de coordonnées
x1 x2 x{_{ xi+1 — xk — 0, appelé encore axe
des xt.

Deux figures qui se correspondent dans un déplacement sont
dites égales; on voit de suite que l'on peut passer d'une figure à
une figure égale par une translation et des rotations autour des
axes de coordonnées.

96. — Les inégalités:

ax xx bx

(^l) ~ 5

(23 [X]_, — #3 — Z>3 #2)

*2, ^-l) ^ ^ ^ Xk^)

dans lesquelles les fonctions qui figurent aux membres extrêmes
sont continues, définissent une famille de points (x^ constituant
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ce que l'on appelle un domaine simple. Si ces fonctions se

réduisent toutes (comme a1 et bf) à des constantes on a un intervalle
dont les k dimensions sont les k différences b{ — %. Par réunion
de domaines simples en nombre fini, on a des domaines plus
généraux. Mais la famille de domaines ainsi définie dépendra
des axes de coordonnées et même de l'ordre de ces axes; pour
avoir une famille de domaines indépendante des axes nous
conviendrons qu'un ensemble E de points sera dit un domaine
si, quel que soit s > 0, on peut trouver un domaine D£, au sens

précédent du mot domaine, ou un ensemble D£ de domaines en
nombre fini tel que les points de D£ appartiennent tous à E et

que les points de E n'appartenant pas à D£ soient à une distance
inférieure à s de points de D£; et tel, de plus, que D£ contient D£'

quand e est inférieur à z

Je n'insiste pas sur la démonstration facile de l'invariance de

cette famille de domaines quand on passe d'un système d'axes
à un autre. Je veux simplement signaler que, si l'on veut un
exposé logiquement complet, de telles précisions et démonstrations

sont indispensables même, ainsi que je l'ai déjà signalé,
quand on se limite aux espaces à trois dimensions au plus.

97. — Dans la famille précédente de domaines nous allons tout
d'abord isoler une famille particulière, celle des domaines

généralisant les domaines quarrables du plan et tels que:

oc) A chacun de ces domaines D est attaché un nombre positif
%(D);

ß) A un domaine formé par la réunion de deux autres exté¬

rieurs Vun à Vautre est attaché la somme des deux nombres

attachés aux deux domaines partiels ;
y) A deux domaines égaux sont attachés des nombres égaux ;
S) Ces nombres sont entièrement fixés numériquement quand

est fixé le nombre attaché à Vun d'eux.

Ces domaines seront dits quarrables d'ordre k; en abrégé,

quarrables.
Nous voulons d'ailleurs que cette famille contienne tous les

intervalles et tous les domaines constitués par la réunion d'intervalles

en nombre fini.
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Considérons un réseau total T d'intervalles I, Ix, I2, les

intervalles Ip étant définis par les inégalités

e,e, + 1

10P
1 10P

les eiétant entiers. Et, un domaine E étant donné, comptons les

intervalles Ip dont tous les points appartiennent à E, soit np

leur nombre, et les intervalles Ip dont certains points
appartiennent à E, soit Np leur nombre.

Alors si l'aire d'ordre k commune à tous les I est 1, celle des

I„ est nécessairement -A— et celle de E, si elle existe, est
P IQ/CP

comprise entre
Npp el

1QÄP 10ÄP
'

On a d'ailleurs

Np+i ^
10&P iofe(p+1) iofe(p+1) 10^p '

N n 1
donc si —2—,—- tend vers zéro avec — l'aire d'ordre He E ne

10 kv p

peut être que la limite commune des

N.
et p

10kp 10kp
'

Lorsqu'il en est ainsi, E est dit quarrable (Vordre k et la
limite se note ak(E).

98. — Nous venons de reprendre la définition du chapitre III;
il nous faut maintenant démontrer, comme nous l'avons fait au
chapitre III pour a2, que ak, qui vérifie évidemment les conditions

oc) et S), vérifie aussi ß) et y).
Les I qui ont été comptés dans les Np considérés sans être

comptés dans les np sont ceux qui contiennent à la fois des

points de E et des points n'appartenant pas à E, donc ce sont
ceux qui contiennent des points frontières [est point frontière
tout point (XJ tel que l'intervalle — e ^ ^ Xi + s con-

Ti'Unsp.ienp.mfint. mat.hAm.. nrmpp i
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tienne, quel que soit s > 0, des points de E et des points n'appartenant

pas à E]. De là, comme au § 27, résulte la proposition ß)

et aussi qu'un domaine formé par la réunion d'autres en nombre
fini est quarrable d'ordre k toutes les fois que les domaines

composants le sont.
Pour la proposition y) nous procéderons par récurrence en la

supposant établie pour l'ordre k — 1 ; on pourrait répéter mot à

mot ce qui a été dit au chapitre IV pour passer de a2 k a3; on
peut aussi, profitant de l'âge des auditeurs, faire un raisonnement
moins élémentaire, mais préparant l'opération d'intégration,
comme il suit.

99. — Nous allons démontrer que tout domaine simple de

l'espace à k dimensions est quarrable d'ordre A:, en supposant la
même propriété établie pour le nombre k — 1.

Soit E le domaine simple défini par les k doubles inégalités
écrites plus haut, soit E' le domaine simple kk — 1 dimensions
défini par les A: — 1 premières doubles inégalités. E' est dit la
projection de E sur l'espace coordonné x2l Xu—i.

Les intervalles Ip précédemment utilisés ont de même des

projections qui sont les intervalles 1^ du réseau T avec lequel
on évalue les aires d'ordre k — 1 dans l'espace coordonné
considéré. De sorte que les 1^ fournissent pour E' des nombres
n'v et Np tels que

(E'> - ïtfëûï et - a*-i <B'>

tendent vers zéro quand p augmente indéfiniment.
Les Ip fournissent pour E des nombres np et Np; considérons

tous ceux des Ip comptés dans les np ou les Np, ils forment deux
domaines Ep et Ep. Tous ceux ayant une même projection Ip
et faisant partie de Ep forment un intervalle Jp dont les k — 1

1
premières dimensions sont — et dont la kïème ne diffère de

7 0 0 0 ,0 0 0

bh (z a^j) — ah (» a;2,
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x°i7 xl, xùk__[ étant un point arbitrairement choisi dans cet Ip,
que de y)p au plus; rjp tendant vers zéro quand p augmente
indéfiniment. Quant à Ip c'est l'un quelconque des np intervalles
utilisés pour avoir une valeur approchée par défaut de ak_{(E').

Pour un tel intervalle Ip, les intervalles lp de Ep admettant cet

ïp pour projection, fournissent un résultat analogue, l'infiniment
petit 7}p étant remplacé par un autre Çp. Mais, déplus, Ep contient
des Ip ayant pour projections des Ip comptant dans les Np et
non dans les np. Ceux ayant un même Ip pour projection forment
encore un intervalle dont la &ième dimension est au plus M + £p,
M étant le maximum de

bîi(x1, x2, x^) — ak(x1, x2, Xk_{)

Donc on a:

les deux sommations étant étendues aux deux espèces d'intervalles

Ip que nous venons de considérer. Or ceci donne

(E') (»p + g + (M + y ;

inégalité dans laquelle le second membre tend vers zéro quand
p croît; ce qui prouve le théorème.

De plus, quand bk et au sont des constantes (cas d'un domaine
prismatique à génératrices parallèles à l'axe des Xk) la &ième

dimension des Jp est constante à t)p + ^ près et la somme des
&k(Jk) fournit la valeur

ak (E) (h — ak) x ak-i (E/) •

100. — De là résulte encore qu'un tel domaine prismatique
a une aire d'ordre k qui ne change pas dans une translation
quelconque ou dans une rotation autour de l'axe des xh. Nous allons
étendre ce résultat à un domaine quarrable d'ordre k
quelconque E.

A l'aide des intervalles Ip en nombre, np (ou Np) fournissant
une valeur approchée par défaut (ou par excès) de ak(E) formons
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une figure Ep (ou Ep). Une translation ou une rotation autour
de Taxe des Xk transforme ces figures en des figures égales &,
ëp, &p formées par les transformés des Ip, transformés qui ne sont
plus, en général, des intervalles, mais sont quarrables d'ordre k

l —et ont toujours un ak égal à Donc &p et &v ont mêmes a\

que Ep et Ep; et comme ak(Ep) — a&(Ep) tend vers zéro quand

p croît, il en est de même de dk(&p) — #&(<%), donc & est quar-
rable; de plus son ak est la limite de ak(&p) donc de afe(Ep); on a

ak(iS) aÄ(E).
La définition de l'aire d'ordre k est ainsi légitimée, puisqu'on

peut toujours passer d'un domaine à un domaine égal par une
suite de déplacements de la nature des précédents.

C'est de la famille des domaines quarrables que nous nous

occuperons uniquement dorénavant, encore qu'elle ne soit pas
la seule intéressante.

