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LE PROBLEME DES DEUX CORPS EN RELATIVITE

GENERALE !
PAR

T. Levi-CiviTA (Rome).

Je me propose d’abord de préciser les circonstances sous
lesquelles, en admettant les principes de la Relativité générale,
on peut, comme en Mécanique ordinaire, ramener le probléme
du mouvement de deux corps célestes & celui de deux points
(fictifs), remplacant, chacun, un de ces corps. A une certaine
approximation, dite communément seconde, les résultats a
signaler sont les suivants:

10

20

On aboutit effectivement a un systéme différentiel du méme
ordre que dans le cas classique.

On peut encore appliquer, toute réduction faite, la regle,
dite d’effacement, d’aprés laquelle chaque corps influe,
sur le mouvement du point fictif qui le remplace, seulement
par I'intermédiaire de certaines constantes globales (& peu
prés masse et énergie potentielle newtonienne): toutefois
avec une différence profonde sur la Mécanique ordinaire.
(’est que, d’aprés cette derniére, les points matériels
correspondent (comme, & tout autre égard, les liaisons sans
frottement) & un aspect limite du phénoméne, dont on
peut (théoriquement du moins) s’approcher autant que
Pon veut, en supposant que les dimensions des corps
soient petites vis-a-vis de leur distance. Au contraire, en
Relativité, il s’agit d’approximations, parfaitement vala-

1 Conférence faite le 30 avril 1935 dans le cycle des Conférences internationales des
Sciences mathématiques, organisées par ’Université de Genéve.

L’Enseignement mathém., 34me année, 1935. 10
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bles pour le systeme planétaire, mais qui seraient dénuées
de sens asymptotiquement, c’est-a-dire pour des corps
dont les dimensions tendraient & s’évanouir, la masse
restant finie.

3% Une fois arrivé aux équations différentielles, il suffit de les
transformer, & la maniére classique, pour reconnaitre sans
calculs que les corrections relativistiques sont, au point
de vue qualitatif, de méme espece que celles découvertes
par EINsTEIN et DE SirrEr dans le cas du centre fixe
(une des masses négligeable vis-a-vis de I'autre). Tout se
réduit donc a établir I'expression quantitative de ces
corrections, pour préparer la comparaison avec les
observations astronomiques

.

Je développerai ailleurs ce dernier point.

1. —— GENERALITES DESCRIPTIVES.

Pour se rendre compte de la nature mécanique et mathématique
du probléeme des deux corps en Relativité générale, il convient
peut-étre de fixer au préalable I'aspect astronomique de la
question, indépendamment des lois mécaniques sur lesquelles
on va s’appuyer pour le poser mathématiquement. Il s’agit de
deux corps G, et C;, assez éloignés pour qu’on puisse, étant
donnée la petitesse des dimensions vis-a-vis des distances
mutuelles, se contenter de connaitre, pour chacun d’eux, la
position a tout instant d’un seul point, par exemple, du centre
de gravité.

L’autre prémisse essentielle (qu'on devra ensuite traduire
mécaniquement suivant les principes de Newton ou d’Einstein)
est qu’on veut concentrer l'attention sur le phénomeéne pur,
tel qu’il se présente parfois en Astronomie, lorsque les corps
envisagés se trouvent en présence I'un de 'autre, mais sont,

ou se concoivent, isolés des autres corps célestes, et soustraits

a toute influence étrangére qu’on puisse présumer capable
d’en modifier le mouvement.

Ceci posé, rappelons d’abord la mise en équation d’apreés les
principes newtoniens.
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2. — POSITION CLASSIQUE DU PROBLEME. — CORPS ELOIGNES.
SYSTEME DIFFERENTIEL USUEL.

D’aprés Newton tout élément matériel, de masse dm, sollicité
par une force totale dm F, c’est-a-dire F par unité de masse,
posséde par l& méme une accélération (vectorielle, rapportée

a des axes galiléens) a = F. Faisons la somme des équations
dma = dmF
se rapportant aux différents éléments d’un corps C;, (2 = 0, 1).

D’aprés la définition de son centre de gravité P, le premier

membre n’est que le produit de la masse m;, du corps C; par
’ 7 I4 * d2Ph
Paccélération —
les forces intérieures disparaissent, et ce qui reste est la
résultante F, des forces extérieures au corps (C,, d’ou les

équations vectorielles

de P,. Dans la somme des seconds membres,

dzPh—F =0, 1 1)
My s = Yn (h =0, 1) . (

Cette élimination rigoureuse des forces intérieures, provenant
du principe de réaction, ne subsistera plus en Relativité, et il
faudra se contenter de quelque remplacement approché.

Jusqu’ici on a fait intervenir:

a) la loi du mouvement (a = F);

b) le principe de réaction.

Il faut maintenant invoquer

¢) la loi newtonienne de gravitation.

Elle permet d’expliciter les forces Fy, et conduit & un systéme
différentiel, intégrable par voie élémentaire, dés que les corps
sont assez éloignés. On veut dire par ceci que, en désignant par D
la plus grande dimension linéaire des corps C, et par R la plus
petite des distances entre un point de C, et un point de C;, on
suppose que, si non D/R, -

d) (D/R)? soit tout & fait négligeable.
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On démontre, d’aprés cela, dans la théorie du potentiel

newtonien, que, r indiquant la distance P P,, f la constante de
gravitation, et

U=l @)

le potentiel (mutuel) des deux points matériels P, et P,, la
résultante des forces extérieures s’exercant sur C, n’est que

F,, = grad, U , | (3)

le gradient avec l'indice 2 se rapportant au point P,.
Les équations (1) prennent partant la forme

2P,

ou les seconds membres ne dépendent que de la position des
deux points P, et P,. C’est, peut-on dire (on n’a qu’a pro-
jeter sur des axes fixes), le systéeme différentiel classique, défi-
nissant le mouvement absolu dans le probleme des deux corps.
L’intégration du systeme remonte, elle aussi, & Newton. On
passe au mouvement relatif, et on arrive aux formules résolu-
tives a 'aide des intégrales des forces vives et des aires, etc.
Il faudra s’en souvenir pour y rattacher enfin, comme des per-
turbations, les conséquences de la conception relativiste. Mais
il y a encore beaucoup de chemin & franchir; et, pour le moment,
il convient plutdot d’ajouter deux remarques suggérées par les
équations (4). La premiere se rapporte a la possibilité (principe
d’Hamilton) de remplacer, pour chaque point P,, I’équation
vectorielle (4) du mouvement par le principe variationnel

8/’(%&—% Uh>dt::0, r(5)

¢, désignant la valeur absolue de la vitesse du point P, et U,
le potentiel unitaire agissant sur P,, qui s’écrit, d’apres (2),

Uy = U = - = o0a) (6
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avec la convention évidente de regarder identiques les indices £
de méme parité.

