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SUR LA MESURE DES GRANDEURS'!

PAR

Henri LeBEsGuE, Membre de P'Institut (Paris).

VII. — INTEGRATION ET DERIVATION.

94. — La théorie des grandeurs qui constitue le précédent
chapitre avait été préparée par des recherches de Cauchy, sur ce
qu’il appelait des grandeurs concomitantes, par les travaux
destinés a éclaircir les notions d’aire, de volume, de mesure,
aussi par des études sur les opérations fonctionnelles linéaires;
mais c’est a l'occasion de l'intégration des fonctions les plus
générales qu’elle a été définitivement édifiée par la collaboration
de nombreux savants. Ceci ne doit pas surprendre, car nous
avons vu, des I’abord, que calcul infinitésimal et théorie des
grandeurs avaient certains buts communs; d’autre part, en se
placant dans le cas le plus général, ¢’est-a-dire dans celui ou I'on
part du moindre nombre de prémisses, on ne peut plus raisonner
que sur ce qui est essentiel, fondamental, dans la question et on a
quelque chance d’en éclaircir le point de départ. Avoir fourni
cette théorie élémentaire des grandeurs sera peut-étre, apres
tout, le plus substantiel des résultats des travaux sur I'intégra-
tion des fonctions discontinues.

Du point de vue pédagogique auquel nous nous placons ici,
la théorie des grandeurs doit influer sur la présentation des
opérations d’intégration et de dérivation. L’exposé qui va étre
esquissé est fait en vue d’étudiants qui entendent parler pour la
premiére fois de ces opérations fonctionnelles prises dans leur

1 Voir L’Enseignement mathématique, X X XI¢ année, p. 173-206, — XX XIIe année
p. 23-51. — XX XIIIe année, p. 22-48; p. 177-213; p. 270-284.
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sens général; certains des paragraphes antérieurs (72, 75 & 77,
82) étaient d’ailleurs relatifs & I’enseignement & donner aux
mémes étudiants de Facultés. Nous n’indiquerons que le début
de 'exposé, en nous préoccupant & peu prés uniquement du
fond; dans un enseignement véritable on aurait & prendre bien
des précautions de forme et, par exemple, on ne s’occuperait
pas deés ’abord de I’espace & n dimensions.

On a vu que, parmi les nombres considérés par les physiciens,
certains étaient attachés & des points, certains autres a des corps
étendus, d’ou deux notions mathématiques: fonctions d’une ou
plusieurs variables, grandeurs. Tant qu’ils sont déterminables
physiquement, ces nombres ont une certaine continuité de facon
qu’a deux points ou deux corps pratiquement indiscernables
soient attachés le méme nombre. Nous aurons tout d’abord a
traduire ces faits physiques en énoncés purement logiques.

Nous aurons aussi a examiner quel emploi les physiciens font
des nombres qu’ils déterminent et, pour cela, nous devons porter
notre attention sur ce que les physiciens appellent une grandeur
dérivée.

Considérons un corps C, les physiciens lui attachent une
masse M, un volume V et une densité (ou densité moyenne) 3.
Les deux premiers nombres se déterminent séparément expéri-
mentalement et le troisieme en résulte arithmétiquement par la
formule de définition:

on dit que la masse et le volume sont des grandeurs directement
mesurables et la densité une grandeur dérivée pour souligner la
différence entre ces nombres. On remarquera que, dans la phrase
précédente, le mot grandeur est correctement employé (au sens
du chapitre précédent) quand on 1'applique & la masse et au
volume et incorrectement pour la densité; il est clair, par
exemple, que si Pon partage un corps en deux corps partiels, la
densité du corps total n’est pas la somme des densités des corps
partiels. Nous éviterons donc cet emploi du mot grandeur.
Pour que M et V soient déterminés, il faut avoir choisi des
unités de masse et de volume, mais aucun choix nouveau n’est a
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faire pour J; c’est ce que 1'on exprime encore en disant que
Punité de densité est une unité dérivée. Un corps aura une
densité égale a 1, donc égale & la densité unité, en particulier si
M =1et V=1; c’est l1a le sens d’'une phrase telle que celle-ci:
quand 'unité de masse est le gramme, et I'unité de volume le
centimetre cube, 'unité de densité est le gramme par centimetre
cube.

La densité moyenne d’un corps est particuliérement intéres-
sante quand elle est la méme pour tous les corps partiels que I'on
peut découper dans le corps donné, c¢’est-a-dire lorsque celui-ci
est homogene quant & la masse. Lorsqu’il n’en est pas ainsi,
les physiciens définissent une densité en chaque point P du corps:
c’est la densité moyenne des corps découpés autour de P et
assez petits pour étre pratiquement homogenes. Nous aurons a
préciser mathématiquement I'opération qui fournit cette densité,
cette opération sera la dérivation. L’opération inverse, permettant
le caleul de M & partir de V et de 3, sera l'intégration.

Pour abréger, j’examinerai ici directement le cas de ’espace a k
dimensions, apres avoir rappelé les éléments de géométrie a
k dimensions dont on a besoin.

95. — Sur une courbe, sur une surface, dans I’espace ordinaire,
un point est déterminé par une, deux, trois coordonnées; par
analogie, nous appellerons point d’un espace a k dimensions, un
ensemble de k£ valeurs numériques rangées dans un certain ordre,
Xy, Ty, ... X, OU, €n abrégé (z;). Les valeurs des x; sont dites les
coordonnées; quand on dit que ces coordonnées sont rectan-
gulaires, on exprime tout simplement que ’expression

sera appelée la distance des deux points (x;), (;). Nous emploie-
rons uniquement des coordonnées rectangulaires.
Les formules
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seront alors dites formules du passage des coordonnées rectan-
gulaires (z;) aux coordonnées rectangulaires (X;) si la distance
de (2;) & (z;) est toujours égale & celle de (X;) a (X;). Un calcul
immédiat donne les conditions d’orthogonalité sous la forme:

1=R ‘ 1=R .
E(a%)gzl; Za%a};:O, ] Z k.

i

=1

o~

De la résulte, a la fagon classique, que le déterminant A des
al est égal & 4 1, puis les formules du changement de coordon-
nées résolues par rapport aux z; et enfin les conditions d’orthogo-
nalité sous la seconde forme.

Les formules du changement de coordonnées peuvent aussi
étre considérées comme définissant une transformation ponc-
tuelle, celle-ci est dite étre un déplacement quand A = 1.
Supposons qu’il en soit ainsi.

Si on a ai = 41, pour chaque valeur de i, donc, d’apres les
conditions d’orthogonalité, al = 0 pour i 3=, le déplacement
est dit une translation.

Sion a af = + 1, pour une valeur de i, donc al = 0 et ai = 0
pour cette valeur de i, et si les o sont nuls, le déplacement
est appelé une rotation autour de 'axe de coordonnées
Ty =Ty = ... =% = Z; 4= ..=x, =0, appelé encore axe
des z;.

Deux figures qui se correspondent dans un déplacement sont
dites égales; on voit de suite que 'on peut passer d’une figure &
une figure égale par une translation et des rotations autour des
axes de coordonnées.

96. — Les inégalités:

4G =2 = by,
ay () = Ty = by (7y)

as {2y, Zy) = 25 = by (xl’xz) )

A (1, Ty oy T y) = 7y = by (%1, T3y .-, Ty 4} s

dans lesquelles les fonctions qui figurent aux membres extrémes
sont continues, définissent une famille de points (x;) constituant
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ce que l'on appelle un domaine simple. Si ces fonctions se ré-
duisent toutes (comme @, et b;) & des constantes on a un intervalle
dont les k& dimensions sont les k différences b, — a;. Par réunion
de domaines simples en nombre fini, on a des domaines plus
généraux. Mais la famille de domaines ainsi définie dépendra
des axes de coordonnées et méme de l'ordre de ces axes; pour
avoir une famille de domaines indépendante des axes nous
conviendrons qu'un ensemble E de points sera dit un domaine
si, quel que soit £ > 0, on peut trouver un domaine D¢, au sens
précédent du mot domaine, ou un ensemble D, de domaines en
nombre fint tel que les points de D appartiennent tous & E et
que les points de E n’appartenant pas & D, soient & une distance
inférieure & ¢ de points de D¢; et tel, de plus, que D contient D,
quand e est inférieur a ¢’

Je n’insiste pas sur la démonstration facile de 'invariance de
cette famille de domaines quand on passe d’un systéme d’axes
a un autre. Je veux simplement signaler que, si 'on veut un
exposé logiquement complet, de telles précisions et démonstra-
tions sont indispensables méme, ainsi que je I'ai déja signalé,
quand on se limite aux espaces a trois dimensions au plus.

97. — Dans la famille précédente de domaines nous allons tout
d’abord isoler une famille particuliére, celle des domaines
généralisant les domaines quarrables du plan et tels que:

«) A chacun de ces domaines D est attaché un nombre posiiif
a, (D);

B) A un domaine formé par la réunion de deux autres exté-
rieurs U'un a I'autre est attaché la somme des deux nombres
attachés aux deux domaines partiels;

v) A deux domaines égaux sont attachés des nombres égaux;

3) Ces nombres sont entiérement fixés numériquement quand
est fixé le nombre attaché a l'un d’eux.

Ces domaines seront dits quarrables d’ordre k; en abrégé
quarrables.

Nous voulons d’ailleurs que cette famille contienne tous les
intervalles et tous les domaines constitués par la réunion d’inter-
valles en nombre fini.
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Considérons un réseau total T d’intervalles I, I, I,, ...; les
intervalles I, étant définis par les inégalités

e; A:ei-+ 1

———ﬁxi_
10P 10P

les e; étant entiers. Et, un domaine E étant donné, comptons les
intervalles I, dont tous les points appartiennent a E, soit n,
leur nombre, et les intervalles I, dont certains points appar-
tiennent & E, soit N, leur nombre.

Alors si I'aire d’ordre k& commune & tous les I est 1, celle des

. : 1 : :
I, est nécessairement Lo et celle de E, si elle existe, est

comprise entre
n N
D et 2.
10kD 10kp

On a d’ailleurs

ny o Mpog o Ny Ny

10kD ~_10kQ%%U m_iokﬁ%%ﬁ “—10kp’

N __n , 1 .
donc si ———= tend vers zéro avec = I’aire d’ordre &k de E ne
190

peut étre que la limite commune des

n N
D et D

10/P 10k’

Lorsqu’il en est ainsi, E est dit quarrable d’ordre k et la
limite se note a, (E).

