
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 34 (1935)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LE PROBLÈME DES DEUX CORPS EN RELATIVITÉ GÉNÉRALE

Autor: Levi-Civita, T.

DOI: https://doi.org/10.5169/seals-26607

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-26607
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


LE PROBLÈME DES DEUX CORPS EN RELATIVITÉ

GÉNÉRALE 1

PAR

T. Levi-Cixita (Rome).

Je me propose d'abord de préciser les circonstances sous

lesquelles, en admettant les principes de la Relativité générale,

on peut, comme en Mécanique ordinaire, ramener le problème
du mouvement de deux corps célestes à celui de deux points
(fictifs), remplaçant, chacun, un de ces corps. A une certaine

approximation, dite communément seconde, les résultats à

signaler sont les suivants:

1° On aboutit effectivement à un système différentiel du même
ordre que dans le cas classique.

2° On peut encore appliquer, toute réduction faite, la règle,
dite d'effacement, d'après laquelle chaque corps influe,
sur le mouvement du point fictif qui le remplace, seulement

par l'intermédiaire de certaines constantes globales (à peu
près masse et énergie potentielle newtonienne) : toutefois
avec une différence profonde sur la Mécanique ordinaire.
C'est que, d'après cette dernière, les points matériels
correspondent (comme, à tout autre égard, les liaisons sans

frottement) à un aspect limite du phénomène, dont on
peut (théoriquement du moins) s'approcher autant que
l'on veut, en supposant que les dimensions des corps
soient petites vis-à-vis de leur distance. Au contraire, en
Relativité, il s'agit d'approximations, parfaitement vala-

1 Conférence faite le 30 avril 1935 dans le cycle des Conférences internationales des
Sciences mathématiques, organisées par l'Université de G-enève.
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150 T. LE VI-CI VITA
bles pour le système planétaire, mais qui seraient dénuées
de sens asymptotiquement, c'est-à-dire pour des corps
dont les dimensions tendraient à s'évanouir, la masse
restant finie.

3° Une fois arrivé aux équations différentielles, il suffit de les

transformer, à la manière classique, pour reconnaître sans
calculs que les corrections relativistiques sont, au point
de vue qualitatif, de même espèce que celles découvertes

par Einstein et De Sitter dans le cas du centre fixe
(une des masses négligeable vis-à-vis de l'autre). Tout se

réduit donc à établir l'expression quantitative de ces

corrections, pour préparer la comparaison avec les

observations astronomiques %

Je développerai ailleurs ce dernier point.

1. — Généralités descriptives.

Pour se rendre compte de la nature mécanique et mathématique
du problème des deux corps en Relativité générale, il convient
peut-être de fixer au préalable l'aspect astronomique de la
question, indépendamment des lois mécaniques sur lesquelles
on va s'appuyer pour le poser mathématiquement. Il s'agit de

deux corps C0 et Cx, assez éloignés pour qu'on puisse, étant
donnée la petitesse des dimensions vis-à-vis des distances

mutuelles, se contenter de connaître, pour chacun d'eux, la
position à tout instant d'un seul point, par exemple, du centre
de gravité.

L'autre prémisse essentielle (qu'on devra ensuite traduire
mécaniquement suivant les principes de Newton ou d'Einstein)
est qu'on veut concentrer l'attention sur le phénomène pur,
tel qu'il se présente parfois en Astronomie, lorsque les corps
envisagés se trouvent en présence l'un de l'autre, mais sont,
ou se conçoivent, isolés des autres corps célestes, et soustraits
à toute influence étrangère qu'on puisse présumer capable
d'en modifier le mouvement.

Ceci posé, rappelons d'abord la mise en équation d'après les

principes newtoniens.



LE PROBLÈME DES DEUX CORPS 151

2. — Position classique du problème. — Corps éloignes.
Système différentiel usuel.

D'après Newton tout élément matériel, de masse dm, sollicité

par une force totale dm F, c'est-à-dire F par unité de masse,
possède par là même une accélération (vectorielle, rapportée
à des axes galiléens) a F. Faisons la somme des équations

dm a dm F

se rapportant aux différents éléments d'un corps (h 0, 1).

D'après la définition de son centre de gravité Ph1 le premier
membre n'est que le produit de la masse mh du corps par

d2Ph
l'accélération de Ph. Dans la somme des seconds membres,

les forces intérieures disparaissent, et ce qui reste est la
résultante Fh des forces extérieures au corps Ch, d'où les

équations vectorielles
d2 P

(A 0,1). (D

Cette élimination rigoureuse des forces intérieures, provenant
du principe de réaction, ne subsistera plus en Relativité, et il
faudra se contenter de quelque remplacement approché.

Jusqu'ici on a fait intervenir:

a) la loi du mouvement (a F) ;

b) le principe de réaction.
Il faut maintenant invoquer
c) la loi newtonienne de gravitation.