101. — La définition de l'aire d'ordre k a mis en évidence la
propriété de continuité qui fait que cette aire peut être atteinte
expérimentalement: A un domaine E nous avons attaché deux
figures Ep, Ep, constituées d'intervalles Ip; à Ep ajoutons tous
les Ip+g, q fixe, ayant des points dans Epsans être en entier dans

Ep. Si Ep se réduisait à un Ip, l'aire d'ordre A: de ces lp+q ajoutés
serait :

r- + -VI -(-)-m -\(i + -J-V-1
L10p ÎO^J \10p/ l\ 10V \

Donc, dans le cas d'un Ep quelconque, les Ip+g ajoutés ont une
aire d'ordre k au plus égale à

Pour q assez grand on aura donc ainsi une figure Ep telle que

dk(Ep) surpasse d'aussi peu que l'on voudra ak(Ep) donc, pour
p assez grand, a&(E), si E est quarrable. En enlevant de Eples
Ip+q contenus dans Ep et contenant des points frontières de Ep

on aura de même une figure Ep qui, pour p et q assez grands, sera
d'aire d'ordre k aussi voisine qu'on le voudra de a&(E).
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De plus tous les Iv+q contenant des points frontières de E font

partie de Ep et aucun n'appartient à Ep 1.

Considérons maintenant un domaine quarrable variable E„
tendant vers E ; c'est-à-dire que, dès que les conditions diffèrent
assez peu de celles pour lesquelles on recherche la limite, Ev est

contenu dans un domaine arbitrairement choisi contenant E à

son intérieur au sens strict (donc est contenu dans Ep) et contient

un domaine contenu au sens strict dans E (donc contient Ep).
Alors on a:

"*(EP) ^ ^ %(%)

Donc, si le domaine quarrable E est la limite du domaine quarrable

Ev, ak(E) est la limite de ak(Ev).

102. — Nous allons considérer les fonctions de domaine; les

domaines, qui joueront le rôle de la variable, sont les domaines

quarrables. A chacun de ces domaines, A, nous supposerons
attaché un nombre / (A), ce sera la fonction de domaine. De

plus, nous supposerons cette fonction additive, c'est-à-dire telle
que, si l'on divise A en deux domaines quarrables Ax et A2 on
ait:

/(A) - /(A,) + f (A2)

Nos nombres /(A) vérifient donc la condition ß); si, de plus,
ils étaient positifs, ce seraient des grandeurs attachées à des

corps figurés par les divers domaines quarrables. Ils sont aux
grandeurs, ce que les nombres figurés sont aux nombres positifs.
La quantité de chaleur qu'il faudrait fournir ou retirer aux
corps, pris dans leur état actuel, pour les amener à 0 degré est
une telle fonction additive.

Nous supposerons de plus ces fonctions continues ; c'est-à-dire
que si Av variable tend vers A, /(Av) tendra vers /(A); condition
nécessairement réalisée quand /(A) peut être déterminée
expérimentalement.

1 La nécessité de la considération de Ep et résulte de ce que tousles Ip contenant
des points frontières de E ne font pas nécessairement partie de Ep (car E n'a pas été
supposé fermé au sens de la théorie des ensembles) et que certains de ceux-ci peuvent
faire partie de Ep
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Une conséquence de cette continuité est que /(Av) tend vers
zéro quand Av tend vers zéro dans toutes ses dimensions,
c'est-à-dire est contenu dans un intervalle variable dont la plus
grande dimension tend vers zéro. En effet, si cela n'était pas,
on pourrait prendre des Av dont les dimensions tendent vers
zéro tels que /( Av) tende vers un nombre 9 ^ 0 et on pourrait
assujettir les points de A^, a avoir un point limite, soit P, de
coordonnées (#•). Alors, en subdivisant Av s'il est nécessaire, on

pourra supposer que, tout en conservant les propriétés indiquées,

pour chaque i tous ses points vérifient soit

^ 0 *x \ 0

S xi S01t

Imaginons que ce soit, pour chaque i, la première inégalité qui
convienne et soit D un domaine dont P est point limite et dont
tous les points ont des coordonnées supérieures A celles de P.

Alors le domaine D + Av aurait pour limite D et /(D + Av) ne
tendrait pas vers /(D), mais vers /(D) + 9.

Cette propriété des fonctions de domaine que nous
considérons et des grandeurs les différencie nettement des fonctions de

points: Si on cherche à réduire A à un point P, /(A) tend vers
zéro et non vers une fonction du point P, comme la densité en P

ou la chaleur spécifique en P. Nous allons obtenir maintenant
ces fonctions de points qui correspondent aux grandeurs dérivées
des physiciens.

103. -— Considérons une fonction /(A) et une grandeur continue

V(A), c'est-à-dire une fonction additive continue de domaine

qui, de plus, est positive. Le quotient a un sens; nous

l'appellerons la dérivée moyenne de / par rapport à Y dans A.

Diminuons A dans toutes ses dimensions, indéfiniment, mais de

manière qu'il contienne toujours un point P, si, dans ces conditions,

le rapport tend vers une limite déterminée <p(P), ce sera

la dérivée de f par rapport à Y en P; elle se note ~ (P) <p(P)-

La définition même de la dérivée indique le mode de calcul

qui la fournit; l'opération de dérivation est le calcul de la limite
d'un rapport. Le cas le plus intéressant, le seul que nous examine-
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rons, est celui où le rapport tend uniformément vers sa limite,

c'est-à-dire le cas où la différence entre —^ et <p(P) est inférieure

au nombre positif arbitrairement choisi s dès que A est contenu
dans un intervalle dont les k dimensions sont au plus égales à un
nombre vj tendant vers zéro avec s 1, v) dépendant de s mais

pas de P. Si alors on choisit pour A l'intervalle

x\ — h < xi < x\ + h

P étant le point (£•), le rapport est une fonction continue de P,
donc sa limite pour k tendant vers zéro sera fonction continue
de P; <p(P) est donc alors continue. Nous dirons que cp(P) est une
dérivée à convergence uniforme 2 lorsque le rapport incrémentiel

tend uniformément vers cp(P).

Lorsqu'il en est ainsi, ce rapport est borné dès que A est pris
assez petit dans toutes ses dimensions, et, comme d'autre part
il est borné pour tous les A plus grands mais pris dans la partie

bornée de Vespace que nous considérons, esf de module borné

pour tous les A envisagés. On a:

|/(A)| < MY (A)

M étant un nombre fixe. On dit que la fonction / est à nombres
dérivés par rapport à V bornés.

En particulier, si l'inégalité précédente est vraie quand on
prend a&(A) pour V(A), c'est-à-dire si, pour tout A, on a:

I / (A) | < Kafe(A)

la fonction /(A) est dite à nombres dérivés bornés. Il est clair que
les exemples physiques de fonctions /(A) qui ont été donnés
fournissaient des fonctions à nombres dérivés bornés. Ceci
entraîne évidemment la continuité de ces fonctions.

1 En réalité, sauf si k 1, cette convergence uniforme de est une conséquence

nécessaire de la convergence de ce rapport pour tout point P. Il en est de même pour
k 1 si on emploie, même dans cette hypothèse, la définition générale des domaines
de la fin du § 96, laquelle n'exige pas la connexité.

2 En réalité, dès qu'une dérivée est continue, elle est à convergence uniforme.
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104. — Enonçons maintenant le problème d'intégration: Etant
données une fonction continue de point <p(P) et une fonction de

domaine F (A), positive, additive et à nombres dérivés bornés, trouver
une fonction additive et à nombres dérivés bornés f(A) qui admette

<p(P) comme dérivée par rapport à V ; cette dérivée étant à convergence

uniforme.
Si A est la réunion d'un nombre fini d'intervalles Si, en

subdivisant au besoin ceux-ci on peut supposer leurs dimensions
assez petites pour que l'on ait, pour tout i,

/(**)
V(*i) 9 (Pi < £

Pi étant arbitrairement choisi dans S*.

Alors, puisque

on a:

/(A) « S/(8.) SV(^) Y (A)

|/(A) -Sç^VfS.)! < eV(A)

Si donc le problème est possible, sa solution f(A) est unique et

f(A) est la limite de S 9 (Pi) V(Si).
Voyons si cette limite existe. Soit une autre subdivision de A,

elle fournit des domaines Sj et des points P(. Supposons les

dimensions des S et des S' assez petites pour que dans chacun de

ces intervalles 9 varie de moins de s et évaluons dans cette
hypothèse la différence

s9(pi)v(si)-s9(p;.)v(s;).

Soient S" les intervalles résultant des inégalités définissant
les Si et les S(. Chaque Si et chaque S( est une somme de S" et si

l'on a:
s. + s" + +

on a aussi

Y (8*) Y (Si) + V(s;i) + + V«)

En faisant cette transformation pour V(S$) et V'(Sj) dans la
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différence à évaluer, celle-ci se présente sous la forme d'une
sommation par rapport aux S"

s[«p(Pi)-?(?;)] V«) •

9 (Pi) et 9(Pj-) ainsi associés à 8" diffèrent de s au plus de la
valeur prise par 9 en un point P* de S". Donc la différence à

évaluer est au plus
S 2s x V(s") 2sY (A)

Elle tend donc vers zéro avec s et la somme S9(Pi)V(Si) a une
limite f(A) indépendante de la subdivision de A envisagée.