Dans () la variation doit étre effectuée entre des limites
fixes, et peut &tre bornée aux coordonnées d’espace x (i =1,
2, 3) du point P;, ou, indifféremment, s’étendre aussi a ¢, puisque
la contribution provenant de la variation de ¢ s’annule identi-
quement, dés qu’on égale & zéro la variation provenant des
coordonnées.

I1 serait encore possible de réunir les deux formules varia-
tionnelles (5), correspondant & 2 = 0 et 2 = 1, dans une seule;
mais ceci, qui est trés important en Mécanique classique pour
aboutir enfin & un systéme canonique unique, n’a pas d’intérét
ici, une simplification analogue n’étant pas & prévoir en Relativité.

Il importe au contraire, au point de vue spéculatif, de fixer
un aspect limite de d). Tant que C, et C; sont des corps naturels,
et par l1a méme doués d’une certaine extension, d) est nécessaire-
ment une hypothése approchée. Mais D'approximation est
d’autant plus grande que le rapport D/R est petit. A la limite,
pour le cas abstrait ou les corps seraient réduits & de simples
points matériels, la condition d) se trouve remplie automati-
quement. Par conséquent la traduction du probléme par les
équations différentielles (4) devient rigoureuse pour le cas limite
des points matériels. ,

Nous verrons bientot qu’il n’en est pas de méme en Relativité
générale. Dans son cadre on arrive aussi a des équations diffé-
rentielles ordinaires, ayant méme degré d’approximation pour
le cas réel des corps célestes, mais on ne peut plus passer a la
limite, certains paramétres devenant infinis, pour des dimensions
évanouissants des corps C, si leurs masses restent finies.

Le point matériel, cette pierre angulaire de la Mécanique
classique, ne se laisse réaliser en Mécanique einsteinienne que
pour des masses infiniment petites.

3.— POTENTIEL NEWTONIEN D’UN CORPS EN UN POINT INTERIEUR.
ORDRE DE GRANDEUR.

Avant d’aborder la mise en équation du probléme des deux
corps, dans les mémes circonstances intuitives, mais au point
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de vue de la Relativité générale, je voudrais comparer les valeurs
des potentiels newtoniens & 'intérieur et a extérieur des masses
attirantes. Il n’y a rien de nouveau, mais il convient de s’en
entretenir un petit moment pour plus de souplesse dans la suite.
Dans le scheme newtonien, envisagé tout a I'heure, on a pu s’en
passer, puisque le principe de réaction b) permet d’éliminer
rigoureusement, pour chaque corps C,, les forces intérieures. Au
contraire, en Relativité générale, il n’y a plus de principe de
réaction, ce qui fait prévoir en particulier qu’on devra renoncer
a 'ignorance préalable (évidemment trés commode) des actions
intérieures. Des lors, 1l faut les analyser de plus pres, pour retenir
seulement les résidus inévitables. A ce point de vue, il convient
de reprendre nos deux corps C, et C;, et, en fixant par exemple
Iattention sur (,, d’en envisager aussi le potentiel intérieur.
Ce sera, en un point quelconque Q de C, lui-méme,

M,d‘r,
“niQ = f,fr(Q’Q') (7)
Ch

en désignant par p’ la densité au point Q' de G, et par dt’ un
élément de volume environnant. Le dénominateur r (Q, Q') est

au plus D, de sorte que
m

Unjg > fT)ﬁ . (8)

D’autre part le potentiel extérieur (provenant du corps C; )
est, au point P,, d’apres d) et (6),

(9)

En employant le signe ~ pour indiquer que deux quantités
ont méme ordre de grandeur, et, en rappelant la signification
de R, on pourra retenir
Myt .

Uh ~ f

Par conséquent, quel que soit le point Q & 'intérieur de C,,
on a
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Ceci suffit pour montrer qu’en général uy,q, loin d’étre négligeable
vis-a-vis de U,, est beaucoup plus grand, & cause du facteur R/D,
ordinairement trés grand dans le cas des corps célestes. On pourra:
se permettre d’effacer tout bonnement u, o devant Uy, seulement
dans le cas évident a priori, ou la masse m, du corps envisagé
serait infiniment petite (corps d’épreuve); ou du moins tellement
petite par rapport & m,,, qu’il devienne loisible de négliger le
produit des deux rapports my,/my, . et R/D. Quoi qu’il en soit,
on pourra reconnaitre que, dans l’approximation, qui sera bien
précisée au n° 5, 'influence relativistique des potentiels intérieurs
n’est pas si profonde qu’on pourrait le croire & premiere vue, et
se laisse saisir sans calculs génants.

4. — RAPPEL DES DEUX PRINCIPES FONDAMENTAUX
DE LA RELATIVITE GENERALE.

La conception dominante de la Relativité générale est 'inter-
dépendance entre les phénoménes — dans notre cas, simplement
Pexistence et le mouvement des corps célestes — et la nature
géométrique de ’espace-temps ou ils se passent. Quelles que
soient les coordonnées de temps et d’espace 20, 2!, 22, 23, aux-

quelles on se rapporte, la forme du ds* englobant la métrique a
quatre dimensions est

3
ds* = o i dat dz® | (10)
0

les g;;, étant des fonctions des x fournies par les circonstances
physiques & travers les célebres équations de gravitation dues
a Einstein. C’est le principe gravitationnel.