98. — Nous venons de reprendre la définition du chapitre I1I;
il nous faut maintenant démontrer, comme nous ’avons fait au
chapitre 111 pour a,, que a,, qui vérifie évidemment les condi-
tions o) et 9), vérifie aussi B) et v).

Les I qui ont été comptés dans les N, considérés sans étre
comptés dans les n, sont ceux qui contiennent & la fois des
points de E et des points n’appartenant pas & E, donc ce sont
ceux qui contiennent des points frontiéres [est point frontiére
tout point (X;) tel que I'intervalle X; — ¢ = 2, = X, + ¢ con-

I’ Enseienement, mathém.. 34me année. 1035. 19
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tienne, quel que soit ¢ > 0, des points de E et des points n’appar-
tenant pas 4 E]. De 13, comme au § 27, résulte la proposition p)
et aussi qu’un domaine formé par la réunion d’autres en nombre
fini est quarrable d’ordre % toutes les fois que les domaines
composants le sont.

Pour la proposition v) nous procéderons par récurrence en la
supposant établie pour 'ordre £ — 1; on pourrait répéter mot a
mot ce qui a été dit au chapitre IV pour passer de a, a as; on
peut aussi, profitant de I’adge des auditeurs, faire un raisonnement
moins élémentaire, mais préparant opération d’intégration,
comme il suit.

99. — Nous allons démontrer que tout domaine simple de
I’espace a k& dimensions est quarrable d’ordre %, en supposant la
méme propriété établie pour le nombre £t — 1.

Soit E le domaine simple défini par les & doubles inégalités
écrites plus haut, soit E’ le domaine simple & £ — 1 dimensions
défini par les k — 1 premiéres doubles inégalités. E' est dit la
projection de E sur I’espace coordonné x,, %y, ..., Zp—1.

Les intervalles I, précédemment utilisés ont de méme des
projections qui sont les intervalles I;, du réseau T’ avec lequel
on évalue les aires d’ordre £ — 1 dans l’espace coordonné
considéré. De sorte que les I' fournissent pour E’ des nombres
n, et N, tels que

’ ’

n N

’ p D ’
et W) — o ¢ genp G-t )

tendent vers zéro quand p augmente indéfiniment.
Les I, fournissent pour E des nombres n, et N,; considérons
tous ceux des I, comptés dans les n, ou les N, ils forment deux

domaines E, et Ep. Tous ceux ayant une méme projection I;
et faisant partie de E, forment un intervalle J, dont les £ — 1

premieres dimensions sont Tof et dont la k*me ne différe de

0 0 0 0 0
b (@, @, oo Xp_q) — oy (2, Ty e Tp_yq) s,
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%, %0, ..., Th_; étant un point arbitrairement choisi dans cet I,
que de 7, au plus; 0, tendant vers zéro quand p augmente inde-
finiment. Quant & I, c¢’est I'un quelconque des n, intervalles
utilisés pour avoir une valeur approchée par défaut de a,_, (E').

Pour un tel intervalle I;o, les intervalles I, de E, admettant cet
I;) pour projection, fournissent un résultat analogue, l’_inﬁniment
petit n, étant remplacé par un autre ,. Mais, de plus, E, contient
des I, ayant pour projections des I, comptant dans les N, et
non dans les n,,. Ceux ayant un méme I, pour projection forment
encore un intervalle dont la £*™¢ dimension est au plus M + £,,
M étant le maximum de

bk (xl> x?? LA xh_i) - ak (xl, 3’)2 5 ese 4 .’L’k_i) .
Done on a:
N —n 1 1
b P -\ N )
10fp  — — qo-Dp hp + &) + 2 10D M+ &) s

les deux sommations étant étendues aux deux espéces d’inter-
valles I}, que nous venons de considérer. Or ceci donne

! ’

N —n N —n
2P =g (B (n, + L) + (M4 G B

10%P 10%-Dp
inégalité dans laquelle le second membre tend vers zéro quand
p croit; ce qui prouve le théoréme.

De plus, quand by et a sont des constantes (cas d’un domaine
prismatique & génératrices paralléles a l'axe des x;) la kitme
dimension des J, est constante & n, + {, prés et la somme des
ar(Jp) fournit la valeur

ap (B) = (b, — a,) X a,_4 (E) .

100. — De la résulte encore qu'un tel domaine prismatique
a une aire d’ordre k£ qui ne change pas dans une translation quel-
conque ou dans une rotation autour de 'axe des x;. Nous allons
étendre ce résultat & un domaine quarrable d’ordre k quel-
conque E. A ,

A Taide des intervalles I, en nombre. n, (ou N,) fournissant
une valeur approchée par défaut (ou par excés) de ay(E) formons
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une figure E, (ou E,). Une translation ou une rotation autour
de 'axe des x;, transforme ces figures en des figures égales &,
&,, &, formées par les transformés des I,,, transformés qui ne sont
plus, en général, des intervalles, mais sont quarrables d’ordre £

1
et ont toujours un a; égal a R Donc &, et &, ont mémes ax

que E, et E,; et comme a,(E,) — ar(Ey) tend vers zero quand

p croit, il en est de méme de az(&p) — ax(8,), done & est quar-
rable; de plus son ay, est la limite de ah(&p)—donc de ap(E,); on a
ar (&) = ap(E).

La définition de I'aire d’ordre £ est ainsi légitimée, puisqu’on
peut toujours passer d’un domaine & un domaine égal par une
suite de déplacements de la nature des précédents.

C’est de la famille des domaines quarrables que nous nous
occuperons uniquement dorénavant, encore qu’elle ne soit pas
la seule intéressante.

101. — La définition de I’aire d’ordre £ a mis en évidence la
propriété de continuité qui fait que cette aire peut étre atteinte
expérimentalement: A un domaine E nous avons attaché deux
figures E,, E,, constituées d’intervalles I,; & E, ajoutons tous
les Ip+q, ¢ fixe, ayant des points dans E,sans étre en entier dans

. Si E, se réduisait & un I, Paire d’ordre k de ces I,,,ajoutés
serait:

1 1 1k 1 \" ) 1\* é
N = 4 (D) - 2y .
[101’ i 10p+‘1] (101”) %1 | (1 MRTT '

Donec, dans le cas d’un E, quelconque, les I, ,ajoutés ont une
aire d’ordre £ au plus égale a

ay (B.) .é<1+£&>h~1g.

Pour ¢ assez grand on aura donc ainsi une figure E, telle que
a,(E,) surpasse d’aussi peu que 'on voudra a,(E,) done, pour
p assez grand, a;(E), si E est quarrable. En enlevant de E, les
I,.4 contenus dans E, et contenant des points frontiéres de E,
on aura de méme une figure E, qui, pour p et ¢ assez grands, sera
d’aire d’ordre & aussi voisine qu’on le voudra de a;(E).
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De plus tous les I, , contenant des points frontieres de E font
partie de E, et aucun n’appartient & E; .

Considérons maintenant un domaine quarrable variable K,
tendant vers E; c¢’est-a-dire que, dés que les conditions différent
assez peu de celles pour lesquelles on recherche la limite, E, est
contenu dans un domaine arbitrairement choisi contenant E a
son intérieur au sens strict (done est contenu dans E,) et contient
un domaine contenu au sens strict dans E (donc contient Ey).

Alors on a:
“h(Ep) = a (B
Donc, si le domaine quarrable E est la limite du domaine quar-
rable Ey, ax(E) est la limite de ai(Ey).

102. — Nous allons considérer les fonctions de domaine, les
domaines, qui joueront le role de la variable, sont les domaines
quarrables. A chacun de ces domaines, A, nous supposerons
attaché un nombre f (A), ce sera la fonction de domaine. De
plus, nous supposerons cette fonction additive, ¢’est-a-dire telle
que, si 'on divise A en deux domaines quarrables A; et A, on
ait:

Nos nombres f(A) vérifient donc la condition B); si, de plus,
ils étaient positifs, ce seraient des grandeurs attachées a des
corps figurés par les divers domaines quarrables. Ils sont aux
grandeurs, ce que les nombres figurés sont aux nombres positifs.
La quantité de chaleur qu’il faudrait fournir ou retirer aux
corps, pris dans leur état actuel, pour les amener & 0 degré est
une telle fonction additive.

Nous supposerons de plus ces fonciions continues ; ¢’est-a-dire

# que si A, variable tend vers A, f(A,) tendra vers f(A); condition

# nécessairement réalisée quand f(A) peut étre déterminée expéri-
® mentalement.

1 T.a nécessité de la considération de Ep et F:p résulte de ce que tousles Ip contenant

des points frontiéres de E ne font pas nécessairement partie de Fp (car E n’a pas été

s'u'pposé ferme au sens de la théorie des ensembles) et que certains de ceux-ci peuvent
B faire partie de EP'
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Une conséquence de cette continuité est que f(A,) tend vers
zéro quand A, tend vers zéro dans toutes ses dimensions,
¢’est-a-dire est contenu dans un intervalle variable dont la plus
grande dimension tend vers zéro. En effet, si cela n’était pas,
on pourrait prendre des A, dont les dimensions tendent vers
zéro tels que f(A,) tende vers un nombre ¢ == 0 et on pourrait
assujettir les points de A, a avoir un point limite, soit P, de
coordonnées (). Alors, en subdivisant A, s’il est nécessaire, on
pourra supposer que, tout en conservant les propriétés indiquées,
pour chaque ¢ tous ses points vérifient soit

x; < xg soit 2, > acz .

Imaginons que ce soit, pour chaque 7, la premiére inégalité qui
convienne et soit D un domaine dont P est point limite et dont
tous les points ont des coordonnées supérieures.a celles de P.
Alors le domaine D + A, aurait pour limite D et /(D + A,) ne
tendrait pas vers f(D), mais vers f(D) 4 .

Cette propriété des fonctions de domaine que nous consi-
dérons et des grandeurs les différencie nettement des fonctions de
points: Si on cherche & réduire A & un point P, f(A) tend vers
zéro et non vers une fonction du point P, comme la densité en P
ou la chaleur spécifique en P. Nous allons obtenir maintenant
ces fonctions de points qui correspondent aux grandeurs dérivées
des physiciens.

103. — Considérons une fonction f(A) et une grandeur conti-
nue V(A), ¢’est-a-dire une fonction additive continue de domaine

ALY
V(4)
Iappellerons la dérivée moyenne de f par rapport & V dans A.
Diminuons A dans toutes ses dimensions, indéfiniment, mais de
maniére qu’il contienne toujours un point P, si, dans ces condi-

tions, le rapport tend vers une limite déterminée ¢(P), ce sera

qui, de plus, est positive. Le quotient a un sens; nous

. 5 g . d
la dérivée de f par rapport & V en P; elle se note d_<7 (P) = o(P).