Il reste à rechercher si /(A) remplit les conditions de l'énoncé;

pour n'avoir à le faire qu'une fois, étendons d'abord les résultats
obtenus à un domaine quarrable quelconque A. On a vu qu'il
est la limite d'un domaine variable Av formé d'intervalles; donc,
puisqu'on veut que /(A) soit continue, /(A) doit être la limite de

f(Av). Et puisque f(Av) est unique; /(A), si elle existe, est unique.
Montrons que /(Av) a effectivement une limite. On a vu que l'on
peut trouver deux domaines formés d'intervalles A et A tels que
A soit strictement intérieur au premier, contienne au sens strict
le second et que a&(A —• A) soit aussi petite que l'on veut.
Alors Av tendant vers A finit par être contenu dans A et par
contenir A; soient deux tels domaines A^, A^,. Ils ont une partie
commune A" et sont tels que Av — A" t= A, A'v — A" A',
A et A' faisant partie de A — A, ont des aires d'ordre A: inférieures
à aft (A — A). Evaluons

/(A„) -/«) [/(V + /(A)] - [/(A") + /(A')] / (A) - /(A')

Pour A, formé d'un nombre fini d'intervalles, /(A) se présente
comme limite d'une somme: 2 <p(Pz) V(SZ). Si B est la borne
supérieure de |<p|, cette somme est au plus, en module,

B 2 Y (8Z) B V (A) ^ B K (A)

K étant un nombre fixe. Donc

j / (A„) — f(a;)I £ 2B Kafe (Ä — A) ;

et /(A„) tend donc vers une limite qu'on prendra pour /(A).
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105. — Cette fonction /(A), la seule qui puisse être solution de

notre problème d'intégration, peut toujours être obtenue comme
limite de sommes 2cp(PdV(§d étendues aux intervalles Ip
(jouant le rôle des Si) qui comptent dans les nv ou les Np fournissant

des valeurs approchées de a&(A).
De là résulte une propriété capitale de /(A) qui permettra de

montrer que /(A) satisfait bien à toutes les conditions du problème
d'intégration.

Théorème de la moyenne. — Si m et M sont les bornes inférieure
et supérieure de <p(P) dans A, on a:

/(A) {x Y (A)

(x étant compris entre m et M. En effet, calculons une valeur
approchée de /(A) à l'aide des nv intervalles Ip comme il a été

dit; on trouve Ecp(Pi)Y(Si) comprise entre mXV(Si) et MEV(Si),
quantités qui tendent vers mV(A) et MV(A). Comme 9 est
fonction continue de P, la valeur de (x est l'une de celles prises

par 9 dans A, d'où un autre énoncé:
Théorème des accroissements finis :

/(A) Y (A) cp (tt)

Te étant un point convenablement choisi dans le domaine A 1.

106. — De ce théorème il résulte, si B est la borne supérieure
de I 91 dans la région finie de l'espace considéré et si, pour cette
région, V(A), qui est à nombres dérivés bornés, est telle que

V (A) < K • ak (A)-

f/(A)[ < BK • ak(A) ;

ainsi /(A) est à nombres dérivés bornés.

Si le domaine A, quarrable d'ordre /c, est divisé en deux
domaines également quarrables A1, A2, les nv intervalles Ip relatifs
à A se partagent en les np, np relatifs à A1 et A2, et en intervalles
restants R qui contiennent des points intérieurs à A et frontières

pour A1 et A2, d'où, en utilisant ces Ip comme Si

S 9 (Pi) V ({y - 2/9(Pi)voy + s*2 9 (Pi) Y (Si) + S* 9 (Pi) V (Si)

1 On montrerait facilement que, sauf si m M, <x ç(u) est différent de m et de M.
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Pour p augmentant indéfiniment, les trois premières sommes

tendent vers /(A), /(A1), /(A2) ; la troisième est au plus en module

BKa^R), quantité qui tend vers zéro. Donc /(A) est une jonction
additive 1.

Le théorème des accroissements finis donne encore:

— 9 (P) 9 (TT) — 9 (P)

donc le premier membre est inférieur à e dès que les dimensions
de A sont prises assez petites pour que, de P à tu, c'est-à-dire
d'un point à un autre de A, cp varie de moins de s.

Donc /(A) admet <p(P) comme dérivée par rapport à Y et cette

dérivée est à convergence uniforme.
Ainsi, la possibilité de résoudre le problème dVintégration est

prouvée; il est aussi démontré que sa solution est unique et est

fournie par la limite de la somme 2 cp(Pi)V(§i), quand les Si

extérieurs les uns aux autres et quarrables ont des dimensions qui
tendent vers zéro et forment un domaine que Von fait tendre vers le

domaine quarrable donné A et que les Pi sont pris arbitrairement
chacun dans le Si de même indice. Pour rappeler cela on représente
la solution, qu'on appelle Vintégrale définie, prise dans A, de

<p(P) par rapport à V(A) par le symbole

f 9 (P) dV
c'
A

La fonction additive f(A) du domaine quarrable, obtenue en
faisant varier A, est dite V intégrale indéfinie correspondante.

107. — Le mode de calcul qui résulte de la définition est en
réalité assez peu employé; le plus souvent, on commence par
remplacer l'intégration par rapport à V(S) par une intégration
par rapport à ak(S). Ceci est facile car, de

/(*) m v v(8)
ak(S) Y (S)

X
ak(S) '

résulte

£t'p' w<p> * srt<F> - - -Mp> ;

i Ceci était évident pour les a sommes d'intervalles et nous a déjà servi dans ce cas.
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égalité généralisant le théorème sur la dérivée des fonctions de

fonctions et d'où résulte

j\(P)dV Jç(P) ~(P)dak =/<HP)dak
A A k A

Une intégrale par rapport à au est dite une intégrale multiple
d'ordre k.

Il suffit d'apprendre à calculer ces intégrales /cuples. Le calcul
se fait par récurrence, du moins quand il s'agit d'un domaine

simple, cas auquel on peut se borner puisque, quel que soit le

domaine quarrable E, celui que nous avons appelé Ep en est
infiniment voisin et est la somme d'un nombre fini de domaines

simples, qui sont des Ip; § 101.

Etudions f cp(P)da\ en supposant que A soit le domaine

simple défini par les inégalités du § 96 et soit A(A, B) obtenu en

remplaçant la première inégalité définissant A par

A ^ xx ^ B

Soit S(X1) la section de A par x1 XL; c'est-à-dire le domaine
simple de l'espace x2, #3, %k défini par les k— 1 dernières
doubles inégalités quand on y fait x1 Xx. Ce domaine S(Xx)
varie de façon continue, quand Xx varie.

Etudions la fonction /[A (A, B)] obtenue en étendant l'intégrale
à A (A, B); on peut la considérer comme une fonction F(Ç) de

l'intervalle E à une dimension défini par

Cette fonction est évidemment additive; calculons sa valeur
approchée à l'aide des intervalles Ip ayant au moins un point
dans A(A, B). Le module de cette valeur approchée est majoré

par une expression de la forme

S|9(Pi)| a*(Si) ^ Maft[yjX7B)]

si M est la borne supérieure de <p(P) et si Ap(A, B) est construit

comme précédemment l'avait été Ep, § 99. Or tous les Ip constituant

A (A, B) ont une projection sur la variété coordonnée
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x%f x3, xk formée par les Ip de cette variété qui ont des points
appartenant à la projection de A. Si donc Ak_{ est l'aire d'ordre
k — 1 de cette dernière projection, comme les Ip ayant une même

projection Ip forment au plus un intervalle Jp dont la première
2

dimension est au plus B—A + — la limite supérieure trouvée

surpasse d'aussi peu que l'on veut M • AJl_1 • (B—A). Et comme
B — A est l'aire d'ordre 1 de F(£) a son rapport incrémentiel
majoré en module par M Afe-1; F(£) est une fonction à nombres
dérivés bornés.

108. — Précisons ce calcul pour obtenir la dérivée de F(Ç) au

point xx A.
Pour cela, construisons à l'aide d'intervalles V d'indice assez

élevé p -j- q les deux domaines S(A), S(A) dont le premier est

contenu au sens strict dans S(A), lui-même contenu au sens strict
dans le second, §101. Alors, pour B assez voisin de A, S(X1) est,

pour Xx variant de A à B, contenu dans S(A) et contient S(A).

Calculons une valeur approchée de F(£) à l'aide d'intervalles
lv+q+r, ceux-ci sont de deux sortes: les uns ont une projection
Ip+q+r sur x2, #3, xh appartenant à S (A); pour les autres elle

appartient à S(A) — S(A). Les projections des seconds ont une

ak_{ au plus égale à ak_{ [S (A) — S (A)], quantité s aussi petite que
l'on veut et, d'après un calcul analogue au précédent, fournissent

P /£\dans le rapport incrémentiel
B __ A une contribution au plus

égale, en module, à Ms; donc aussi petite qu'on le veut.
Quelle est la contribution des autres Dans chacun des lp+q+r

ayant une même projection Ip+g+r choisissons un point
distingué, ces points ayant tous une même projection P' sur xx=A\
ces lp+q+r fournissent dans le rapport incrémentiel une contribution

de la forme

(B—A) [9(Ph) ak{\) + 9 (PJ ak {Si2) + - + v(Pim) ak{8iJ] -

Or, le second membre diffère très peu de <p(P')%-i(Ip+g+r)
car les cp^.) diffèrent de cp(P/) de moins de rj dès que
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B est assez voisin de A et, pour r assez grand, les
intervalles Sy, c'est-à-dire les ïp+q+r de même projection l'p+q+r,

forment un intervalle dont la première dimension diffère aussi

peu que l'on veut de | B — A |.

