Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 34 (1935)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LA MESURE DES GRANDEURS

Autor: Lebesgue, Henri

DOI: https://doi.org/10.5169/seals-26608

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SUR LA MESURE DES GRANDEURS 1

PAR

Henri Lebesgue, Membre de l'Institut (Paris).

VII. — Intégration et Dérivation.

94. — La théorie des grandeurs qui constitue le précédent chapitre avait été préparée par des recherches de Cauchy, sur ce qu'il appelait des grandeurs concomitantes, par les travaux destinés à éclaireir les notions d'aire, de volume, de mesure, aussi par des études sur les opérations fonctionnelles linéaires; mais c'est à l'occasion de l'intégration des fonctions les plus générales qu'elle a été définitivement édifiée par la collaboration de nombreux savants. Ceci ne doit pas surprendre, car nous avons vu, dès l'abord, que calcul infinitésimal et théorie des grandeurs avaient certains buts communs; d'autre part, en se plaçant dans le cas le plus général, c'est-à-dire dans celui où l'on part du moindre nombre de prémisses, on ne peut plus raisonner que sur ce qui est essentiel, fondamental, dans la question et on a quelque chance d'en éclaircir le point de départ. Avoir fourni cette théorie élémentaire des grandeurs sera peut-être, après tout, le plus substantiel des résultats des travaux sur l'intégration des fonctions discontinues.

Du point de vue pédagogique auquel nous nous plaçons ici, la théorie des grandeurs doit influer sur la présentation des opérations d'intégration et de dérivation. L'exposé qui va être esquissé est fait en vue d'étudiants qui entendent parler pour la première fois de ces opérations fonctionnelles prises dans leur

¹ Voir L'Enseignement mathématique, XXXII année, p. 173-206. — XXXIII année p. 23-51. — XXXIII année, p. 22-48; p. 177-213; p. 270-284.

sens général; certains des paragraphes antérieurs (72, 75 à 77, 82) étaient d'ailleurs relatifs à l'enseignement à donner aux mêmes étudiants de Facultés. Nous n'indiquerons que le début de l'exposé, en nous préoccupant à peu près uniquement du fond; dans un enseignement véritable on aurait à prendre bien des précautions de forme et, par exemple, on ne s'occuperait pas dès l'abord de l'espace à n dimensions.

On a vu que, parmi les nombres considérés par les physiciens, certains étaient attachés à des points, certains autres à des corps étendus, d'où deux notions mathématiques: fonctions d'une ou plusieurs variables, grandeurs. Tant qu'ils sont déterminables physiquement, ces nombres ont une certaine continuité de façon qu'à deux points ou deux corps pratiquement indiscernables soient attachés le même nombre. Nous aurons tout d'abord à traduire ces faits physiques en énoncés purement logiques.

Nous aurons aussi à examiner quel emploi les physiciens font des nombres qu'ils déterminent et, pour cela, nous devons porter notre attention sur ce que les physiciens appellent une grandeur dérivée.

Considérons un corps C, les physiciens lui attachent une masse M, un volume V et une densité (ou densité moyenne) δ . Les deux premiers nombres se déterminent séparément expérimentalement et le troisième en résulte arithmétiquement par la formule de définition:

$$\delta = \frac{M}{V}$$
;

on dit que la masse et le volume sont des grandeurs directement mesurables et la densité une grandeur dérivée pour souligner la différence entre ces nombres. On remarquera que, dans la phrase précédente, le mot grandeur est correctement employé (au sens du chapitre précédent) quand on l'applique à la masse et au volume et incorrectement pour la densité; il est clair, par exemple, que si l'on partage un corps en deux corps partiels, la densité du corps total n'est pas la somme des densités des corps partiels. Nous éviterons donc cet emploi du mot grandeur.

Pour que M et V soient déterminés, il faut avoir choisi des unités de masse et de volume, mais aucun choix nouveau n'est à

faire pour δ ; c'est ce que l'on exprime encore en disant que l'unité de densité est une unité dérivée. Un corps aura une densité égale à 1, donc égale à la densité unité, en particulier si M=1 et V=1; c'est là le sens d'une phrase telle que celle-ci: quand l'unité de masse est le gramme, et l'unité de volume le centimètre cube, l'unité de densité est le gramme par centimètre cube.

La densité moyenne d'un corps est particulièrement intéressante quand elle est la même pour tous les corps partiels que l'on peut découper dans le corps donné, c'est-à-dire lorsque celui-ci est homogène quant à la masse. Lorsqu'il n'en est pas ainsi, les physiciens définissent une densité en chaque point P du corps: c'est la densité moyenne des corps découpés autour de P et assez petits pour être pratiquement homogènes. Nous aurons à préciser mathématiquement l'opération qui fournit cette densité, cette opération sera la dérivation. L'opération inverse, permettant le calcul de M à partir de V et de δ, sera l'intégration.

Pour abréger, j'examinerai ici directement le cas de l'espace à k dimensions, après avoir rappelé les éléments de géométrie à k dimensions dont on a besoin.

95. — Sur une courbe, sur une surface, dans l'espace ordinaire, un point est déterminé par une, deux, trois coordonnées; par analogie, nous appellerons point d'un espace à k dimensions, un ensemble de k valeurs numériques rangées dans un certain ordre, $x_1, x_2, \ldots x_k$, ou, en abrégé, (x_i) . Les valeurs des x_i sont dites les coordonnées; quand on dit que ces coordonnées sont rectangulaires, on exprime tout simplement que l'expression

$$\sqrt{\sum_{i} (x_{i} - x_{i}^{'})^{2}}$$

sera appelée la distance des deux points (x_i) , (x_i) . Nous emploierons uniquement des coordonnées rectangulaires.

Les formules

$$X_i = \alpha_i + \sum_{j=1}^{j=k} a_i^j x_j ,$$

seront alors dites formules du passage des coordonnées rectangulaires (x_i) aux coordonnées rectangulaires (X_i) si la distance de (x_i) à (x_i') est toujours égale à celle de (X_i) à (X_i') . Un calcul immédiat donne les conditions d'orthogonalité sous la forme:

$$\sum_{i=1}^{i=k} (a_i^j)^2 = 1$$
; $\sum_{i=1}^{i=k} a_i^j a_i^k = 0$, $j \neq k$.

De là résulte, à la façon classique, que le déterminant Δ des a_i^j est égal à \pm 1, puis les formules du changement de coordonnées résolues par rapport aux x_i et enfin les conditions d'orthogonalité sous la seconde forme.

Les formules du changement de coordonnées peuvent aussi être considérées comme définissant une transformation ponctuelle, celle-ci est dite être un déplacement quand $\Delta=1$. Supposons qu'il en soit ainsi.

Si on a $a_i^i = +1$, pour chaque valeur de i, donc, d'après les conditions d'orthogonalité, $a_i^j = 0$ pour $i \neq j$, le déplacement est dit une translation.

Si on a $a_i^i = +1$, pour une valeur de i, donc $a_i^j = 0$ et $a_j^i = 0$ pour cette valeur de i, et si les α sont nuls, le déplacement est appelé une rotation autour de l'axe de coordonnées $x_1 = x_2 = \dots = x_{i-1} = x_{i+1} = \dots = x_k = 0$, appelé encore axe des x_i .

Deux figures qui se correspondent dans un déplacement sont dites égales; on voit de suite que l'on peut passer d'une figure à une figure égale par une translation et des rotations autour des axes de coordonnées.

96. — Les inégalités:

$$\begin{aligned} a_1 & \leq x_1 \leq b_1 \ , \\ a_2(x_1) & \leq x_2 \leq b_2(x_1) \ , \\ a_3(x_1, x_2) & \leq x_3 \leq b_3(x_1, x_2) \ , \\ & \ddots \\ a_k(x_1, x_2, \dots, x_{k-1}) & \leq x_k \leq b_k(x_1, x_2, \dots, x_{k-1}) \ , \end{aligned}$$

dans lesquelles les fonctions qui figurent aux membres extrêmes sont continues, définissent une famille de points (x_i) constituant

ce que l'on appelle un domaine simple. Si ces fonctions se réduisent toutes (comme a_1 et b_1) à des constantes on a un intervalle dont les k dimensions sont les k différences b_i — a_i . Par réunion de domaines simples en nombre fini, on a des domaines plus généraux. Mais la famille de domaines ainsi définie dépendra des axes de coordonnées et même de l'ordre de ces axes; pour avoir une famille de domaines indépendante des axes nous conviendrons qu'un ensemble E de points sera dit un domaine si, quel que soit $\varepsilon > 0$, on peut trouver un domaine D_{ε} , au sens précédent du mot domaine, ou un ensemble D_{ε} de domaines en nombre fini tel que les points de D_{ε} appartiennent tous à E et que les points de E n'appartenant pas à D_{ε} soient à une distance inférieure à ε de points de D_{ε} ; et tel, de plus, que D_{ε} contient $D_{\varepsilon'}$ quand ε est inférieur à ε' .

Je n'insiste pas sur la démonstration facile de l'invariance de cette famille de domaines quand on passe d'un système d'axes à un autre. Je veux simplement signaler que, si l'on veut un exposé logiquement complet, de telles précisions et démonstrations sont indispensables même, ainsi que je l'ai déjà signalé, quand on se limite aux espaces à trois dimensions au plus.

- 97. Dans la famille précédente de domaines nous allons tout d'abord isoler une famille particulière, celle des domaines généralisant les domaines quarrables du plan et tels que:
 - α) A chacun de ces domaines D est attaché un nombre positif $a_k(D)$;
 - β) A un domaine formé par la réunion de deux autres extérieurs l'un à l'autre est attaché la somme des deux nombres attachés aux deux domaines partiels;
 - γ) A deux domaines égaux sont attachés des nombres égaux;
 - δ) Ces nombres sont entièrement fixés numériquement quand est fixé le nombre attaché à l'un d'eux.

Ces domaines seront dits quarrables d'ordre k; en abrégé, quarrables.

Nous voulons d'ailleurs que cette famille contienne tous les intervalles et tous les domaines constitués par la réunion d'intervalles en nombre fini.

Considérons un réseau total T d'intervalles I, I_1 , I_2 , ...; les intervalles I_p étant définis par les inégalités

$$\frac{e_i}{10^p} \le x_i \le \frac{e_i + 1}{10^p} ,$$

les e_i étant entiers. Et, un domaine E étant donné, comptons les intervalles I_p dont tous les points appartiennent à E, soit n_p leur nombre, et les intervalles I_p dont certains points appartiennent à E, soit N_p leur nombre.

Alors si l'aire d'ordre k commune à tous les I est 1, celle des I_p est nécessairement $\frac{1}{10^{kp}}$ et celle de E, si elle existe, est comprise entre

$$rac{n_p}{10^{kp}}$$
 et $rac{\mathrm{N}_p}{10^{kp}}$.

On a d'ailleurs

$$\frac{n_p}{10^{kp}} \le \frac{n_{p+1}}{10^{k(p+1)}} \le \frac{N_{p+1}}{10^{k(p+1)}} \le \frac{N_p}{10^{kp}} ,$$

donc si $\frac{N_p-n_p}{10^{kp}}$ tend vers zéro avec $\frac{1}{p}$, l'aire d'ordre k de E ne peut être que la limite commune des

$$rac{n_p}{10^{kp}}$$
 et $rac{ ext{N}_p}{10^{kp}}$.

Lorsqu'il en est ainsi, E est dit quarrable d'ordre k et la limite se note $a_k(E)$.

98. — Nous venons de reprendre la définition du chapitre III; il nous faut maintenant démontrer, comme nous l'avons fait au chapitre III pour a_2 , que a_k , qui vérifie évidemment les conditions α) et δ), vérifie aussi β) et γ).

Les I qui ont été comptés dans les N_p considérés sans être comptés dans les n_p sont ceux qui contiennent à la fois des points de E et des points n'appartenant pas à E, donc ce sont ceux qui contiennent des points frontières [est point frontière tout point (X_i) tel que l'intervalle $X_i - \varepsilon \leq x_i \leq X_i + \varepsilon$ con-

tienne, quel que soit $\varepsilon > 0$, des points de E et des points n'appartenant pas à E]. De là, comme au § 27, résulte la proposition β) et aussi qu'un domaine formé par la réunion d'autres en nombre fini est quarrable d'ordre k toutes les fois que les domaines composants le sont.

Pour la proposition γ) nous procéderons par récurrence en la supposant établie pour l'ordre k-1; on pourrait répéter mot à mot ce qui a été dit au chapitre IV pour passer de a_2 à a_3 ; on peut aussi, profitant de l'âge des auditeurs, faire un raisonnement moins élémentaire, mais préparant l'opération d'intégration, comme il suit.

99. — Nous allons démontrer que tout domaine simple de l'espace à k dimensions est quarrable d'ordre k, en supposant la même propriété établie pour le nombre k-1.

Soit E le domaine simple défini par les k doubles inégalités écrites plus haut, soit E' le domaine simple à k-1 dimensions défini par les k-1 premières doubles inégalités. E' est dit la projection de E sur l'espace coordonné $x_1, x_2, ..., x_{k-1}$.