La définition méme de la dérivée indique le mode de calcul
qui la fournit; 'opération de dérivation est le calcul de la limite
d’un rapport. Le cas le plus intéressant, le seul que nous examine-
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rons, est celui ou le rapport tend uniformément vers sa limite,

¢’est-a-dire le cas ou la différence entre *{T((% et o(P) est inférieure

au nombre positif arbitrairement choisi € dés que A est contenu
dans un intervalle dont les & dimensions sont au plus égales & un
nombre v tendant vers zéro avec ¢!, v dépendant de € mais
pas de P. Si alors on choisit pour A I'intervalle

xz—hﬁxi§x2+h,
P étant le point (;), le rapport est une fonction continue de P,
donc sa limite pour k tendant vers zéro sera fonction continue

de P; ¢(P) est donc alors continue. Nous dirons que ¢(P) est une
dérivée a convergence uniforme ? lorsque le rapport incrémentiel

f(A) : ,
) tend uniformément vers ¢ (P).

Lorsqu’il en est ainsi, ce rapport est borné des que A est pris
assez petit dans toutes ses dimensions, et, comme d’autre part
il est borné pour tous les A plus grands mais pris dans la partie

bornée de 'espace que nous considérons, % est de module borné

pour tous les A envisagés. On a:

[ F{A) ] < MV(4),

M étant un nombre fixe. On dit que la fonction f est & nombres
dérivés par rapport a V bornés.

En particulier, si I'inégalité précédente est vraie quand on
prend ax(A) pour V(A), c¢’est-a-dire si, pour tout A, on a:

| HA) ] < Kay(8),

la fonction f(A) est dite & nombres dérivés bornés. Il est clair que
les exemples physiques de fonctions f(A) qui ont été donnés
fournissaient des fonctions & nombres dérivés bornés. Ceci
entraine évidemment la continuité de ces fonctions.

1 En réalité, saufsi h = 1, cette convergence uniforme de {I((AA)) est une conséquence
nécessaire de la convergence de ce rapport pour tout point P. Il en est de méme pour
h =1 si on emploie, méme dans cette hypothése, la définition générale des domaines
de la fin du § 96, laquelle n’exige pas la connexité.

2 En réalité, dés qu'une dérivée est continue, elle est & convergence uniforme.
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104. — Enoncons maintenant le probléme d’intégration: Etant
données une fonction continue de point ¢ (P) et une fonction de do-
matneV (A), positive, additive et @ nombres dérivés bornés, trouver
une fonction additive et @ nombres dérivés bornés f(A) qui admette
o(P) comme dérivée par rapport @ V; cette dérivée étant a conver-
gence uniforme.

Si A est la réunion d’un nombre fini d’intervalles 3;, en sub-
divisant au besoin ceux-ci on peut supposer leurs dimensions .
assez petites pour que I'on ait, pour tout ¢,

- CP(P'L) < €,

1(3;)
V(3

P; étant arbitrairement choisi dans 9;.
Alors, puisque

HA) = 2f(8;) ,  Z[V(§)| = 2V() = V(4),

on a:
[ J(A) — Ze(P;) V()| < eV(4) .

St donc le probléme est possible, sa solution f(A) est unique et
f(A) est la limite de 2 ¢ (P;) V(3;).

Voyons si cette limite existe. Soit une autre subdivision de A,
elle fournit des domaines 8;- et des points P;. Supposons les di-
mensions des 3 et des 3’ assez petites pour que dans chacun de
ces intervalles ¢ varie de moins de e et évaluons dans cette
hypothese la différence

T (P)V(5) — ch(P;) V(S;-) .

Soient 3" les intervalles résultant des inégalités définissant
les 3; et les 3;. Chaque 3; et chaque 3; est une somme de 8" et si
I'on a:

8 =8, + 8 + .. + 8

on a aussi
V(5) = V(8) + V(8]) + ... + V(s)) .

En faisant cette transformation pour V(3;) et V'(3;) dans la
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différence & évaluer, celle-ci se présente sous la forme d’une
sommation par rapport aux 8"

=[e(P) — ¢ (P))] V(s

o(P;) et o(P)) ainsi associés & 3, différent de ¢ au plus de la

: ) . " . , \
“ valeur prise par ¢ en un point P, de §,. Donc la différence a
‘| évaluer est au plus

%2e x V(8,) = 2eV(A)

Elle tend donc vers zéro avec ¢ et la somme X ¢ (P;)V(3;) a une

:' limite £(A) indépendante de la subdivision de A envisagée.

I1 reste & rechercher si f(A) remplit les conditions de I’énoncé;
pour n’avoir a le faire qu'une fois, étendons d’abord les résultats

. obtenus a un domaine quarrable quelconque A. On a vu qu’il
! est la limite d’un domaine variable A, formé d’intervalles; done,
| puisqu’on veut que f( ) soit continue, f(A) doit étre la limite de
Cf(Ay). Et pulsquef ) est unique; f(A), si elle existe, est unique.
| Montrons que f(A,) a effectlvement une limite. On a vu que 'on
.| peut trouver deux domaines formés d’intervalles A et A tels que
A soit strictement intérieur au premier, contienne au sens strict
| le second et que ap(A — A) soit aussi petite que Pon veut.
| Alors A, tendant vers A finit par étre contenu dans A et par
| contenir A; soient deux tels domaines A,, A,. Ils ont une partie
‘| commune A” et sont tels que A, — A" = A, A, — A" = A/,
A et A’ faisant partie de A — A, ont des aires d’ordre k inférieures
| & ap(A — A). Evaluons

FA) —F(A,) = [HA") + F(A)] — [FA) + F(A)] = f(A) —F(A) .

Pour A, formé d’un nombre fini d’intervalles, f(A) se présente

comme limite d’une somme: X ¢(P,) V(3,). Si B est la borne
supérieure de |¢|, cette somme est au plus, en module,

BIV(s,) = BV(A) = BKa, (A)

?

K étant un nombre fixe. Donc

?

| #a,) — F(A 142BKah(A~—A) :

et f/(A,) tend donc vers une limite qu’on prendra pour f(A
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105. — Cette fonction f(A), la seule qui puisse étre solution de
notre probléme d’intégration, peut toujours étre obtenue comme
limite de sommes X ¢(P;) V(3;) étendues aux intervalles I,
(Jouant le role des 3;) qui comptent dans les n, ou les N, fournis-
sant des valeurs approchées de an(A).

De la résulte une propriété capitale de f(A) qui permettra de
montrer que f(A) satisfait bien a toutes les conditions du probléme
d’intégration.

T'héoréme de la moyenne. — St m et M sont les bornes inférieure
et supérieure de ¢(P) dans A, on a:

fA) = pV(4)

w étant compris entre m et M. En effet, calculons une valeur
approchée de f(A) & I'aide des n, intervalles I, comme il a été
dit; on trouve 2 ¢ (P;)V(3;) comprise entre mXV(3;) et MEV(S;),
quantités qui tendent vers mV(A) et MV(A). Comme ¢ est
fonction continue de P, la valeur de p est I'une de celles prises
par ¢ dans A, d’ott un autre énoncé:

Théoréme des accroissements finis:

FA) = V(A) ¢(n) ,

7 étant un point convenablement choisi dans le domaine AL,

106. — De ce théoréme il résulte, si B est la borne supérieure
de | ¢| dans la région finie de ’espace considéré et si, pour cette
région, V(A), qui est & nombres dérivés bornés, est telle que

V(A) < K - a,(A),
| F{A)] < BK -, (4) 5

ainsi f(A) est @ nombres dérivés bornés.

Si le domaine A, quarrable d’ordre k%, est divisé en deux do-
maines également quarrables Al A% les n, intervalles I, relatifs
a A se partagent en les ny, n;, relatifs & Al et A% et enintervalles
restants R qui contiennent des points intérieurs a A et frontieres
pour Al et A% d’ou, en utilisant ces I, comme J;

S o(P) V(%) = ¥ o(P) V(3) + Z* o(P) V(8) + e (P, V(3 -

1 On montrerait facilement que, sauf sim = M, x = o(x) est difféerent de m et de M.
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Pour p augmentant indéfiniment, les trois premieres sommes
tendent vers f(A), f(A1), f(A2); la troisiéme est au plus en module
BKax(R), quantité qui tend vers zéro. Donc f(A) est une fonction
additive 1.

Le théoréme des accroissements finis donne encore:

%%*cpm = ofr) — (P,

donc le premier membre est inférieur a ¢ dés que les dimensions
de A sont prises assez petites pour que, de P & =, c’est-a-dire
d’un point & un autre de A, ¢ varie de moins de .

Done f(A) admet o(P) comme dérivée par rapport @ V et cette
dérivée est d convergence uniforme.

Ainst, la possibilité de résoudre le probléme d’intégration est
prouvée,; il est aussi démontré que sa solution est unique et est
fournie par la limite de la somme 2 ¢ (P;)V(3;), quand les 3; exté-
rieurs les uns aux autres et quarrables ont des dimensions qui
tendent vers zéro et forment un domaine que 'on fait tendre vers le
domaine quarrable donné A et que les P; sont pris arbitrairement
chacun dans le d; de méme tndice. Pour rappeler cela on représente
la solution, qu'on appelle Uintégrale définie, prise dans A, de
o(P) par rapport a V(A) par le symbole

| o(P)av .

La fonction additive f(A) du domaine quarrable, obtenue en
faisant varier A, est dite 'intégrale indéfinie correspondante.

107. — Le mode de calcul qui résulte de la définition est en
réalité assez peu employé; le plus souvent, on commence par
remplacer I'intégration par rapport a V(3) par une intégration
par rapport a ax(9). Ceci est facile car, de

f3) _ 13 . V(3
ap () V(3) T a,(3)’

résulte

if (P) = df av av

day T = av B X g P) = o(P) - g (B) = $(P) ;

1 Ceci etait évident pour les A sommes d’intervalles et nous a déja servi dans ce cas.
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egalité généralisant le théoreme sur la dérivée des fonctions de
fonctions et d’ou résulte

ffp(P) v :f@(P) -%(P)dah :qu(P)da,h .

Une intégrale par rapport a a; est dite une intégrale multiple
d’ordre k.

Il suffit d’apprendre a calculer ces intégrales kuPleS. Le calcul
se fait par récurrence, du moins quand il s’agit d’'un domaine
simple, cas auquel on peut se borner puisque, quel que soit le
domaine quarrable E, celui que nous avons appelé E, en est
infiniment voisin et est la somme d’un nombre fini de domaines
simples, qui sont des I,; § 101.