Elle permet d'expliciter les forces Fh, et conduit à un système
différentiel, intégrable par voie élémentaire, dès que les corps
sont assez éloignés. On veut dire par ceci que, en désignant par D
la plus grande dimension linéaire des corps Ch et par R la plus
petite des distances entre un point de C0 et un point de Ct, on
suppose que, si non D/R,

d) (D/R)2 soit tout à fait négligeable.
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On démontre, d'après cela, dans la théorie du potentiel
newtonien, que, r indiquant la distance P0Pi, / la constante de

gravitation, et

U f (2)

le potentiel (mutuel) des deux points matériels P0 et Px, la
résultante des forces extérieures s'exerçant sur Ch n'est que

Fh gradhU, (3)

le gradient avec l'indice h se rapportant au point Ph.
Les équations (1) prennent partant la forme

d2 P

mh~cÛTgradhU {h W

où les seconds membres ne dépendent que de la position des

deux points P0 et PL. C'est, peut-on dire (on n'a qu'à
projeter sur des axes fixes), le système différentiel classique,
définissant le mouvement absolu dans le problème des deux corps.
L'intégration du système remonte, elle aussi, à Newton. On

passe au mouvement relatif, et on arrive aux formules résolutives

à l'aide des intégrales des forces vives et des aires, etc.
Il faudra s'en souvenir pour y rattacher enfin, comme des

perturbations, les conséquences de la conception relativiste. Mais

il y a encore beaucoup de chemin à franchir; et, pour le moment,
il convient plutôt d'ajouter deux remarques suggérées par les

équations (4). La première se rapporte à la possibilité (principe
d'Hamilton) de remplacer, pour chaque point P^, l'équation
vectorielle (4) du mouvement par le principe variationnel

8/ (ï ^ + U*) 0 (5)

vh désignant la valeur absolue de la vitesse du point et Uh
le potentiel unitaire agissant sur Ph, qui s'écrit, d'après (2),

1 _i_ \
U„ — U f—-t1" mh

(h 0,1) (6)
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avec la convention évidente de regarder identiques les indices h

de même parité.
Dans (5) la variation doit être effectuée entre des limites

fixes, et peut être bornée aux coordonnées d'espace xlh(i~ 1,

2, 3) du point Ph, ou, indifféremment, s'étendre aussi à £, puisque
la contribution provenant de la variation de t s'annule
identiquement, dès qu'on égale à zéro la variation provenant des

coordonnées.

Il serait encore possible de réunir les deux formules varia-
tionnelles (5), correspondant àA 0etA l, dans une seule;
mais ceci, qui est très important en Mécanique classique pour
aboutir enfin à un système canonique unique, n'a pas d'intérêt
ici, une simplification analogue n'étant pas à prévoir en Relativité.

Il importe au contraire, au point de vue spéculatif, de fixer
un aspect limite de d). Tant que C0 et Cx sont des corps naturels,
et par là même doués d'une certaine extension, d) est nécessairement

une hypothèse approchée. Mais l'approximation est
d'autant plus grande que le rapport D/R est petit. A la limite,
pour le cas abstrait où les corps seraient réduits à de simples
points matériels, la condition d) se trouve remplie automatiquement.

Par conséquent la traduction du problème par les

équations différentielles (4) devient rigoureuse pour le cas limite
des points matériels.

Nous verrons bientôt qu'il n'en est pas de même en Relativité
générale. Dans son cadre on arrive aussi à des équations
différentielles ordinaires, ayant même degré d'approximation pour
le cas réel des corps célestes, mais on ne peut plus passer à la
limite, certains paramètres devenant infinis, pour des dimensions
évanouissants des corps C, si leurs masses restent finies.

Le point matériel, cette pierre angulaire de la Mécanique
classique, ne se laisse réaliser en Mécanique einsteinienne que
pour des masses infiniment petites.

3. — Potentiel newtonien d'un corps en un point intérieur.
Ordre de grandeur.

Avant d'aborder la mise en équation du problème des deux
corps, dans les mêmes circonstances intuitives, mais au point
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de vue de la Relativité générale, je voudrais comparer les valeurs
des potentiels newtoniens à l'intérieur et à l'extérieur des masses
attirantes. Il n'y a rien de nouveau, mais il convient de s'en
entretenir un petit moment pour plus de souplesse dans la suite.
Dans le schème newtonien, envisagé tout à l'heure, on a pu s'en

passer, puisque le principe de réaction b) permet d'éliminer
rigoureusement, pour chaque corps Ch, les forces intérieures. Au
contraire, en Relativité générale, il n'y a plus de principe de

réaction, ce qui fait prévoir en particulier qu'on devra renoncer
à l'ignorance préalable (évidemment très commode) des actions
intérieures. Dès lors, il faut les analyser de plus près, pour retenir
seulement les résidus inévitables. A ce point de vue, il convient
de reprendre nos deux corps C0 et Cu et, en fixant par exemple
l'attention sur Ch, d'en envisager aussi le potentiel intérieur.
Ce sera, en un point quelconque Q de Ch lui-même,

n \V dV
um ffwqVQÖ (7)

en désignant par fi/ la densité au point Q' de Ch et par <2t' un
élément de volume environnant. Le dénominateur r (Q, Q') est

au plus D, de sorte que

"ft|Q > • W

D'autre part le potentiel extérieur (provenant du corps Ch+l)
est, au point Ph, d'après d) et (6),

mh+1Uh=/-*±i. (9)

En employant le signe ^ pour indiquer que deux quantités
ont même ordre de grandeur, et, en rappelant la signification
de R, on pourra retenir

mh+i
U* ~/ "TT •

Par conséquent, quel que soit le point Q à l'intérieur de Ch,

on a

uhjQ>mh R_

' X
: I

'
D '
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Ceci suffit pour montrer qu'en général uh\Q, loin d'être négligeable
vis-à-vis de Uh, est beaucoup plus grand, à cause du facteur R/D,
ordinairement très grand dans le cas des corps célestes. On pourra
se permettre d'effacer tout bonnement uh\Q devant Uh, seulement

dans le cas évident a priori, où la masse mh du corps envisagé
serait infiniment petite (corps d'épreuve) ; ou du moins tellement

petite par rapport à mh+i qu'il devienne loisible de négliger le

produit des deux rapports mhfmh+{ et R/D. Quoi qu'il en soit,
on pourra reconnaître que, dans l'approximation, qui sera bien

précisée au n° 5, l'influence relativistique des potentiels intérieurs
n'est pas si profonde qu'on pourrait le croire à première vue, et
se laisse saisir sans calculs gênants.