Les intervalles I_p précédemment utilisés ont de même des projections qui sont les intervalles I_p' du réseau T' avec lequel on évalue les aires d'ordre k-1 dans l'espace coordonné considéré. De sorte que les I_p' fournissent pour E' des nombres n_p' et N_p' tels que

$$a_{k-1} (E') = \frac{n_p'}{10^{(k-1)p}}$$
 et $\frac{N_p'}{10^{(k-1)p}} = a_{k-1} (E')$

tendent vers zéro quand p augmente indéfiniment.

Les I_p fournissent pour E des nombres n_p et N_p ; considérons tous ceux des I_p comptés dans les n_p ou les N_p , ils forment deux domaines E_p et E_p . Tous ceux ayant une même projection I_p' et faisant partie de E_p forment un intervalle I_p dont les k-1 premières dimensions sont $\frac{1}{10^p}$ et dont la $k^{\text{ième}}$ ne diffère de

$$b_k(x_1^0, x_2^0, \dots x_{k-1}^0) - a_k(x_1^0, x_2^0, \dots x_{k-1}^0)$$

 $x_1^0, x_2^0, ..., x_{k-1}^0$ étant un point arbitrairement choisi dans cet I_p' , que de η_p au plus; η_p tendant vers zéro quand p augmente indéfiniment. Quant à I_p' c'est l'un quelconque des n_p' intervalles utilisés pour avoir une valeur approchée par défaut de $a_{k-1}(E')$.

Pour un tel intervalle I_p , les intervalles I_p de \overline{E}_p admettant cet I_p' pour projection, fournissent un résultat analogue, l'infiniment petit η_p étant remplacé par un autre ζ_p . Mais, de plus, \overline{E}_p contient des I_p ayant pour projections des I_p' comptant dans les N_p' et non dans les n_p' . Ceux ayant un même I_p' pour projection forment encore un intervalle dont la $k^{\text{lème}}$ dimension est au plus $M + \xi_p$, M étant le maximum de

$$b_k(x_1, x_2, \dots, x_{k-1}) - a_k(x_1, x_2, \dots, x_{k-1})$$
.

Donc on a:

$$\frac{N_p - n_p}{10^{kp}} \le \sum \frac{1}{10^{(k-1)p}} (\eta_p + \zeta_p) + \sum \frac{1}{10^{(k-1)p}} (M + \xi_p) ;$$

les deux sommations étant étendues aux deux espèces d'intervalles I_p' que nous venons de considérer. Or ceci donne

$$\frac{{\rm N}_p - n_p}{10^{kp}} \le a_{k-1} \, ({\rm E}') \, (\eta_p \, + \, \zeta_p) \, + \, ({\rm M} \, + \, \zeta_p) \, \frac{{\rm N}_p^{'} - n_p^{'}}{10^{(k-1)\,p}} \, ;$$

inégalité dans laquelle le second membre tend vers zéro quand p croît; ce qui prouve le théorème.

De plus, quand b_k et a_k sont des constantes (cas d'un domaine prismatique à génératrices parallèles à l'axe des x_k) la k_i dimension des J_p est constante à $\eta_p + \zeta_p$ près et la somme des $a_k(J_k)$ fournit la valeur

$$a_k\left(\mathbf{E}\right) = (b_k - \!\!\!- a_k) \, \times \, a_{k-1}\left(\mathbf{E}'\right)$$
 .

100. — De là résulte encore qu'un tel domaine prismatique a une aire d'ordre k qui ne change pas dans une translation quelconque ou dans une rotation autour de l'axe des x_k . Nous allons étendre ce résultat à un domaine quarrable d'ordre k quelconque E.

A l'aide des intervalles I_p en nombre n_p (ou N_p) fournissant une valeur approchée par défaut (ou par excès) de $a_k(E)$ formons

une figure \underline{E}_p (ou \overline{E}_p). Une translation ou une rotation autour de l'axe des x_k transforme ces figures en des figures égales \mathcal{E} , $\underline{\mathcal{E}}_p$, $\overline{\mathcal{E}}_p$ formées par les transformés des I_p , transformés qui ne sont plus, en général, des intervalles, mais sont quarrables d'ordre k et ont toujours un a_k égal à $\frac{1}{10^{kp}}$. Donc $\underline{\mathcal{E}}_p$ et $\overline{\mathcal{E}}_p$ ont mêmes a_k que \underline{E}_p et \overline{E}_p ; et comme $a_k(\overline{E}_p) - a_k(\underline{E}_p)$ tend vers zéro quand p croît, il en est de même de $a_k(\overline{\mathcal{E}}_p) - a_k(\underline{\mathcal{E}}_p)$, donc \mathcal{E} est quarrable; de plus son a_k est la limite de $a_k(\underline{\mathcal{E}}_p)$ donc de $a_k(\underline{E}_p)$; on a $a_k(\mathcal{E}) = a_k(\underline{E})$.

La définition de l'aire d'ordre k est ainsi légitimée, puisqu'on peut toujours passer d'un domaine à un domaine égal par une suite de déplacements de la nature des précédents.

C'est de la famille des domaines quarrables que nous nous occuperons uniquement dorénavant, encore qu'elle ne soit pas la seule intéressante.

101. — La définition de l'aire d'ordre k a mis en évidence la propriété de continuité qui fait que cette aire peut être atteinte expérimentalement: A un domaine E nous avons attaché deux figures E_p , $\overline{E_p}$, constituées d'intervalles I_p ; à $\overline{E_p}$ ajoutons tous $\overline{E_p}$. Si $\overline{E_p}$ fixe, ayant des points dans $\overline{E_p}$ sans être en entier dans $\overline{E_p}$. Si $\overline{E_p}$ se réduisait à un I_p , l'aire d'ordre k de ces I_{p+q} ajoutés serait:

$$\left\lceil \frac{1}{10^p} + \frac{1}{10^{p+q}} \right\rceil^k - \left(\frac{1}{10^p} \right)^k = a_k(I) \cdot \left\{ \left(1 + \frac{1}{10^q} \right)^k - 1 \right\}.$$

Donc, dans le cas d'un $\overline{\mathbb{E}_p}$ quelconque, les \mathbb{I}_{p+q} ajoutés ont une aire d'ordre k au plus égale à

$$a_k\left(\mathbf{E}_p\right) \cdot \left\{ \left(1 + \frac{1}{10^q}\right)^k - 1 \right\}.$$

Pour q assez grand on aura donc ainsi une figure $\overline{\mathbb{E}}_p$ telle que $a_k(\overline{\mathbb{E}}_p)$ surpasse d'aussi peu que l'on voudra $a_k(\overline{\mathbb{E}}_p)$ donc, pour p assez grand, $a_k(\mathbb{E})$, si \mathbb{E} est quarrable. En enlevant de $\underline{\mathbb{E}}_p$ les I_{p+q} contenus dans \mathbb{E}_p et contenant des points frontières $\overline{\mathrm{de}} \ \underline{\mathbb{E}}_p$ on aura de même une figure $\underline{\mathbb{E}}_p$ qui, pour p et q assez grands, sera d'aire d'ordre k aussi voisine qu'on le voudra de $a_k(\mathbb{E})$.

De plus tous les I_{p+q} contenant des points frontières de E font partie de $\overline{\overline{E}}_p$ et aucun n'appartient à E_p ¹.

Considérons maintenant un domaine quarrable variable E_v tendant vers E; c'est-à-dire que, dès que les conditions diffèrent assez peu de celles pour lesquelles on recherche la limite, E_v est contenu dans un domaine arbitrairement choisi contenant E à son intérieur au sens strict (donc est contenu dans \overline{E}_p) et contient un domaine contenu au sens strict dans E (donc contient E_p). Alors on a:

$$a_k(\underline{\underline{\mathbf{E}}}_p) \, \leq \, a_k(\mathbf{E}_v) \, \leq \, a_k(\overline{\overline{\mathbf{E}}}_p) \ .$$

Donc, si le domaine quarrable E est la limite du domaine quarrable E_v , $a_k(E)$ est la limite de $a_k(E_v)$.

102. — Nous allons considérer les fonctions de domaine; les domaines, qui joueront le rôle de la variable, sont les domaines quarrables. A chacun de ces domaines, Δ , nous supposerons attaché un nombre $f(\Delta)$, ce sera la fonction de domaine. De plus, nous supposerons cette fonction additive, c'est-à-dire telle que, si l'on divise Δ en deux domaines quarrables Δ_1 et Δ_2 on ait:

$$f\left(\Delta\right) = f\left(\Delta_{\mathbf{1}}\right) + f\left(\Delta_{\mathbf{2}}\right) .$$

Nos nombres $f(\Delta)$ vérifient donc la condition β); si, de plus, ils étaient positifs, ce seraient des grandeurs attachées à des corps figurés par les divers domaines quarrables. Ils sont aux grandeurs, ce que les nombres figurés sont aux nombres positifs. La quantité de chaleur qu'il faudrait fournir ou retirer aux corps, pris dans leur état actuel, pour les amener à 0 degré est une telle fonction additive.

Nous supposerons de plus ces fonctions continues; c'est-à-dire que si Δ_v variable tend vers Δ , $f(\Delta_v)$ tendra vers $f(\Delta)$; condition nécessairement réalisée quand $f(\Delta)$ peut être déterminée expérimentalement.

La nécessité de la considération de \overline{E}_p et \underline{E}_p résulte de ce que tous les I_p contenant des points frontières de E ne font pas nécessairement partie de \overline{E}_p (car E n'a pas été supposé fermé au sens de la théorie des ensembles) et que certains de ceux-ci peuvent faire partie de E_p .

Une conséquence de cette continuité est que $f(\Delta_v)$ tend vers zéro quand Δ_v tend vers zéro dans toutes ses dimensions, c'est-à-dire est contenu dans un intervalle variable dont la plus grande dimension tend vers zéro. En effet, si cela n'était pas, on pourrait prendre des Δ_v dont les dimensions tendent vers zéro tels que $f(\Delta_v)$ tende vers un nombre $\varphi \neq 0$ et on pourrait assujettir les points de Δ_v a avoir un point limite, soit P, de coordonnées (x_i^0) . Alors, en subdivisant Δ_v s'il est nécessaire, on pourra supposer que, tout en conservant les propriétés indiquées, pour chaque i tous ses points vérifient soit

$$x_i \le x_i^0$$
 soit $x_i \ge x_i^0$.

Imaginons que ce soit, pour chaque i, la première inégalité qui convienne et soit D un domaine dont P est point limite et dont tous les points ont des coordonnées supérieures à celles de P. Alors le domaine D $+ \Delta_v$ aurait pour limite D et $f(D + \Delta_v)$ ne tendrait pas vers f(D), mais vers $f(D) + \varphi$.

Cette propriété des fonctions de domaine que nous considérons et des grandeurs les différencie nettement des fonctions de points: Si on cherche à réduire Δ à un point P, $f(\Delta)$ tend vers zéro et non vers une fonction du point P, comme la densité en P ou la chaleur spécifique en P. Nous allons obtenir maintenant ces fonctions de points qui correspondent aux grandeurs dérivées des physiciens.

103. — Considérons une fonction $f(\Delta)$ et une grandeur continue $V(\Delta)$, c'est-à-dire une fonction additive continue de domaine qui, de plus, est positive. Le quotient $\frac{f(\Delta)}{V(\Delta)}$ a un sens; nous l'appellerons la dérivée moyenne de f par rapport à V dans Δ . Diminuons Δ dans toutes ses dimensions, indéfiniment, mais de manière qu'il contienne toujours un point P, si, dans ces conditions, le rapport tend vers une limite déterminée $\varphi(P)$, ce sera la dérivée de f par rapport à V en P; elle se note $\frac{df}{dV}(P) = \varphi(P)$.

La définition même de la dérivée indique le mode de calcul qui la fournit; l'opération de dérivation est le calcul de la limite d'un rapport. Le cas le plus intéressant, le seul que nous examinerons, est celui où le rapport tend uniformément vers sa limite, c'est-à-dire le cas où la différence entre $\frac{f(\Delta)}{V(\Delta)}$ et $\varphi(P)$ est inférieure au nombre positif arbitrairement choisi ε dès que Δ est contenu dans un intervalle dont les k dimensions sont au plus égales à un nombre η tendant vers zéro avec ε^1 , η dépendant de ε mais pas de P. Si alors on choisit pour Δ l'intervalle

$$x_i^{\scriptscriptstyle 0} - h \le x_i \le x_i^{\scriptscriptstyle 0} + h \ ,$$

P étant le point (x_i^0) , le rapport est une fonction continue de P, donc sa limite pour k tendant vers zéro sera fonction continue de P; $\varphi(P)$ est donc alors continue. Nous dirons que $\varphi(P)$ est une dérivée à convergence uniforme 2 lorsque le rapport incrémentiel $\frac{f(\Delta)}{V(\Delta)}$ tend uniformément vers $\varphi(P)$.

Lorsqu'il en est ainsi, ce rapport est borné dès que Δ est pris assez petit dans toutes ses dimensions, et, comme d'autre part il est borné pour tous les Δ plus grands mais pris dans la partie bornée de l'espace que nous considérons, $\frac{f(\Delta)}{V(\Delta)}$ est de module borné pour tous les Δ envisagés. On a:

$$|f(\Delta)| < MV(\Delta)$$
,

M étant un nombre fixe. On dit que la fonction f est à nombres dérivés par rapport à V bornés.

