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LE PROBLÈME DES DEUX CORPS 173

tendus, se représenter les masses définies par (29) (et désignées

ensuite, elles aussi, par m0l en supprimant l'astérisque)

comme des constantes caractéristiques du problème, possédant

chacune, seulement à peu près, la propriété intrinsèque que la

mécanique classique attache à la notion de masse.

9. — Les équations différentielles du problème.

Par tout ce qui précède il est acquis que le mouvement des

points Ph, centres de gravité des deux corps, est défini par les

fonctions lagrangiennes respectives

eh dih + a, + Ah) (i)

De plus Ah, d'après (27) et (25'), s'écrit

A, j9l%h + 7 Wl- + ^ + 2ßft+1 - 4ßh X ßh+l) +

— I
'

2 h+i

A* - (»I

+ ("I

étant posé, pour abréger,

de sorte que les constantes Z0, l± sont des (petites) longueurs.
Il s'agirait évidemment d'expliciter les six équations

d Ô à L h

dx° ö ö
[h 0, 1 ; i s* 1, 2, 3) (III)

définissant le mouvement (absolu) des deux corps, pour passer
ensuite à leur intégration dûment illustrée au point de vue
géométrique et astronomique. Mais il n'est pas possible de le faire
dans le cadre de cette conférence. Je dois donc me borner à

quelques indications de méthode et de résultats.
Je viens de dire que les équations (III) définissent le mouvement

absolu des points P0, P1# Cet appellatif « absolu » doit être
interprété d'après le n° 5, en se rapportant par la pensée aux
préliminaires de l'admission Ax). On a introduit alors des va-
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riables xl(i 0, 1, 2, 3) très proches d'un quadruple quasi-cartésien,

ou de Lorentz: exactement lorentzien serait impossible,
puisque l'espace-temps n'est plus quasi-euclidien. Mouvement
absolu est tout mouvement dans un tel espace (x1, x2, x3), la
variable temporelle étant x°. Pour fixer les xl, on peut toutefois
partir d'un quadruple lorentzien quelconque. On profitera (comme
en mécanique ordinaire) de cette indétermination préalable pour
supposer que le centre de gravité G du système des deux corps
soit fixe, bien entendu en première approximation, ce qui signifie
que, si l'on introduit la vitesse absolue a (vectorielle et röme-
rienne) de G, moyennant la position

m a w0ß0 + m1ß1 (31)

OÙ

m — m0 + m1 (32)

la valeur absolue de a est nulle en première approximation, et

précisément de l'ordre de ß3„ Il s'en suit que dans les Ah il est

permis de négliger oc sans plus, c'ést-à-dire de retenir

m0ß0 + miß± 0 (33)

Comme dans l'exposé traditionnel du problème des deux corps,
il convient d'envisager d'abord le mouvement relatif, en étudiant,
comme fonction de x°, les différences

xi 4 - xl (34)

et leurs dérivées par rapport à x°, qui sont les composantes du
vecteur

ß ßi — ß0 » <35)

vitesse (römerienne) de Pj par rapport à P0.

En introduisant aussi les rapports numériques

~ \0, 1) (36)

on tire de (33) et (35)

ßo=* — Mß ßt x0ß (37)

ou, si l'on préfère, en une seule formule,

ßh Ä (-1)h+1^+lP (A «=* 0, — 1) (37')
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ce qui permet de faire disparaître les vitesses absolues dans

tout terme d'ordre supérieur. Bien entendu, il faut faire attention,
lorsqu'il s'agit d'expressions telles que A0, qu'on doit, pour
expliciter les équations du mouvement, soumettre encore à la
dérivation partielle. Evidemment, dans ces cas, les substitutions
susdites peuvent être effectuées seulement après dérivation.

Une fois formées correctement les équations lagrangiennes
provenant des on en tire, par simple soustraction des formules

homologues, les équations du mouvement relatif, contenant
exclusivement les trois inconnues x1, x2, x3 (et leurs dérivées).
Ces équations — on peut le prévoir a priori et le confirmer par
la simple inspection des (I) — sont bien celles de Newton avec
force perturbatrice einsteinienne. L'analyse de cette dernière, en
s'aidant d'une propriété remarquable d'équivalence mécanique,
conduit à l'envisager comme une force centrale, qui produit
Yeffet bien connu du déplacement du périhélie. On peut espérer

que l'expression quantitative de ce déplacement soit susceptible
de vérification astronomique par les observations des étoiles
doubles. Il s'agirait notamment de déceler la correction (vis-à-
vis de la valeur einsteinienne) fournie par le calcul, lorsque la
masse de la planète n'est plus négligeable par rapport à la
masse du corps central.

Le résultat est, comme on le voit, très simple ; les calculs sont
élémentaires, mais exigent d'assez longs développements. Je me

propose d'en rendre compte ailleurs. Ici je voudrais encore ajouter
que, une fois intégrées les équations du mouvement relatif, on
peut revenir à la vitesse absolue du centre de gravité G, qui est
nulle seulement en première approximation, et dont il est bien
intéressant de déterminer la seconde. On parvient de la sorte à

reconnaître que le centre de gravité subit des petites fluctuations
par rapport au repère des x1, x2, x3, repère qui correspond à un
trièdre galiléen de l'ancienne Mécanique. Ces fluctuations se
laissent évaluer par de simples quadratures. De telles
quadratures introduisent des termes séculaires, sur lesquels on
devra surtout fixer l'attention en vue des chances de possible
contrôle astronomique.
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