4. — Rappel des deux principes fondamentaux
DE LA RELATIVITÉ GENERALE.

La conception dominante de la Relativité générale est
l'interdépendance entre les phénomènes — dans notre cas, simplement
l'existence et le mouvement des corps célestes — et la nature
géométrique de l'espace-temps où ils se passent. Quelles que
soient les coordonnées de temps et d'espace x°, x1, £2, ^3,

auxquelles on se rapporte, la forme du ds2 englobant la métrique à

quatre dimensions est

les gik étant des fonctions des x fournies par les circonstances
physiques à travers les célèbres équations de gravitation dues
à Einstein. C'est le principe gravitationnel.

L'autre loi (formulée par Einstein, avant même d'avoir reconnu
les liens des gik avec la matière et son mouvement) est le principe
géodésique. Il affirme que, dès qu'on a affaire à une métrique (10),
le mouvement de tout élément matériel est caractérisé par une
ligne géodésique propre de ce ds2. Sous l'aspect analytique c'est
comme dire que les mouvements propres (le long desquels ds2 > 0)
sont définis par le principe variationnel

3

ds2 V
^ gik dxl dxk

0

(10)

(11)
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La variation qui doit s'annuler se rapporte, dans l'image

géométrique quadridimensionnelle, au passage de la ligne horaire
dont il s'agit à toute autre ligne infiniment voisine, ayant mêmes
extrémités. Il faut donc attribuer, dans (11), aux quatre
coordonnées se0, x1, £2, £3, des accroissements infiniment petits, sauf
la condition de s'annuler aux extrémités. Mais on démontre 1

qu'on peut se passer de faire varier x°, puisque, de ce fait, le

premier membre de (11) subit une variation, qui s'annule en
conséquence des conditions provenant de la variation des trois
coordonnées d'espace x1, x2, x3. Ceci posé, attribuons à (11) une
forme équivalente, mais plus avantageuse pour les comparaisons
éventuelles avec l'ancienne mécanique. Pour cela il convient
avant tout de séparer, dans la somme

3

yi-hgihdxldxk '

les termes dont les deux indices i, /c, ou un seul, sont zéro. On a

ainsi de (10)

ds2
^

dx1
^

dx* dxk

1dxiï*~ go° + 2jjg0i^ö + 2j ~d^° '
1 1

et, en posant

/r> ds / doV \ i dx* dxk
~ \jgo° + Lig0Afaâ+ v

^

on peut écrire la loi du mouvement (11) sous la forme

S ÇjCdx0 o (110

en y regardant en surplus x° comme un paramètre non soumis à

variation.

1 Voir par exemple mes Fondamenti di meccanica relativistica (Bologna, Zanichelli
1928), p. 4.



LE PROBLÈME DES DEUX CORPS 157

5. — Specification des hypothèses permettant de

SIMPLIFIER LE CALCUL. RÈGLE PRATIQUE.

L'application des généralités qui précèdent à un problème
bien déterminé quelconque exige évidemment la combinaison
des deux principes, gravitationnel et géodésique, qui se traduisent
analytiquement dans l'intégration: d'équations aux dérivées

partielles le premier, d'équations différentielles ordinaires le

second; même le plus souvent enchevêtrées les unes aux autres.

Il y a un cas, qu'on peut appeler problème du centre fixe
(un seul corps à structure complètement symétrique et une
masse infiniment petite qui se meut dans son champ), où non
seulement les équations gravitationnelles sont indépendantes
des équations du mouvement mais où on a même pu les intégrer

rigoureusement et résoudre ensuite le problème jusqu'au
bout. C'est ce qui a réussi à Schwarzschild peu après que
Einstein en eut donné une solution approchée.

En concept, le problème des deux, ou même d'un nombre
quelconque de corps peut être envisagé comme un cas particulier
de la mécanique (newtonienne ou einsteinienne que ce soit) d'un
milieu continu, où l'on aurait affaire à une distribution de matière
remplissant, avec des vides éventuels, tout l'espace, cette matière
étant soumise à sa propre gravitation. A ce point de vue tout
revient, d'après Einstein, à caractériser, en fonction de

#°, x1, x2, x3, non seulement la métrique de l'espace-temps,
c'est-à-dire les dix coefficients gik du ds2, mais encore la congruence

des lignes horaires, décrites par les différents éléments de

matière (lignes de courant lorsqu'on considère séparément
l'espace et le temps). Une congruence est définie analytiquement

par les paramètres X1 (x°, x1, x2, x3) (i 0, 1, 2, 3), ou
bien par les moments \ de ses lignes. Ces quatre nouvelles
inconnues se réduisent d'ailleurs à trois, puisqu'elles sont liées
aux g par l'identité

3 3 3

0 • " 0
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Si l'on introduit en outre la densité [jl(^0, x1, x2, x3) de la
distribution de la matière à un instant donné x°, et la constante
universelle c (vitesse de la lumière dans le vide), \i/c2 s

représentera, d'après la proportionnalité entre matière et énergie, la
densité de l'énergie, et le tenseur énergétique aura les composantes

Ti^ (fr * - 0, 1, 2, 3)

en négligeant tout effort intérieur, c'est-à-dire en supposant que
la matière est désagrégée. Ces Tik sont les seconds membres des

10 équations gravitationnelles, qui renferment de la sorte
14 inconnues: les dix g, trois des X et s.