En particulier, si l'inégalité précédente est vraie quand on prend $a_k(\Delta)$ pour $V(\Delta)$, c'est-à-dire si, pour tout Δ , on a:

$$|f(\Delta)| < \mathrm{K} a_k(\Delta)$$
 ,

la fonction $f(\Delta)$ est dite à nombres dérivés bornés. Il est clair que les exemples physiques de fonctions $f(\Delta)$ qui ont été donnés fournissaient des fonctions à nombres dérivés bornés. Ceci entraı̂ne évidemment la continuité de ces fonctions.

¹ En réalité, sauf si k=1, cette convergence uniforme de $\frac{f(\Delta)}{V(\Delta)}$ est une conséquence nécessaire de la convergence de ce rapport pour tout point P. Il en est de même pour k=1 si on emploie, même dans cette hypothèse, la définition générale des domaines de la fin du § 96, laquelle n'exige pas la connexité.

2 En réalité, dès qu'une dérivée est continue, elle est à convergence uniforme.

104. — Enonçons maintenant le problème d'intégration: Etant données une fonction continue de point $\varphi(P)$ et une fonction de domaine $V(\Delta)$, positive, additive et à nombres dérivés bornés, trouver une fonction additive et à nombres dérivés bornés $f(\Delta)$ qui admette $\varphi(P)$ comme dérivée par rapport à V; cette dérivée étant à convergence uniforme.

Si Δ est la réunion d'un nombre fini d'intervalles δ_i , en subdivisant au besoin ceux-ci on peut supposer leurs dimensions assez petites pour que l'on ait, pour tout i,

$$\left| \, rac{f \left(\delta_i
ight)}{\mathrm{V} \left(\delta_i
ight)} - \, \phi \left(\mathrm{P}_i
ight) \,
ight| < \epsilon \, \, ,$$

 P_i étant arbitrairement choisi dans δ_i . Alors, puisque

$$f(\Delta) = \Sigma f(\delta_i)$$
 , $\Sigma |V(\delta_i)| = \Sigma V(\delta_i) = V(\Delta)$,

on a:

$$\mid f(\Delta) - \Sigma \varphi(P_i) V(\delta_i) \mid < \epsilon V(\Delta)$$
.

Si donc le problème est possible, sa solution $f(\Delta)$ est unique et $f(\Delta)$ est la limite de $\Sigma \varphi(P_i) V(\delta_i)$.

Voyons si cette limite existe. Soit une autre subdivision de Δ , elle fournit des domaines δ'_j et des points P'_j . Supposons les dimensions des δ et des δ' assez petites pour que dans chacun de ces intervalles φ varie de moins de ε et évaluons dans cette hypothèse la différence

Soient δ'' les intervalles résultant des inégalités définissant les δ_i et les δ_j' . Chaque δ_i et chaque δ_j' est une somme de δ'' et si l'on a:

$$\delta_i = \delta_{\alpha}'' + \delta_{\beta}'' + \dots + \delta_{\lambda}''$$

on a aussi

$$\mathbf{V}(\delta_{i}) \, = \, \mathbf{V}\left(\delta_{\alpha}^{"}\right) \, + \, \mathbf{V}\left(\delta_{\beta}^{"}\right) \, + \, ... \, + \, \mathbf{V}\left(\delta_{\lambda}^{"}\right) \, .$$

En faisant cette transformation pour $V(\delta_i)$ et $V'(\delta_i)$ dans la

différence à évaluer, celle-ci se présente sous la forme d'une sommation par rapport aux δ''

$$\Sigma \left[\phi \left(\mathbf{P}_{i} \right) - - \phi \left(\mathbf{P}_{j}^{'} \right) \right] \mathbf{V} \left(\boldsymbol{\delta}_{\mathbf{x}}^{''} \right) \ .$$

 $\varphi(P_i)$ et $\varphi(P_j')$ ainsi associés à δ_z'' diffèrent de ε au plus de la valeur prise par φ en un point P_z de δ_z'' . Donc la différence à évaluer est au plus

$$\Sigma \; 2 \, \epsilon \, \times \, V \left(\delta_z^{''} \right) \, = \, 2 \, \epsilon V \left(\Delta \right) \; . \label{eq:sigma}$$

Elle tend donc vers zéro avec ε et la somme $\Sigma \varphi(P_i)V(\delta_i)$ a une limite $f(\Delta)$ indépendante de la subdivision de Δ envisagée.

Il reste à rechercher si $f(\Delta)$ remplit les conditions de l'énoncé; pour n'avoir à le faire qu'une fois, étendons d'abord les résultats obtenus à un domaine quarrable quelconque Δ . On a vu qu'il est la limite d'un domaine variable Δ_v formé d'intervalles; donc, puisqu'on veut que $f(\Delta)$ soit continue, $f(\Delta)$ doit être la limite de $f(\Delta_v)$. Et puisque $f(\Delta_v)$ est unique; $f(\Delta)$, si elle existe, est unique. Montrons que $f(\Delta_v)$ a effectivement une limite. On a vu que l'on peut trouver deux domaines formés d'intervalles $\overline{\Delta}$ et $\underline{\Delta}$ tels que Δ soit strictement intérieur au premier, contienne au sens strict le second et que $a_k(\overline{\Delta}-\underline{\Delta})$ soit aussi petite que l'on veut. Alors Δ_v tendant vers Δ finit par être contenu dans $\overline{\Delta}$ et par contenir $\underline{\Delta}$; soient deux tels domaines Δ_v , Δ_v . Ils ont une partie commune Δ'' et sont tels que $\Delta_v-\Delta''=\Lambda$, $\Delta_v'-\Delta''=\Lambda'$, Λ et $\underline{\Lambda}'$ faisant partie de $\overline{\Delta}-\underline{\Delta}$, ont des aires d'ordre k inférieures à $a_k(\overline{\Delta}-\underline{\Delta})$. Evaluons

$$f(\Delta_v) - f\left(\Delta_v^{'}\right) = \left[f(\Delta'') + f(\Lambda)\right] - \left[f(\Delta'') + f(\Lambda')\right] = f(\Lambda) - f(\Lambda') \ .$$

Pour Λ , formé d'un nombre fini d'intervalles, $f(\Lambda)$ se présente comme limite d'une somme: $\Sigma \varphi(P_z) V(\delta_z)$. Si B est la borne supérieure de $|\varphi|$, cette somme est au plus, en module,

B
$$\Sigma$$
 V (δ_z) = B V (Λ) \leq B K $a_k^{}(\Lambda)$,

K étant un nombre fixe. Donc

$$\left| f(\Delta_v) - f(\Delta_v) \right| \leq 2 \operatorname{B} \operatorname{K} a_k \left(\overline{\overline{\Delta}} - \underline{\underline{\Delta}} \right) ;$$

et $f(\Delta_v)$ tend donc vers une limite qu'on prendra pour $f(\Delta)$.

105. — Cette fonction $f(\Delta)$, la seule qui puisse être solution de notre problème d'intégration, peut toujours être obtenue comme limite de sommes $\Sigma \varphi(P_i) V(\delta_i)$ étendues aux intervalles I_p (jouant le rôle des δ_i) qui comptent dans les n_p ou les N_p fournissant des valeurs approchées de $a_k(\Delta)$.

De là résulte une propriété capitale de $f(\Delta)$ qui permettra de montrer que $f(\Delta)$ satisfait bien à toutes les conditions du problème d'intégration.

Théorème de la moyenne. — Si m et M sont les bornes inférieure et supérieure de $\varphi(P)$ dans Δ , on a:

$$f(\Delta) = \mu V(\Delta)$$

 μ étant compris entre m et M. En effet, calculons une valeur approchée de $f(\Delta)$ à l'aide des n_p intervalles I_p comme il a été dit; on trouve $\Sigma \varphi(P_i)V(\delta_i)$ comprise entre $m\Sigma V(\delta_i)$ et $M\Sigma V(\delta_i)$, quantités qui tendent vers $mV(\Delta)$ et $MV(\Delta)$. Comme φ est fonction continue de P, la valeur de μ est l'une de celles prises par φ dans Δ , d'où un autre énoncé:

Théorème des accroissements finis:

$$f(\Delta) = V(\Delta) \varphi(\pi)$$
,

 π étant un point convenablement choisi dans le domaine Δ 1.

106. — De ce théorème il résulte, si B est la borne supérieure de $|\varphi|$ dans la région finie de l'espace considéré et si, pour cette région, $V(\Delta)$, qui est à nombres dérivés bornés, est telle que

$$V(\Delta) < K \cdot a_k(\Delta)$$
,
$$|f(\Delta)| < BK \cdot a_k(\Delta) ;$$

ainsi $f(\Delta)$ est à nombres dérivés bornés.

Si le domaine Δ , quarrable d'ordre k, est divisé en deux domaines également quarrables Δ^1 , Δ^2 , les n_p intervalles I_p relatifs à Δ se partagent en les n_p^1 , n_p^2 relatifs à Δ^1 et Δ^2 , et en intervalles restants R qui contiennent des points intérieurs à Δ et frontières pour Δ^1 et Δ^2 , d'où, en utilisant ces I_p comme δ_i

$$\Sigma \, \varphi \left(\mathbf{P}_{i} \right) \, \mathbf{V} \left(\boldsymbol{\delta}_{i} \right) \, = \, \boldsymbol{\Sigma}^{\boldsymbol{\Delta}^{1}} \, \varphi \left(\mathbf{P}_{i} \right) \, \mathbf{V} \left(\boldsymbol{\delta}_{i} \right) \, + \, \boldsymbol{\Sigma}^{\boldsymbol{\Delta}^{2}} \, \varphi \left(\mathbf{P}_{i} \right) \, \mathbf{V} \left(\boldsymbol{\delta}_{i} \right) \, + \, \boldsymbol{\Sigma}^{\mathbf{R}} \, \varphi \left(\mathbf{P}_{i} \right) \, \mathbf{V} \left(\boldsymbol{\delta}_{i} \right) \, .$$

On montrerait facilement que, sauf si m=M, $\mu=\varphi(\pi)$ est différent de m et de M.

Pour p augmentant indéfiniment, les trois premières sommes tendent vers $f(\Delta)$, $f(\Delta^1)$, $f(\Delta^2)$; la troisième est au plus en module $BKa_k(R)$, quantité qui tend vers zéro. Donc $f(\Delta)$ est une fonction additive 1.

Le théorème des accroissements finis donne encore:

$$\frac{f(\Delta)}{V(\Delta)} - \varphi(P) = \varphi(\pi) - \varphi(P) ,$$

donc le premier membre est inférieur à ϵ dès que les dimensions de Δ sont prises assez petites pour que, de P à π , c'est-à-dire d'un point à un autre de Δ , φ varie de moins de ϵ .

Donc $f(\Delta)$ admet $\varphi(P)$ comme dérivée par rapport à V et cette dérivée est à convergence uniforme.

Ainsi, la possibilité de résoudre le problème d'intégration est prouvée; il est aussi démontré que sa solution est unique et est fournie par la limite de la somme $\Sigma \varphi(P_i)V(\delta_i)$, quand les δ_i extérieurs les uns aux autres et quarrables ont des dimensions qui tendent vers zéro et forment un domaine que l'on fait tendre vers le domaine quarrable donné Δ et que les P_i sont pris arbitrairement chacun dans le δ_i de même indice. Pour rappeler cela on représente la solution, qu'on appelle l'intégrale définie, prise dans Δ , de $\varphi(P)$ par rapport à $V(\Delta)$ par le symbole

$$\int\limits_{\Delta} \varphi(\mathbf{P}) \ d\mathbf{V} \ .$$

La fonction additive $f(\Delta)$ du domaine quarrable, obtenue en faisant varier Δ , est dite l'intégrale indéfinie correspondante.

107. — Le mode de calcul qui résulte de la définition est en réalité assez peu employé; le plus souvent, on commence par remplacer l'intégration par rapport à $V(\delta)$ par une intégration par rapport à $a_k(\delta)$. Ceci est facile car, de

$$\frac{f(\delta)}{a_{b}(\delta)} = \frac{f(\delta)}{V(\delta)} \times \frac{V(\delta)}{a_{b}(\delta)},$$

résulte

$$\frac{df}{da_h}(\mathbf{P}) = \frac{df}{d\mathbf{V}}(\mathbf{P}) \times \frac{d\mathbf{V}}{da_h}(\mathbf{P}) = \varphi(\mathbf{P}) \cdot \frac{d\mathbf{V}}{da_h}(\mathbf{P}) = \psi(\mathbf{P}) ;$$

 $^{^{1}}$ Ceci était évident pour les Δ sommes d'intervalles et nous a déjà servi dans ce cas.

ègalité généralisant le théorème sur la dérivée des fonctions de fonctions et d'où résulte

$$\int\limits_{\Delta} \phi\left(\mathbf{P}\right) d\mathbf{V} \, = \int\limits_{\Delta} \phi\left(\mathbf{P}\right) \; \cdot \frac{d\mathbf{V}}{da_{k}}\left(\mathbf{P}\right) da_{k} \, = \int\limits_{\Delta} \psi\left(\mathbf{P}\right) da_{k} \; .$$

Une intégrale par rapport à a_k est dite une intégrale multiple d'ordre k.