Ainsi, à aussi peu près que l'on voudra, le rapport incrémentiel
sera

MpK-i(s0 •

La dérivée existera si ceci a, dans les conditions envisagéesr
une limite. Or cette limite est connue, c'est

/.pi da;k-1
S(A)

donc F(Ç) a une dérivée

d\
dax£-/ »ci"««-.-

S(A)

La convergence du rapport incrémentiel vers la dérivée sa
limite est d'ailleurs uniforme et, par suite, on a:

'(5) ,/[/ 9(p
c Ls(A)

da±

Le calcul de l'intégrale /cuple est remplacé par celui de l'intégrale

simple d'une intégrale (k — l)uPle.

Une intégrale simple se note encore

/x(P) dax J x(%) dxx

si on a A < B ; ceci pour rappeler que la mesure (ou aire d'ordre 1)

d'un intervalle (A ^ B) est l'accroissement qu'y subit la
variable xx et que la valeur de x1 détermine P.

La formule obtenue s'écrit donc, en particulier pour A aly

B b1
bi

/(A) / f <?(P)dah_i
sW)ai

dxt
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D'où, par récurrence,

bi b2(-xi)

/(A)
bk(x

f\J {[9(P)rf%|...

ai f a2(xi) \ak(x1) x2, ...,xk_i)J

dx2 \ dx1

En groupant d'une part les n premiers signes d'intégration,
d'autre part les k — n derniers, on a une formule qu'on aurait

pu prouver directement:

m
Pi, 2j n

f?(P)

_S(xi, x2, xn) J
da

Pi, 2,, n es^ projection de A sur l'espace coordonné

xly x2, xn; S(x1, x2, xn) est la section de A par l'espace
parallèle à l'espace coordonné indiqué et qui passe par le point P.

C'est-à-dire que les n premières doubles inégalités définissant A
définissent Pd ...,n et que les A: — n dernières, quand on y fixe
xl7 x2, xn, définissent S^, x2l xn).

Ces formules permettent d'évaluer les intégrales multiples
par des intégrations d'ordres moins élevés et, d'une façon générale,
de raisonner par récurrence. Si, en particulier, on y fait cp(P) 1,

on a des formules liant l'aire d'ordre k à des aires d'ordres
inférieurs. D'où, en particulier, les calculs d'aires, au sens ordinaire
du mot, et de volumes.

109. — Il ne reste donc plus qu'à apprendre à effectuer les

intégrations simples; soit

F (£) — Ç 9 (x) dx

A^x^B

quantité qui est aussi une fonction de deux variables 0(A, B).
Du fait que F est additive, il résulte, pour A < B < C,

<E> (A B) + ® (B C) ® (A C)

Donc, pour 0 < A < B,

F(Ç) ®(0, B) — <t>(0 A)
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Pour que cette formule soit encore valable pour A < B < 0
et pour A < 0 < B, il suffît de poser ®(X, Y) — ^(Y, X);
convention légitime puisque <ï> n'avait été tout d'abord définie
qu'en supposant la valeur de la première variable plus petite
que celle de la seconde. Alors on a:

B

f 9 (x)dx<I>(0, B) — <D(0, A)
A

quels que soient les signes de A et B, mais pourvu que A soit
inférieur à B. On fera enfin disparaître cette dernière restriction
en posant, par définition,

B A

f 9 (x) dx + Ç 9 (x) dx 0

A B

Ainsi F(Ç) ne dépend que d'une fonction d'une variable
0(0, X) Y(X), même quand on définit, comme nous venons
de le faire, F(£) pour les intervalles négatifs, [A > B]. Quelle
propriété de Y correspond à la dérivabilité de F

Pour A < B, on a:

F (£)—= 9 (X) avec A < X < B
aid)

d'après notre théorème des accroissements finis, et

F(£) _ Y (B) — Y (A)
%{$) B-A

d'après ce qui précède. Donc

Y (B) — Y (A)
B - ?(X)

et Y(X) admet 9(X) pour dérivée et même on voit que le rapport
incrémentiel de Y tend uniformément vers la dérivée1.

Ainsi, toute fonction continue d'une variable <p(X) a des

i J'admets donc que sont connues les notions de dérivée et de fonction primitive
des fonctions d'une variable, notions qui font partie des programmes de l'enseignement

secondaire.
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fonctions primitives; d'ailleurs déterminées à une constante près

d'après le raisonnement classique. Donc, si on connait l'une

d'elles, T0(X), on en déduit

0(0 X) - %(X) + cte T0(X) -T0(0)
d'où

B

f <?(x)dxY0(B) -T0(A)
A

Le calcul des intégrales multiples est donc ramené à des calculs
de fonctions primitives de fonctions d'une variable.

Il importe, d'autre part, de remarquer que, dans le cas d'une
seule dimension, une fonction de domaine, donc dintervalles à

une seule dimension, est, d'après ce qui précède, déterminée dès

qu'on sait qu'elle est additive et qu'on connait sa dérivée continue,

sans qu'on ait besoin de savoir à l'avance que la fonction
cherchée est à nombres dérivés bornés, et que la dérivée est à

convergence uniforme. Cette fonction est l'intégrale indéfinie de

la dérivée. Cette remarque, peu importante en elle-même, est

indispensable à la rigueur de l'exposition adoptée ici.

110. — Nous allons justifier rapidement la formule dite du
changement de variables dans le calcul intégral, en supposant
naturellement connus la théorie des fonctions implicites et tout
ce qui concerne les changements de variables dans le calcul
différentiel.

Le changement de variables envisagé fait correspondre à un
point (Xj) un point (^); à un domaine 8X de l'espace des un
domaine §u de l'espace des u{. S'il était établi que à tout 8X

quarrable d'ordre k correspond un Su quarrable et inversement
dk($ ak($)

et que les rapports —et —r^r restent inférieurs à un^ ak(*J ak(*x)
nombre M, une fonction f(8x) additive et à nombres dérivés
bornés pourrait être considérée comme fonction additive de
et à nombres dérivés bornés puisque

/(y /<y
aM ak(*x)

x '

L'Enseignement mathém., 34me année, 1935. 13
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f(Sx) f 9{P)d[ate(8x)]

le premier rapport du second membre tend uniformément vers

4/<y]
^K<sx)]

(P) ç(P) ;

si donc il était établi que le second tende uniformément vers une
limite

4ak(8J]
(P) x(P)

le rapport du premier membre tendrait uniformément vers une
limite et on aurait

f(8x)f 9(P) .X(P

Cette formule résoud le problème du changement de variables ;

plus généralement elle s'applique au changement de la fonction

par rapport à laquelle on intègre:

/(A) f Ç(P )dVf ç(P) • ^ (P) • ;

A A
1

avec cette interprétation nous l'avons déjà rencontrée au § 107.

En tant que formule du changement de variables elle suppose
effectuée la légitimation des suppositions que nous avons faites ;

examinons d'abord l'hypothèse k 1.

La formule du changement de variable est x — A(u), avec

A'{u) de signe constant. A un intervalle correspond un intervalle
et comme nous ne considérons comme domaines 8X que des

intervalles, la quarrabilité d'ordre 1 des domaines 8U n'est pas
en question.

On a, si Sx est (xx, x2) et si est (u\ u")

«KW]
1«j A(m') — A (u")

u' — U" 1 u' ~ u"
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donc le rapport incrémentiel est borné uniformément, ainsi que
son inverse, de plus on voit qu'il tend uniformément vers une
limite I A'(w) I.

Donc on a:

j* 9 (x) dx J 9 [A (m) J • | A' (u) | du

Remarquons que le signe valeur absolue n'est utile que pour
A'(k) négatif, c'est-à-dire si xL A(u"), x2 A (u'); si la
transformation fait correspondre à l'orientation positive de l'axe des

x, l'orientation négative de l'axe des u; si, comme l'on dit, la
transformation change l'orientation.

Soit k > 1. Supposons que xk seule soit changée par la formule

Xh A[x± Xk_{ Uk]

dans laquelle est de signe constant. Et soit

uk B[x±, x2 Xk_{ Xk]

la fonction inverse.
Au domaine Ax défini par les inégalités du § 96, correspond le

domaine A,, défini par les k — 1 premières inégalités et
par uk compris entre B[^x, #2, xk_l: ak(x1, y2 t ft-i)] et
B[^l7 %ä xk_u bk(x1, x2, xk^)]. La seconde de ces valeurs
de B étant plus grande que la première si, et seulement si, A^
est positif. On appellera ocfe la plus petite, la plus grande. Alors,
en appelant D la projection commune de Ax et Au sur la variété
coordonnée xl7 x2, xk_t et d toute partie de D, on a:

bk(xi,x2, ...,xk_i) '

J" <?{P) d[ak(8x}J j*j* 9(P d[aft_j(d)]

H (X1 > ^2 5 •••> Xfy_j)

D'où, par la formule précédente, ceci est égal à

hi (xi> x21.... Xfr-A

f f 9(P)
D X2, Xk_x)

öA(% x2, xk)

buh

-f
dub

?(P)

(d)~\ —

öA
(P)
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Ceci n'est établi que pour un domaine simple relatif à l'ordre
xl7 x2,... xk des variables; mais puisque tout domaine quarrable
Ax est aussi peu différent que l'on veut d'une somme d'intervalles,

donc d'une somme de domaines simples, la formule est

générale.
Remarquons encore que le signe valeur absolue n'est nécessaire

que s'il n'y a pas correspondance entre les sens positifs des axes
des u et des x. Et comme, quand il n'en est pas ainsi et que
k 1, 2 ou 3, on dit qu'il y a changement d'orientation, nous
emploierons la même expression dans le cas général.