Etudions f(p(P)dak en supposant que A soit le domaine

A

simple défini par lés inégalités du § 96 et soit A(A, B) obtenu en
remplacant la premiere inégalité définissant A par

A=z =B.

Soit S(X,) la section de A par x; = X;; c’est-a-dire le domaine
simple de I’espace x,, x5, ..., xr défini par les £ — 1 derniéres
doubles inégalités quand on y fait x, = X,. Ce domaine S(X,)
varie de facon continue, quand X, varie.

Etudions la fonction f[A(A, B)] obtenue en étendant I'intégrale
a A(A, Bj; on peut la considérer comme une fonction F (&) de
I'intervalle £ & une dimension défini par

A<z, =B .

Cette fonction est évidemment additive; calculons sa valeur
approchée a Paide des intervalles I, ayant au moins un point
dans A(A, B). Le module de cette valeur approchée est majoré
par une expression de la forme

2| o (Py) | a(8;) = Ma,[A (A, B)]

i M est la borne supérieure de o(P) et si A, (A, B) est construit

comme précédemment 'avait été E,, § 99. Or tous les I, consti-
tuant A (A, B) ont une projection sur la variété coordonnée
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Zy, 3, ... T, formée par les I;O de cette variété qui ont des points
appartenant a la projection de A. Si donc A,_; est1’aire d’ordre
k — 1 de cette derniére projection, comme les I, ayant une méme-
projection I, forment au plus un intervalle J, dont la premiére

dimension est au plus B—A - 0P’ la limite supérieure trouvee

surpasse d’aussi peu que 'on veut M- A, , - (B—A). Et comme
B — A est Paire d’ordre 1 de &, F(£) a son rapport incrémentiel
majoré en module par M . A, ;; F(&) est une fonction & nombres
dérivés bornés.

108. — Précisons ce calcul pour obtenir la dérivée de F(£&) au
point x; = A.
Pour cela, construisons a ’aide d’intervalles I’ d’indice assez

élevé p + ¢ les deux domaines S(A), S(A) dont le premier est

contenu au sens strict dans S(A), lui-méme contenu au sens strict
dans le second, §101. Alors, pour B assez voisin de A, S(X,) est,

pour X, variant de A a B, contenu dans S(A) et contient S(A).

Calculons une valeur approchée de F (&) & I'aide d’intervalles
I, . 4ir; ceux-ci sont de deux sortes: les uns ont une projection
I yer SUr Zy, 5, ... 7, appartenant & S(A); pour les autres elle

appartient & S(A) — S(A). Les projections des seconds ont une

e

@y auplus égale & a;_; [S(A)— S(A)], quantité  aussi petite que

I'on veut et, d’aprés un calcul analogue au précédent, fournissent

dans le rapport incrémentiel BF_(QA une contribution au plus

égale, en module, & Me; done aussi petite qu’on le veut.

Quelle est la contribution des autres ? Dans chacun des I, .,
ayant une méme projection I, .. choisissons un point dis-
tingué, ces points ayant tous une méme projection P’ sur z;=A ;
ces 1,,,., fournissent dans le rapport incrémentiel une contri-
bution de la forme

(]?if)[@(Pil) ak‘(sil) + <P(P,;2) ay (Siz) + o+ cp(Pim) ay, (Sim)] ,

Or, le second membre différe trés peu de ¢(P")a,_, (I, ,.,)
car les ¢(P;) different de ¢(P’) de moins de » dés que

&y
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B est assez voisin de A et, pour r assez grand, les inter-
valles 3, , c’est-d-dire les I,,,., de méme projection I, ,,,,
forment un intervalle dont la premiére dimension différe aussi
peu que Pon veut de |B — A .

Ainsi, & aussi peu preés que ’on voudra, le rapport incrémentiel
sera

S o (F) 0y (3)

La dérivée existera si ceci a, dans les conditions envisagées,
une limite. Or cette limite est connue, c¢’est

f ¢ (P)da, ,

S(A)

donc F (&) a une dérivée

dF
o = ‘/ o (P) day_; -

é(A)

La convergence du rapport incrémentiel vers la dérivée sa
limite est d’ailleurs uniforme et, par suite, on a:

F(£) :.f[fcpm) dak_i:ldal .

£ s(A)

Le calcul de I'intégrale £"P'¢ est remplacé par celui de l'inté-
grale simple d’une intégrale (k — 1)"P'°.
Une intégrale simple se note encore

B

./‘x‘(P) da, = fx(xl) dz,

c A

sion a A < B; ceci pour rappeler que la mesure (ou aire d’ordre 1)
d’un intervalle (A < x, = B) est I’accroissement qu’y subit la
variable x, et que la valeur de x; détermine P.

La formule obtenue s’écrit donc, en particulier pour A = a,

B = b,

b1

£(8) :/ { [@(P) dak_1]dx1.

S(xy)




SUR LA MESURE DES GRANDEURS 195

D’ou, par récurrence,

bl bz(x1) : bk (x1 s Xg AL ‘xk—l)
f(A):/ f / e(Pyday, | ... | day ) dxy .
ar | as(xr) ;lk (21, X, ooy Xp_q)

En groupant d’une part les n premiers signes d’intégration,
d’autre part les k — n derniers, on a une formule qu’on aurait
pu prouver directement:

f(A) = [ [ / o (P) dah_n] da, .

e e
P]_, By weey S(xl,xg,...,xn)

P, o .., est la projection de A sur I’espace coordonné
Lyy Loy eeey Ly S(Xq, Loy ..oy 2,) est la section de A par I'espace
paralléle a ’espace coordonné indiqué et qui passe par le point P.
(’est-a-dire que les n premiéres doubles inégalités définissant A
définissent Py ,  , et que les kK — n derniéres, quand on y fixe
Ly, Loy ey Ly, définissent S(zq, 4, ..., 2,)-

Ces formules permettent d’évaluer les intégrales multiples
par desintégrations d’ordres moins élevés et, d'une facon générale,
de raisonner par récurrence. Si, en particulier, on y fait o(P) =1,
on a des formules liant ’aire d’ordre k& a des aires d’ordres infé-
rieurs. D’ol, en particulier, les calculs d’aires, au sens ordinaire
du mot, et de volumes.

109. — 1II ne reste donc plus qu’a apprendre a effectuer les
intégrations simples; soit

Fig) = [ o) ds

A=x<B

quantité qui est aussi une fonction de deux variables @ (A, B).
Du fait que I est additive, il résulte, pour A <B < C,

®A,B)+ @B, C)=d(A, Q) .
Done, pour 0 < A < B,

F(E) = ®(0, B) — ®(0, A) .
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Pour que cette formule soit encore valable pour A <B <0
et pour A < 0 < B, il suffit de poser ®(X,Y) = — O(Y, X);
convention légitime puisque @ n’avait été tout d’abord définie
qu’en supposant la valeur de la premiére variable plus petite
que celle de la seconde. Alors on a:

fcp(x)dx — ®(0, B) — ®(0, A)

A

quels que soient les signes de A et B, mais pourvu que A soit
inférieur & B. On fera enfin disparaitre cette derniére restriction
en posant, par définition,

B

fcp(x)dx + '[@(x)dx = 0.

A B

Ainsi F(£) ne dépend que d’une fonction d’une variable
(0, X) = ¥(X), méme quand on définit, comme nous venons
de le faire, F(£) pour les intervalles négatifs, [A > B]. Quelle
propriété de ¥ correspond a la dérivabilité de F ?

Pour A < B, on a:

F(E)

i (®) = ¢(X) avec A< X <B

d’aprés notre théoreme des accroissements finis, et

F(2) _ ¥(B) — (A
a (B) B—A

d’apres ce qui précéde. Donc

U

et W(X) admet ¢(X) pour dérivée et méme on voit que le rapport
incrémentiel de ¥ tend uniformément vers la dérivéel.
Ainsi, toute fonction continue d’une variable ¢(X) a des

1 J’admets donc que sont connues les notions de dérivée et de fonction primitive
des fonctions d’une variable, notions qui font partie des programmes de I’enseigne-
ment secondaire,
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fonctions primitives; d’ailleurs déterminées & une constante pres
d’aprés le raisonnement classique. Donc, si on connait I'une

d’elles, ¥y (X), on en déduit

D0, X) = Wo(X) + cte = ¥y(X) — ¥y (0)
d’ou

[ olw)ds = ¥y (B) — F5(A) .

Le calcul des intégrales multiples est donc ramené d des calculs
de fonctions primitives de fonctions d’une variable.

I1 importe, d’autre part, de remarquer que, dans le cas d’une
seule dimension, une fonction de domaine, donc d’intervalles a
une seule dimension, est, d’aprés ce qui précéde, déterminée dés
qu’on sait qu’elle est additive et qu’on connait sa dérivée conti-

nue, sans qu’on ait besoin de savoir a I’avance que la fonction

cherchée est & nombres dérivés bornés, et que la dérivée est &
convergence uniforme. Cette fonction est 'intégrale indéfinie de
la dérivée. Cette remarque, peu importante en elle-méme, est
indispensable & la rigueur de l’exposition adoptée ici.

110. — Nous allons justifier rapidement la formule dite du
changement de variables dans le calcul intégral, en supposant
naturellement connus la théorie des fonctions implicites et tout
ce qui concerne les changements de variables dans le calcul
différentiel.

Le changement de variables envisagé fait correspondre a un
point (x;) un point (z;); & un domaine 3, de I’espace des x;, un
domaine 3, de l'espace des u;. S’il était établi que a tout 3,
quarrable d’ordre £ correspond un 3, quarrable et inversement
et que les rapports % (%) e % ) restent inférieurs & un

ay, (3y,) ay, (Oy)
nombre M, une fonction f(3,) additive et & nombres dérivés
bornés pourrait étre considérée comme fonction additive de 3,
et & nombres dérivés bornés puisque

a(8,)  ay(3,)

L’Enseignement mathém., 34me année, 1935. 13

X
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81

F8) = [P d[e,(3,)]
sx

le premier rapport du second membre tend uniformément vers
df(3,)]
d|ay,(3,)]

si done il était établi que le second tende uniformément vers une
limite

(P) = ¢(P) ;

le rapport du premier membre tendrait uniformément vers une
limite et on aurait

f3) = [ o) - 7(P)d[ay(3,)] -
S’M'

Cette formule résoud le probleme du changement de variables;
plus généralement elle s’applique au changement de la fonction
par rapport a laquelle on intégre:

10) = [e®1av = [o@) - 4V (p) - av, ;
A A 1

avec cette interprétation nous ’avons déja rencontrée au § 107.