Pour que le problème devienne déterminé on n'a qu'à invoquer
le principe géodésique, c'est-à-dire à associer aux 10 équations
gravitationnelles les 4 équations

3

V_x.;. x3' 0 (i 0, 1, 2, 3)

0
3

(Xi|j dérivées covariantes par rapport au ds2), exprimant que
toute ligne horaire est géodésique. Cette position du problème
devrait être illustrée par beaucoup de remarques; mais je dois

forcément glisser, en me bornant à avertir qu'un tel point de vue
a été effectivement utilisé sous un aspect particulier, très important.

Je fais allusion aux recherches concernant l'univers en

expansion dynamique de Friedman — Lemaître — Einstein —
Eddington — De Sitter — Tolman, etc., où tout est symétrique
par rapport à un centre. Les variables indépendantes se réduisent
alors à deux, et les équations aux dérivées partielles essentiellement

à deux, avec autant d'inconnues 1. Dans ces conditions,
11 a été possible, comme pour le cas Einstein-Schwarzschild,
rappelé ci-dessus, d'intégrer rigoureusement.

i Voir notamment, pour la position mathématique du problème générai de l'Univers
en expansion :

G. C. McVittie, The mass-particle in an expanding universe, Monthly notices of the

R. A. S., vol. 93, 1933, pp. 325-339;
J. L. Synge, On the expansion or contraction of a symmetrical cloud under the

influence of gravity, Proc. of the National Academy of Sciences, vol. 20, 1934, pp. 635-640 ;

et trois notes de M. C. Tolotti dans les Rendiconti de VAcadémie des L.incei, vol. XXI,
1935, pp. 326-331, 488-492, 571-575.
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Il ne me paraît pas probable qu'une chance pareille puisse

se présenter aux mathématiciens de notre époque dans l'étude
du véritable problème des deux corps ou de quelque aspect
réel du problème de plusieurs corps. Faute de mieux, on ne

peut que tâcher de se procurer en attendant des solutions
suffisamment approchées pour bien fixer toutes les inégalités qui
peuvent être, maintenant, ou dans quelques siècles, susceptibles
de vérification par les observations. C'est ce qui a été fait,
depuis une vingtaine d'années, par M. Droste 1, et, d'une
manière plus détaillée, par le regretté De Sitter 2

pour le cas

des n corps, mais en négligeant systématiquement les potentiels
intérieurs. Ceci est légitime — sans doute les auteurs cités ne
l'ont pas ignoré, mais c'est M. Marcel Brillouin 3 qui l'a fait
remarquer explicitement — tant qu'il s'agit de former le ds2 et
les équations du mouvement d'un corps petit, dans le champ
de masses en mouvement donné; mais il n'en est plus de même

lorsqu'il s'agit de caractériser le mouvement d'un système
continu, même dans le cas typique de deux corps éloignés, de

masses comparables. La raison essentielle en a été indiquée
au n° 3, car c'est bien le potentiel newtonien qui joue un rôle
prépondérant, aussi en tenant compte de la correction rela-
tiviste, comme on sait, et comme on va d'ailleurs le reconnaître

dans nos formules.
Ayant en vue le problème des deux corps, il y aura lieu de

reprendre, pour n 2, la méthode approchée de Droste-
De Sitter4, mais sans effacer a priori ce qui provient, pour
chacun des deux corps, de ce corps lui-même; au contraire, en
tâchant d'en saisir les conséquences irréductibles, et en même

temps évitant les complications inessentielles à l'aide de quelques
hypothèses qualitatives complémentaires, à côté de l'approximation

principale, provenant de la petitesse des vitesses des

1 The field of n moving centres in Einstein's theory of gravitation, Ah. van Vet. te
Amsterdam, Vol. XIX, 1916, pp. 447-455.

2 On Einstein's theory of gravitation and its astronomical consequences, Monthly
Notices of the R.A.S., Vol. LXVII, 1916, pp. 155-184.

3 Gravitation einsteinienne. Statique. Points singuliers. Le point matériel, Comptes
rendus, T. 175, 1922, pp. 1008-1012.

4 Voir notamment J. Chazy, La théorie de la relativité et la mécanique céleste, T. II
(Paris, Gauthier-Villars, 1930), chap. X et XI.
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corps célestes vis-à-vis de celle de la lumière, employée par
Einstein et par tous ses continuateurs.

Il importe évidemment de bien préciser les considérations
préalables d'ordre de grandeur sous lesquelles nous allons
aborder, simplifier et résoudre le problème.

En premier lieu, comme on l'a dit dès le début, on se contente
d'arriver, dans les équations différentielles du mouvement, à

la seconde approximation. Rappelons ce qu'on entend par ceci.
Dans les problèmes qui nous intéressent, l'ordre de grandeur

des quantités mécaniques, notamment de l'énergie cinétique et

potentielle, est celui de notre système planétaire. Pour les

mouvements de ce système, e2 (carré de la vitesse, c'est-à-dire
double de l'énergie cinétique réduite à l'unité de masse) est
très petit vis-à-vis de c2, carré de la vitesse de la lumière, et
il en est de même pour la valeur V du potentiel newtonien du

système, soit à l'extérieur, soit même à l'intérieur du Soleil,
des planètes, ou des satellites. L'ordre de grandeur des rapports

p2 Y
P2 - <13>

est KL8 dans le cas de la Terre et pas trop différent pour les

autres corps du système solaire.
On dira du premier ordre les termes ayant cet ordre de grandeur.

Et la première source de simplification sera:

Ax) Se contenter du premier ordre, en négligeant tout terme d'ordre

supérieur.