Soit maintenant le changement

Xi Ai(ulf u2, Uk) (i 1, 2, k)

Les conditions classiques (que je ne rappelle pas) étant
remplies. La démonstration classique du théorème des fonctions
implicites montre que la région bornée dans laquelle on étudie la
transformation peut être partagée en un nombre fini de régions
partielles telles que, dans chacune d'elles, on puisse effectuer le

changement de variables à l'aide de k changements d'une seule

variable 1.

En partageant au besoin le domaine primitif, on peut supposer
qu'on a affaire à un domaine situé tout entier dans une de ces

régions, soit celle où on passe successivement de xx à %, de

x2 k u2, de xk à ulv Les formules seront de la forme

Xi ^2, - Ut, Xi+1 Xk)

OU

Ui u2 ui_1 Xt, Xk)

i Pour démontrer le théorème des fonctions implicites on montre qu'autour de tout
point on peut, en permutant au besoin les indices dans les deux séries de variables,
faire en sorte que les mineurs obtenus en barrant les premières lignes et colonnes

ÖA.
du déterminant des soient tous différents de zéro. D'où autour de chaque point

dui
toute une région où il en est ainsi. Ce sont là les régions partielles dont parle le texte.

Quant au fait qu'elles sont en nombre fini, évident d'après le théorème dit de Borel-
Lebesgue, on le prouvera facilement de façon plus élémentaire en supposant, par
exemple, l'existence des dérivées secondes des A;.
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Les k facteurs successifs qu'introduisent ces k changements
dans l'intégrale à transformer sont les dérivées partielles

ôB.-

bCj
~àx.

Or Q s'obtient par la résolution en ui+ l7 uk des

k — i + 1 dernières équations xi Ai? donc

D(Ai+1, Aft)

_ DK+i » • uk)

*>xi D(A4 ••. Aft)

D(iq uk)

(P) •

Et par suite, on a:

f 9(P)4«ft(§x)] =f Ç(p)
D(Alt Aft)

D(«i u,ki
(P)

C'est la formule cherchée; et Au sont deux domaines qui se

correspondent par les formules données.

111. — Arrêtons-nous un instant pour bien expliquer cette
dernière phrase; car, dans la question proposée, il n'y a en réalité
pas de domaines correspondants. Précisons donc bien le début
du § 110.

Nous partions d'une intégrale étendue à des domaines découpés

sur une courbe ou une surface ou, plus généralement, sur ce

que l'on appelle une variété:

Xj Xj [x-^ x% xk)

/ variant de 1 à m, avec m^k.
Les Xj sont des coordonnées, rectangulaires par exemple, que

l'on appelle rectilignes pour les distinguer des paramètres xi
appelés encore coordonnées curvilignes de la variété. La variété
précédente est dite à k dimensions et plongée dans l'espace à

m dimensions.
Considérons un point P de cette variété; il est, par hypothèse,

donné par un système, et un seul, de valeurs xt. Si donc on
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interprète ces xi comme coordonnées rectilignes ou plus précisément

rectangulaires, dans l'espace à k dimensions dit des xi9
on a un point Px image de P. D'où à un domaine D de la variété
un domaine correspondant Dx de l'espace des xi.

Effectuons maintenant un changement des coordonnées
curvilignes à l'aide des formules xi — AJ^, u2l uk). Les X3-

s'expriment en fonction des ux1 d'où une nouvelle image de P,
le point Pu de l'espace des Le passage de Px à PM est défini

par l'intermédiaire Px à P, P à Pu. Entre Px et Pu il y a
correspondance et les formules données sont donc aussi les formules
d'une transformation de l'espace des en l'espace des u,-n d'où
des domaines correspondants.

Tout cela est fort banal et tout à fait analogue à ce que nous
avons vu dans le cas où les Ai étaient linéaires: les formules d'un
changement de coordonnées sont aussi celles d'une transformation

ponctuelle. Dans ce cas particulier la transformation a été

dite, lorsqu'il s'agit de coordonnées rectangulaires, être un
déplacement lorsque le déterminant de la transformation était
positif. Lorsqu'il est négatif on dit qu'il s'agit d'une transformation

par symétrie parce qu'il suffit du changement du signe d'une
seule coordonnée pour avoir un déplacement et par suite le sens
de cette locution est bien d'accord avec celui qu'il avait déjà

pour k ^ 3.

Parmi ces transformations de coordonnées rectilignes il y en a
deux très simples: le changement de signe d'une coordonnée, la
permutation de l'ordre de deux coordonnées. Pour les espaces à

1, 2, 3 dimensions nous sommes habitués à dire alors que nous

passons d'une orientation à une autre; on conservera cette
dénomination dans le cas général.

Ainsi, choisir un système de coordonnées curvilignes d'une

variété, entraîne le choix d'une orientation sur cette variété.
Quand on changera de coordonnées curvilignes, on changera
ou non d'orientation suivant que le déterminant fonctionnel des

anciennes coordonnées par rapport aux nouvelles sera négatif ou

positif.
Ceci dit, une fonction définie pour les domaines D peut aussi

bien être considérée comme attachée aux domaines Dx ou Dw;

ainsi, au paragraphe précédent, à chaque domaine S ont été



SUR LA MESURE DES GRANDE URS 203

attachées successivement les fonctions ak($x) et ak(8u). Une

intégrale f9(P)dV ne change pas de notation quand on change
A

de coordonnées curvilignes; mais, si l'on veut rappeler que l'on
emploiera soit les coordonnées xi soit les coordonnées on

pourra la noter
'

f9(Pœ)rf[V(8x)] J9(PJd[V(8j]

Et ceci montre bien que les formules relatives à la transformation

d'un calcul fait avec des xi en un calcul fait avec des

c'est-à-dire les formules du changement de variables, seront
aussi des formules relatives à la transformation du domaine Ax
de l'espace des x{ en domaine tSu de l'espace des u{. Dans chacun
de ces espaces une orientation dite positive a été choisie; c'est,
sauf convention contraire, celle fixée par l'ordre même des

indices des coordonnées.

112. — Alors, il résulte de ce qui précède que l'on a:

/KWKW] - j'.ip) • p^;;;;;^'(pi • <mj] •

^x Äu

si les formules, considérées comme définissant un changement de
coordonnées curvilignes, conservent l'orientation ou si, considérées

comme formules de transformation, elles font correspondre
les orientations positives des espaces xi et u{.

Sinon, on a:
1

j /.iPiihfsj] - /*(p>. (-1,. «jkim]
i

j Ces deux formules se réuniront en une seule si on distingue les
] domaines non seulement par la famille des points qui les consti-
1 tuent mais encore par l'orientation qu'on leur attribue. Ainsi,
j au même domaine non orienté A, nous ferons correspondre deux
| domaines orientés A, A suivant que nous lui auront donné

— -j- —y—

l'orientation positive ou négative. Alors on aura toujours, qu'il



204 HENRI LEBESGUE

s'agisse d'un changement de coordonnées curvilignes ou d'une
transformation :

r ri f D (^1 > ••• > ^k) r ij <p(P)rf[«fo(Sj] j ç(P)ïï^_r_A
-> ->

les deux domaines orientés Ax, Au étant ceux qui se

correspondent, pourvu que l'on pose

Jç(P)dV Jç(P)dV
A A

- +
et

J«P(P) • àN+ j <p(P) • dV0

A A
-* +

Cette convention est celle faite au § 109 pour le cas d'une seule
coordonnée. A cette convention d'autres se rattachent presque
nécessairement. Les deux intégrales de l'égalité précédente sont
les limites des sommes

Sç(Pi)V(Si) — Sq.(P.)V(Si) V(Si)]

Les proviennent de la subdivision de A; seulement dans le

premier cas il s'agit de A et dans le second de A. Il est alors
-*+ -*•—

naturel d'écrire ces deux sommes sous la même forme

S9(Pi)V(a^

l'orientation des Si étant celle de A. Ceci revient à poser

y(A) -vw 1 V(A)+ v(i) " • '

D'où la convention nouvelle: une fonction additive V(§) étant
donnée pour les domaines non orientés, on en déduira une fonction
définie pour les domaines orientés par les égalités précédentes.

En même temps, il se trouve que nous avons défini l'intégrale
de <p(P) par rapport à une fonction de domaine toujours négative,

la fonction — Y. Si, aux paragraphes 103 et suivants, nous
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avons supposé V > 0, c'était uniquement pour que le rapport

incrémentiel y^ existe; ceci aurait tout aussi bien été assuré

en supposant V toujours négative. Dans la théorie que nous

avons donnée il n'y aurait eu à changer que quelques mots, le sens

de quelques inégalités, à mettre quelques signes de valeur
absolue. Il est inutile de reprendre les choses dans le détail; il
suffit de convenir que, par définition, on aura toujours:

f<9(P)d,v + yV(P)d[—v]~ o

que A soit un domaine non orienté ou orienté.
Si V(A) avait pu prendre les deux signes nous aurions eu, au

contraire, de graves changements à introduire puisque, pour
certains A, le rapport incrémentiel par rapport à V n'aurait pas
existé. Mais supposons que la région envisagée puisse se partager
en un nombre fini de régions telles que, pour les domaines

compris dans une de ces régions, V ait un signe constant. Alors,
en partageant tout domaine A en domaines partiels A', A",
situés dans ces diverses régions, nous poserons

/a /A' + A" +

L'intégrale ainsi définie jouira de presque toutes les propriétés
déjà dites; pourtant les théorèmes des accroissements finis et
de la moyenne ne devront être appliqués qu'aux domaines

partiels et il faudra renoncer à dériver l'intégrale indéfinie aux
points frontières des régions partielles. Quoiqu'il en soit, Vintégrale

est maintenant définie par rapport à une fonction additive de

domaine non toujours positive et étendue à un domaine orienté.