En tant que formule du changement de variables elle suppose
effectuée la légitimation des suppositions que nous avons faites;
examinons d’abord ’hypothése &k = 1.

La formule du changement de variable est x = A(u), avec
A’(u) de signe constant. A un intervalle correspond un intervalle
et comme nous ne considérons comme domaines &, que des
intervalles, la quarrabilité d’ordre 1 des domaines §, n’est pas
en question.

On a, si 8, est (xq, x,) et s1 5, est (v, u”)

5[ay(3,)] _
3 [ (3,)]

?

gl —agf| IA(u’) — A (u")

ul . ull u/ - ull
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donc le rapport incrémentiel est borné uniformément, ainsi que
son inverse, de plus on voit qu’il tend uniformément vers une
limite | A’ (u) |.

Donc on a:

fcp(x)dx chp[A(u)] A (u) | du .

By

Remarquons que le signe valeur absolue n’est utile que pour
A'(u) négatif, c’est-a-dire si z; = A(u"), z, = A(u'); si la trans-
formation fait correspondre & I’orientation positive de I’axe des
z, Porientation négative de 'axe des u; si, comme Pon dit, la
transformation change I’orientation.

Soit £ > 1. Supposons que x, seule soit changée par la formule

xh — A.[x]_, xz, vee oy xk_l N uk] )

dans laquelle 2% est de signe constant. Et soit
k

uh - B[xl, :E2, ey xh_1, .’Eh]

la fonction inverse.

Au domaine A, défini par les inégalités du § 96, correspond le
domaine A, défini par les k— 1 premiéres inégalités et
par w, compris entre B[z, @y, ..., Ty, (%, Ty, ..y 2)] €b
Blzy, 2y, ..., 2y, by (2q, Zg, .., 2,_4)]. La seconde de ces valeurs
de B étant plus grande que la premiére si, et seulement si, A;k

est positif. On appellera o, la plus petite, 8, la plus grande. Alors,
en appelant D la projection commune de A, et A, sur la variété
coordonnée x,, x,, ..., z,_; et d toute partie de D, on a:

bk (xly X2y ains xk—I)

fcp(P)d[ah(Sx)] :f f ¢ (P)day, |d[a, ,(d)] .

, D Qg (X1, X2 5 v Xp—1)

D’ot, par la formule précédente, ceci est égal a

Ep (X1, X, wovy Xp_r) :
bA xl, Loy eeey xh)
e, o] =
D '/.k(OC]_, X2, ur) xk-—I)

DA
Duh

(P) ' dla,(8,)] .
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Cecl n’est établi que pour un domaine simple relatif a 1’ordre
Xy, Xy, ... T, des variables; mais puisque tout domaine quarrable
A, est aussi peu différent que ’on veut d’une somme d’inter-
valles, donc d’une somme de domaines simples, la formule est
générale. |

Remarquons encore que le signe valeur absolue n’est nécessaire
que s’1l n’y a pas correspondance entre les sens positifs des axes
des u et des z. Et comme, quand il n’en est pas ainsi et que
k=1, 2 ou 3, on dit qu’il y a changement d’orientation, nous
emploierons la méme expression dans le cas général.

Soit maintenant le changement

xi:Az(ul’ uz,...,uh) 9 (i:1, 2, ...,k) .

Les conditions classiques (que je ne rappelle pas) étant
remplies. La démonstration classique du théoreme des fonctions
implicites montre que la région bornée dans laquelle on étudie la
transformation peut étre partagée en un nombre fini de régions
partielles telles que, dans chacune d’elles, on puisse effectuer le
changement de variables a ’aide de k& changements d’une seule
variable 1.

En partageant au besoin le domaine primitif, on peut supposer
qu’on a affaire & un domaine situé tout entier dans une de ces
régions, soit celle o on passe successivement de z; & u,, de
Xy A Uy, ..., de 2, & u,. Les formules seront de la forme

xz = B,L(ul, uz, cen u,i, xl_{_l, vee xk)

ou

u,L == Ci(ul, uz, cee gy u'L"‘i’ xi, cee g SL’h) B

1 Pour démontrer le théoréme des fonctions implicites on montre qu’autour de tout
point on peut, en permutant au besoin les indices dans les deux séries de variables,
faire en sorte que les mineurs obtenus en barrant les premiéres lignes et colonnes
0A.

du déterminant des — % soient tous différents de zéro. D’ol autour de chaque point
( -~
7

toute une région ou il en est ainsi. Ce sont 14 les régions partielles dont parle le texte.

Quant au fait qu’elles sont en nombre fini, ¢vident d’aprés le théoréme dit de Borel-
Lebesgue, on le prouvera facilement de facon plus élémentaire en supposant, par
exemple, ’existence des dérivées secondes des A;.
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Les k facteurs successifs qu’introduisent ces k& changements
dans I'intégrale & transformer sont les dérivées partielles

B, 1
bx?‘ i

Or C; s’obtient par la résolution en u;, u;,,, ..., 4; des
k— i + 1 derniéres équations x; = A;, donc

D (A g s Ay
0C; Dl > vy )
5z, ~ DA, o, Ay T
D(u; .y up)
Et par suite, on a:
. D(Ay, ..., A
[Py d[a, (5] = [olP) - Diu u:))“ (P)| - d[a,(5,)] -
4 J | .

(C’est la formule cherchée; A, et A, sont deux domaines qui se
correspondent par les formules données.

111. — Arrétons-nous un instant pour bien expliquer cette
derniére phrase; car, dans la question proposée, il n’y a en réalité
pas de domaines correspondants. Précisons donc bien le début
du § 110.

Nous partions d’une intégrale étendue a des domaines décou-
pés sur une courbe ou une surface ou, plus généralement, sur ce
que l'on appelle une variété:

X:! - Xj(xl, 332, con g xh) 9

j variant de 1 & m, avec m > k.

Les X, sont des coordonnées, rectangulaires par exemple, que
on appelle rectilignes pour les distinguer des paramétres z;
appelés encore coordonnées curvilignes de la variété. La variété
précédente est dite & £ dimensions et plongée dans ’espace a
m dimensions.

Considérons un point P de cette variété; il est, par hypothése,
donné par un systéme, et un seul, de valeurs z;. Si donc on
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interpréte ces x; comme coordonnées rectilignes ou plus précisé-
ment rectangulaires, dans I’espace & k dimensions dit des z;,
on a un point P, image de P. D’ou & un domaine D de la variété
un domaine correspondant D, de Pespace des z;.

Effectuons maintenant un changement des coordonnées curvi-
lignes & Taide des formules x; = A;(uy, u,, ..., u,). Les X
s’expriment en fonction des u;, d’olt une nouvelle image de P,
le point P, de I'espace des u;. Le passage de P, a P, est défini
par 'intermédiaire P, a P, P a P,. Entre P_ et P, 1l v a corres-
pondance et les formules données sont donc aussi les formules
d’une transformation de I’espace des «x; en I’espace des u;, d’ou
des domaines correspondants.

Tout cela est fort banal et tout & fait analogue a ce que nous
avons vu dans le cas ou les A; étaient linéaires: les formules d’un
changement de coordonnées sont aussi celles d’une transforma-
tion ponctuelle. Dans ce cas particulier la transformation a été
dite, lorsqu’il s’agit de coordonnées rectangulaires, étre un
déplacement lorsque le déterminant de la transformation était
positif. Lorsqu’il est négatif on dit qu’il s’agit d’une transforma-
tion par symétrie parce qu’il suffit du changement du signe d’une
seule coordonnée pour avoir un déplacement et par suite le sens
de cette locution est bien d’accord avec celui qu’il avait déja
pour k = 3.

Parmi ces transformations de coordonnées rectilignes il y en a
deux tres simples: le changement de signe d’une coordonnée, la
permutation de 'ordre de deux coordonnées. Pour les espaces &
1, 2, 3 dimensions nous sommes habitués & dire alors que nous
passons d’une orientation & une autre; on conservera cette
dénomination dans le cas général.

Ainsi, choisir un systéme de coordonnées curvilignes d’une
variété, entraine le choix d’une orientation sur cette variéte.
Quand on changera de coordonnées curvilignes, on changera
ou non d’orientation suivant que le déterminant fonctionnel des
anciennes coordonnées par rapport aux nouvelles sera négatif ou
positif.

Ceci dit, une fonction définie pour les domaines D peut aussi
bien étre considérée comme attachée aux domaines D, ou D,;
ainsi, au paragraphe précédent, a chaque domaine 3 ont été
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{ attachées successivement les fonctions a,(3,) et a,(3,). Une
{intégrale f o(P)dV ne change pas de notation quand on change
‘ 2

| ’ " ey . - . 9

de coordonnées curvilignes; mais, si 'on veut rappeler que 'on
I emploiera soit les coordonnées x; soit les coordonnées u;, on
pourra la noter

[oalvie)) = [o@)a[ve,)] .

By

Et ceci montre bien que les formules relatives a la transfor-
| mation d’un calcul fait avec des x; en un calcul fait avec des u;,
c’est-a-dire les formules du changement de variables, seront
~aussi des formules relatives a la transformation du domaine A,
de I’espace des x; en domaine A, de I’espace des u;. Dans chacun
~de ces espaces une orientation dite positive a été choisie; c’est,
~sauf convention contraire, celle fixée par I'ordre méme des
indices des coordonnées.

112. — Alors, il résulte de ce qui précéde que I'on a:

» DA, ..., A
[P - Fra 28 B afa ).

u

[ omafa, 6] =
AZ

[}

- siles formules, considérées comme définissant un changement de
~ coordonnées curvilignes, conservent ’orientation ou si, considé-
rées comme formules de transformation, elles font correspondre
les orientations positives des espaces x; et u,.

Sinon, on a:

D(A;, ...y Ap) ,
3[«MP)d[%(sx)] = o) (= 1) T a5,
Ces deux formules se réuniront en une seule si on distingue les
domaines non seulement par la famille des points qui les consti-
tuent mais encore par l'orientation qu’on leur attribue. Ainsi,
au méme domaine non orienté A, nous ferons correspondre deux
domaines orientés A, A suivant que nous lui auront donné

>4 o

Porientation positive ou négative. Alors on aura toujours, qu’il
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s’agisse d’un changement de coordonnées curvilignes ou d’une
transformation:

. a D(Ay, ..., Ay)
J @(P)d[ak(ax)] - ‘ ¢ (P) D(ull, e s u:)

(P)d[a(3,)] ,

les deux domaines orientés A, , A, étant ceux qui se corres-

—_— —_——

pondent, pourvu que I'on pose

et
f@(P) LAV + fcp(P) LAV =0 .