L’autre loi (formulée par Einstein, avant méme d’avoir reconnu
les liens des g;, avec la matiere et son mouvement) est le principe
géodésique. 11 affirme que, dés qu’on a affaire & une métrique (10),
le mouvement de tout élément matériel est caractérisé par une
ligne géodésique propre de ce ds® Sous I'aspect analytique c’est
comme dire que les mouvements propres (le long desquels ds? > 0)
sont définis par le principe variationnel

Sfds:().‘ (11)
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La variation qui doit s’annuler se rapporte, dans 'image géo-
métrique quadridimensionnelle, au passage de la ligne horaire
dont il s’agit & toute autre ligne infiniment voisine, ayant mémes
extrémités. Il faut donc attribuer, dans (11), aux quatre coor-
données 20, x1, 22, 23, des accroissements infiniment petits, sauf
la condition de s’annuler aux extrémités. Mais on démontre !
qu’on peut se passer de faire varier 2% puisque, de ce fait, le
premier membre de (11) subit une variation, qui s’annule en
conséquence des conditions provenant de la variation des trois
coordonnées d’espace x1, 22, 3. Ceci posé, attribuons a (11) une
forme équivalente, mais plus avantageuse pour les comparaisons
éventuelles avec I’ancienne mécanique. Pour cela il convient
avant tout de séparer, dans la somme

3
1 7.k
-SO_‘% gin dr'dx”

les termes dont les deux indices i, £, ou un seul, sont zéro. On a
ainsi de (10)
3 ; 3 : R
ds? xt - dz" dx
s — o0 T 2 Baiggn T 2 Sk g g

et, en posant

3 3 S
- ds — dxt = dx' dx
== 8oo T %_,igoid—a;a + %ihs’ikm T (12)
on peut écrire la loi du mouvement (11) sous la forme
3 f,f;’dxo =0, (11"

en y regardant en surplus z° comme un parametre non soumis &
variation.

1 Voir par exemple mes Fondamenti di meccanica relativistica (Bologna, Zanichelli,
1928), p. 4.

O T S R,
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5. — SPECIFICATION DES HYPOTHESES PERMETTANT DE
SIMPLIFIER LE CALCUL. REGLE PRATIQUE.

L’application des généralités qui précédent & un probleme
bien déterminé quelconque exige évidemment la combinaison
des deux principes, gravitationnel et géodésique, qui se traduisent
analytiquement dans lintégration: d’équations aux deérivées
partielles le premier, d’équations différentielles ordinaires le
second ; méme le plus souvent enchevétrées les unes aux autres.

I1 y a un cas, qu'on peut appeler probléme du cenire fixe
(un seul corps & structure complétement symétrique et une
masse infiniment petite qui se meut dans son champ), ot non
seulement les équations gravitationnelles sont indépendantes
des équations du mouvement mais ot on a méme pu les inte-
grer rigoureusement et résoudre ensuite le probléme jusqu’au
bout. C’est ce qui a réussi & SCHWARZSCHILD peu aprés que
EINsTEIN en eut donné une solution approchée.

En concept, le probléme des-deux, ou méme d’un nombre
quelconque de corps peut étre envisagé comme un cas particulier
de la mécanique (newtonienne ou einsteinienne que ce soit) d’un
milieu continu, ou ’on aurait affaire a une distribution de matiére
remplissant, avec des vides éventuels, tout ’espace, cette matiere
étant soumise a sa propre gravitation. A ce point de vue tout
revient, d’aprés Einstein, a caractériser, en fonction de
2% z', 22, 2%, non seulement la métrique de I’espace-temps,
c¢’est-a-dire les dix coeflicients g;, du ds?, mais encore la congru-
§ ence des lignes horaires, décrites par les différents éléments de
@ maticre (lignes de courant lorsqu’on considére séparément
§ U'espace et le temps). Une congruence est définie analytique-
® ment par les paramétres A (20, %, 22, %) (i = 0, 1, 2, 3), ou
B bien par les moments 2; de ses lignes. Ces quatre nouvelles
inconnues se réduisent d’ailleurs a trois, puisqu’elles sont liées
aux g par l'identité

3 3 : 3

I P N
DUMN =D gt = D) ety =1
0 0 O'Lh
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Si 'on introduit en outre la densité w(x° z!, 22, 23) de la
distribution de la matiére & un instant donné z°, et la constante
universelle ¢ (vitesse de la lumiére dans le vide), p/c® = ¢ repré-
sentera, d’apres la proportionnalité entre matiére et énergie, la
densité de I'énergie, et le tenseur énergétique aura les compo-
santes

T, = en 2, (i, k = 0,1, 2, 3),

en négligeant tout effort intérieur, c’est-a-dire en supposant que
la matiére est désagrégée. Ces T,, sont les seconds membres des
10 équations gravitationnelles, qui renferment de la sorte
14 inconnues: les dix g, trois des A et e.

Pour que le probléme devienne déterminé on n’a qu’a invoquer
le principe géodésique, c’est-a-dire a associer aux 10 équations
gravitationnelles les 4 équations

N =0 (i = 0,1, 2, 3)

(A;); dérivées covariantes par rapport au ds?), exprimant que
toute ligne horaire est géodésique. Cette position du probleme
devrait étre illustrée par beaucoup de remarques; mais je dois
forcément glisser, en me bornant a avertir qu’un tel point de vue
a été effectivement utilisé sous un aspect particulier, trés impor-
tant. Je fais allusion aux recherches concernant I'univers en
expansion dynamique de Friedman — Lemaitre — Einstein —
Eddington — De Sitter — Tolman, etc., ou tout est symétrique
par rapport & un centre. Les variables indépendantes se réduisent
alors & deux, et les équations aux dérivées partielles essentielle-
ment & deux, avec autant d’inconnues !. Dans ces conditions,
il a été possible, comme pour le cas Einstein-Schwarzschild,
rappelé ci-dessus, d’intégrer rigoureusement.

1 Voir notamment, pour la position mathématique du probléme général de I’Univers
en expansion:

G. C. McVitTiE, The mass-particle in an expanding universe, Monthly notices of the
R. A. S., vol. 93, 1933, pp. 325-339;

J. L. SyneE, On the expansion or contraction of a symmetrical cloud under the
influence of gravity, Proc. of the National Academy of Sciences, vol. 20, 1934, pp. 635-640;
et trois notes de M. C. Tororti dans les Rendiconti de I’ Academie des Lincei, vol. X X1,
1935, pp. 326-331, 488-492, 571-575.
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Il ne me parait pas probable qu'une chance pareille puisse
se présenter aux mathématiciens de notre époque dans I'étude
du véritable probléme des deux corps ou de quelque aspect
réel du probléme de plusieurs corps. Faute de mieux, on ne
peut que tacher de se procurer en attendant des solutions
suffisamment approchées pour bien fixer toutes les inégalités qui
peuvent étre, maintenant, ou dans quelques siécles, susceptibles
de vérification par les observations. C’est ce qui a été fait,
depuis une vingtaine d’années, par M. DrosTtE !, et, d’une
maniére plus détaillée, par le regretté DE SiTTER 2 pour le cas
des n corps, mais en négligeant systématiquement les potentiels
intérieurs. Ceci est légitime — sans doute les auteurs cités ne
’ont pas ignoré, mais ¢’est M. MARcEL BrirLour» 3 qui I'a fait
remarquer explicitement — tant qu’il s’agit de former le ds? et
les équations du mouvement d’un corps petit, dans le champ
de masses en mouvement donné; mais il n’en est plus de méme
lorsqu’il s’agit de caractériser le mouvement d’un systéme
continu, méme dans le cas typique de deux corps éloignés, de
masses comparables. La raison essentielle en a été indiquée
au n° 3, car c¢’est bien le potentiel newtonien qui joue un role
prépondérant, aussi en tenant compte de la correction rela-
tiviste, comme on sait, et comme on va d’ailleurs le recon-
naitre dans nos formules.