113. — Soient
Xi Fi K> ^2* ». > Uk)

les formules (i 1, 2, h) définissant une variété à k dimensions

de l'espace à n dimensions. Comme on veut qu'à un point
de cette variété ne corresponde qu'un système de nombres u{
et qu'on puisse s'en assurer par le théorème ordinaire des fonc-
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tions implicites on suppose, outre l'existence et la continuité des

nombres — - que les mineurs à k lignes et k colonnes de la

matrice formée avec ces dérivées ne sont pas tous nuls à la fois.
Alors, la région bornée considérée est, dans les cas où l'on se

place, la somme d'un nombre fini de régions pour chacune
desquelles k convenablement choisies des n coordonnées rectilignes
xi peuvent servir de coordonnées curvilignes pour la variété.
Si ce sont les variables

/y» /y» /y*
5 «^2 5 • • * ' ti '

on a alors
U{ Ai (xt X2 Xh)

pour i k, et, pour p> k,

XV 1' -• ®ft) •

Nous aurons une correspondance entre les domaines A de la
variété, les domaines Au de l'espace des et, si A est dans la
région considérée R de la variété, les domaines Ax de l'espace
%, xk. De plus, il y a une correspondance entre l'orientation

de ces domaines; si, comme on l'a supposé, l'orientation
positive de A correspond à l'orientation positive de Au, on aura
dans Ax l'orientation positive ou négative suivant que le
déterminant

D (x1} xh)

D (ulr uk)

sera positif ou négatif.
Passons maintenant de la région R à une région Rx; l'orientation

sur la variété ayant été choisie une fois pour toutes, l'orientation

des A et des Au ne variera pas mais celle des Ax variera si

dans R et Rx le déterminant fonctionnel a des signes différents.
Si donc le déterminant fonctionnel considéré

D (xx x2 5 xk)
D (ult u2, uk)

ne change de signe qu'en des points exceptionnels, qui ne
constituent aucune région de la variété et peuvent par suite être
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omis dans le calcul d'une intégrale /cp(P) c£[afe (§„)] pour tout
D

domaine D1, on a://» D (U-t Un

»ipwvyi -/ 9 IP) D;^, j, ip)" K w •

D D
- -+•

le symbole D indiquant que, dans le second membre, on doit
->

attacher à chaque domaine S de la variété situé dans l'une des

régions R, R1? l'aire d'ordre k de sa projection §x et affectée

du signe correspondant à l'orientation de ,SX comme projection
de la partie S du domaine orienté D.

— —

La formule obtenue s'écrit encore:

f^(xltx2,...xu)d[ak(SJ] f<j,(P) D (P)dK(SJl
D D

1"

elle définit le symbole du premier membre qui est dit, si k 1

une intégrale curviligne, si A 2 une intégrale de surface.
S'il arrivait que la variété portant D soit exceptionnelle et

comprenne des régions en tous les points de laquelle le
déterminant du second membre soit nul, ces parties seraient
considérées comme n'ayant aucune contribution dans l'intégrale.

Le cas où les variables xi utilisées ne sont pas les k premières
rangées dans l'ordre naturel de leurs indices se ramène de suite
au précédent puisque l'interversion de l'ordre de deux variables
ne fait que changer le sens des orientations, donc les signes des ak.

114. — Une application importante de cette définition est la
formule de Green et ses généralisations.

Reprenons la formule finale du § 108 pour le cas du domaine
simple défini par les inégalités du § 96. Elle s'écrit:

bk(xi,x2, ,xk_{)

J (p) dAk =J [J c?(xx, x2, xk) dxkJ dAk_{,
A pl,2,...,k-l afe(xx,x2,

les symboles Ak et Ak_{ représentant les aires d'ordre k et k — 1.

i Ceci a lieu sauf pour des variétés très exceptionnelles ; savoir, dans le cas de trois
dimensions, sauf pour les courbes qui comprendraient des arcs dans des plans xi cte,
et sauf pour les surfaces comprenant des parties cylindriques a génératrices parallèles
à xk xi °-



208 HENRI LEBESGUE

Si l'on a:

9 (xt, x2, ,xk)=-^-F (xlf xk)
oxk

dans le second membre de la formule précédente, on peut
effectuer l'intégration simple:

ff[xi> -- xh~i- bh (xi>->xk~i)] dAk-i —

pi,... ,k

—fF [xx, «2, xh_y, ak Xk)]

Supposons de plus que les deux variétés frontières de A,

Xk ak{x1, a^)
xk bk (*i» - > *fc-i) »

soient les deux parties Sj et d'une variété S à k — 1 dimensions,

xi Si(w1, w^), présentant tous les caractères de

régularité déjà indiqués.
D (S1? Sa, S^)Le déterminant fonctionnel ^ -v conserve un signe
D(w1} w2, uk^) 0

constant dans et dans S2, puisque x±1 xk_x y peuvent
remplacer k1? et au contraire ce déterminant change de

signe dans toute région comprenant un point frontière commun
de et de S2 puisque le remplacement est alors impossible 1,

Or ce déterminant fonctionnel est celui qui fixe l'orientation à

donner à un domaine en projection sur l'espace coordonné

xk_{ quand une orientation sur la variété a été choisie; si

donc on prend sur S l'orientation qui, pour S2, donne en
projection l'orientation positive, la valeur de l'intégrale s'écrit
encore :

^,)]

i Cette affirmation aurait besoin d'être précisée et s'appuie sur un énoncé du théorème
des fonctions implicites plus général que l'énoncé classique, lequel suppose les
déterminants fonctionnels finis et non nuls. Si l'on se borne à l'espace ordinaire et au plan,
on précisera facilement et on aura ainsi les directives nécessaires pour bien traiter le
cas général.
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Le résultat ainsi obtenu constitue la formule de Green; on le

complète à la façon ordinaire en examinant d'autres domaines

et aussi le cas où les variables que l'on conserve ne sont pas les

coordonnées xl7 x2j xk_t rangées dans l'ordre naturel des

indices.

115. — Une autre application importante des changements de

variables est la généralisation des notions de longueur d'une
courbe et d'aire d'une surface (ch. V). On va définir cette notion
généralisée en posant pour définition une intégrale comme

j'ai dit, aux § 62 et 64 par exemple, qu'on faisait souvent pour
la longueur et l'aire. En examinant rapidement cela, nous
indiquerons aussi une autre méthode d'exposition, d'aillleurs bien

connue, qui dispense de l'étude préliminaire des aires d'ordre k
faite précédemment aux § 97 à 100, et permet d'aborder sans
elle l'étude de l'intégration.

Dans ce qui précède, l'étude préliminaire des aires avait
seulement servi, au point de vue logique, pour la notion de

domaine quarrable. Or la définition d'un tel domaine ne reposant
que sur la valeur de l'aire d'ordre k d'un intervalle, laquelle peut
être posée sans explication, aurait pu être donnée sans cette
étude. D'où la définition de l'intégrale.

b
C

Ceci étant, la longueur du segment a ^ x ^ b étant dx;ja
appelons aire d'un domaine quarrable A du plan xv x2 l'expression

fdxx dx2 et d'une façon plus générale aire d'ordre k
a

d'un domaine quarrable de l'espace aq, aq, l'expression
Jdxx dx2... dxh. La formule du § 110 montre de suite que
A

cette aire est indépendante des coordonnées rectangulaires
choisies, puisque dans le passage d'un système à un autre de
telles coordonnées le déterminant fonctionnel à considérer est
± 1.

D'ailleurs, pour un intervalle, on trouve de suite le
produit des dimensions de l'intervalle; donc l'aire d'ordre k ainsi
définie est une fonction, définie pour les domaines quarrables
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d'ordre k, qui est additive, positive, se réduit au produit des
dimensions quand il s'agit d'un intervalle.

Ceci établit l'identité de cette notion avec celle des § 97 à 100
si celle-ci a été déjà étudiée et, sinon, permet de retrouver rapidement

les faits indiqués dans ces paragraphes.
Ceci étant, considérons la variété à k dimensions de l'espace à

n dimensions définie en coordonnées rectangulaires par

On dit qu'elle est linéaire si un changement de coordonnées

rectangulaires de l'espace à n dimensions permet de la définir
par les formules

Un domaine quarrable Au de l'espace des u correspond sur la
variété linéaire au domaine A que nous dirons quarrable
d'ordre A; nous savons, § 110, que la famille de ces domaines ne
dépend pas des variables u choisies, quand on n'utilise que les
seuls changements de variables que nous avons pris en considération.

A un domaine A correspond dans l'espace x±, xk un
domaine quarrable Ax.