(Je choisis la lettre A dans cette spécification d'hypothèses,

parce que A est l'initiale soit d'« approximation », soit
d'« admission ».) Bien entendu il faudra, comme toujours dans

ce type de réductions, procéder cum grano salis. On aura bien
le droit, dans une formule quelconque, de négliger ß3, ou ßy, etc.
devant l'unité; au contraire, si par hasard, dans une relation
rigoureuse, il n'y a pas de termes d'ordre zéro (comparables à

l'unité), mais que les termes prépondérants soient d'un certain
ordre minimum v, il faudra retenir, avec eux, tout ce qui ne

dépasse pas l'ordre v + 1. L'advertance est bien banale, mais

elle doit rester présente à l'esprit au cours des calculs.
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D'autre part, dans le but de simplifier autant que possible, il
est naturellement avantageux de se rapporter à des coordonnées

appropriées. Dans les cas qui nous intéressent ici, le ds2 reste
très proche du ds2Q de la relativité restreinte (absence de matière
et de toute autre circonstance physique influant sur la métrique
de l'espace-temps). Un tel ds*f rapporté au temps römerien x°

et, où t désigne le temps ordinaire) et à des coordonnées
cartésiennes x1, x2, x3, a la forme pseudo-euclidienne

dsl dx°2 — (dxl2 + dx22 + dx*2) (14)

On doit donc admettre — ce n'est au fond qu'un aspect
préliminaire de l'approximation Ax) — que les métriques (10)
se rapportant aux questions susdites comportent des coordonnées
-00 oc oc oc 3 (qui pourraient être mieux caractérisées sous l'aspect
géométrique) très proches de l'espèce pseudo-cartésienne, dans

ce sens que les coefficients gik diffèrent des valeurs gik ± 1 ou zéro)
correspondant à (14) par des quantités

— 2Vik

du premier ordre au moins; les yoi étant même 4'ordre non
inférieur 4 3/2.

Ce n'est pas encore assez pour aboutir enfin à un nombre fini
d'équations différentielles ordinaires. Il en serait d'ailleurs de
même dans la position classique du problème des deux corps,
puisque chacun de leurs centres de gravité ressent les attractions

de tout élément de l'autre corps Ch+1, et on peut remplacer
ces dernières par une force dépendant uniquement de la position
de Ph+1, seulement en introduisant quelque hypothèse
supplémentaire, notamment l'hypothèse d) du n° 2. Comme la Mécanique

ordinaire n'est qu'un cas limite de la Mécanique
einsteinienne, il est bien clair que, pour atteindre le même but, il
faudra, aussi en Relativité générale, se poser (à fort peu près)
dans les mêmes conditions, et par conséquent:

A2) Négliger toute quantité de Vordre (D/R)2.
Les approximations A±) et A2) sont assurément le fondement

du calcul; mais elles ne suffisent pas à elles seules pour atteindre
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le but. Je les ai complétées, en admettant au préalable deux
autres circonstances, qui sont d'ailleurs des plus raisonnables
au point de vue astronomique. Je suppose ultérieurement:

A3) Le mouvement de chacun des corps se réduit grossièrement à

une translation.

Voici le sens à attribuer à l'adverbe « grossièrement ». Partons
de la définition de mouvement de translation d'un corps Ch.

C'est un mouvement dans lequel les points du corps sont, à un
instant quelconque, animés tous d'une même vitesse vectorielle,
disons de la vitesse vh du centre de gravité T?h. Pratiquement
on pourra naturellement regarder comme translation tout
mouvement pour lequel, vis-à-vis de vh (longueur du vecteur vj,
est négligeable la valeur absolue de la différence vectorielle Av
entre les vitesses au même instant de deux points quelconques

de Gh; donc le rapport
^ Av ^

çh

Nous ne prétendons pas que ce rapport soit négligeable par
lui-même, comme on l'a supposé pour (D/R)2 ou ß3, mais seulement

qu'il ne dépasse jamais quelques centièmes (ordre de grandeur

10~2), de manière que l'on puisse omettre, comme quantité
d'ordre supérieur au premier, tout produit du type

galAV ,,iAZl etc.

C'est bien ce qui arrive pour les planètes. D'abord leurs
déformations sont négligeables, et elles se comportent par conséquent
comme des corps rigides. A la vérité leur mouvement n'est pas
purement translatoire ; il se compose de translation et de rotation.
Toutefois, pour un point quelconque du corps, la vitesse due à

la rotation atteint seulement quelques centièmes de la vitesse

commune de translation. Par exemple, dans le cas de la Terre,
la vitesse due à la rotation (un tour par jour) a la valeur maximum
d'un demi kilomètre par seconde; tandis que la vitesse de translation

est 30 km./sec.; donc

[EïÀ no 2 • -i =r 0,03
Vu 60

C'est l'ordre de grandeur pour notre système planétaire.
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Ceci posé, remarquons qu'un mouvement rigoureusement de

translation est en particulier rigoureusement rigide; on prévoit
partant qu'un mouvement peu différent d'une translation soit

par là même peu différent d'un mouvement rigide. C'est ce qui
arrive en effet, pourvu qu'on ajoute quelque petite spécification

à la condition cinématique concernant
^ ^

(h - - 0,1). Il suffit,

par exemple, en envisageant la vitesse v d'un point quelconque Q

du corps Ch comme fonction de sa position initiale M et du

temps £, de supposer convenablement limitées les dérivées du

déplacement
t

Q — M | v (M, i) dt
0

par rapport aux coordonnées de M. Il serait aisé de préciser,
mais je ne puis pas m'arrêter sur ces détails. Il me faut au
contraire épuiser les préliminaires en quelques mots, pour
esquisser ensuite la solution du problème.