Ayant en vue le probléme des deux corps, il y aura lieu de
reprendre, pour n = 2, la méthode approchée de DRoOSTE-
DE Sirrer4, mais sans effacer a prior: ce qui provient, pour
chacun des deux corps, de ce corps lui-méme; au contraire, en
tachant d’en saisir les conséquences irréductibles, et en méme
temps évitant les complications inessentielles & ’aide de quelques
hypothéses qualitatives complémentaires, & c6té de 1’approxi-
mation principale, provenant de la petitesse des vitesses des

1 The field of n moving centres in Einstein’s theory of gravitation, Ak. van Vet. te
Amsterdam, Vol. XIX, 1916, pp. 447-455.

2 On Einstein’s theory of gravitation and its astronomical consequences, Monthly
Notices of the R.A.S., Vol. LXVII, 1916, pp. 155-184.

3 Gravitation elnstelmenne Statique. Points singuliers. L.e point matériel, Comptes
rendus, T. 175, 1922, pp. 1008-1012.

4 Voir notamment J. Cuazy, La théorie de la relativité et la mécanique céleste, T. I1
(Paris, Gauthier-Villars, 1930), chap. X et XI.
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corps célestes vis-a-vis de celle de la lumiére, employée par
EINSTEIN et par tous ses continuateurs.

Il importe évidemment de bien préciser les considérations
préalables d’ordre de grandeur sous lesquelles nous allons
aborder, simplifier et résoudre le probleme.

En premier lieu, comme on 1’a dit dés le début, on se contente
d’arriver, dans les équations différentielles du mouvement, a
la seconde approximation. Rappelons ce qu’on entend par ceci.

Dans les problémes qui nous intéressent, ’ordre de grandeur
des quantités mécaniques, notamment de 1’énergie cinétique et
potentielle, est celui de notre systéme planétaire. Pour les
mouvements de ce systéme, ¢? (carré de la vitesse, c¢’est-a-dire
double de I’énergie cinétique réduite a l'unité de masse) est
trés petit vis-a-vis de ¢%, carré de la vitesse de la lumiere, et
il en est de méme pour la valeur V du potentiel newtonien du
systéme, soit a ’extérieur, soit méme a D'intérieur du Soleil,
des planétes, ou des satellites. L’ordre de grandeur des rapports

B2 = ‘c’_: ) Yy ¥ (13)
est 10 dans le cas de la Terre et pas trop différent pour les
autres corps du systeme solaire.

On dira du premier ordre les termes ayant cet ordre de grandeur.
Et la premiere source de simplification sera:

A,) Se contenter du premuer ordre, en négligeant tout terme d’ordre
supérieur.

(Je choisis la lettre A dans cette spécification d’hypotheses,
parce que A est linitiale soit d’ «approximation», soit
d’ « admission ».) Bien entendu il faudra, comme toujours dans
ce type de réductions, procéder cum grano salis. On aura bien
le droit, dans une formule quelconque, de négliger 83, ou B, etc.
devant I'unité; au contraire, si par hasard, dans une relation
rigoureuse, 11 n'y a pas de termes d’ordre zéro (comparables a
P’unité), mais que les termes prépondérants soient d’un certain
ordre minimum v, il faudra retenir, avec eux, tout ce qui ne
dépasse pas 'ordre v 4+ 1. L’advertance est bien banale, mais
elle doit rester présente a l’esprit au cours des calculs.
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D’autre part, dans le but de simplifier autant que possible, il
est naturellement avantageux de se rapporter & des coordonnées
appropriées. Dans les cas qui nous intéressent ici, le ds? reste
trés proche du ds’ de la relativité restreinte (absence de matiére
et de toute autre circonstance physique influant sur la métrique
de D'espace-temps). Un tel ds’, rapporté au temps romerien z°
(=ct, ou ¢ désigne le temps ordinaire) et a des coordonnées
cartésiennes al, 22, 23, a la forme pseudo-euclidienne

ds?, = da® — (clx12 + d2?® + dz?) . (14)
On doit donc admettre — ce n’est au fond qu'un aspect
préliminaire de 'approximation A;) — que les métriques (10)

se rapportant aux questions susdites comportent des coordonnées
2% 2, 22, 23 (qui pourraient étre mieux caractérisées sous I'aspect
géométrique) tres proches de I'espece pseudo-cartésienne, dans
ce sens que les coefficients g, différent des valeurs g;,, (+ 1 ou zéro)
correspondant a (14) par des quantités

du premier ordre au moins, les v, élant méme d’ordre non
inférieur a 3/2.

Ce n’est pas encore assez pour aboutir enfin & un nombre fini
d’équations différentielles ordinaires. Il en serait d’ailleurs de
méme dans la position classique du probléme des deux corps,
puisque chacun de leurs centres de gravité P, ressent les attrac-
tions de tout élément de I'autre corps Gy, et on peut remplacer
ces derniéres par une force dépendant uniquement de la position
de P,_,, seulement en introduisant quelque hypothése supplé-
mentaire, notamment 1’hypothése d) du n® 2. Comme la Méca-
nique ordinaire n’est qu'un cas limite de la Mécanique
einsteinienne, il est bien clair que, pour atteindre le méme but, il
faudra, aussi en Relativité générale, se poser (& fort peu pres)
dans les mémes conditions, et par conséquent:

A,) Négliger toute quantité de Dordre (D/R)2.

Les approximations A;) et A,) sont assurément le fondement
du calcul; mais elles ne suffisent pas & elles seules pour atteindre
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le but. Je les ai complétées, en admettant au préalable deux
autres circonstances, qui sont d’ailleurs des plus raisonnables
au point de vue astronomique. Je suppose ultérieurement:

A;) Le mouvement de chacun des corps se réduit grossiérement d
une translation.