Il suffit d'apprendre à calculer ces intégrales k^{uples} . Le calcul se fait par récurrence, du moins quand il s'agit d'un domaine simple, cas auquel on peut se borner puisque, quel que soit le domaine quarrable E, celui que nous avons appelé $\overline{\overline{E}}_p$ en est infiniment voisin et est la somme d'un nombre fini de domaines simples, qui sont des I_p ; § 101.

Etudions $\int_{\Delta} \varphi(P) da_k$ en supposant que Δ soit le domaine simple défini par les inégalités du § 96 et soit $\Delta(A, B)$ obtenu en remplaçant la première inégalité définissant Δ par

$$A \le x_1 \le B$$
.

Soit $S(X_1)$ la section de Δ par $x_1 = X_1$; c'est-à-dire le domaine simple de l'espace $x_2, x_3, ..., x_k$ défini par les k-1 dernières doubles inégalités quand on y fait $x_1 = X_1$. Ce domaine $S(X_1)$ varie de façon continue, quand X_1 varie.

Etudions la fonction $f[\Delta(A, B)]$ obtenue en étendant l'intégrale à $\Delta(A, B)$; on peut la considérer comme une fonction $F(\xi)$ de l'intervalle ξ à une dimension défini par

$$A \le x_1 \le B$$
.

Cette fonction est évidemment additive; calculons sa valeur approchée à l'aide des intervalles I_p ayant au moins un point dans $\Delta(A, B)$. Le module de cette valeur approchée est majoré par une expression de la forme

$$\Sigma \mid \varphi(\mathbf{P}_i) \mid a_k(\delta_i) \leq \mathbf{M} \, a_k \left[\, \overline{\Delta_p(\mathbf{A} \, , \, \mathbf{B})} \, \right]$$

si M est la borne supérieure de $\varphi(P)$ et si $\overline{\Delta_p(A,B)}$ est construit comme précédemment l'avait été \overline{E}_p , § 99. Or tous les I_p constituant $\overline{\Delta_p(A,B)}$ ont une projection sur la variété coordonnée

 $x_2, x_3, \dots x_k$ formée par les I_p de cette variété qui ont des points appartenant à la projection de Δ . Si donc A_{k-1} est l'aire d'ordre k-1 de cette dernière projection, comme les I_p ayant une même projection I_p forment au plus un intervalle J_p dont la première dimension est au plus $B-A+\frac{2}{10^p}$, la limite supérieure trouvée surpasse d'aussi peu que l'on veut $M\cdot A_{k-1}\cdot (B-A)$. Et comme B-A est l'aire d'ordre 1 de ξ , $F(\xi)$ a son rapport incrémentiel majoré en module par $M\cdot A_{k-1}$; $F(\xi)$ est une fonction à nombres dérivés bornés.

108. — Précisons ce calcul pour obtenir la dérivée de $F(\xi)$ au point $x_1 = A$.

Pour cela, construisons à l'aide d'intervalles I' d'indice assez élevé p+q les deux domaines $\underline{S(A)}$, $\overline{\overline{S(A)}}$ dont le premier est contenu au sens strict dans S(A), $\overline{\overline{Iui}}$ -même contenu au sens strict dans le second, § 101. Alors, pour B assez voisin de A, $S(X_1)$ est, pour X_1 variant de A à B, contenu dans $\overline{S(A)}$ et contient $\underline{S(A)}$. Calculons une valeur approchée de $F(\xi)$ à l'aide d'intervalles I_{p+q+r} ; ceux-ci sont de deux sortes: les uns ont une projection I'_{p+q+r} sur x_2 , x_3 , ... x_k appartenant à $\underline{S(A)}$; pour les autres elle appartient à $\overline{S(A)}$ — $\underline{\underline{S(A)}}$. Les projections des seconds ont une a_{k-1} au plus égale à a_{k-1} $\overline{[S(A)}$ — $\underline{\underline{S(A)}}$], quantité ε aussi petite que l'on veut et, d'après un calcul analogue au précédent, fournissent dans le rapport incrémentiel $\overline{F(\xi)}$ une contribution au plus égale, en module, à $M\varepsilon$; donc aussi petite qu'on le veut.

Quelle est la contribution des autres? Dans chacun des I_{p+q+r} ayant une même projection I_{p+q+r} choisissons un point distingué, ces points ayant tous une même projection P' sur x_1 =A; ces I_{p+q+r} fournissent dans le rapport incrémentiel une contribution de la forme

$$\frac{1}{(\mathrm{B}-\mathrm{A})} \left[\varphi \left(\mathrm{P}_{i_{1}} \right) \, a_{k} \left(\delta_{i_{1}} \right) \, + \, \varphi \left(\mathrm{P}_{i_{2}} \right) \, a_{k} \left(\delta_{i_{2}} \right) \, + \, \ldots \, + \, \varphi \left(\mathrm{P}_{i_{m}} \right) \, a_{k} \left(\delta_{i_{m}} \right) \right] \, .$$

Or, le second membre diffère très peu de $\varphi(P')a_{k-1}(I'_{p+q+r})$ car les $\varphi(P_{i_j})$ diffèrent de $\varphi(P')$ de moins de η dès que

B est assez voisin de A et, pour r assez grand, les intervalles δ_{ij} , c'est-à-dire les I_{p+q+r} de même projection I_{p+q+r} , forment un intervalle dont la première dimension diffère aussi peu que l'on veut de |B - A|.

Ainsi, à aussi peu près que l'on voudra, le rapport incrémentiel sera

$$\Sigma \varphi \left(\mathbf{P}_{i}^{'}\right) a_{k-1} \left(\delta_{i}^{'}\right)$$
.

La dérivée existera si ceci a, dans les conditions envisagées, une limite. Or cette limite est connue, c'est

$$\int_{S(A)} \varphi(P) \ da_{k-1} ,$$

donc F(ξ) a une dérivée

$$\frac{d\mathbf{F}}{da_{1}} = \int_{\mathbf{S}(\mathbf{A})} \varphi(\mathbf{P}) \ da_{k-1} \ .$$

La convergence du rapport incrémentiel vers la dérivée sa limite est d'ailleurs uniforme et, par suite, on a:

$$F(\xi) = \int_{\xi} \left[\int_{S(A)} \varphi(P) da_{k-1} \right] da_{1}.$$

Le calcul de l'intégrale k^{uple} est remplacé par celui de l'intégrale simple d'une intégrale $(k-1)^{\text{uple}}$.

Une intégrale simple se note encore

$$\int\limits_{\xi}\varkappa\left(\mathbf{P}\right)\,da_{\mathbf{1}}=\int\limits_{\mathbf{A}}^{\mathbf{B}}\varkappa\left(x_{\mathbf{1}}\right)\,dx_{\mathbf{1}}\ ,$$

si on a A < B; ceci pour rappeler que la mesure (ou aire d'ordre 1) d'un intervalle (A $\leq x_1 \leq$ B) est l'accroissement qu'y subit la variable x_1 et que la valeur de x_1 détermine P.

La formule obtenue s'écrit donc, en particulier pour $A=a_1$, $B=b_1$

$$f(\Delta) = \int_{a_{1}}^{b_{1}} \left[\int_{S(x_{1})} \varphi(P) da_{k-1} \right] dx_{1}.$$

D'où, par récurrence,

$$f(\Delta) = \int_{a_1}^{b_1} \left\langle \int_{a_2(x_1)}^{b_2(x_1)} \left[\dots \left(\int_{a_k(x_1, x_2, \dots, x_{k-1})}^{b_k(x_1, x_2, \dots, x_{k-1})} \right) \dots \right] dx_2 \right\rangle dx_1.$$

En groupant d'une part les n premiers signes d'intégration, d'autre part les k-n derniers, on a une formule qu'on aurait pu prouver directement:

$$f(\Delta) = \int_{\mathbf{P_1}, 2, \dots, n} \left[\int_{\mathbf{S}(x_1, x_2, \dots, x_n)} \mathbf{d}a_{k-n} \right] da_n.$$

 $P_{1,2,...,n}$ est la projection de Δ sur l'espace coordonné $x_1, x_2, ..., x_n$; $S(x_1, x_2, ..., x_n)$ est la section de Δ par l'espace parallèle à l'espace coordonné indiqué et qui passe par le point P. C'est-à-dire que les n premières doubles inégalités définissant Δ définissent $P_{1,2,...,n}$ et que les k-n dernières, quand on y fixe $x_1, x_2, ..., x_n$, définissent $S(x_1, x_2, ..., x_n)$.

Ces formules permettent d'évaluer les intégrales multiples par des intégrations d'ordres moins élevés et, d'une façon générale, de raisonner par récurrence. Si, en particulier, on y fait $\varphi(P) \equiv 1$, on a des formules liant l'aire d'ordre k à des aires d'ordres inférieurs. D'où, en particulier, les calculs d'aires, au sens ordinaire du mot, et de volumes.

109. — Il ne reste donc plus qu'à apprendre à effectuer les intégrations simples; soit

$$F(\xi) = \int_{\mathbf{A} \leq x \leq \mathbf{B}} \varphi(x) dx ,$$

quantité qui est aussi une fonction de deux variables $\Phi(A, B)$. Du fait que F est additive, il résulte, pour A < B < C,

$$\Phi(A, B) + \Phi(B, C) = \Phi(A, C)$$
.

Donc, pour 0 < A < B,

$$F(\xi) = \Phi(0, B) - \Phi(0, A)$$
.

Pour que cette formule soit encore valable pour A < B < 0 et pour A < 0 < B, il suffit de poser $\Phi(X, Y) = -\Phi(Y, X)$; convention légitime puisque Φ n'avait été tout d'abord définie qu'en supposant la valeur de la première variable plus petite que celle de la seconde. Alors on a:

$$\int_{A}^{B} \varphi(x) dx = \Phi(O, B) - \Phi(O, A)$$

quels que soient les signes de A et B, mais pourvu que A soit inférieur à B. On fera enfin disparaître cette dernière restriction en posant, par définition,

$$\int_{A}^{B} \varphi(x) dx + \int_{B}^{A} \varphi(x) dx = 0.$$

Ainsi $F(\xi)$ ne dépend que d'une fonction d'une variable $\Phi(O, X) = \Psi(X)$, même quand on définit, comme nous venons de le faire, $F(\xi)$ pour les intervalles négatifs, [A > B]. Quelle propriété de Ψ correspond à la dérivabilité de F?

Pour A < B, on a:

$$\frac{\mathrm{F}(\xi)}{a_1(\xi)} = \varphi(\mathrm{X})$$
 avec $\mathrm{A} < \mathrm{X} < \mathrm{B}$

d'après notre théorème des accroissements finis, et

$$\frac{\mathrm{F}(\xi)}{a_{1}(\xi)} = \frac{\mathrm{\Psi}(\mathrm{B}) - \mathrm{\Psi}(\mathrm{A})}{\mathrm{B} - \mathrm{A}}$$

d'après ce qui précède. Donc

$$\frac{\Psi(B) - \Psi(A)}{B - A} = \phi(X) ,$$

et $\Psi(X)$ admet $\varphi(X)$ pour dérivée et même on voit que le rapport incrémentiel de Ψ tend uniformément vers la dérivée¹.

Ainsi, toute fonction continue d'une variable $\varphi(X)$ a des

¹ J'admets donc que sont connues les notions de dérivée et de fonction primitive des fonctions d'une variable, notions qui font partie des programmes de l'enseignement secondaire.

fonctions primitives; d'ailleurs déterminées à une constante près d'après le raisonnement classique. Donc, si on connait l'une d'elles, $\Psi_0(X)$, on en déduit

$$\Phi(0, X) = \Psi_0(X) + c^{te} = \Psi_0(X) - \Psi_0(0)$$

d'où

$$\int_{\mathbf{A}}^{\mathbf{B}} \varphi(x) dx = \Psi_{\mathbf{0}}(\mathbf{B}) - \Psi_{\mathbf{0}}^{*}(\mathbf{A}) .$$

Le calcul des intégrales multiples est donc ramené à des calculs de fonctions primitives de fonctions d'une variable.

Il importe, d'autre part, de remarquer que, dans le cas d'une seule dimension, une fonction de domaine, donc d'intervalles à une seule dimension, est, d'après ce qui précède, déterminée dès qu'on sait qu'elle est additive et qu'on connait sa dérivée continue, sans qu'on ait besoin de savoir à l'avance que la fonction cherchée est à nombres dérivés bornés, et que la dérivée est à convergence uniforme. Cette fonction est l'intégrale indéfinie de la dérivée. Cette remarque, peu importante en elle-même, est indispensable à la rigueur de l'exposition adoptée ici.

110. — Nous allons justifier rapidement la formule dite du changement de variables dans le calcul intégral, en supposant naturellement connus la théorie des fonctions implicites et tout ce qui concerne les changements de variables dans le calcul différentiel.