Si nous étions parvenus à la forme canonique II à l'aide
d'autres coordonnées rectangulaires x' de l'espace à n dimensions,

les conditions d'orthogonalité du § 95 auraient montré

que le passage de xly x2, xk à x[, x'2l xk est un changement
de coordonnées rectangulaires de l'espace à k dimensions donc,

puisque les aires d'ordre k ne varient pas par de tels changements,
nous pourons parler de Y aire d'ordre k d'un domaine quarrable
A d'une variété linéaire à k dimensions ; ce sera l'aire d'ordre k
de Ax. Celle-ci a pour valeur

xi Fi(ui » m2. uk) ;

i — 1 2 u

II
Gi (ux u2, Ufr) i 1 2 k ;

x- ~ 0 j k + i n

D(Gt, Gft)

D (mj, uk)
1X 1u
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Cette expression s'écrit encore:

f 2 -dUk •

^u

la somme S étant étendue à toutes les combinaisons de k indices

a, X choisis dans la suite 1, 2, n. Ceci est évident puisqu'un
seul de ces déterminants est différent de zéro.

Or, si l'on a:

il en résulte

— + S
3 1

D (xa x-J

D (uly uh)

*V)
D (ul9 uk)

le symbole S indiquant une sommation par rapport aux combinaisons

des indices primes.
Des conditions d'orthogonalité on déduit par un calcul

classique:

/ i' 2 rj/ 7, '
a '

a aw aa aa a. aa

j s 1 S X

a 7/ a V V." 7 "
i ai • ai - a, H a-k

;

il

J la première sommation étendue à toutes les combinaisons
oc', X' et la deuxième à tous les couples de combinaisons
différentes oc', X'; a", X".

D'où

Cette formule étant établie pour les variétés linéaires, les
seules pour lesquelles ak( A) est jusqu'ici définie, nous la prendrons
comme définition même de ak(A) pour tout domaine quarrable A
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d'une variété à k dimensions. Le calcul précédent montre que
cette aire est indépendante des coordonnées rectangulaires
choisies et on verra facilement, généralisant les observations du
§ 83, que cette aire d'ordre k est définie par des conditions oc, ß,

Y?

On pourrait d'ailleurs reprendre tout le chapitre V; je n'insiste
pas, mon but ayant surtout été d'indiquer une méthode de définition
de ak, pour les domaines de Vespace à k dimensions, autre que
celle des § 97 à 100.

En terminant ce chapitre, je crois devoir rappeler qu'il serait
tout à fait inadmissible, pédagogiquement, d'examiner directement

avec des étudiants le cas général et de s'embarrasser ainsi
d'indices; si je l'ai fait, c'était pour abréger et montrer cependant
qu'on oublie trop volontiers certaines précautions indispensables
comme de spécifier la famille de domaines envisagés, ou qu'on
admet, comme évidents et clairs pour n dimensions, des faits
auxquels on est habitué lorsqu'il n'y a que 2 ou 3 dimensions.

VIII. — Conclusions.

Les chapitres qui précèdent n'ont besoin d'aucune conclusion

scientifique, ni pédagogique. Ils ne visent nullement à figer
l'enseignement en signalant certains exposés comme meilleurs

que les autres; ils s'efforcent, au contraire, de montrer le fort
et le faible de chaque façon de présenter les faits mathématiques.
S'il a semblé utile de développer davantage les procédés moins

connus, cela ne veut nullement dire qu'ils doivent être préférés.
En signalant certains défauts, erreurs, lacunes des exposés

classiques, je n'ai jamais prétendu les condamner, je voudrais,
au contraire, contribuer à les améliorer. Ceci ne peut être obtenu,
à mon avis, que par une étude comparative critique des divers
modes d'exposition; j'ai essayé de faire cette étude en ce qui
concerne la mesure des grandeurs.

Et si de telles études sont bien, comme je le pense, indispensables

au progrès pédagogique, si elles sont nécessaires pour bien
choisir ce que l'on doit dire et bien savoir pourquoi on le dit, elles



SUR LA MESURE DES GRANDE URS 213

sont donc un excellent exercice pédagogique qui devrait être

exigé des futurs professeurs.
J'ai déjà dit cela au début; si j'y reviens ici, c'est qu'il me sera

maintenant possible de mieux expliquer en quoi l'effort que je
voudrais voir demander aux aspirants professeurs diffère de

celui qu'on leur demande actuellement et qu'il ne vise à leur
faire acquérir ni une habileté technique plus grande, ni des

connaissances philosophiques.
D'ordinaire, dès qu'il s'agit des fondements des mathématiques,

on adopte le point de vue philosophique; je m'y suis refusé
délibérément et certains ont vu dans cette attitude la marque d'un
mépris envers la philosophie.

Non; mon bon maître, Jules Tannery, disait: « Il est prudent
de respecter, au moins provisoirement, ce que l'on ignore ».

D'autre part, si ignorant que je sois, je n'oublie pas que c'est parce
que des philosophes ont longuement médité sur des problèmes, si

difficiles qu'on ne peut même les formuler, qu'ils sont parvenus
à en isoler des questions plus simples: celles dont s'occupent les

sciences.

Nous devons respecter la philosophie; il ne s'ensuit pourtant
pas qu'elle puisse nous aider ni à comprendre mieux nos sciences,
ni à les faire progresser. C'est un fait que les sciences se sont
développées surtout quand elles ont pris conscience de leur
individualité et se sont séparées de la philosophie.

Que les philosophes recherchent si quelque méthode, ayant fait
ses preuves dans ]e domaine scientifique, ne pourrait pas leur
être utile, cela est naturel et raisonnable; c'est aller du facile au
difficile. Mais que les mathématiques, qui étudient des questions
si simples qu'on peut en donner des solutions précises et définitives,

aillent demander des ressources à la philosophie, qui doit
se contenter de réponses imprécises et précaires, je n'ai pu
l'admettre.

D'ailleurs, les problèmes philosophiques ont été, depuis des

siècles, retournés en tous sens par des hommes dont certains ont
eu du génie; n'y aurait-il pas, de la part d'un mathématicien
qui se croirait autorisé à apporter ses solutions philosophiques
parce qu'il aurait consacré quelques loisirs à des réflexions, une
prétention insupportable et naïve tout à la fois En avouant

L'Enseignement mathém., 34me année, 1935. 14
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franchement mon incompétence, je crois faire preuve, envers la
philosophie, d'un respect autrement sincère.

A mon avis, le mathématicien, en tant que mathématicien,
n'a pas à se préoccuper de philosophie; opinion qui, d'ailleurs, a
été formulée par bien des philosophes. Ses efforts de réflexion,
de compréhension doivent être en quelque sorte intérieurs aux
mathématiques au lieu de porter sur les rapports de celles-ci
avec la philosophie. Certes, les questions dont il a à s'occuper
n'ont ni le même genre de beauté, ni le poignant intérêt humain
des problèmes philosophiques; pourtant, si l'on parvenait à

édifier une philosophie de la science pour la science, cette
philosophie de seconde zone serait peut-être l'aide la plus efficace

pour la vraie philosophie.
Le professeur de mathématiques doit, lui aussi, savoir borner

le domaine de son activité à ce qui est objectif; il est chargé de

culture scientifique, son collègue de philosophie est seul chargé
de la culture philosophique.

En s'occupant ainsi seulement de ce qui est en quelque sorte
matériel, manuel, on fait nécessairement des mathématiques une
des branches de la physique. Branche qui toutefois se différencie
des autres en ce qu'on n'y fait appel à l'observation qu'au début,

pour acquérir définitions et axiomes. Lorsqu'un mathématicien
a prévu plus ou moins nettement une proposition, au lieu d'avoir
recours à l'expérience, comme le ferait un physicien, il cherche

une démonstration logique ; la vérification logique remplace pour
lui la vérification expérimentale. En somme, il ne cherche pas à

découvrir du nouveau, il essaie de prendre conscience des

richesses qu'il possède déjà inconsciemment, qui sont enfermées
dans les définitions et dans les axiomes. D'où l'importance
capitale de ces définitions et axiomes qui, certes, ne sont assujettis
logiquement qu'à la condition d'être compatibles, mais qui ne
conduiraient qu'à une science purement formelle, vide de sens,
s'ils étaient sans rapport avec la réalité.

Le professeur de mathématiques, celui de l'Enseignement
secondaire en particulier, n'a pas à former de purs logiciens, il
doit contribuer à façonner des hommes raisonnables et pour cela

il lui faut s'occuper non seulement des raisonnements logiques
mais encore de l'acquisition des prémisses de ces raisonnements
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et de l'application de leurs résultats au concret. Dans les questions

traitées ici je n'ai guère eu l'occasion de parler de ce dernier

point; il n'en est pas moins essentiel. Faute de bien indiquer le

départ du concret et le retour au concret on risquerait de faire

acquérir aux élèves l'esprit géométrique dans le sens péjoratif
du terme, de les inciter à raisonner impertubablement à partir

| de données non assurées. Il faut faire concevoir aux élèves qu'en
J dehors des mathématiques on ne démontre rien mathématique-

ment et que, pourtant, la logique est utile en toutes circonstances.

| Les mathématiques ont été créées par les hommes pour leurs
besoins et elles leur sont, en fait, un auxiliaire précieux; le

professeur de mathématiques doit rester un professeur d'action.
^ Il ne lui appartient pas d'éveiller le doute philosophique, car il
r; n'aurait pas, comme son collègue de philosophie, le temps et les

| moyens de l'éveiller et de le discipliner tout à la fois.
S Je ne crois pas que ce soit assez d'exiger que les futurs profil

fesseurs aient dcquis une habileté technique et qu'ils sachent

i débiter des manuels; il faudrait leur avoir demandé de réfléchir
longuement à ce qu'ils auront à enseigner dans un esprit de

;J critique logique et pédagogique; d'avoir fait, seuls ou aidés par
J quelque enseignement, sur chaque grand chapitre, une étude

analogue à celle que j'ai indiquée ici pour ce qui concerne la
I mesure des grandeurs.