Voici le sens a attribuer a ’adverbe « grossierement ». Partons
de la définition de mouvement de translation d’un corps GC,.
C’est un mouvement dans lequel les points du corps sont, & un
instant quelconque, animés tous d’'une méme vitesse vectorielle,
disons de la vitesse v, du centre de gravité P,. Pratiquement
on pourra naturellement regarder comme translation tout mou-
vement pour lequel, vis-a-vis de ¢, (longueur du vecteur v;),
est négligeable la valeur absolue de la différence vectorielle Av

entre les vitesses au meéme instant de deux points quelconques
de G, ; donc le rapport ’—AOV—' :
h
Nous ne prétendons pas que ce rapport soit négligeable par
lui-méme, comme on 1’a supposé pour (D/R)? ou @3, mais seule-
ment qu’il ne dépasse jamais quelques centiemes (ordre de gran-
deur 107%), de maniére que ’on puisse omettre, comme quantité

d’ordre supérieur au premier, tout produit du type

Bz I_va,] , Y ——~‘ AVl , ete.

’h “h

C’est bien ce qui arrive pour les planetes. D’abord leurs défor-
mations sont négligeables, et elles se comportent par conséquent
comme des corps rigides. A la vérité leur mouvement n’est pas
purement translatoire; il se compose de translation et de rotation.
Toutefois, pour un point quelconque du corps, la vitesse due &
la rotation atteint seulement quelques centiemes de la vitesse
commune de translation. Par exemple, dans le cas de la Terre,
la vitesse due alarotation (un tour par jour) a la valeur maximum
d’un demi kilomeétre par seconde; tandis que la vitesse de trans-
lation est 30 km./sec.; donc

[Av] g, 1

= ) .
60 e

)

(’est I'ordre de grandeur pour notre systéme planétaire.
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Ceci posé, remarquons qu'un mouvement rigoureusement de
translation est en particulier rigoureusement rigide; on prévoit
partant qu'un mouvement peu différent d’une translation soit
par 1a méme peu différent d’un mouvement rigide. C’est ce qui

arrive en effet, pourvu qu’on ajoute quelque petite spécification

. . . A
a la condition cinématique concernant L‘;l’_l (h = 0,1). 11 suffit,
h

par exemple, en envisageant la vitesse v d’un point quelconque Q
du corps C, comme fonction de sa position initiale M et du
temps ¢, de supposer convenablement limitées les dérivées du
déplacement
{
Q—M = |v(M,¢)dt
5

par rapport aux coordonnées de M. Il serait aisé de préciser,
mais je ne puls pas m’arréter sur ces détails. Il me faut au
contraire épuiser les préliminaires en quelques mots, pour
esquisser ensuite la solution du probléme.

La derniére admission se rapporte aux centres de gravité P,
et Py, qui doivent étre, a fort peu prés, centres de gravitation
des corps respectifs. Rappelons la définition de centre de gravi-
tation et expliquons I’ peu prés. On sait 1 — et on le reconnait
d’ailleurs immédiatement par la considération du maximum du
potentiel intérieur uy o (n®3) — qu’il existe au moins un point Gy,
ou u, atteint son maximum, et ol par conséquent les dérivées
de u;, s’annulent, et avec elles I'attraction exercée par le corps
Gy, sur le point Gy,. Ce centre de gravitation G, ne coincide pas
nécessairement avec le centre de gravité P,. C’est ce qui arrive
certainement si le corps G, posséde un centre de symétrie, mais
en géneéral il n’en est rien, et alors I’attraction newtonienne de G,
sur son centre de gravité P, n’est pas nulle. Or il est trés avan-
tageux (je crois méme indispensable pour notre but) de pouvoir
calculer la correction einsteinienne comme si la dite attraction
sur P, était rigoureusement nulle. Et c’est justement pour cela
qu’il convient d’introduire la quatriéme et derniére admission:

1 Voir une note de M. FeEnici dans les Rendiconti de I’Académie des Lincei,
Vol. XXI, 1935, pp. 493-498.
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A,) Pour chacun des deux corps le centre de gravité P, n’est pas
trop éloigné du (ou d’un) centre de gravitation G; plus
précisément, la distance P, G, est assez petite pour que,
en P, l'attraction g; du corps C, (nulle rigoureusement
en Gy) soit une fraction assez petite (ici encore quelques
centiémes au plus) de 'attraction F, exercée par ’autre
Corps.

Alors 1l est permis de négliger, comme étant d’ordre supérieur
au premier, tout terme du type

8h 8n
2. " —_ — .
B Vs et (h = 01)
REMARQUE. — Il n’est pas inutile d’avertir que, a cause de Aj),

dans I'ordre d’approximation adopté, il suffit que A,) soit vérifiée
a Pinstant initial. Elle reste alors automatiquement satisfaite
pour ¢ > 0. En effet, d’apres A;), nos corps se comportent sen-
siblement comme des solides, et alors, & la méme échelle, P, et G,
gardent & tout instant les mémes positions relatives dans le corps
respectif. Il s’en suit en particulier que le centre de gravité P,
est substantiel, c¢’est-a-dire affecte toujours la méme particule
matérielle.

REGLE PRATIQUE. — En vue du calecul effectif, il y a lieu
de retenir que, dans n’importe quelle relation, l’évaluation des
termes correctifs (généralement d’ordre 1; ou, exceptionnellement,
d’ordre v + 1, si par hasard I'ordre minimum est v) se fatt comme
st les corps Gy, Cy étatent rigoureusement indéformables, animés,
chacun pour son compte, de stmple translation, et chacun exercant
une attraction nulle sur son centre de gravité.

6. — EXPRESSION DU ds?2 POUR LE CHAMP DE DEUX COHKP3
d
y ’ h
EN MOUVEMENT DONNE — 1. OPERATEUR e

I1 faut expliciter les coefficients g;;,, qui, comme on I’a rappelé
au numéro précédent, sont nécessairement de la forme

0 \
Sin = 8ik — 2Yir (15)
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ou les gi, sont les coefficients (+ 1, 0) de (14) et les vy, des
petites corrections & regarder comme du premier ordre au plus.

Il est bien connu, et d’ailleurs aisé a vérifier, que, pour tenir
compte, dans les équations du mouvement, des termes d’ordre
immédiatement supérieur a I'approximation newtonienne, il
suffit de calculer la partie prépondérante d’ordre minimum de
tous les w;,, excepté wv,, pour lequel 1l faut expliciter non
seulement le premier ordre, mais aussi le second.