A
el s
Cette convention est celle faite au §109 pour le cas d’une seule
coordonnée. A cette convention d’autres se rattachent presque
nécessairement. Les deux intégrales de 1’égalité précédente sont
les limites des sommes

o (P)V () , —Zo@)V(E) = Ze®)|[—VE)],

Les 3; proviennent de la subdivision de A; seulement dans le
premier cas il s’agit de A et dans le second de A. Il est alors

-> -+ ->—

naturel d’écrire ces deux sommes sous la méme forme

1
-

% CP(Pi)V<3-> ,

I'orientation des 9; étant celle de A. Ceci revient a poser

(I v

D’ou la convention nouvelle: une fonction additive V(3) étant
donnée pour les domaines non orientés, on en déduira une fonction
définie pour les domaines orientés par les égalités précédentes.

En méme temps, il se trouve que nous avons défini I'intégrale
de @(P) par rapport & une fonction de domaine toujours néga-
tive, la fonction — V. Si, aux paragraphes 103 et suivants, nous
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avons supposé V > 0, ¢’était uniquement pour que le rapport

. ’ . A . . » . . 4 ’ ’
incrémentiel %(_(Al) existe; ceci aurait tout aussi bien éte assure

en supposant V toujours négative. Dans la théorie que nous
avons donnée il n’y aurait eu & changer que quelques mots, le sens
de quelques inégalités, & mettre quelques signes de valeur
absolue. Il est inutile de reprendre les choses dans le détail; il
suffit de convenir que, par définition, on aura toujours:

fcp(P)dV + [oPa—Vi=0

que A soit un domaine non orienté ou orienteé.

Si V(A) avait pu prendre les deux signes nous aurions eu, au
contraire, de graves changements & introduire puisque, pour
certains A, le rapport incrémentiel par rapport & V n’aurait pas
existé. Mais supposons que la région envisagée puisse se partager
en un nombre fini de régions telles que, pour les domaines
compris dans une de ces régions, V ait un signe constant. Alors,
en partageant tout domaine A en domaines partiels A", A”, ...,
situés dans ces diverses régions, nous poserons

L’intégrale ainsi définie jouira de presqﬁe toutes les propriéteés
déja dites; pourtant les théorémes des accroissements finis et
de la moyenne ne devront étre appliqués qu’aux domaines
partiels et il faudra renoncer & dériver 'intégrale indéfinie aux
points frontieres des régions partielles. Quoiqu’il en soit, I’inté-
grale est maintenant définie par rapport & une fonction additive de
domaine non toujours positive et étendue d un domaine orienté.

113. — Soient

x’l, = Fi(uly Ugy ey uk) ’

les formules (i = 1, 2, ..., n) définissant une variété a k dimen-
sions de ’espace a n dimensions. Comme on veut qu’a un point
de cette variété ne corresponde qu’un systéme de nombres u;
et qu’on puisse s’en assurer par le théoréme ordinaire des fonc-
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tions implicites on suppose, outre I’existence et la continuité des
oF;

nombresm, que les mineurs & % lignes et %k colonnes de la
J

matrice formée avec ces dérivées ne sont pas tous nuls a la fois.
Alors, la région bornée considérée est, dans les cas ou l'on se
place, la somme d’un nombre fini de régions pour chacune des-
quelles k£ convenablement choisies des n coordonnées rectilignes

x; peuvent servir de coordonnées curvilignes pour la variété.
Si ce sont les variables

Xyy Lgy eee s T s
on a alors

ui - A'L (.il’,']_, x2, e g xh)

pour ¢ = k, et, pour p> k,

.Z'p — Gp (.’l’l, 332, cee xh) .

Nous aurons une correspondance entre les domaines A de la
variété, les domaines A, de I'espace des u;, et, si A est dans la
région considérée R de la variété, les domaines A, de 1’espace
X1y Xy, .oy X, De plus, il v a une correspondance entre I’orienta-
tion de ces domaines; si, comme on 1’a supposé, l'orientation
positive de A correspond & P’orientation positive de A, on aura

dans A, 'orientation positive ou négative suivant que le déter-
minant

sera positif ou négatif.

Passons maintenant de la région R a une région R,; I'orien-
tation surla variété ayant été choisie une fois pour toutes, I’orien-
tation des A et des A, ne variera pas mais celle des A, variera si
dans R et R; le déterminant fonctionnel a des signes différents.
Si donc le déterminant fonctionnel considéré

Dz, 29, v, )

D (uy, ug, ..., uk)

ne change de signe qu’en des points exceptionnels, qui ne cons-
tituent aucune région de la variété et peuvent par suite étre

=S P SRR S
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omis dans le calcul d’une intégrale [¢(P d[ak (3,)] pour tout

domaine D1, on a:

D (uy, ugy ... , u
[oPrdle, (3,1 = [ o (P) e Y () afe, (3,1
D - -

D (xy, &gy oo s g)
D

e

le symbole D indiquant que, dans le second membre, on doit

attacher a ciaque domaine & de la variété situé dans 'une des
régions R, Ry, ... 'aire d’ordre k& de sa projection 3, et affectée
du signe correspondant & l'orientation de .3, comme projection
de la partie 8 du domaine orienté D.

-

La formule obtenue s’écrit encore:

. o 3 )
Sy, @, e, @) dlay, (3 J—N ul,._.,uk) (P) e, (3,1,
D

elle définit le symbole du premier membre qui est dit, si £ = 1

une intégrale curviligne, si k£ = 2 une intégrale de surface.

S’1l arrivait que la variété portant D soit exceptionnelle et
comprenne des régions en tous les points de laquelle le déter-
minant du second membre soit nul, ces parties seraient consi-
dérées comme n’ayant aucune contribution dans l'intégrale.

Le cas ou les variables x; utilisées ne sont pas les £ premieéres
rangées dans I'ordre naturel de leurs indices se rameéne de suite
au précédent puisque l'interversion de I'ordre de deux variables
ne fait que changer le sens des orientations, done les signes des a,, .

114. — Une application importante de cette définition est la
formule de Green et ses généralisations.

Reprenons la formule finale du § 108 pour le cas du domaine
simple défini par les inégalités du § 96. Elle s’écrit:

bk(xly X2y eeey xh—’l)

fCP (P) dAh :f [ICP (xl, Loy eer y xh) dxh:l dAh_i,
A Pl, .

2, ooy Rl O (X1, %2, ooy X )

les symboles A, et A, ; représentant les aires d’ordre & et £ —1.

1 Ceci a lieu sauf pour des variétés trés exceptionnelles; savoir, dans le cas de trois
dimensions, sauf pour les courbes qui comprendraient des arcs dans des plans x; == cte,

et sauf pour les surfaces comprenant des parties cylindriques & genératrices paralleles
a x, = x; = 0.
k=
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S1 i’on a:

0
@ (T, Tyy ooy Ty) = Fxﬁk Flx, ..., 2)

dans le second membre de la formule précédente, on peut
effectuer I'intégration simple:

fF[xl, e g by (20, e, )| dA, L —
Py, .k

___.fF [xl, Tgy oer Ty Ay (@y oon s xk),] dA; 4.
Pi,.n

Supposons de plus que les deux variétés frontiéres de A,

.’Z‘h = ah (xl, oo o xk___1) Py

.’lfh = bh (xl, e g xk_i) N

soient les deux parties X, et %, d’une variété 2 a £ — 1 dimen-
sions, z; = S;(uy, ..., U_;), présentant tous les caractéres de
régularité déja indiqués.

D (S, Sgy oory Sy

Le déterminant fonctionnel
D (uy, us, ..., uh_1)

conserve un signe

constant dans 2, et dans 2, puisque 2, ...,Z,y ¥ peuvent
remplacer uy, ..., u,_, et au contraire ce déterminant change de
signe dans toute région comprenant un point frontiére commun
de %, et de 2, puisque le remplacement est alors impossible 1.

Or ce déterminant fonctionnel est celui qui fixe 'orientation &
donner a4 un domaine en projection sur l’espace coordonné
Xy, .-y Xy quand une orientation sur la variété a été choisie; si
donc on prend sur X I'orientation qui, pour X,, donne en pro-
jection Porientation positive, la valeur de l'intégrale s’écrit

encore:
fF[P] . d[Ah—i (le, ...,xk_1>]

1 Cette affirmation aurait besoin d’éfre précisée et s’appuie sur un énoncé du théoréme
des fonctions implicites plus général que I’énoncé classique, lequel suppose les déter-
minants fonctionnels finis et non nuls. Si I’'on se borne a I’espace ordinaire et au plan,
on précisera facilement et on aura ainsi les directives nécessaires pour bien traiter le
cas général.
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Le résultat ainsi obtenu constitue la formule de Green; on le
compléte a la fagon ordinaire en examinant d’autres domaines
et aussi le cas ou les variables que ’on conserve ne sont pas les
coordonnées zy, Zy, ..., &y, rangées dans lordre naturel des
indices.

115. — Une autre application importante des changements de
variables est la généralisation des notions de longueur d’une
courbe et d’aire d’une surface (ch. V). On va définir cette notion
généralisée en posant pour définition une intégrale comme
J’ai dit, aux § 62 et 64 par exemple, qu'on faisait souvent pour
la longueur et ’aire. En examinant rapidement cela, nous indi-
querons aussi une autre méthode d’exposition, d’aillleurs bien
connue, qui dispense de I’étude préliminaire des aires d’ordre %
faite précédemment aux § 97 a 100, et permet d’aborder sans
elle ’étude de I'intégration.

Dans ce qui précede, 1’étude préliminaire des aires avait
seulement servi, au point de vue logique, pour la notion de
domaine quarrable. Or la définition d’un tel domaine ne reposant
que sur la valeur de I’aire d’ordre £ d’un intervalle, laquelle peut
étre posée sans explication, aurait pu étre donnée sans cette

étude. D’ou la définition de I'intégrale.
b
Ceci étant, la longueur du segment a = x =< b étant |dzx;

a

appelons aire d’un domaine quarrable A du plan z,, z, I’expres-

sion f dx,dz, et d’une facon plus générale aire d’ordre k
A

d’un domaine quarrable de l'espace x;, s, ..., z, ’expression
fdxl dz, ... dz,. La formule du § 110 montre de suite que
A

cette aire est indépendante des coordonnées rectangulaires
choisies, puisque dans le passage d’un systéme & un autre de
telles coordonnées le déterminant fonctionnel & considérer est
+ 1.