Le changement de variables envisagé fait correspondre à un point (x_i) un point (u_i) ; à un domaine δ_x de l'espace des x_i , un domaine δ_u de l'espace des u_i . S'il était établi que à tout δ_x quarrable d'ordre k correspond un δ_u quarrable et inversement et que les rapports $\frac{a_k(\delta_x)}{a_k(\delta_u)}$ et $\frac{a_k(\delta_u)}{a_k(\delta_x)}$ restent inférieurs à un nombre M, une fonction $f(\delta_x)$ additive et à nombres dérivés bornés pourrait être considérée comme fonction additive de δ_u et à nombres dérivés bornés puisque

$$\frac{f(\delta_x)}{a_k(\delta_y)} = \frac{f(\delta_x)}{a_k(\delta_x)} \times \frac{a_k(\delta_x)}{a_k(\delta_y)} ;$$

si

$$f(\delta_x) = \int_{\delta_x} \varphi(P) d[a_h(\delta_x)],$$

le premier rapport du second membre tend uniformément vers

$$\frac{d\left[f(\delta_{x})\right]}{d\left[a_{h}(\delta_{x})\right]}(P) = \varphi(P) ;$$

si donc il était établi que le second tende uniformément vers une limite

$$\frac{d\left[a_{k}(\delta_{x})\right]}{d\left[a_{k}(\delta_{u})\right]}(\mathbf{P}) = \chi(\mathbf{P}) ,$$

le rapport du premier membre tendrait uniformément vers une limite et on aurait

$$f(\delta_{x}) = \int_{\delta_{u}} \varphi(\mathbf{P}) \cdot \chi(\mathbf{P}) d[a_{k}(\delta_{u})].$$

Cette formule résoud le problème du changement de variables; plus généralement elle s'applique au changement de la fonction par rapport à laquelle on intègre:

$$f(\Delta) = \int_{\Lambda} \varphi(P) dV = \int_{\Lambda} \varphi(P) \cdot \frac{dV}{dV_{1}}(P) \cdot dV_{1} ;$$

avec cette interprétation nous l'avons déjà rencontrée au § 107.

En tant que formule du changement de variables elle suppose effectuée la légitimation des suppositions que nous avons faites; examinons d'abord l'hypothèse k=1.

La formule du changement de variable est x = A(u), avec A'(u) de signe constant. A un intervalle correspond un intervalle et comme nous ne considérons comme domaines δ_x que des intervalles, la quarrabilité d'ordre 1 des domaines δ_u n'est pas en question.

On a, si δ_x est (x_1, x_2) et si δ_u est (u', u'')

$$\frac{\delta\left[a_{k}\left(\delta_{x}\right)\right]}{\delta\left[a_{k}\left(\delta_{u}\right)\right]}=\left|\frac{x^{1}-x^{2}}{u'-u''}\right|=\left|\frac{\mathbf{A}\left(u'\right)-\mathbf{A}\left(u''\right)}{u'-u''}\right|\;;$$

donc le rapport incrémentiel est borné uniformément, ainsi que son inverse, de plus on voit qu'il tend uniformément vers une limite |A'(u)|.

Donc on a:

$$\int_{\Delta_{x}} \varphi(x) dx = \int_{\Delta_{u}} \varphi[A(u)] \cdot |A'(u)| du.$$

Remarquons que le signe valeur absolue n'est utile que pour A'(u) négatif, c'est-à-dire si $x_1 = A(u'')$, $x_2 = A(u')$; si la transformation fait correspondre à l'orientation positive de l'axe des x, l'orientation négative de l'axe des u; si, comme l'on dit, la transformation change l'orientation.

Soit k > 1. Supposons que x_k seule soit changée par la formule

$$x_h = A[x_1, x_2, ..., x_{k-1}, u_k],$$

dans laquelle $\frac{\delta A}{\delta u_h}$ est de signe constant. Et soit

$$u_k = B[x_1, x_2, ..., x_{k-1}, x_k]$$

la fonction inverse.

Au domaine Δ_x défini par les inégalités du § 96, correspond le domaine Δ_u défini par les k-1 premières inégalités et par u_k compris entre B $[x_1, x_2, ..., x_{k-1}, a_k(x_1, x_2, ..., x_{k-1})]$ et B $[x_1, x_2, ..., x_{k-1}, b_k(x_1, x_2, ..., x_{k-1})]$. La seconde de ces valeurs de B étant plus grande que la première si, et seulement si, A'_{u_k} est positif. On appellera α_k la plus petite, β_k la plus grande. Alors, en appelant D la projection commune de Δ_x et Δ_u sur la variété coordonnée $x_1, x_2, ..., x_{k-1}$ et d toute partie de D, on a:

$$\int\limits_{\Delta_{\mathcal{X}}} \phi\left(\mathbf{P}\right) \, d\left[a_{k}\left(\delta_{\mathcal{X}}\right)\right] \, = \int\limits_{\mathbf{D}} \left[\int\limits_{a_{k}\left(\mathbf{x_{1}},\,\mathbf{x_{2}},\,\ldots,\,\mathbf{x_{k-1}}\right)}^{b_{k}\left(\mathbf{x_{1}},\,\mathbf{x_{2}},\,\ldots,\,\mathbf{x_{k-1}}\right)} d\left[a_{k-1}\left(d\right)\right] \, .$$

D'où, par la formule précédente, ceci est égal à

$$\int_{\mathbf{D}} \left[\int_{a_{k}(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{k-1})}^{\beta_{k}(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{k-1})} \phi(\mathbf{P}) \cdot \left| \frac{\partial \mathbf{A}(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{k})}{\partial u_{k}} \right| \cdot du_{k} \right] d\left[a_{k-1}(d)\right] = \int_{\Delta_{u}} \phi(\mathbf{P}) \left| \frac{\partial \mathbf{A}}{\partial u_{k}}(\mathbf{P}) \right| d\left[a_{k}(\delta_{u})\right].$$

Ceci n'est établi que pour un domaine simple relatif à l'ordre $x_1, x_2, ... x_k$ des variables; mais puisque tout domaine quarrable Δ_x est aussi peu différent que l'on veut d'une somme d'intervalles, donc d'une somme de domaines simples, la formule est générale.

Remarquons encore que le signe valeur absolue n'est nécessaire que s'il n'y a pas correspondance entre les sens positifs des axes des u et des x. Et comme, quand il n'en est pas ainsi et que k=1, 2 ou 3, on dit qu'il y a changement d'orientation, nous emploierons la même expression dans le cas général.

Soit maintenant le changement

$$x_i = A_i(u_1, u_2, \dots, u_k), \quad (i = 1, 2, \dots, k).$$

Les conditions classiques (que je ne rappelle pas) étant remplies. La démonstration classique du théorème des fonctions implicites montre que la région bornée dans laquelle on étudie la transformation peut être partagée en un nombre fini de régions partielles telles que, dans chacune d'elles, on puisse effectuer le changement de variables à l'aide de k changements d'une seule variable 1 .

En partageant au besoin le domaine primitif, on peut supposer qu'on a affaire à un domaine situé tout entier dans une de ces régions, soit celle où on passe successivement de x_1 à u_1 , de x_2 à u_2 , ..., de x_k à u_k . Les formules seront de la forme

$$x_i = B_i(u_1, u_2, ..., u_i, x_{i+1}, ..., x_k)$$

ou

$$u_i \, = \, \mathrm{C}_i \, (u_1 \, , \, \, u_2 \, , \, \, \ldots \, , \, \, u_{i-1} \, , \, \, x_i \, , \, \, \ldots \, , \, \, x_k) \ \, .$$

¹ Pour démontrer le théorème des fonctions implicites on montre qu'autour de tout point on peut, en permutant au besoin les indices dans les deux séries de variables, faire en sorte que les mineurs obtenus en barrant les premières lignes et colonnes

du déterminant des $\frac{\partial A_i}{\partial u_i}$ soient tous différents de zéro. D'où autour de chaque point

toute une région où il en est ainsi. Ce sont là les régions partielles dont parle le texte. Quant au fait qu'elles sont en nombre fini, évident d'après le théorème dit de Borel-Lebesgue, on le prouvera facilement de façon plus élémentaire en supposant, par exemple, l'existence des dérivées secondes des \mathbf{A}_i .

Les k facteurs successifs qu'introduisent ces k changements dans l'intégrale à transformer sont les dérivées partielles

$$\left| \frac{\partial \mathbf{B}_i}{\partial u_i} \right| = \frac{1}{\left| \frac{\partial \mathbf{C}_i}{\partial x_i} \right|}$$

Or C_i s'obtient par la résolution en u_i , u_{i+1} , ..., u_k des k-i+1 dernières équations $x_i=A_i$, donc

$$\frac{\operatorname{dC}_i}{\operatorname{d} x_i} = \frac{\frac{\operatorname{D}\left(\operatorname{A}_{i+1}\,,\,\,\ldots\,,\,\,\operatorname{A}_{k}\right)}{\operatorname{D}\left(u_{i+1}\,\,,\,\,\ldots\,,\,\,u_{k}\right)}}{\frac{\operatorname{D}\left(\operatorname{A}_{i}\,\,,\,\,\ldots\,,\,\,\operatorname{A}_{k}\right)}{\operatorname{D}\left(u_{i}\,\,,\,\,\ldots\,,\,\,u_{k}\right)}}\left(\operatorname{P}\right)\;.$$

Et par suite, on a:

$$\int\limits_{\Delta_{x}} \varphi\left(\mathbf{P}\right) \, d\left[a_{k}\left(\delta_{x}\right)\right] \, = \int\limits_{\Delta_{u}} \varphi\left(\mathbf{P}\right) \, \cdot \left| \frac{\mathbf{D}\left(\mathbf{A_{1}}\,,\,\,\ldots\,,\,\,\mathbf{A_{k}}\right)}{\mathbf{D}\left(u_{1}\,\,,\,\,\ldots\,,\,\,u_{k}\right)} \left(\mathbf{P}\right) \, \right| \, \cdot \, d\left[a_{k}\left(\delta_{u}\right)\right] \, \, .$$

C'est la formule cherchée; Δ_x et Δ_u sont deux domaines qui se correspondent par les formules données.

111. — Arrêtons-nous un instant pour bien expliquer cette dernière phrase; car, dans la question proposée, il n'y a en réalité pas de domaines correspondants. Précisons donc bien le début du § 110.

Nous partions d'une intégrale étendue à des domaines découpés sur une courbe ou une surface ou, plus généralement, sur ce que l'on appelle une variété:

$$X_j = X_j(x_1, x_2, ..., x_k)$$

j variant de 1 à m, avec $m \geq k$.

Les X_j sont des coordonnées, rectangulaires par exemple, que l'on appelle rectilignes pour les distinguer des paramètres x_i appelés encore coordonnées curvilignes de la variété. La variété précédente est dite à k dimensions et plongée dans l'espace à m dimensions.

Considérons un point P de cette variété; il est, par hypothèse, donné par un système, et un seul, de valeurs x_i . Si donc on

interprète ces x_i comme coordonnées rectilignes ou plus précisément rectangulaires, dans l'espace à k dimensions dit des x_i , on a un point P_x image de P. D'où à un domaine D de la variété un domaine correspondant D_x de l'espace des x_i .

Effectuons maintenant un changement des coordonnées curvilignes à l'aide des formules $x_i = A_i(u_1, u_2, ..., u_k)$. Les X_j s'expriment en fonction des u_i , d'où une nouvelle image de P, le point P_u de l'espace des u_i . Le passage de P_x à P_u est défini par l'intermédiaire P_x à P, P à P_u . Entre P_x et P_u il y a correspondance et les formules données sont donc aussi les formules d'une transformation de l'espace des u_i en l'espace des u_i , d'où des domaines correspondants.

Tout cela est fort banal et tout à fait analogue à ce que nous avons vu dans le cas où les A_i étaient linéaires: les formules d'un changement de coordonnées sont aussi celles d'une transformation ponctuelle. Dans ce cas particulier la transformation a été dite, lorsqu'il s'agit de coordonnées rectangulaires, être un déplacement lorsque le déterminant de la transformation était positif. Lorsqu'il est négatif on dit qu'il s'agit d'une transformation par symétrie parce qu'il suffit du changement du signe d'une seule coordonnée pour avoir un déplacement et par suite le sens de cette locution est bien d'accord avec celui qu'il avait déjà pour $k \leq 3$.

Parmi ces transformations de coordonnées rectilignes il y en a deux très simples: le changement de signe d'une coordonnée, la permutation de l'ordre de deux coordonnées. Pour les espaces à 1, 2, 3 dimensions nous sommes habitués à dire alors que nous passons d'une orientation à une autre; on conservera cette dénomination dans le cas général.

Ainsi, choisir un système de coordonnées curvilignes d'une variété, entraîne le choix d'une orientation sur cette variété. Quand on changera de coordonnées curvilignes, on changera ou non d'orientation suivant que le déterminant fonctionnel des anciennes coordonnées par rapport aux nouvelles sera négatif ou positif.