I Quels enseignements de futurs professeurs pourraient-ils tirer
de cette étude Il est certain tout d'abord que pour choisir en

| connaissance de cause entre les divers exposés des faits
mathématiques il faut les avoir comparés, en avoir cherché le fort et
le faible. Que, ce faisant, on se met en mesure d'en construire
de nouveaux, si besoin est. Tout cela est trop clair, passons à des
bénéfices plus cachés. En scrutant les raisonnements, si l'on voit
toute la puissance de la logique, on aperçoit aussi toutes ses

exigences et l'on prend conscience des précautions indispensables

dans les mathématiques appliquées.
Dans chaque chapitre, j'aurais pu répéter ce que j'ai dit pour

l'arithmétique, § 3: ce chapitre s'applique quand il s'applique.
Nos raisonnements absolus ne nous conduisent, dans les applications,

qu'à des vérités relatives. C'est qu'il y a toujours quelque
désaccord entre nos prémisses logiques et la réalité qu'elles pré-
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tendent traduire. Par exemple, nous avons rencontré la vieille
question des irrationnelles: les Anciens avaient construit, à

l'aide des fractions, un continu parfaitement suffisant pour toutes
les expériences humaines, quelque précision qu'elles puissent
atteindre, mais insuffisant logiquement. Il nous a fallu (§§7, 55)

prolonger métaphysiquement la suite des opérations de mesure

pour obtenir la notion sur laquelle nous pouvons raisonner
logiquement. Pour étudier le concret, ou ce qui nous parait
être tel, il nous a fallu procéder à un élargissement du réel.

Dans le cas de la notion d'aire, le procédé employé est en

quelque sorte inverse de celui, relatif à la longueur, que je viens
de rappeler. Pour donner à l'aire une base logique, nous nous
sommes bornés à des domaines spéciaux: les domaines quarrables.
Bien entendu, dans un enseignement s'adressant à de futurs
professeurs on aurait donné, par des exemples, la preuve de

l'existence de ces domaines non quarrables qui, ici, a été considérée

seulement comme possible. Ainsi, on verrait un domaine D

tel que, si petit que soit s > 0, on puisse trouver deux polygones
différant l'un de l'autre, et de D, de moins de s et dont les aires
diffèrent de plus d'un nombre positif déterminé. La notion
physique d'aire s'écroule en quelque sorte, nous avons renoncé à lui
donner dans tous les cas un sens logique; pour redonner une aire
à D il faudrait procéder à un nouvel élargissement de la notion
de nombre comme on l'avait fait pour redonner une longueur à

la diagonale du carré construit sur l'unité de longueur et cet

élargissement nous paraîtrait tout d'abord inadmissible et
scandaleux.

Ces constatations rappelleraient aux élèves-professeurs que
les efforts des mathématiciens ont été faits, tout d'abord au
moins, en vue du réel et les inciteraient à oser en parler. Elles
leur montreraient aussi toutes les ressources que la logique
fournit à l'intelligence et que, sans l'intelligence, la logique ne
conduit qu'à des déconvenues.

Un professeur de physique ne se croit pas tenu, par respect
de l'expérience, à cacher l'intervention de l'intelligence dans les

recherches physiques. Trop de professeurs de mathématiques se

croient tenus, par respect de la logique, à présenter les mathématiques

comme le déroulement inéluctable d'une déduction à voie
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unique. Si quelques noms de mathématiciens n'étaient accolés,
à tort ou à raison, à certains théorèmes, les élèves pourraient
oublier que les mathématiques ne sont qu'oeuvre humaine. On

ne parle jamais du choix des prémisses, on n'ose pas dire que
telle proposition a été obtenue grâce aux qualités d'imagination
d'un savant; on confond avec la découverte d'une proposition
sa présentation logique faite à la mode actuelle. A entendre
certains professeurs, on croirait que Newton n'a rien compris à

l'intégration, que Euler ignorait les séries, que Lagrange ne
savait pas ce qu'était une fonction. On cherche partout des

démonstrations naturelles — on m'a parlé de quelqu'un qui se

félicitait d'avoir enfin trouvé, après six mois de recherches, une
démonstration naturelle du fait que les trois hauteurs d'un
triangle concourent! — et l'on croit, grâce à ces démonstrations
naturelles, enseigner l'art de découvrir.

S'il était vrai que la méthode de la redécouverte soit la
véritable méthode de découverte, ça se saurait; car nous serions noyés
sous les découvertes des innombrables protagonistes de la
redécouverte. Mais, tout au contraire, un enseignement basé trop
systématiquement sur la redécouverte serait l'enseignement
même de la non découverte car, pour découvrir, il faut faire un
rapprochement inhabituel, non naturel, et la méthode de la
redécouverte consiste à guider les élèves vers certains raisonnements

catalogués, toujours les mêmes, et à apprendre aux élèves
à les essayer successivement, sans omission. Cela permet, certes,
de résoudre les problèmes parce qu'on propose des problèmes
justiciables des raisonnements en question; mais cette taylorisation

du travail intellectuel, ce dressage, est tout différent,
est tout le contraire de l'assouplissement qui permet à l'intelligence

de découvrir de nouveaux points de vue.
La méthode de la redécouverte est d'ailleurs excellente;

elle a joué le rôle principal dans cette transformation de
l'enseignement des mathématiques dans les lycées qui a remplacé
les classes mornes d'autrefois, où les élèves n'avaient qu'un rôle
réceptif, par les classes vivantes de maintenant où les élèves,
ayant un rôle actif, sentent mieux la signification, la portée,
l'intérêt, le but des propositions. Il est excellent aussi d'employer
des démonstrations montrant la parenté du raisonnement
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utilisé avec les raisonnements familiers aux élèves, démonstrations

que l'on appelle naturelles pour cette raison; en concevant
qu'on ait pu construire ces démonstrations, les élèves les

comprennent mieux et prennent confiance en leurs propres moyens.
Mais il ne faut pas demander à la redécouverte et aux démonstrations

naturelles ce qu'elles ne peuvent donner. Ce sont
d'excellents moyens pédagogiques; rien de plus. Et ces moyens
deviendraient néfastes s'ils servaient à masquer le rôle de

l'intelligence, à suggérer que faire des mathématiques c'est
appliquer à la lettre des sortes de règlements.

Voici quelques questions auxquelles on pense nécessairement
au cours d'une étude critique comme celle faite ici. Peu m'importe
d'ailleurs que les élèves-professeurs arrivent aux conclusions

que je viens de formuler ou à d'autres; mais je voudrais
qu'ils aient, sur des points aussi fondamentaux, une opinion
réfléchie.

Je viens de parler d'étude critique mais, en vérité, avons-nous
fait quelque chose qui mérite le nom de critique quand, par
exemple, parlant du nombre entier, nous nous sommes bornés à

décrire l'opération de dénombrement. N'aurions-nous pas dû
examiner la notion d'objets, de corps à dénombrer Nous n'avons
signalé que l'arbitraire de cette notion et cela nous a conduit,
§ 10, à la multiplication; il y a bien plus à dire. La notion de

corps n'est claire que pour qui ne la critique pas; la physique
la détruit peu à peu. On sait depuis toujours que le corps
solide le mieux poli a des anfractuosités, des pores, que, dans

des cavités ou dans sa matière même, sont inclus d'autres corps,
des impuretés, des liquides, des gaz; puis on a su que tout solide

baigne dans une atmosphère formée de sa vapeur et sans

cesse variable; puis les théories atomiques des corps, les

théories planétaires des atomes rendent la notion de corps de plus
en plus incertaine. La division en corps, est-elle autre chose

qu'une construction simpliste du monde à l'aide d'images de

notre moi, la seule chose dont nos ancêtres primitifs avaient
un peu nettement conscience Si la notion de corps n'a aucune
valeur absolue, celle d'entier, même celle du nombre un, n'est-
elle pas la plus fausse de toutes les notions Et que dire alors
de la notion de nombre en général que nous n'avons atteinte
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qu'en remplaçant la notion vague de corps par celle plus
insaisissable de point

Il est clair que je suis dans une mauvaise voie, que je n'ai fait
que jeter le doute le plus stérile en cherchant de l'absolu alors

que j'étais dans le domaine du relatif et du nuancé, qu'une
véritable étude critique de la notion de corps serait intimement
liée à l'examen des démarches de notre pensée s'efforçant de

comprendre le monde extérieur et nous ferait sortir du domaine
des mathématiques. En disant cela, je n'interdis pas d'aller
jusqu'à la critique philosophique dont l'intérêt et l'importance
ne sont nullement mis en question, mais il faudrait pouvoir
y consacrer bien du temps pour le faire utilement et y avoir
été préparé par des études antérieures. A côté de cette critique,

Ç il en existe une autre plus à la portée des mathématiciens; c'est
celle que j'ai appelée la critique logique et pédagogique et dont

j je tenais à signaler la différence avec la critique proprement
I philosophique.
^ Des travaux importants bien connus ont montré l'intérêt de

l'étude approfondie des mathématiques élémentaires soit en vue
S de leurs prolongements vers d'autres branches des

mathématiques, soit en vue de la philosophie ou de l'histoire des

sciences; j'attire l'attention sur son intérêt pédagogique.
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