La dernière admission se rapporte aux centres de gravité P0

et Plf qui doivent être, à fort peu près, centres de gravitation
des corps respectifs. Rappelons la définition de centre de gravitation

et expliquons Y à peu près. On sait1 — et on le reconnaît
d'ailleurs immédiatement par la considération du maximum du
potentiel intérieur uhjQ (n° 3) — qu'il existe au moins un point G^
où uh atteint son maximum, et où par conséquent les dérivées
de uh s'annulent, et avec elles l'attraction exercée par le corps
Ch sur le point Gh. Ce centre de gravitation G^ ne coïncide pas
nécessairement avec le centre de gravité Ph. C'est ce qui arrive
certainement si le corps C^ possède un centre de symétrie, mais
en général il n'en est rien, et alors l'attraction newtonienne de Ch

sur son centre de gravité P^ n'est pas nulle. Or il est très
avantageux (je crois même indispensable pour notre but) de pouvoir
calculer la correction einsteinienne comme si la dite attraction
sur Ph était rigoureusement nulle. Et c'est justement pour cela
qu'il convient d'introduire la quatrième et dernière admission:

1 Voir une note de M. Fenici dans les Rendicönti de l'Académie des Lincei
Vol. XXI, 1935, pp. 493-498.
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A4) Pour chacun des deux corps le centre de gravité n'est pas
trop éloigné du (ou d'un) centre de gravitation Gh; plus
précisément, la distance Ph Gh est assez petite pour que,
en Ph, l'attraction gh du corps Ch (nulle rigoureusement
en Gh) soit une fraction assez petite (ici encore quelques
centièmes au plus) de l'attraction exercée par l'autre
corps.

Alors il est permis de négliger, comme étant d'ordre supérieur
au premier, tout terme du type

ß2 l~, T ,etc.(A =0,1).
Fh Fh

Remarque. — Il n'est pas inutile d'avertir que, à cause de A3),
dans l'ordre d'approximation adopté, il suffit que A4) soit vérifiée
à l'instant initial. Elle reste alors automatiquement satisfaite

pour t > 0. En effet, d'après A3), nos corps se comportent
sensiblement comme des solides, et alors, à la même échelle, P^ et Gh

gardent à tout instant les mêmes positions relatives dans le corps
respectif. Il s'en suit en particulier que le centre de gravité Ph

est substantiel, c'est-à-dire affecte toujours la même particule
matérielle.

Règle pratique. — En vue du calcul effectif, il y a lieu
de retenir que, dans n'importe quelle relation, Vévaluation des

termes correctifs (généralement d'ordre 1 ; ou, exceptionnellement,
d'ordre v + 1, si par hasard l'ordre minimum est v) se fait comme
si les corps C0, Cx étaient rigoureusement indéformables, animés,
chacun pour son compte, de simple translation, et chacun exerçant

une attraction nulle sur son centre de gravité.

6. — Expression du ds2 pour le champ de deux corps
dh

EN MOUVEMENT DONNÉ L'OPERATEUR ^
Il faut expliciter les coefficients gife, qui, comme on l'a rappelé

au numéro précédent, sont nécessairement de la forme

°ïk &ik R5)
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où les g°ik sont les coefficients (± 1,0) de (14) et les yik des

petites corrections à regarder comme du premier ordre au plus.
Il est bien connu, et d'ailleurs aisé à vérifier, que, pour tenir

compte, dans les équations du mouvement, des termes d'ordre
immédiatement supérieur à l'approximation newtonienne, il
suffit de calculer la partie prépondérante d'ordre minimum de

tous les yift, excepté y00, pour lequel il faut expliciter non
seulement le premier ordre, mais aussi le second.

Nous désignerons par x\ (h 0, 1; i — 1, 2, 3) les
coordonnées des centres de gravité Ph; par ßh[i les composantes
dxlh

de leurs vitesses römeriennes, qui ne sont pas autre chose

que des vitesses ordinaires divisées par c; ß^ représentera en
conformité la valeur absolue de ladite vitesse vectorielle
römerienne ßh.

D'autre part, V étant le potentiel newtonien des deux corps,
rapporté, comme d'habitude, à l'unité de masse du point attiré,
nous poserons

Y
Y- (16)

Naturellement y est la somme (divisée par c2) de deux potentiels,

l'un provenant de C0 et l'autre de Cv En envisageant en
particulier les déterminations de y aux points Ph, nous poserons

tp, rh + i m
où yh provient de l'autre corps CÄ+1, et, d'après Aa) et (2),
se réduit à

Yft -i—U 4 (18)n c mh c r

tandis que, d'après (7),

f r ii'dv
wh C2 j l,(phtQ,)

(19)

Ch

est le potentiel newtonien au point Ph du corps Ch lui-même,
divisé par c2.

L'Enseignement mathém., 34me année, 1935. H



166 T. LEV I-CIV ITA

Il importe de remarquer que ces tih jouent le rôle de constantes,
puisqu'elles sont effectivement telles toutes les fois qu'on peut
traiter comme invariables les corps C^, ce qui arrive en particulier
dans l'application de la règle pratique du numéro précédent.

L'intégration approchée des équations gravitationnelles, que
je ne puis pas même ébaucher, donne, pour un point
quelconque P,

Yifc=»tfeïP (i, k — 1,2, 3) (20a)

où l'on entend par §ife les symboles de Kronecker, c'est-à-dire
1 pour i Zc, 0 pour i k.

Ensuite, en supposant que P appartient au corps Gh, et même

qu'il coïncide initialement (en position et vitesse) avec le centre
de gravité Ph1 on constate, moyennant les hypothèses A2), A3)
et la règle pratique qui en découle, que, dans tout terme d'ordre
supérieur au premier, on peut confondre P avec Ph; et alors
on trouve:

Toi — Yio " 2®hßh[i ^T/iß/i+i|i Ù ^ L 2, 3) (20b)

Too Tp + % (20c)

où yh, ont les significations (18), (19) et où Qh est d'ordre 2.