Ceci dit, une fonction définie pour les domaines D peut aussi bien être considérée comme attachée aux domaines D_x ou D_u ; ainsi, au paragraphe précédent, à chaque domaine δ ont été attachées successivement les fonctions $a_k(\delta_x)$ et $a_k(\delta_u)$. Une intégrale $\int_{\Delta} \varphi(P) dV$ ne change pas de notation quand on change de coordonnées curvilignes; mais, si l'on veut rappeler que l'on emploiera soit les coordonnées x_i soit les coordonnées u_i , on pourra la noter

$$\int_{\Delta_x} \varphi(P_x) d\left[V(\delta_x)\right] = \int_{\Delta_u} \varphi(P_u) d\left[V(\delta_u)\right].$$

Et ceci montre bien que les formules relatives à la transformation d'un calcul fait avec des x_i en un calcul fait avec des u_i , c'est-à-dire les formules du changement de variables, seront aussi des formules relatives à la transformation du domaine Δ_x de l'espace des x_i en domaine Δ_u de l'espace des u_i . Dans chacun de ces espaces une orientation dite positive a été choisie; c'est, sauf convention contraire, celle fixée par l'ordre même des indices des coordonnées.

112. — Alors, il résulte de ce qui précède que l'on a:

$$\int_{x} \varphi\left(\mathbf{P}\right) d\left[a_{k}(\delta_{x})\right] = \int_{\mathbf{u}} \varphi\left(\mathbf{P}\right) \cdot \frac{\mathbf{D}\left(\mathbf{A_{1}}, \ldots, \mathbf{A_{k}}\right)}{\mathbf{D}\left(u_{1}, \ldots, u_{k}\right)} \left(\mathbf{P}\right) \cdot d\left[a_{k}(\delta_{u})\right],$$

si les formules, considérées comme définissant un changement de coordonnées curvilignes, conservent l'orientation ou si, considérées comme formules de transformation, elles font correspondre les orientations positives des espaces x_i et u_i .

Sinon, on a:

$$\int\limits_{\Delta_{\mathbf{x}}} \mathbf{\varphi}\left(\mathbf{P}\right) d\left[a_{k}\left(\delta_{\mathbf{x}}\right)\right] \, = \, \int\limits_{\Delta_{\mathbf{u}}} \mathbf{\varphi}\left(\mathbf{P}\right) \, \cdot \, \left(-1\right) \, \cdot \, \frac{\mathbf{D}\left(\mathbf{A}_{\mathbf{1}} \, , \, \ldots \, , \, \, \mathbf{A}_{k}\right)}{\mathbf{D}\left(u_{\mathbf{1}} \, , \, \ldots \, , \, \, u_{k}\right)} \, \left(\mathbf{P}\right) d\left[a_{k}\left(\delta_{\mathbf{u}}\right)\right] \, \, .$$

Ces deux formules se réuniront en une seule si on distingue les domaines non seulement par la famille des points qui les constituent mais encore par l'orientation qu'on leur attribue. Ainsi, au même domaine non orienté Δ , nous ferons correspondre deux domaines orientés Δ , Δ suivant que nous lui auront donné $\stackrel{\rightarrow}{\longrightarrow} \stackrel{\rightarrow}{\longrightarrow} \stackrel{\rightarrow}{\longrightarrow}$ l'orientation positive ou négative. Alors on aura toujours, qu'il

s'agisse d'un changement de coordonnées curvilignes ou d'une transformation:

$$\int\limits_{\Delta_x} \varphi\left(\mathbf{P}\right) d\left[a_k(\delta_x)\right] \, = \, \int\limits_{\Delta_u} \varphi\left(\mathbf{P}\right) \, \frac{\mathbf{D}\left(\mathbf{A_1}\,,\, \ldots\,,\, \, \mathbf{A_k}\right)}{\mathbf{D}\left(u_1\,,\, \ldots\,,\, \, u_k\right)} \, \left(\mathbf{P}\right) d\left[a_k(\delta_u)\right] \, ,$$

les deux domaines orientés Δ_x , Δ_u étant ceux qui se correspondent, pourvu que l'on pose

$$\int_{\Delta} \varphi(\mathbf{P}) d\mathbf{V} = \int_{\Delta} \varphi(\mathbf{P}) d\mathbf{V} ,$$

et

$$\int_{\Delta} \varphi(\mathbf{P}) \cdot d\mathbf{V} + \int_{\Delta} \varphi(\mathbf{P}) \cdot d\mathbf{V} = 0.$$

Cette convention est celle faite au § 109 pour le cas d'une seule coordonnée. A cette convention d'autres se rattachent presque nécessairement. Les deux intégrales de l'égalité précédente sont les limites des sommes

$$\Sigma \; \varphi \left(\mathbf{P}_i \right) \mathbf{V} \left(\delta_i \right) \; , \qquad - \; \Sigma \; \varphi \left(\mathbf{P}_i \right) \mathbf{V} \left(\delta_i \right) \; = \; \Sigma \; \varphi \left(\mathbf{P}_i \right) \left[- \; \mathbf{V} \left(\delta_i \right) \right] \; ,$$

Les δ_i proviennent de la subdivision de Δ ; seulement dans le premier cas il s'agit de Δ et dans le second de Δ . Il est alors $\xrightarrow{\rightarrow+}$ naturel d'écrire ces deux sommes sous la même forme

$$^{\Sigma}\,\varphi\left(\mathbf{P}_{i}\right)\mathbf{V}\left(\begin{smallmatrix}\delta_{i}\\ \rightarrow\end{smallmatrix}\right)$$
 ,

l'orientation des δ_i étant celle de Δ . Ceci revient à poser

$$V\begin{pmatrix} \delta_i \\ \rightarrow + \end{pmatrix} = V(\delta_i) ; \qquad V\begin{pmatrix} \delta_i \\ \rightarrow + \end{pmatrix} + V\begin{pmatrix} \delta_i \\ \rightarrow - \end{pmatrix} = 0 .$$

D'où la convention nouvelle: une fonction additive $V(\delta)$ étant donnée pour les domaines non orientés, on en déduira une fonction définie pour les domaines orientés par les égalités précédentes.

En même temps, il se trouve que nous avons défini l'intégrale de $\varphi(P)$ par rapport à une fonction de domaine toujours négative, la fonction — V. Si, aux paragraphes 103 et suivants, nous

avons supposé V > 0, c'était uniquement pour que le rapport incrémentiel $\frac{f(\Delta)}{V(\Delta)}$ existe; ceci aurait tout aussi bien été assuré en supposant V toujours négative. Dans la théorie que nous avons donnée il n'y aurait eu à changer que quelques mots, le sens de quelques inégalités, à mettre quelques signes de valeur absolue. Il est inutile de reprendre les choses dans le détail; il suffit de convenir que, par définition, on aura toujours:

$$\int \varphi(P) dV + \int \varphi(P) d[-V] = 0$$

que Δ soit un domaine non orienté ou orienté.

Si $V(\Delta)$ avait pu prendre les deux signes nous aurions eu, au contraire, de graves changements à introduire puisque, pour certains Δ , le rapport incrémentiel par rapport à V n'aurait pas existé. Mais supposons que la région envisagée puisse se partager en un nombre fini de régions telles que, pour les domaines compris dans une de ces régions, V ait un signe constant. Alors, en partageant tout domaine Δ en domaines partiels Δ' , Δ'' , ..., situés dans ces diverses régions, nous poserons

$$\int_\Delta = \int_{\Delta'} + \int_{\Delta''} + \ldots \ldots$$

L'intégrale ainsi définie jouira de presque toutes les propriétés déjà dites; pourtant les théorèmes des accroissements finis et de la moyenne ne devront être appliqués qu'aux domaines partiels et il faudra renoncer à dériver l'intégrale indéfinie aux points frontières des régions partielles. Quoiqu'il en soit, l'intégrale est maintenant définie par rapport à une fonction additive de domaine non toujours positive et étendue à un domaine orienté.

113. — Soient
$$x_i = F_i(u_1, u_2, ..., u_k)$$
,

les formules (i=1,2,...,n) définissant une variété à k dimensions de l'espace à n dimensions. Comme on veut qu'à un point de cette variété ne corresponde qu'un système de nombres u_i et qu'on puisse s'en assurer par le théorème ordinaire des fonc-

tions implicites on suppose, outre l'existence et la continuité des nombres $\frac{\delta F_i}{\delta u_j}$, que les mineurs à k lignes et k colonnes de la matrice formée avec ces dérivées ne sont pas tous nuls à la fois. Alors, la région bornée considérée est, dans les cas où l'on se place, la somme d'un nombre fini de régions pour chacune desquelles k convenablement choisies des n coordonnées rectilignes x_i peuvent servir de coordonnées curvilignes pour la variété. Si ce sont les variables

$$x_1, x_2, \ldots, x_k,$$

on a alors

$$u_i = A_i(x_1, x_2, \dots, x_k)$$

pour $i \leq k$, et, pour p > k,

$$x_p = G_p(x_1, x_2, \dots, x_k).$$

Nous aurons une correspondance entre les domaines Δ de la variété, les domaines Δ_u de l'espace des u_i , et, si Δ est dans la région considérée R de la variété, les domaines Δ_x de l'espace x_1, x_2, \ldots, x_k . De plus, il y a une correspondance entre l'orientation de ces domaines; si, comme on l'a supposé, l'orientation positive de Δ correspond à l'orientation positive de Δ_u , on aura dans Δ_x l'orientation positive ou négative suivant que le déterminant

$$\frac{\mathrm{D}\;(x_1\;,\;\ldots\;,\;x_k)}{\mathrm{D}\;(u_1\;,\;\ldots\;,\;u_k)}$$

sera positif ou négatif.

Passons maintenant de la région R à une région R_1 ; l'orientation sur la variété ayant été choisie une fois pour toutes, l'orientation des Δ et des Δ_u ne variera pas mais celle des Δ_x variera si dans R et R_1 le déterminant fonctionnel a des signes différents. Si donc le déterminant fonctionnel considéré

$$\frac{\mathrm{D}\;(x_1\;,\;x_2\;,\;\ldots\;,\;x_k)}{\mathrm{D}\;(u_1\;,\;u_2\;,\;\ldots\;,\;u_k)}$$

ne change de signe qu'en des points exceptionnels, qui ne constituent aucune région de la variété et peuvent par suite être

omis dans le calcul d'une intégrale $\int_{D} \varphi(P) d[a_k(\delta_u)]$ pour tout domaine D^1 , on a:

$$\int\limits_{\mathbf{D}} \varphi \left(\mathbf{P}\right) d\left[a_{k}\left(\delta_{u}\right)\right] = \int\limits_{\mathbf{D}} \varphi \left(\mathbf{P}\right) \frac{\mathbf{D}\left(u_{1}, u_{2}, \ldots, u_{k}\right)}{\mathbf{D}\left(x_{1}, x_{2}, \ldots, x_{k}\right)} \left(\mathbf{P}\right) d\left[a_{k}\left(\delta_{x}\right)\right],$$

le symbole D indiquant que, dans le second membre, on doit attacher à chaque domaine δ de la variété situé dans l'une des régions R, R₁, ... l'aire d'ordre k de sa projection δ_x et affectée du signe correspondant à l'orientation de δ_x comme projection de la partie δ du domaine orienté D.

La formule obtenue s'écrit encore:

$$\int\limits_{\mathbf{D}} \psi\left(x_{1}\,,\,x_{2}\,,\,\ldots\,,\,x_{u}\right)\,d\left[a_{k}\left(\delta_{x}\right)\right] = \int\limits_{\mathbf{D}} \psi\left(\mathbf{P}\right)\,.\,\frac{\mathbf{D}\left(x\,,\,\ldots\,,\,x_{k}\right)}{\mathbf{D}\left(u_{1}\,,\,\ldots\,,\,u_{k}\right)}\left(\mathbf{P}\right)\,d\left[a_{k}\left(\delta_{u}\right)\right]\,,$$

elle définit le symbole du premier membre qui est dit, si k=1 une intégrale curviligne, si k=2 une intégrale de surface.

S'il arrivait que la variété portant D soit exceptionnelle et comprenne des régions en tous les points de laquelle le déterminant du second membre soit nul, ces parties seraient considérées comme n'ayant aucune contribution dans l'intégrale.

Le cas où les variables x_i utilisées ne sont pas les k premières rangées dans l'ordre naturel de leurs indices se ramène de suite au précédent puisque l'interversion de l'ordre de deux variables ne fait que changer le sens des orientations, donc les signes des a_k .

114. — Une application importante de cette définition est la formule de Green et ses généralisations.

Reprenons la formule finale du § 108 pour le cas du domaine simple défini par les inégalités du § 96. Elle s'écrit:

$$\int\limits_{\Delta} \phi\left(\mathbf{P}\right) d\mathbf{A}_{k} = \int\limits_{\mathbf{P}_{1,\,2,\,\ldots\,,\,k-1}} \int\limits_{\mathbf{P}_{1,\,2,\,\ldots\,,\,k-1}}^{b_{k}(x_{1},\,x_{2}\,,\,\ldots\,,\,x_{k-1})} \phi\left(\mathbf{x}_{1}\,,\,x_{2}\,,\,\ldots\,,\,x_{k}\right) dx_{k} \bigg] \ d\mathbf{A}_{k-1}\,,$$

les symboles A_k et A_{k-1} représentant les aires d'ordre k et k-1.

¹ Ceci a lieu sauf pour des variétés très exceptionnelles; savoir, dans le cas de trois dimensions, sauf pour les courbes qui comprendraient des arcs dans des plans $x_i = c^{te}$, et sauf pour les surfaces comprenant des parties cylindriques à génératrices parallèles à $x_k = x_i = 0$.