D’ailleurs, pour un intervalle, on trouve de suite le pro-
duit des dimensions de Pintervalle; donc 1'aire d’ordre k ainsi
définie est une fonction, définie pour les domaines quarrables
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d’ordre %, qui est additive, positive, se réduit au produit des
dimensions quand il s’agit d’un intervalle.

Ceci établit 'identité de cette notion avec celle des § 97 & 100
sicelle-ci a été déja étudiée et, sinon, permet de retrouver rapide-
ment les faits indiqués dans ces paragraphes.

Ceci étant, considérons la variété & k dimensions de 'espace a
n dimensions définie en coordonnées rectangulaires par

I ; X1:Fl(u1, uz,...,u/k);
t=1,2,...,u.

On dit qu’elle est linéaire si un changement de coordonnées
rectangulaires de 1’espace & n dimensions permet de la définir
par les formules

i

II .’137: Gi(ul,uz’...7uk), i:1,2,...,k',
k+1,..,n.

|

Un domaine quarrable A, de I’espace des u correspond sur la
variété linéaire au domaine A que nous dirons quarrable
d’ordre £; nous savons, § 110, que la famille de ces domaines ne
dépend pas des variables u choisies, quand on n’utilise que les
seuls changements de variables que nous avons pris en considé-
ration. A un domaine A correspond dans l’espace zy, ..., z, un
domaine quarrable -A,.

Si nous étions parvenus a la forme canonique II a laide
d’autres coordonnées rectangulaires x' de ’espace a n dimen-
sions, les conditions d’orthogonalité du § 95 auraient montré
que le passage de z;, %y, ..., T & Ty, T3, ..., Z, €st un changement
de coordonnées rectangulaires de ’espace a k£ dimensions donc,
puisque les aires d’ordre £ ne varient pas par de tels changements,
nous pourons parler de 'aire d’ordre k d’un domaine quarrable
A d’une variété linéaire @ k dimensions; ce sera I'aire d’ordre k
de A,. Celle-ci a pour valeur

/‘dxldxz cee dxk :L/
X Au

D(Gy, ..., Gr)
D (uy, ..., up)

c
A
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Cette expression s’écrit encore:
" D=, ..., x)\)rzd . p :
. D(uy, ..., up) Uy Qg - Ollp >
AM

la somme S étant étendue & toutes les combinaisons de % indices
«, ..., A choisis dans la suite 1, 2, ..., n. Ceci est évident puisqu’un
seul de ces déterminants est différent de zéro.

Or, sil’on a:

1l en résulte

D(«’L’a 9 eeey xl) D (F(/’ y ew oy F)\’) « e e e
= 8 - " )
D(uy, ..o, up)

! %W
A .. Oy

le symbole S indiquant une sommation par rapport aux combinai-
sons des indices primes.

Des conditions d’orthogonalité on déduit par un calcul
classique:

A o A o’ W
a-’\ . al a/)\ e O a/)‘ e a,)‘

la premiére sommation étendue a toutes les combinaisons
o', ... A" et la deuxiéme & tous les couples de combinaisons diffé-
’ ’, " "
rentes o, ..., Ay &, o, AL
D’ou

| Dz , .., z))?
Al = «? LN
ak( ) f\/S{ D(ul, " uh) } dul du2 duh .

Cette formule étant établie pour les variétés linéaires, les
@ scules pour lesquelles a,(A) est jusqu’ici définie, nous la prendrons
comme définition méme de a,(A) pour tout domaine quarrable A
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d’une variété a k£ dimensions. Le calcul précédent montre que
cette aire est indépendante des coordonnées rectangulaires
choisies et on verra facilement, généralisant les observations du
§ 83, que cette aire d’ordre k est définie par des conditions «, 3,
Y, €.

On pourrait d’ailleurs reprendre tout le chapitre V; je n’insiste
pas, mon but ayant surtout été d’ indiquer une méthode de définition
de a,, pour les domaines de Uespace a k dimensions, aulre que
celle des § 97 & 100. |

En terminant ce chapitre, je crois devoir rappeler qu’il serait
tout & fait inadmissible, pédagogiquement, d’examiner directe-
ment avec des étudiants le cas général et de s’embarrasser ainsi
d’indices; si je I’ai fait, ¢’était pour abréger et montrer cependant
qu’on oublie trop volontiers certaines précautions indispensables
comme de spécifier la famille de domaines envisagés, ou qu’on
admet, comme évidents et eclairs pour n dimensions, des faits
auxquels on est habitué lorsqu’il n’y a que 2 ou 3 dimensions.

VIII. — CONCLUSIONS.

Les chapitres qui précédent n’ont besoin d’aucune conclusion
scientifique, ni pédagogique. Ils ne visent nullement a figer
Penseignement en signalant certains exposés comme meilleurs
que les autres; ils s’efforcent, au contraire, de montrer le fort
et le faible de chaque fagon de présenter les faits mathématiques.
S’il a semblé utile de développer davantage les procédés moins
connus, cela ne veut nullement dire qu’ils doivent étre préférés.
En signalant certains défauts, erreurs, lacunes des exposés
classiques, je n’ai jamais prétendu les condamner, je voudrais,
au contraire, contribuer a les améliorer. Ceci ne peut étre obtenu,
4 mon avis, que par une étude comparative critique des divers
modes d’exposition; j’ai essayé de faire cette étude en ce qui
concerne la mesure des grandeurs.

Et si de telles études sont bien, comme je le pense, indispen-
sables au progrés pédagogique, si elles sont nécessaires pour bien
choisir ce que I’on doit dire et bien savoir pourquoi on le dit, elles
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sont donc un excellent exercice pédagogique qui devrait étre
exigé des futurs professeurs.

J’ai déja dit cela au début; si j’y reviens ici, ¢’est qu’il me sera
maintenant possible de mieux expliquer en quoi I'effort que je
voudrais voir demander aux aspirants professeurs différe de
celul qu’on leur demande actuellement et qu’il ne vise a leur
faire acquérir ni une habileté technique plus grande, ni des con-
naissances philosophiques.

D’ordinaire, dés qu’il s’agit des fondements des mathématiques,
on adopte le point de vue philosophique; je m’y suis refusé deli-
bérément et certains ont vu dans cette attitude la marque d’un
mépris envers la philosophie.

Non; mon bon maitre, Jules Tannery, disait: « Il est prudent
de respecter, au moins provisoirement, ce que l’on ignore ».
D’autre part, siignorant que je sois, je n’oublie pas que ¢’est parce
que des philosophes ont longuement médité sur des problémes, si
difficiles qu’on ne peut méme les formuler, qu’ils sont parvenus
a en 1soler des questions plus simples: celles dont s’occupent les
sciences.

Nous devons respecter la philosophie; il ne s’ensuit pourtant
pas qu’elle puisse nous aider nl & comprendre mieux nos sciences,
ni a les faire progresser. C’est un fait que les sciences se sont
développées surtout quand elles ont pris conscience de leur
individualité et se sont séparées de la philosophie.

Que les philosophes recherchent si quelque méthode, ayant fait
ses preuves dans le domaine scientifique, ne pourrait pas leur
eétre utile, cela est naturel et raisonnable; ¢’est aller du facile au
difficile. Mais que les mathématiques, qui étudient des questions
s1 simples qu’on peut en donner des solutions précises et défini-
tives, aillent demander des ressources a la philosophie, qui doit
se contenter de réponses imprécises et précaires, je n’ai pu
I’admettre.

D’ailleurs, les problemes philosophiques ont été, depuis des
siecles, retournés en tous sens par des hommes dont certains ont
eu du génie; n’y aurait-il pas, de la part d’un mathématicien
qui se croirait autorisé a apporter ses solutions philosophiques
parce qu’il aurait consacré quelques loisirs & des réflexions, une
prétention insupportable et naive tout & la fois ? En avouant

I’Enseignement mathém., 34me année, 1935. 14
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franchement mon incompétence, je crois faire preuve, envers la
philosophie, d’un respect autrement sinceére.

A mon avis, le mathématicien, en tant que mathématicien,
n’a pas & se préoccuper de philosophie; opinion qui, d’ailleurs, a
été formulée par bien des philosophes. Ses efforts de réflexion,
de compréhension doivent étre en quelque sorte intérieurs aux
mathématiques au lieu de porter sur les rapports de celles-ci
avec la philosophie. Certes, les questions dont il a & s’occuper
n’ont ni le méme genre de beauté, ni le poignant intérét humain
des problémes philosophiques; pourtant, si 'on parvenait a
edifier une philosophie de la science pour la science, cette philo-
sophie de seconde zone serait peut-étre ’aide la plus efficace
pour la vraie philosophie.

Le professeur de mathématiques doit, lui aussi, savoir borner
le domaine de son activité & ce qui est objectif; il est chargé de
culture scientifique, son collégue de philosophie est seul chargé
de la culture philosophique.

En s’occupant ainsi seulement de ce qui est en quelque sorte
matériel, manuel, on fait nécessairement des mathématiques une
des branches de la physique. Branche qui toutefois se différencie
des autres en ce qu’on n’y fait appel a I’observation qu’au début,
pour acquérir définitions et axiomes. Lorsqu'un mathématicien
a prévu plus ou moins nettement une proposition, au lieu d’avoir
recours & ’expérience, comme le ferait un physicien, il cherche
une démonstration logique; la vérification logique remplace pour
lui la vérification expérimentale. En somme, il ne cherche pas &
découvrir du nouveau, il essaie de prendre conscience des
richesses qu’il posséde déja inconsciemment, qui sont enfermées
dans les définitions et dans les axiomes. D’ou l'importance
capitale de ces définitions et axiomes qui, certes, ne sont assujettis
logiquement qu’a la condition d’étre compatibles, mais qui ne
conduiraient qu’a une science purement formelle, vide de sens,
s’1ls étaient sans rapport avec la réaliteé.