On a précisément

• 0ft=-TpÂ + ^-^+ (21)

+ 2ToTi + 2Wh$h + 2T/ißh+l + 2Th(Wh + ylh+1) & ~ °d) >

en indiquant pour abréger par r\h les constantes numériques que
voici

• <»
CÄ 0h

dh
et par ^ une dérivation temporelle dépendant exclusivement du

mouvement du point Ph, où l'on doit par conséquent regarder
comme constant tout ce qui se rapporte à Ph+i.
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Commençons maintenant à remplacer les dans

3ds2=-- gikdxldxk
0

lk

par leurs valeurs (15). On a
3

ds2 ds20 ~ 2V yikdxldxk
0ik

d'où, si l'on tient compte des (20),
3

ds2 =-- dx°2{ 1 — 2 Yp — 20J — (1 + 2 Yp) ^jdx1 +
1

*

3

+ 8dx° 2. imh ßftji + Yh$h+l\ùdxl '

1
1

Divisons par dx°2 et écrivons ß2 au lieu de

en remarquant ici encore que, dans les termes d'ordre supérieur,

on peut remplacer ~ Par ßh|i> el Yp Par Ypä- ^ vient

(è)2 =1 -2(iß2 + Tp)~~2Yp*+ 8®hß*+ 8Yh-°x -1 ~20h '

Le terme en parenthèses est du premier ordre, les trois suivants
du second ordre, et le signe X entre les deux vecteurs ß0 et ß1

signifie produit scalaire. On en tire, au troisième ordre près,

è 1 ~ (!ß2 + yp) ~ K^ß*+ Yp»)_

ÏPÂ ßft, + 4 Wh ß/t + 4Yhßo x ßl fyt > (23)

ce qui est, d'après (12), l'expression de la fonction lagrangienne
définissant le mouvement du point P : Ph peut y être traité
comme identique à P. On peut, sans altérer les équations
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différentielles du mouvement, omettre la constante additive 1,

et en surplus multiplier par une constante arbitraire —

dont on disposera avantageusement un peu plus avant. Notre
fonction lagrangienne sera donc

(»' — ihW
ce qui, d'après (23), peut s'écrire

h > (24)

où, en envisageant spécifiquement le point Ph1

K jßl+ TP, (25)

constitue la partie prépondérante du premier ordre, tandis que

Ah 2+ Yvh ß/t 4 (,)h ß/i 4ïh£o x Él + ^h. ' (26)

comprenant, comme on le vérifie aisément, tous les autres termes,
est du second ordre.

7. — Fonctions lagrangiennes définissant le mouvement
DES CENTRES DE GRAVITÉ.

Le centre de gravité d'un corps donné est par sa définition
un point fictif, dépendant de la distribution des masses dans le

corps à l'instant envisagé. Il n'a pas par conséquent caractère
nécessairement substantiel, c'est-à-dire qu'en général il n'adhère

pas, pendant un mouvement du corps, à une particule matérielle
bien déterminée. Ceci arrive parfois, notamment pour les corps
solides et pour une classe de mouvements de systèmes continus
remplissant une certaine condition (égalité de deux vecteurs à

tout instant1); non en tout cas.
Ceci posé, reprenons les fonctions lagrangiennes £'h(h ~ 0,1) du

i Voir ma note: Movimenti di un sistema continuo che rispettano Finvariabilità
sostanziale del baricentro, Acta Pontificiae Academiae Scientiarum, T. LX XXVIII,
1935, pp. 151-155.
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numéro précédent. A la suite de nos admissions et du postulat
géodésique s'appliquant aux éléments matériels, elles définissent,
à vrai dire, les accélérations (non précisément des centres de

gravité Ph), mais de deux points matériels, l'un appartenant à

C0 et l'autre à Cl5 coïncidant à l'instant envisagé avec P0, Px et

possédant à cet instant leur même vitesse. A notre ordre
d'approximation, il serait parfaitement équivalent de caractériser
le mouvement des points (encore plus fictifs) P0\ P*, possédant

à un instant quelconque les accélérations susdites et
coïncidant à l'instant initial avec P0, P1. Mais les équations,
définissant le mouvement des points auxiliaires P^, qu'on tirerait
des fonctions lagrangiennes .Èh, présentent l'inconvénient essentiel

(provenant des y-ph dans les termes du premier ordre) que

tout n'y est pas encore réduit ni réductible à dépendre exclusivement

des deux points Po et P*. On parviendra toutefois
à surmonter cette difficulté aussi, en passant justement aux
centres de gravité. Nous allons voir en effet que, dans notre
approximation, la connaissance des permet d'aboutir sans
calculs aux véritables fonctions lagrangiennes iDh des centres
de gravité.

Pour s'en rendre compte, il convient d'abord de rappeler une
circonstance fondamentale dans la Théorie de la Relativité
générale: c'est que toutes ses formules et conclusions redonnent
en première approximation les lois classiques.

En particulier, si l'on fixe l'attention sur la fonction lagran-
gienne Êh DVh -f- A^ définissant (dans la manière spécifiée plus
haut) le mouvement des points P^, on y reconnaît immédiatement

que Dl'h est le terme newtonien (puisqu'on en tirerait, au

facteur constant — près, les équations du mouvement newtonien),
tandis que Ah constitue la correction einsteinienne, c'est-à-dire
le terme complémentaire donnant lieu à cette correction pour le
mouvement des points P*h. D'une manière plus précise, il nous
faudra retenir que Ah donne lieu justement aux corrections
einsteiniennes des composantes, divisées par c2, de l'accélération
newtonienne de P*h.