Nous désignerons par z. (b =0,1; i = 1,2, 3) les coor-
données des centres de gravité Pj; par (,; les composantes
dx%

pp de leurs vitesses romeriennes, qui ne sont pas autre chose

que des vitesses ordinaires divisées par c; B, représentera en
conformité la valeur absolue de ladite vitesse vectorielle
romerienne {3,

D’autre part, V étant le potentiel newtonien des deux corps,
rapporté, comme d’habitude, a 'unité de masse du point attiré,
nous poserons

(16)

%l <
|
7

Naturellement vy est la somme (divisée par ¢2) de deux poten-
tiels, I'un provenant de C, et 'autre de C;. En envisageant en
particulier les déterminations de v aux points P,, nous poserons

Yp, = Yp T By, (17)

h

ou v, provient de Pautre corps C,.,, et, d’aprés A,) et (2)
se réduit &

b

1 f Mhat

Yn = EQWI;U =G (18)
tandis que, d’apres (7),
. wdr'
"= [ o 4
(Ch

est le potentiel newtonien au point P, du corps C, lui-méme,
divisé par c2.

L’Enseignement mathém., 34me année, 1935. 11
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1l importe de remarquer que ces &, jouent le role de constantes,
puisqu’elles sont effectivement telles toutes les fois qu’on peut
traiter comme invariables les corps Cj,, ce qui arrive en particulier
dans I'application de la régle pratique du numéro précédent.

L’intégration approchée des équations gravitationnelles, que
Je ne puis pas méme ébaucher, donne, pour un point quel-

conque P,
Yin = Ok Ye (¢, k= 1,2,3) (20a)

ou I'on entend par §;, les symboles de Kronecker, c’est-a-dire
1 pour ¢t = k, 0 pour ¢ 3~ E.

Ensuite, en supposant que P appartient au corps C;, et méme
qu’il coincide initialement (en position et vitesse) avec le centre
de gravité P,, on constate, moyennant les hypothéses A,), A;)
et la régle pratique qui en découle, que, dans tout terme d’ordre

“supérieur au premier, on peut confondre P avec P,; et alors

on trouve:
Yoi = Yip = — 20, B — 2vpBpp (0 =1,2,3), (200
Yoo = Yp T Oh ) (20¢)

ou vy, &, ont les significations (18), (19) et ou 6, est d’ordre 2.
On a précisément

fm d . r

2 h+1 “h+1 y

—_ 21
eh | YP}L 26‘2 deZ + ( )
+ 2vov1 + 2@}1@; + 2Yh(32+1 + QYh(@h + VJh+1) (h =101),

en indiquant pour abréger par v, les constantes numériques que
voici

pldr
mc2f LT | Q@) Q) 2%

d,
et par —5 une dérivation temporelle dépendant exclusivement du

mouaement du point P,, ou 'on doit par conséquent regarder
comme constant tout ce qui se rapporte a P, _,.
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Commencons maintenant & remplacer les g, dans

3
X0 i 7R
ds? == 20_% gipdx'dx

par leurs valeurs (15). On a

g -
e dsﬁ — 22,hyikdxldxh ,
1
0

d’ou, si on tient compte des (20),

.2

3
ds® = dx°2(1 — QYP — th) — (1 + 2‘YP) del +
1

- 1
3 .
+ 8dz0 > (@), By + vh i) 2 -

i

1

Divisons par dz% et écrivons P2 au lieu de

1

331 dat\*
_I_]'. ExT) ’

en remarquant ici encore que, dans les termes d’ordre supérieur,

. 1 .
on peut remplacer % par By;;, et yp par yp, . 1l vient
"ds \?2 _q 9 1 . R 9 2 3 2 3 20
(d~x—° =1— EE’ + vp)— 2vp, Bp T 8@RBy + TnBo X By — 20, -

Le terme en parenthéses est du premier ordre, les trois suivants
du second ordre, et le signe X entre les deux vecteurs 3, et B34

signifie produit scalaire. On en tire, au troisieme ordre pres,

dS . 1 1 1 9 2
o =1 —<~2—BZ + Yp> —§<§@h + YPh> —
TPy, B+ 40,8, + bypBo X By — 0y (23)

ce qui est, d’apres (12), ’expression de la fonction lagrangienne
définissant le mouvement du point P : P, peut y étre traité
comme identique & P. On peut, sans altérer les équations
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différentielles du mouvement, omettre la constante additive 1,

et en surplus multiplier par une constante arbitraire _“&1—’
h

dont on disposera avantageusement un peu plus avant. Notre
fonction lagrangienne sera donc

v (i
. C Eh <d$0 1)

ce qui, d’apres (23), peut s’écrire

’

et = I+ Ay (24)
ou, en envisageant spécifiquement le point P, ,
N, = 28
Jep = ?Bh + th (25)

constitue la partie prépondérante du premier ordre, tandis que

' 1 avre 2 2 |
Ay = igch + Tp, B — 4@y B, — [‘tYh..B.O X EJ + 0 (26)

comprenant, comme on le vérifie aisément, tous les autres termes,
est du second ordre.

7. — FONCTIONS LAGRANGIENNES DEFINISSANT LE MOUVEMENT
DES CENTRES DE GRAVITE.

Le centre de gravité d’un corps donné est par sa définition
un point fictif, dépendant de la distribution des masses dans le
corps & I'instant envisagé. Il n’a pas par conséquent caractere
nécessairement substantiel, ¢’est-a-dire qu’en général il n’adhére
pas, pendant un mouvement du corps, & une particule matérielle
bien déterminée. Ceci arrive parfois, notamment pour les corps
solides et pour une classe de mouvements de systémes continus
remplissant une certaine condition (égalité de deux vecteurs a
tout instant !); non en tout cas.

Ceci posé, reprenons les fonctions lagrangiennes £, (h = 0, 1) du

1 Voir ma note: Movimenti di un sistema continuo che rispettano I’invariabilita
sostanziale del baricentro, Acta Pontificiae Academiae Scientiarum, T. LXXXVIII,
1935, pp. 151-155.
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numéro précédent. A la suite de nos admissions et du postulat
géodésique s’appliquant aux éléments matériels, elles définissent,
a vrai dire, les accélérations (non précisément des centres de
gravité P,), mais de deux points matériels, I'un appartenant a
C, et 'autre a C,, coincidant a I'instant envisagé avec Py, Py et
possédant & cet instant leur méme vitesse. A notre ordre d’ap-
proximation, il serait parfaitement équivalent de caractériser
le mouvement des points (encore plus fictifs) Py, P;, possé-
dant & un instant quelconque les accélérations susdites et coin-
cidant & Pinstant initial avec Py, P;. Mais les équations, défi-
nissant le mouvement des points auxiliaires P;, qu’on tirerait
des fonctions lagrangiennes £, présentent 'inconvénient essen-
tiel (provenant des yp, dans les termes du premier ordre) que

tout n’y est pas encore réduit ni réductible & dépendre exclusi-
vement des deux points P, et P;. On parviendra toutefois
a surmonter cette difficulté aussi, en passant justement aux
centres de gravité. Nous allons voir en effet que, dans notre
approximation, la connaissance des £, permet d’aboutir sans
calculs aux véritables fonctions lagrangiennes L7, des centres
de gravité.