Si l'on a:

$$\varphi(x_1, x_2, \dots, x_k) = \frac{\partial}{\partial x_k} F(x_1, \dots, x_k)$$

dans le second membre de la formule précédente, on peut effectuer l'intégration simple:

Supposons de plus que les deux variétés frontières de Δ ,

$$x_k = a_k (x_1, ..., x_{k-1}),$$

 $x_k = b_k (x_1, ..., x_{k-1}),$

soient les deux parties Σ_1 et Σ_2 d'une variété Σ à k-1 dimensions, $x_i = S_i(u_1, \ldots, u_{k-1})$, présentant tous les caractères de régularité déjà indiqués.

Le déterminant fonctionnel $\frac{D(S_1, S_2, ..., S_{k-1})}{D(u_1, u_2, ..., u_{k-1})}$ conserve un signe

constant dans Σ_1 et dans Σ_2 , puisque $x_1, ..., x_{k-1}$ y peuvent remplacer $u_1, ..., u_{k-1}$ et au contraire ce déterminant change de signe dans toute région comprenant un point frontière commun de Σ_1 et de Σ_2 puisque le remplacement est alors impossible 1.

Or ce déterminant fonctionnel est celui qui fixe l'orientation à donner à un domaine en projection sur l'espace coordonné $x_1, ..., x_{k-1}$ quand une orientation sur la variété a été choisie; si donc on prend sur Σ l'orientation qui, pour Σ_2 , donne en projection l'orientation positive, la valeur de l'intégrale s'écrit encore:

$$\int_{\Sigma} \mathbf{F}[\mathbf{P}] \cdot d \left[\mathbf{A}_{k-1} \left(\delta_{x_1, \dots, x_{k-1}} \right) \right] \cdot$$

¹ Cette affirmation aurait besoin d'être précisée et s'appuie sur un énoncé du théorème des fonctions implicites plus général que l'énoncé classique, lequel suppose les déterminants fonctionnels finis et *non nuls*. Si l'on se borne à l'espace ordinaire et au plan, on précisera facilement et on aura ainsi les directives nécessaires pour bien traiter le cas général.

Le résultat ainsi obtenu constitue la formule de Green; on le complète à la façon ordinaire en examinant d'autres domaines et aussi le cas où les variables que l'on conserve ne sont pas les coordonnées $x_1, x_2, ..., x_{k-1}$ rangées dans l'ordre naturel des indices.

115. — Une autre application importante des changements de variables est la généralisation des notions de longueur d'une courbe et d'aire d'une surface (ch. V). On va définir cette notion généralisée en posant pour définition une intégrale comme j'ai dit, aux § 62 et 64 par exemple, qu'on faisait souvent pour la longueur et l'aire. En examinant rapidement cela, nous indiquerons aussi une autre méthode d'exposition, d'aillleurs bien connue, qui dispense de l'étude préliminaire des aires d'ordre k faite précédemment aux § 97 à 100, et permet d'aborder sans elle l'étude de l'intégration.

Dans ce qui précède, l'étude préliminaire des aires avait seulement servi, au point de vue logique, pour la notion de domaine quarrable. Or la définition d'un tel domaine ne reposant que sur la valeur de l'aire d'ordre k d'un intervalle, laquelle peut être posée sans explication, aurait pu être donnée sans cette étude. D'où la définition de l'intégrale.

Ceci étant, la longueur du segment $a \leq x \leq b$ étant $\int_a^b dx$; appelons aire d'un domaine quarrable Δ du plan x_1, x_2 l'expression $\int_a^b dx_1 dx_2$ et d'une façon plus générale aire d'ordre k d'un domaine quarrable de l'espace $x_1, x_2, ..., x_k$ l'expression $\int_a^b dx_1 dx_2 ... dx_k$. La formule du § 110 montre de suite que cette aire est indépendante des coordonnées rectangulaires choisies, puisque dans le passage d'un système à un autre de telles coordonnées le déterminant fonctionnel à considérer est \pm 1.

D'ailleurs, pour un intervalle, on trouve de suite le produit des dimensions de l'intervalle; donc l'aire d'ordre k ainsi définie est une fonction, définie pour les domaines quarrables

d'ordre k, qui est additive, positive, se réduit au produit des dimensions quand il s'agit d'un intervalle.

Ceci établit l'identité de cette notion avec celle des § 97 à 100 si celle-ci a été déjà étudiée et, sinon, permet de retrouver rapidement les faits indiqués dans ces paragraphes.

Ceci étant, considérons la variété à k dimensions de l'espace à n dimensions définie en coordonnées rectangulaires par

$$\begin{array}{c} \mathbf{I} \ \, \left. \begin{array}{l} \mathbf{X}_i \, = \, \mathbf{F}_i(u_1 \, , \, u_2 \, , \, \ldots \, , \, u_k) \ \, ; \\ \\ i \, = \, 1 \, , \, 2 \, , \, \ldots \, , \, u \ \, . \end{array} \right. \end{array}$$

On dit qu'elle est linéaire si un changement de coordonnées rectangulaires de l'espace à n dimensions permet de la définir par les formules

$$\text{II} \; \left\{ \begin{array}{l} x_i = \, \mathrm{G}_i \left(u_1 \,,\, u_2 \,,\, \ldots \,,\, u_k \right) \;, \qquad i = 1 \,,\, 2 \,,\, \ldots \,,\, k \;; \\ x_j = \, 0 \qquad \qquad , \qquad j = k \,+\, 1 \,,\, \ldots \,,\, n \;. \end{array} \right.$$

Un domaine quarrable Δ_u de l'espace des u correspond sur la variété linéaire au domaine Δ que nous dirons quarrable d'ordre k; nous savons, § 110, que la famille de ces domaines ne dépend pas des variables u choisies, quand on n'utilise que les seuls changements de variables que nous avons pris en considération. A un domaine Δ correspond dans l'espace $x_1, ..., x_k$ un domaine quarrable Δ_x .

Si nous étions parvenus à la forme canonique II à l'aide d'autres coordonnées rectangulaires x' de l'espace à n dimensions, les conditions d'orthogonalité du § 95 auraient montré que le passage de $x_1, x_2, ..., x_k$ à $x_1', x_2', ..., x_k'$ est un changement de coordonnées rectangulaires de l'espace à k dimensions donc, puisque les aires d'ordre k ne varient pas par de tels changements, nous pourons parler de l'aire d'ordre k d'un domaine quarrable Δ d'une variété linéaire à k dimensions; ce sera l'aire d'ordre k de Δ_x . Celle-ci a pour valeur

$$\int_{\Delta_{\mathbf{r}}} dx_1 \, dx_2 \, \dots \, dx_k \, = \int_{\Delta_{\mathbf{u}}} \left| \, \frac{\mathrm{D} \, (\mathrm{G}_1 \, , \, \dots , \, \mathrm{G}_k)}{\mathrm{D} \, (u_1 \, , \, \dots , \, u_k)} \, \right| \, du_1 \, du_2 \, \dots \, du_k \, \, .$$

Cette expression s'écrit encore:

$$\int\limits_{\Delta_{\mathcal{U}}} \sqrt{\mathrm{S}\left\{\frac{\mathrm{D}\left(x_{\alpha}\,,\,\ldots,\,x_{\lambda}\right)}{\mathrm{D}\left(u_{1}\,,\,\ldots,\,u_{k}\right)}\right\}^{2}\,du_{1}\,du_{2}\,\ldots\,du_{k}}\;\;,$$

la somme S étant étendue à toutes les combinaisons de k indices α , ..., λ choisis dans la suite 1, 2, ..., n. Ceci est évident puisqu'un seul de ces déterminants est différent de zéro.

Or, si l'on a:

$$x_i = \alpha_i + \sum_{j=1}^{j=n} a_i^j X_j$$
,

il en résulte

$$\frac{\mathrm{D}\left(x_{\alpha}\,,\,\ldots\,,\,x_{\lambda}\right)}{\mathrm{D}\left(u_{1}\,,\,\ldots\,,\,u_{k}\right)} = \mathrm{S}\left[\frac{\mathrm{D}\left(\mathrm{F}_{\alpha'}\,,\,\ldots\,,\,\mathrm{F}_{\lambda'}\right)}{\mathrm{D}\left(u_{1}\,,\,\ldots\,,\,u_{k}\right)} \cdot \left| \begin{array}{c} a_{\alpha}^{\alpha'}\,\ldots\,a_{\alpha}^{\lambda'} \\ \vdots \\ a_{\lambda}^{\alpha'}\,\ldots\,a_{\lambda}^{\lambda'} \end{array} \right| \right],$$

le symbole S indiquant une sommation par rapport aux combinaisons des indices primes.

Des conditions d'orthogonalité on déduit par un calcul classique:

$$\left. egin{align*} \left. egin{align*} \left. a_lpha^{lpha'} \ldots a_lpha^{\lambda'} \ \vdots & \ddots & \ddots \ \left. a_\lambda^{lpha'} \ldots a_\lambda^{\lambda'} \ \end{array}
ight| = 1 \;, \qquad egin{align*} \left. \left. egin{align*} \left. a_lpha^{lpha'} \ldots a_lpha^{\lambda'} \ \vdots & \ddots & \ddots \ \end{array}
ight| = 0 \;, \ \left. \left. \left. a_\lambda^{lpha'} \ldots a_\lambda^{\lambda'} \ \end{array}
ight| = 0 \;, \end{aligned}$$

la première sommation étendue à toutes les combinaisons α' , ... λ' et la deuxième à tous les couples de combinaisons différentes α' , ..., λ' ; α'' , ..., λ'' .

D'où

$$a_k(\Delta) = \int_{\Delta_u} \sqrt{\operatorname{S}\left\{\frac{\operatorname{D}(x_{\alpha}, \dots, x_{\lambda})}{\operatorname{D}(u_1, \dots, u_k)}\right\}^2} du_1 du_2 \dots du_k$$

Cette formule étant établie pour les variétés linéaires, les seules pour lesquelles $a_k(\Delta)$ est jusqu'ici définie, nous la prendrons comme définition même de $a_k(\Delta)$ pour tout domaine quarrable Δ

d'une variété à k dimensions. Le calcul précédent montre que cette aire est indépendante des coordonnées rectangulaires choisies et on verra facilement, généralisant les observations du \S 83, que cette aire d'ordre k est définie par des conditions α , β , γ , ε .

On pourrait d'ailleurs reprendre tout le chapitre V; je n'insiste pas, mon but ayant surtout été d'indiquer une méthode de définition de a_k , pour les domaines de l'espace à k dimensions, autre que celle des \S 97 à 100.

En terminant ce chapitre, je crois devoir rappeler qu'il serait tout à fait inadmissible, pédagogiquement, d'examiner directement avec des étudiants le cas général et de s'embarrasser ainsi d'indices; si je l'ai fait, c'était pour abréger et montrer cependant qu'on oublie trop volontiers certaines précautions indispensables comme de spécifier la famille de domaines envisagés, ou qu'on admet, comme évidents et clairs pour n dimensions, des faits auxquels on est habitué lorsqu'il n'y a que 2 ou 3 dimensions.

VIII. — Conclusions.

Les chapitres qui précèdent n'ont besoin d'aucune conclusion scientifique, ni pédagogique. Ils ne visent nullement à figer l'enseignement en signalant certains exposés comme meilleurs que les autres; ils s'efforcent, au contraire, de montrer le fort et le faible de chaque façon de présenter les faits mathématiques. S'il a semblé utile de développer davantage les procédés moins connus, cela ne veut nullement dire qu'ils doivent être préférés. En signalant certains défauts, erreurs, lacunes des exposés classiques, je n'ai jamais prétendu les condamner, je voudrais, au contraire, contribuer à les améliorer. Ceci ne peut être obtenu, à mon avis, que par une étude comparative critique des divers modes d'exposition; j'ai essayé de faire cette étude en ce qui concerne la mesure des grandeurs.

Et si de telles études sont bien, comme je le pense, indispensables au progrès pédagogique, si elles sont nécessaires pour bien choisir ce que l'on doit dire et bien savoir pourquoi on le dit, elles sont donc un excellent exercice pédagogique qui devrait être exigé des futurs professeurs.

J'ai déjà dit cela au début; si j'y reviens ici, c'est qu'il me sera maintenant possible de mieux expliquer en quoi l'effort que je voudrais voir demander aux aspirants professeurs diffère de celui qu'on leur demande actuellement et qu'il ne vise à leur faire acquérir ni une habileté technique plus grande, ni des connaissances philosophiques.

D'ordinaire, dès qu'il s'agit des fondements des mathématiques, on adopte le point de vue philosophique; je m'y suis refusé délibérément et certains ont vu dans cette attitude la marque d'un mépris envers la philosophie.

Non; mon bon maître, Jules Tannery, disait: « Il est prudent de respecter, au moins provisoirement, ce que l'on ignore ». D'autre part, si ignorant que je sois, je n'oublie pas que c'est parce que des philosophes ont longuement médité sur des problèmes, si difficiles qu'on ne peut même les formuler, qu'ils sont parvenus à en isoler des questions plus simples: celles dont s'occupent les sciences.

Nous devons respecter la philosophie; il ne s'ensuit pourtant pas qu'elle puisse nous aider ni à comprendre mieux nos sciences, ni à les faire progresser. C'est un fait que les sciences se sont développées surtout quand elles ont pris conscience de leur individualité et se sont séparées de la philosophie.