Le professeur de mathématiques, celui de I’Enseignement
secondaire en particulier, n’a pas a former de purs logiciens, 1l
doit contribuer & fagonner des hommes raisonnables et pour cela
il lui faut s’occuper non seulement des raisonnements logiques
mais encore de 'acquisition des prémisses de ces raisonnements
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et de Papplication de leurs résultats au concret. Dans les ques-
tions traitées ici je n’ai guére eu Ioccasion de parler de ce dernier
point; il n’en est pas moins essentiel. Faute de bien indiquer le
départ du concret et le retour au concret on risquerait de faire
acquérir aux éléves l’esprit géométrique dans le sens péjoratif
du terme, de les inciter & raisonner impertubablement a partir
de données non assurées. Il faut faire concevoir aux éléves qu’en
dehors des mathématiques on ne démontre rien mathématique-
ment et que, pourtant, la logique est utile en toutes circonstances.
Les mathématiques ont été créées par les hommes pour leurs
besoins et elles leur sont, en' fait, un auxiliaire précieux; le
professeur de mathématiques doit rester un professeur d’action.
Il ne lui appartient pas d’éveiller le doute philosophique, car 1l
n’aurait pas, comme son colléegue de philosophie, le temps et les
moyens de ’éveiller et de le discipliner tout a la fois.

Je ne crois pas que ce soit assez d’exiger que les futurs pro-
fesseurs alent dcquis une habileté technique et qu’ils sachent
débiter des manuels; il faudrait leur avoir demandé de réfléchir
longuement & ce qu’ils auront & enseigner dans un esprit de
critique logique et pédagogique; d’avoir fait, seuls ou aidés par
quelque enseignement, sur chaque grand chapitre, une étude
analogue a celle que j’ail indiquée ici pour ce qui concerne la
mesure des grandeurs.

Quels enseignements de futurs professeurs pourraient-ils tirer
de cette étude ? Il est certain tout d’abord que pour choisir en
connaissance de cause entre les divers exposés des faits mathé-
matiques 1l faut les avoir comparés, en avoir cherché le fort et
le faible. Que, ce faisant, on se met en mesure d’en construire
de nouveaux, si besoin est. Tout cela est trop clair, passons a des
8 bénéfices plus cachés. En scrutant les raisonnements, si l’on voit
fl toute la puissance de la logique, on apercoit aussi toutes ses
exigences et 'on prend conscience des précautions indispen-
sables dans les mathématiques appliquées.

5 Dans chaque chapitre, j’aurais pu répéter ce que j’ai dit pour
| arithmétique, § 3: ce chapitre s’applique quand il s’applique.
Nos raisonnements absolus ne nous conduisent, dans les applica-
tions, qu’a des vérités relatives. C’est qu’il y a toujours quelque
désaccord entre nos prémisses logiques et la réalité qu’elles pré-
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tendent traduire. Par exemple, nous avons rencontré la vieille
question des irrationnelles: les Anciens avaient construit, a
I'aide des fractions, un continu parfaitement suffisant pour toutes
les expériences humaines, quelque précision qu’elles puissent
atteindre, mais insuffisant logiquement. Il nous a fallu (§§ 7, 55)
prolonger métaphysiquement la suite des opérations de mesure
pour obtenir la notion sur laquelle nous pouvons raisonner
logiquement. Pour étudier le conecret, ou ce qui nous parait
étre tel, 1l nous a fallu procéder & un élargissement du réel.

Dans le cas de la notion d’aire, le procédé employé est en
quelque sorte inverse de celui, relatif a la longueur, que je viens
de rappeler. Pour donner a I’aire une base logique, nous nous
sommes bornés a des domaines spéciaux: les domaines quarrables.
Bien entendu, dans un enseignement s’adressant & de futurs
professeurs on aurait donné, par des exemples, la preuve de
I’existence de ces domaines non quarrables qui, ici, a été consi-
dérée seulement comme possible. Ainsi, on verrait un domaine D
tel que, s1 petit que soit € > 0, on puisse trouver deux polygones
différant 'un de I'autre, et de D, de moins de ¢ et dont les aires
different de plus d’'un nombre positif déterminé. Lanotion phy-
sique d’aire s’écroule en quelque sorte, nous avons renoncé & lui
donner dans tous les cas un sens logique; pour redonner une aire
a D 1l faudrait procéder & un nouvel élargissement de la notion
de nombre comme on ’avait fait pour redonner une longueur a
la diagonale du carré construit sur I'unité de longueur et cet
élargissement nous paraitrait tout d’abord inadmissible et
scandaleux. |

Ces constatations rappelleraient aux éléves-professeurs que
les efforts des mathématiciens ont été faits, tout d’abord au
moins, en vue du réel et les inciteraient & oser en parler. Elles
leur montreraient aussi toutes les ressources que la logique
fournit a l'intelligence et que, sans I'intelligence, la logique ne
conduit qu’a des déconvenues.

Un professeur de physique ne se croit pas tenu, par respect
de I’expérience, & cacher I'intervention de I'intelligence dans les
recherches physiques. Trop de professeurs de mathématiques se
croient tenus, par respect de la Jogique, & présenter les mathéma-
tiques comme le déroulement inéluctable d’une déduction a voie
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unique. Si quelques noms de mathématiciens n’étaient accolés,
a tort ou a raison, & certains théorémes, les éléves pourraient
oublier que les mathématiques ne sont qu’ceuvre humaine. On
ne parle jamais du choix des prémisses, on n’ose pas dire que
telle proposition a été obtenue grice aux qualités d’imagination
d’un savant; on confond avec la découverte d’une proposition
sa présentation logique faite & la mode actuelle. A entendre
certains professeurs, on croirait que Newton n’a rien compris &
I'intégration, que KEuler ignorait les séries, que Lagrange ne
savait pas ce qu’était une fonction. On cherche partout des
démonstrations naturelles — on m’a parlé de quelqu’un qui se
félicitait d’avoir enfin trouvé, apres six mois de recherches, une
démonstration naturelle du fait que les trois hauteurs d’un
triangle concourent! — et I’on croit, grace a ces démonstrations
naturelles, enseigner I'art de découvrir.

S’il était vrai que la méthode de la redécouverte soit la véri-
table méthode de découverte, ¢a se saurait; car nous serions noyeés
sous les découvertes des innombrables protagonistes de la redé-
couverte. Mais, tout au contraire, un enseignement basé trop
systématiquement sur la redécouverte serait I’enseignement
méme de la non découverte car, pour découvrir, il faut faire un
rapprochement inhabituel, non naturel, et la méthode de la
redécouverte consiste & guider les éléves vers certains raisonne-
ments catalogués, toujours les mémes, et & apprendre aux éléves
a les essayer successivement, sans omission. Cela permet, certes,
de résoudre les problémes parce qu’on propose des problémes
Justiciables des raisonnements en question; mais cette taylorisa-
tion du travail intellectuel, ce dressage, est tout différent,
est tout le contraire de I’assouplissement qui permet a P'intelli-
gence de découvrir de nouveaux points de vue.

La méthode de la redécouverte est d’ailleurs excellente;
elle a joué le role principal dans cette transformation de I’en-
seignement des mathématiques dans les lycées qui a remplacé
les classes mornes d’autrefois, ou les éléves n’avaient qu’un role
réceptif, par les classes vivantes de maintenant ou les éléves,
ayant un réle actif, sentent mieux la signification, la portée,
I'imtérét, le but des propositions. I1 est excellent aussi d’employer
des démonstrations montrant la parenté du raisonnement
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utilisé avec les raisonnements familiers aux éléves, démonstra-
tions que 'on appelle naturelles pour cette raison; en concevant
qu’on ait pu construire ces démonstrations, les éléves les com-
prennent mieux et prennent confiance en leurs propres moyens.
Mais il ne faut pas demander & la redécouverte et aux démons-
trations naturelles ce qu’elles ne peuvent donner. Ce sont
d’excellents moyens pédagogiques; rien de plus. Et ces moyens
deviendraient néfastes s’ils servaient & masquer le rdle de
Pintelligence, a suggérer que faire des mathématiques c’est |
appliquer & la lettre des sortes de reglements.

Voici quelques questions auxquelles on pense nécessairement
au cours d’une étude critique comme celle faite ici. Peu m’importe
d’ailleurs que les éléves-professeurs arrivent aux conclusions
que je viens de formuler ou a d’autres; mais je voudrais
qu’ils aient, sur des points aussi fondamentaux, une opinion
réfléchie.

Je viens de parler d’étude critique mais, en vérité, avons-nous
fait quelque chose qui mérite le nom de critique quand, par
exemple, parlant du nombre entier, nous nous sommes bornés &
décrire 'opération de dénombrement. N’aurions-nous pas di
examiner la notion d’objets, de corps a dénombrer ? Nous n’avons
signalé que I’arbitraire de cette notion et cela nous a conduit,
§ 10, & la multiplication; il y a bien plus & dire. La notion de
corps n’est claire que pour qui ne la critique pas; la physique
la détruit peu & peu. On sait depuis toujours que le corps
solide le mieux poli a des anfractuosités, des pores, que, dans
des cavités ou dans sa matiere méme, sont inclus d’autres corps,
des impuretés, des liquides, des gaz; puis on a su que tout solide
baigne dans une atmosphere formée de sa vapeur et sans
cesse variable; puis les théories atomiques des corps, les
théories planétaires des atomes rendent la notion de corps de plus
en plus incertaine. La division en corps, est-elle autre chose
qu’'une construction simpliste du monde & I'aide d’images de
notre moi, la seule chose dont nos ancétres primitifs avaient
un peu nettement conscience ? Si la notion de corps n’a aucune
valeur absolue, celle d’entier, méme celle du nombre un, n’est-
elle pas la plus fausse de toutes les notions ? Et que dire alors
de la notion de nombre en général que nous n’avons atteinte
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quen remplacant la notion vague de corps par celle plus
insaisissable de point ?

I1 est clair que je suis dans une mauvaise voie, que je n’ai fait
que jeter le doute le plus stérile en cherchant de I’absolu alors
que j’étais dans le domaine du relatif et du nuancé, qu'une
véritable étude critique de la notion de corps serait intimement
liée & Iexamen des démarches de notre pensée s’efforcant de
comprendre le monde extérieur et nous ferait sortir du domaine
des mathématiques. En disant cela, je n’interdis pas d’aller
jusqu’a la critique philosophique dont I'intérét et 'importance
ne sont nullement mis en question, mais il faudrait pouvoir
y consacrer bien du temps pour le faire utilement et y avoir
été préparé par des études antérieures. A coté de cette critique,
il en existe une autre plus a la portée des mathématiciens; ¢’est
celle que J’ai appelée la critique logique et pédagogique et dont
je tenais & signaler la différence avec la critique proprement
philosophique.

Des travaux importants bien connus ont montré l'intéret de
Iétude approfondie des mathématiques élémentaires soit en vue
de leurs prolongements vers d’autres branches des mathé-
matiques, soit en vue de la philosophie ou de Phistoire des.
sciences; j'attire l'attention sur son intérét pédagogique.
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