Pour s’en rendre compte, il convient d’abord de rappeler une
circonstance fondamentale dans la Théorie de la Relativité
générale: c’est que toutes ses formules et conclusions redonnent
en premiere approximation les lois classiques.

En particulier, si 'on fixe I'attention sur la fonction lagran-
gienne £, = I, + A; définissant (dans la maniére spécifiée plus
haut) le mouvement des points P,, on y reconnait immédiate-
ment que I, est le terme newtonien (puisqu’on en tirerait, au

' 1 \ : . .
facteur constant — bres, les équations du mouvement newtonien),

tandis que A, constitue la correction einsteinienne, ¢’est-a-dire
le terme complémentaire donnant lieu & cette correction pour le
mouvement des points P;. D’une maniére plus précise. il nous
faudra retenir que A, donne lieu justement aux corrections
einsteiniennes des composantes, divisées par c2, de 1’accélération
newtonienne de P;.

Or les points fictifs P, sont en quelque sorte intermédiaires
entre des points substantiels de nos corps et leurs centres de
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gravité. Si ces corps étaient animés d’une simple translation,
P, et P, coincideraient a tout instant, possédant dés lors la
méme A,. [’admission A;) du n°5, que les mouvements des deux
corps se réduisent grosstérement a des translations, implique que
les A, restent sensiblement (c’est-a-dire & des termes prés d’ordre
supérieur au second) les mémes qu’il s’agisse des P; ou des centres
de gravité P,. Notre but étant de calculer les fonctions lagran-
giennes £, de ces derniers, nous nous trouvons, d’aprés ce qu’on
vient de dire, dans la situation favorable d’en connaitre déja
I'expression explicite A, de la correction einsteinienne. Il ne
nous reste partant que la tdche bien aisée d’assigner le terme
newtonien I, de

E LT = I, + Ay (24")

Pour cela, 1l suffit de reprendre les équations newtoniennes
[(4) du n° 2], définissant le mouvement des centres de gravité P,
et P;. Elles admettent, comme 1l résulte de (5), la fonction
lagrangienne

1

“2_ V;L '+' Uh H
qui peut étre multipliée par une constante arbitraire, par exemple
par —, sans altérer les équations différentielles. Il est ainsi loisible

de regarder, & l'approximation newtonienne, comme fonction
lagrangienne du mouvement du centre de gravité P,

I, = =By + vy - (25')

Ajoutons que, dans chacun des trois bindmes lagrangiens
qu’on tire de I, , figure (isolément et avec le coefficient 1) la
composante correspondante de ’accélération de P, divisé par ¢2,
comme il arrivait pour I, a ’égard de P,. C’est tout ce qu’il faut
pour conclure que la fonction lagrangienne du mouvement du
centre de gravité P, est

ou

. 1 ,
I, = 5@,21 + ¥ (25%)
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A, a Vexpression (26), avec la valeur (21) de 0, et &, est une
constante dont on peut encore disposer. On va le faire dans un
moment.

8. — ARTIFICE PERMETTANT DE SAUVER LE 'PRINCIPE
D’EFFACEMENT EN SECONDE APPROXIMATION — MODIFICATION
DES MASSES.

Ce qui provient, pour chaque corps, des actions qui lui sont
intérieures figure dans nos fonctions lagrangiennes (24’) unique-
ment par 'intermédiaire des quatre constantes u;, et 7, défines
par les formules (19) et (22). Mettons ces constantes en évidence,

’ . 9 by o . ar .
en écrivant, d’apres (17), vy, + @, au lieu de v, , dans les

gl

expressions (21), (25) et (26) de 0,, I, et A, . Il vient

9 - 2 2 | 5P 2 I
Op = — @p + 2ypmpg g + 2008 — v+ 2vors 2V By
N fmy iy dypy
| 2¢8 g0t
’ 1 o 1
o ~~ ‘ (1) ' 2 ’
Ap = — 9% 9" Bh+ (h(' +2’]h+1)+‘\h’ (267

ou 'on a posé
2

1/1 o
Ay = "§<§Bh + Yh> + B — 41 By X By —

f’nh+i d}l s 17

— Y;l + 2vov1 + “?‘Yhﬁh—f—i T 92 dxo“; : (27)

Il s’en suit, en revenant & (24'), (25'), et en y remplacant A,
par sa valeur (26'),

2 1 2 1 1 — 2 ~
Ehbh = —g0 + 5 (1 — ‘Q‘mh) B+ (1 @+ 2 y)y, + A,
(28)
Maintenant attribuons & la constante £, la valeur 1 — %wh
et divisons par &, en omettant la constante purement additive

— 5,/ &,- A des termes négligeables prés, il vient

> 1 3~
£ = 5By + (1 T 5Oy + 271h+1>Yh + Ay
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Ceci posé, un petit artifice, dont ’idée générale parait remonter
& M. DrosTE !, permet, a notre ordre d’approximation, de faire
disparaitre le coefficient de v,. On n’a qu’a remplacer les masses
réelles m,, m,; de nos deux corps par des masses fictives

* -3

i : Serir
qui peuvent également s’écrire

3

%* 3 _ ,
Mpy = My <1 + 9 + 277h+1> (h =0, 1) . (297)

Alors, en posant, conformément a (18),

* 3 f Mhtt
Yh = (1 + §wh + 27)h+1>Yh = P

I’expression précédente de £, prend la forme
@ 1 o *
L= 5B+ 1 + Ay

Dans le terme A, figurent encore les vy, ; mais, comme A, est
du second ordre, on peut y remplacer sans erreur appréciable
les v, par v;.