Que les philosophes recherchent si quelque méthode, ayant fait ses preuves dans le domaine scientifique, ne pourrait pas leur être utile, cela est naturel et raisonnable; c'est aller du facile au difficile. Mais que les mathématiques, qui étudient des questions si simples qu'on peut en donner des solutions précises et définitives, aillent demander des ressources à la philosophie, qui doit se contenter de réponses imprécises et précaires, je n'ai pu l'admettre.

D'ailleurs, les problèmes philosophiques ont été, depuis des siècles, retournés en tous sens par des hommes dont certains ont eu du génie; n'y aurait-il pas, de la part d'un mathématicien qui se croirait autorisé à apporter ses solutions philosophiques parce qu'il aurait consacré quelques loisirs à des réflexions, une prétention insupportable et naïve tout à la fois ? En avouant

franchement mon incompétence, je crois faire preuve, envers la philosophie, d'un respect autrement sincère.

A mon avis, le mathématicien, en tant que mathématicien, n'a pas à se préoccuper de philosophie; opinion qui, d'ailleurs, a été formulée par bien des philosophes. Ses efforts de réflexion, de compréhension doivent être en quelque sorte intérieurs aux mathématiques au lieu de porter sur les rapports de celles-ci avec la philosophie. Certes, les questions dont il a à s'occuper n'ont ni le même genre de beauté, ni le poignant intérêt humain des problèmes philosophiques; pourtant, si l'on parvenait à édifier une philosophie de la science pour la science, cette philosophie de seconde zone serait peut-être l'aide la plus efficace pour la vraie philosophie.

Le professeur de mathématiques doit, lui aussi, savoir borner le domaine de son activité à ce qui est objectif; il est chargé de culture scientifique, son collègue de philosophie est seul chargé de la culture philosophique.

En s'occupant ainsi seulement de ce qui est en quelque sorte matériel, manuel, on fait nécessairement des mathématiques une des branches de la physique. Branche qui toutefois se différencie des autres en ce qu'on n'y fait appel à l'observation qu'au début, pour acquérir définitions et axiomes. Lorsqu'un mathématicien a prévu plus ou moins nettement une proposition, au lieu d'avoir recours à l'expérience, comme le ferait un physicien, il cherche une démonstration logique; la vérification logique remplace pour lui la vérification expérimentale. En somme, il ne cherche pas à découvrir du nouveau, il essaie de prendre conscience des richesses qu'il possède déjà inconsciemment, qui sont enfermées dans les définitions et dans les axiomes. D'où l'importance capitale de ces définitions et axiomes qui, certes, ne sont assujettis logiquement qu'à la condition d'être compatibles, mais qui ne conduiraient qu'à une science purement formelle, vide de sens, s'ils étaient sans rapport avec la réalité.

Le professeur de mathématiques, celui de l'Enseignement secondaire en particulier, n'a pas à former de purs logiciens, il doit contribuer à façonner des hommes raisonnables et pour cela il lui faut s'occuper non seulement des raisonnements logiques mais encore de l'acquisition des prémisses de ces raisonnements et de l'application de leurs résultats au concret. Dans les questions traitées ici je n'ai guère eu l'occasion de parler de ce dernier point; il n'en est pas moins essentiel. Faute de bien indiquer le départ du concret et le retour au concret on risquerait de faire acquérir aux élèves l'esprit géométrique dans le sens péjoratif du terme, de les inciter à raisonner impertubablement à partir de données non assurées. Il faut faire concevoir aux élèves qu'en dehors des mathématiques on ne démontre rien mathématiquement et que, pourtant, la logique est utile en toutes circonstances. Les mathématiques ont été créées par les hommes pour leurs besoins et elles leur sont, en fait, un auxiliaire précieux; le professeur de mathématiques doit rester un professeur d'action. Il ne lui appartient pas d'éveiller le doute philosophique, car il n'aurait pas, comme son collègue de philosophie, le temps et les moyens de l'éveiller et de le discipliner tout à la fois.

Je ne crois pas que ce soit assez d'exiger que les futurs professeurs aient ácquis une habileté technique et qu'ils sachent débiter des manuels; il faudrait leur avoir demandé de réfléchir longuement à ce qu'ils auront à enseigner dans un esprit de critique logique et pédagogique; d'avoir fait, seuls ou aidés par quelque enseignement, sur chaque grand chapitre, une étude analogue à celle que j'ai indiquée ici pour ce qui concerne la mesure des grandeurs.

Quels enseignements de futurs professeurs pourraient-ils tirer de cette étude? Il est certain tout d'abord que pour choisir en connaissance de cause entre les divers exposés des faits mathématiques il faut les avoir comparés, en avoir cherché le fort et le faible. Que, ce faisant, on se met en mesure d'en construire de nouveaux, si besoin est. Tout cela est trop clair, passons à des bénéfices plus cachés. En scrutant les raisonnements, si l'on voit toute la puissance de la logique, on aperçoit aussi toutes ses exigences et l'on prend conscience des précautions indispensables dans les mathématiques appliquées.

Dans chaque chapitre, j'aurais pu répéter ce que j'ai dit pour l'arithmétique, § 3: ce chapitre s'applique quand il s'applique. Nos raisonnements absolus ne nous conduisent, dans les applications, qu'à des vérités relatives. C'est qu'il y a toujours quelque désaccord entre nos prémisses logiques et la réalité qu'elles pré-

tendent traduire. Par exemple, nous avons rencontré la vieille question des irrationnelles: les Anciens avaient construit, à l'aide des fractions, un continu parfaitement suffisant pour toutes les expériences humaines, quelque précision qu'elles puissent atteindre, mais insuffisant logiquement. Il nous a fallu (§§ 7, 55) prolonger métaphysiquement la suite des opérations de mesure pour obtenir la notion sur laquelle nous pouvons raisonner logiquement. Pour étudier le concret, ou ce qui nous parait être tel, il nous a fallu procéder à un élargissement du réel.

Dans le cas de la notion d'aire, le procédé employé est en quelque sorte inverse de celui, relatif à la longueur, que je viens de rappeler. Pour donner à l'aire une base logique, nous nous sommes bornés à des domaines spéciaux: les domaines quarrables. Bien entendu, dans un enseignement s'adressant à de futurs professeurs on aurait donné, par des exemples, la preuve de l'existence de ces domaines non quarrables qui, ici, a été considérée seulement comme possible. Ainsi, on verrait un domaine D tel que, si petit que soit $\varepsilon > 0$, on puisse trouver deux polygones différant l'un de l'autre, et de D, de moins de ɛ et dont les aires diffèrent de plus d'un nombre positif déterminé. La notion physique d'aire s'écroule en quelque sorte, nous avons renoncé à lui donner dans tous les cas un sens logique; pour redonner une aire à D il faudrait procéder à un nouvel élargissement de la notion de nombre comme on l'avait fait pour redonner une longueur à la diagonale du carré construit sur l'unité de longueur et cet élargissement nous paraîtrait tout d'abord inadmissible scandaleux.

Ces constatations rappelleraient aux élèves-professeurs que les efforts des mathématiciens ont été faits, tout d'abord au moins, en vue du réel et les inciteraient à oser en parler. Elles leur montreraient aussi toutes les ressources que la logique fournit à l'intelligence et que, sans l'intelligence, la logique ne conduit qu'à des déconvenues.

Un professeur de physique ne se croit pas tenu, par respect de l'expérience, à cacher l'intervention de l'intelligence dans les recherches physiques. Trop de professeurs de mathématiques se croient tenus, par respect de la logique, à présenter les mathématiques comme le déroulement inéluctable d'une déduction à voie unique. Si quelques noms de mathématiciens n'étaient accolés, à tort ou à raison, à certains théorèmes, les élèves pourraient oublier que les mathématiques ne sont qu'œuvre humaine. On ne parle jamais du choix des prémisses, on n'ose pas dire que telle proposition a été obtenue grâce aux qualités d'imagination d'un savant; on confond avec la découverte d'une proposition sa présentation logique faite à la mode actuelle. A entendre certains professeurs, on croirait que Newton n'a rien compris à l'intégration, que Euler ignorait les séries, que Lagrange ne savait pas ce qu'était une fonction. On cherche partout des démonstrations naturelles — on m'a parlé de quelqu'un qui se félicitait d'avoir enfin trouvé, après six mois de recherches, une démonstration naturelle du fait que les trois hauteurs d'un triangle concourent! — et l'on croit, grâce à ces démonstrations naturelles, enseigner l'art de découvrir.

S'il était vrai que la méthode de la redécouverte soit la véritable méthode de découverte, ça se saurait; car nous serions noyés sous les découvertes des innombrables protagonistes de la redécouverte. Mais, tout au contraire, un enseignement basé trop systématiquement sur la redécouverte serait l'enseignement même de la non découverte car, pour découvrir, il faut faire un rapprochement inhabituel, non naturel, et la méthode de la redécouverte consiste à guider les élèves vers certains raisonnements catalogués, toujours les mêmes, et à apprendre aux élèves à les essayer successivement, sans omission. Cela permet, certes, de résoudre les problèmes parce qu'on propose des problèmes justiciables des raisonnements en question; mais cette taylorisation du travail intellectuel, ce dressage, est tout différent, est tout le contraire de l'assouplissement qui permet à l'intelligence de découvrir de nouveaux points de vue.

La méthode de la redécouverte est d'ailleurs excellente; elle a joué le rôle principal dans cette transformation de l'enseignement des mathématiques dans les lycées qui a remplacé les classes mornes d'autrefois, où les élèves n'avaient qu'un rôle réceptif, par les classes vivantes de maintenant où les élèves, ayant un rôle actif, sentent mieux la signification, la portée, l'intérêt, le but des propositions. Il est excellent aussi d'employer des démonstrations montrant la parenté du raisonnement

utilisé avec les raisonnements familiers aux élèves, démonstrations que l'on appelle naturelles pour cette raison; en concevant qu'on ait pu construire ces démonstrations, les élèves les comprennent mieux et prennent confiance en leurs propres moyens. Mais il ne faut pas demander à la redécouverte et aux démonstrations naturelles ce qu'elles ne peuvent donner. Ce sont d'excellents moyens pédagogiques; rien de plus. Et ces moyens deviendraient néfastes s'ils servaient à masquer le rôle de l'intelligence, à suggérer que faire des mathématiques c'est appliquer à la lettre des sortes de règlements.

Voici quelques questions auxquelles on pense nécessairement au cours d'une étude critique comme celle faite ici. Peu m'importe d'ailleurs que les élèves-professeurs arrivent aux conclusions que je viens de formuler ou à d'autres; mais je voudrais qu'ils aient, sur des points aussi fondamentaux, une opinion réfléchie.

Je viens de parler d'étude critique mais, en vérité, avons-nous fait quelque chose qui mérite le nom de critique quand, par exemple, parlant du nombre entier, nous nous sommes bornés à décrire l'opération de dénombrement. N'aurions-nous pas dû examiner la notion d'objets, de corps à dénombrer? Nous n'avons signalé que l'arbitraire de cette notion et cela nous a conduit, § 10, à la multiplication; il y a bien plus à dire. La notion de corps n'est claire que pour qui ne la critique pas; la physique la détruit peu à peu. On sait depuis toujours que le corps solide le mieux poli a des anfractuosités, des pores, que, dans des cavités ou dans sa matière même, sont inclus d'autres corps, des impuretés, des liquides, des gaz; puis on a su que tout solide baigne dans une atmosphère formée de sa vapeur et sans cesse variable; puis les théories atomiques des corps, les théories planétaires des atomes rendent la notion de corps de plus en plus incertaine. La division en corps, est-elle autre chose qu'une construction simpliste du monde à l'aide d'images de notre moi, la seule chose dont nos ancêtres primitifs avaient un peu nettement conscience? Si la notion de corps n'a aucune valeur absolue, celle d'entier, même celle du nombre un, n'estelle pas la plus fausse de toutes les notions? Et que dire alors de la notion de nombre en général que nous n'avons atteinte

qu'en remplaçant la notion vague de corps par celle plus insaisissable de point ?

Il est clair que je suis dans une mauvaise voie, que je n'ai fait que jeter le doute le plus stérile en cherchant de l'absolu alors que j'étais dans le domaine du relatif et du nuancé, qu'une véritable étude critique de la notion de corps serait intimement liée à l'examen des démarches de notre pensée s'efforçant de comprendre le monde extérieur et nous ferait sortir du domaine des mathématiques. En disant cela, je n'interdis pas d'aller jusqu'à la critique philosophique dont l'intérêt et l'importance ne sont nullement mis en question, mais il faudrait pouvoir y consacrer bien du temps pour le faire utilement et y avoir été préparé par des études antérieures. A côté de cette critique, il en existe une autre plus à la portée des mathématiciens; c'est celle que j'ai appelée la critique logique et pédagogique et dont je tenais à signaler la différence avec la critique proprement philosophique.

Des travaux importants bien connus ont montré l'intérêt de l'étude approfondie des mathématiques élémentaires soit en vue de leurs prolongements vers d'autres branches des mathématiques, soit en vue de la philosophie ou de l'histoire des sciences; j'attire l'attention sur son intérêt pédagogique.