Apres cela il n’y a qu’a supprimer les astérisques, en reprenant
la désignation m,; pour les masses gravitationnelles des deux
corps, telles qu’elles sont définies par (29) en fonction des masses
intrinséques. Il est bien justifié d’appeler gravitationnelles ces
deux constantes, qui jouent absolument le méme role des masses
ordinaires, dans le probléme relativiste des deux corps, en seconde
approximation. Pour notre but c’est tout ce qu’il faut. Mais
il convient de remarquer que ces deux constantes, tout en se
comportant, méme en seconde approximation, comme des masses
pour le probléme des deux corps, ont perdu le caractere intrinseque
que leur attribuait a tout égard la mécanique classique. Vis-a-vis
d’autres questions, i1l faudrait sans doute apporter des petites
modifications différentes, si tant est toutefois qu’on puisse encore
sauver le principe d’effacement par des simples corrections des
masses gravitationnelles. On doit done, pour éviter des malen-

1 Loco citato au ne 5, voir page 454,
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tendus, se représenter les masses définies par (29) (et désignées
ensuite, elles aussi, par mgy, m;, en supprimant Pastérisque)
comme des constantes caractéristiques du probléme, possédant
chacune, seulement & peu prés, la propriété intrinseque que la
mécanique classique attache & la notion de masse.

9. — LES FQUATIONS DIFFERENTIELLES DU PROBLEME.

Par tout ce qui précéde il est acquis que le mouvement des
points P, centres de gravité des deux corps, est défini par les
fonctions lagrangiennes respectives

° v 1 e -
’L/h — E)Lh + Ah — -Q‘Bh Th + ‘/xh’ (h = 0, 1) * (I)

De plus A, d’apres (27) et (25'), s’écrit

2
1 av2 2loll‘—lh+1 lh—.Li 9 9
Ay =3I, + o + = (B + 2Bpgg — 4By X Bni1) +

1 d2h+1 r
= LI I1

+ 9 lh+1 daco® : (11)

étant posé, pour abréger,

fmy, _
=1, (30)

de sorte que les constantes [,, /; sont des (petites) longueurs.
Il ’agirait évidemment d’expliciter les six équations

o L7 0 L7
AT TTh g =015 i=1,23) (I
de® 0Bpii ol

définissant le mouvement (absolu) des deux corps, pour passer
ensuite a leur intégration diment 1illustrée au point de vue
géométrique et astronomique. Mais il n’est pas possible de le faire
dans le cadre de cette conférence. Je dois donc me borner a
quelques indications de méthode et de résultats.

Je viens de dire que les équations (III) définissent le mouve-
ment absolu des points Py, P;. Cet appellatif « absolu» doit étre
interprété d’aprés le n° 5, en se rapportant par la pensée aux
préliminaires de 'admission A;). On a introduit alors des va-
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riables (i = 0, 1, 2, 3) trés proches d’un quadruple quasi-car-
tésien, ou de LoRENTZ: exactement lorentzien serait impossible,
puisque l’espace-temps n’est plus quasi-euclidien. Mouvement
absolu est tout mouvement dans un tel espace (%, 22, x3), la
variable temporelle étant 2°. Pour fixer les z', on peut toutefois
partir d’un quadruple lorentzien quelconque. On profitera (comme
en mécanique ordinaire) de cette indétermination préalable pour
supposer que le centre de gravité G du systeme des deux corps
soit fize, bien entendu en premiére approximation, ce qui signifie
que, si l'on introduit la vitesse absolue a (vectorielle et rome-
rienne) de G, moyennant la position

ma == myBy + my Py, (31)
ou
m = m =+ my , (32)

la valeur absolue de « est nulle en premiére approximation, et
précisément de ’ordre de 3. Il s’en suit que dans les A, il est
permis de négliger « sans plus, ¢’ést-a-dire de retenir

myBo + myBy = 0. (33)

Comme dans 'exposé traditionnel du probléme des deux corps,
il convient d’envisager d’abord le mouvement relatif, en étudiant,
comme fonction de 2%, les différences

at = x} — at (3%)
et leurs dérivées par rapport & 20, qui sont les composantes du
vecteur

B=81—FLo> (35)

vitesse (romerienne) de P; par rapport a P,.
En introduisant aussi les rapports numériques

77’lh

L=, (=01, (36)
on tire de (33) et (35)

302“7\1_@_, 51:7\06a (37)

ou, s1 'on préfere, en une seule formule
bj ] 9

B = (— 1) a8 (b =0, —1), (377)
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ce qui permet de faire disparaitre les vitesses absolues dans
tout terme d’ordre supérieur. Bien entendu, il faut faire attention,
lorsqu’il s’agit d’expressions telles que Ay, A; qu’on doit, pour
expliciter les équations du mouvement, soumettre encore a la
dérivation partielle. Evidemment, dans ces cas, les substitutions
susdites peuvent étre effectuées seulement aprés dérivation.

Une fois formées correctement les équations lagrangiennes
provenant des £, on en tire, par simple soustraction des formules
homologues, les équations du mouvement relatif, contenant
exclusivement les trois inconnues z!, 22, 23 (et leurs dérivées).
Ces équations — on peut le prévoir a priort et le confirmer par
la simple inspection des (I) — sont bien celles de Newton avec
force perturbatrice einsteinienne. L’analyse de cette derniére, en
s’aidant d’une propriété remarquable d’équivalence mécanique,
conduit & I’envisager comme une force centrale, qui produit
Veffet bien connu du déplacement du périhélie. On peut espérer
que I’expression quantitative de ce déplacement soit susceptible
de vérification astronomique par les observations des étoiles
doubles. Il s’agirait notamment de déceler la correction (vis-a-
vis de la valeur einsteinienne) fournie par le calcul, lorsque la
masse de la planéte n’est plus négligeable par rapport a la
masse du corps central.

Le résultat est, comme on le voit, tréssimple; les calculs sont
élémentaires, mais exigent d’assez longs développements. Je me
propose d’en rendre compte ailleurs. Ici je voudrais encore ajouter
que, une fois intégrées les équations du mouvement relatif, on
peut revenir & la vitesse absolue du centre de gravité G, qui est
nulle seulement en premiére approximation, et dont il est bien
intéressant de déterminer la seconde. On parvient de la sorte a
reconnaitre que le centre de gravité subit des petites fluctuations
par rapport au repére des x', 2, z3, repére qui correspond & un
triedre galiléen de 'ancienne Mécanique. Ces fluctuations se
laissent évaluer par de simples quadratures. De telles qua-
dratures introduisent des termes séculaires, sur lesquels on
devra surtout fixer 'attention en vue des chances de possible
contrdle astronomique.’
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