Or les points fictifs P^ sont en quelque sorte intermédiaires
entre des points substantiels de nos corps et leurs centres de
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gravité. Si ces corps étaient animés d'une simple translation,
Pft et P*h coïncideraient à tout instant, possédant dès lors la
même Ah. L'admission A3) du n° 5, que les mouvements des deux

corps se réduisent grossièrement à des translations, implique que
les restent sensiblement (c'est-à-dire à des termes près d'ordre
supérieur au second) les mêmes qu'il s'agisse des P*h ou des centres
de gravité Vh. Notre but étant de calculer les fonctions lagran-
giennes L\ de ces derniers, nous nous trouvons, d'après ce qu'on
vient de dire, dans la situation favorable d'en connaître déjà
l'expression explicite A^ de la correction einsteinienne. Il ne

nous reste partant que la tâche bien aisée d'assigner le terme
newtonien dlh de

Pour cela, il suffit de reprendre les équations newtoniennes
[(4) du n° 2], définissant le mouvement des centres de gravité P0

et P2. Elles admettent, comme il résulte de (5), la fonction
lagrangienne

1 2 TT
2Çh + Uh '

qui peut être multipliée par une constante arbitraire, par exemple
l

par — sans altérer les équations différentielles. Il est ainsi loisible

de regarder, à l'approximation newtonienne, comme fonction
lagrangienne du mouvement du centre de gravité Ph

Ajoutons que, dans chacun des trois binômes lagrangiens
qu'on tire de Dth, figure (isolément et avec le coefficient 1) la
composante correspondante de l'accélération de P^, divisé par c2,

comme il arrivait pour dlh à l'égard de P^. C'est tout ce qu'il faut

pour conclure que la fonction lagrangienne du mouvement du

centre de gravité Ph est

A 9lh + A'h (24')

h. '2 ßfi + Th (25')

V'4 9+ Ah (24')

OÙ

9lh + Th, (25')
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Ah a Vexpression (26), avec la valeur (21) de 0/n et est une

constante dont on peut encore disposer. On va le faire dans un
moment.

8. — Artifice permettant de sauver le -principe
d'effacement en seconde approximation — Modification

des masses.

Ce qui provient, pour chaque corps, des actions qui lui sont
intérieures figure dans nos fonctions lagrangiennes (24') uniquement

par l'intermédiaire des quatre constantes ùh et rlh, définies

par les formules (19) et (22). Mettons ces constantes en évidence,
en écrivant, d'après (17), yh + wh au lieu de yp dans les

expressions (21), (25) et (26) de 0/n 0lh et A'h. Il vient

\ ~~ mh + 2thrih+i + 2 (7)h ß/i ~ yh + 2ïoïi -t- 2 yh ^h î +

i"lh i 4-f-ir
2 & (Lr{)~

Ah — f m~h —
2 mh ß/i + Th ((7)h + Hi+l) + Ah ' <26')

où l'on a posé

Ah l (f ß/t + ïh) + yh ß/i — 4T„ß0 x ß, —

9 9 dftJL- i ^
— y h +2TOTi + 2ïftP/i+i + 2

- • (27)
-6 dx°

Il s'en suit, en revenant à (24'), (25'), et en y remplaçant A'h

par sa valeur (26'),

— 2Wh + If1 — |®h) ßh + (l + <7>h + 2vî,l+1)yh + Ah

(28)

Maintenant attribuons à la constante t_h la valeur 1 — 1 w

et divisons, par en omettant la constante purement additive
— A. des termes négligeables près, il vient

ßh + (i + I®/! + 2^+i)yft + Ah
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Ceci posé, un petit artifice, dont l'idée générale paraît remonter

à M. Droste \ permet, à notre ordre d'approximation, de faire
disparaître le coefficient de yh. On n'a qu'à remplacer les masses
réelles m0, m1 de nos deux corps par des masses fictives

mh mh{^ + 2 mh+i + 2rlhj (h °' » (29)

qui peuvent également s'écrire

mh+l mh+1 (* + f mh+ 2%+1) (Ä 0, 1) (29')

Alors, en posant, conformément à (18),

T h (^ +| wh+ 2 Ih+ljYh

l'expression précédente de Ch prend la forme

A 2 ^ + + '

Dans le terme figurent encore les yh; mais, comme Ah est
du second ordre, on peut y remplacer sans erreur appréciable
les yh par yh.

Après cela il n'y a qu'à supprimer les astérisques, en reprenant
la désignation mh pour les masses gravitationnelles des deux

corps, telles qu'elles sont définies par (29) en fonction des masses

intrinsèques. Il est bien justifié d'appeler gravitationnelles ces

deux constantes, qui jouent absolument le même rôle des masses

ordinaires, dans le problème relativiste des deux corps, en seconde

approximation. Pour notre but c'est tout ce qu'il faut. Mais
il convient de remarquer que ces deux constantes, tout en se

comportant, même en seconde approximation, comme des masses

pour le problème des deux corps, ont perdu le caractère intrinsèque
que leur attribuait à tout égard la mécanique classique. Vis-à-vis
d'autres questions, il faudrait sans doute apporter des petites
modifications différentes, si tant est toutefois qu'on puisse encore

sauver le principe d'effacement par des simples corrections des

masses gravitationnelles. On doit donc, pour éviter des malen-

i Loco citato au n° 5, voir page 454.
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tendus, se représenter les masses définies par (29) (et désignées

ensuite, elles aussi, par m0l en supprimant l'astérisque)

comme des constantes caractéristiques du problème, possédant

chacune, seulement à peu près, la propriété intrinsèque que la

mécanique classique attache à la notion de masse.

9. — Les équations différentielles du problème.

Par tout ce qui précède il est acquis que le mouvement des

points Ph, centres de gravité des deux corps, est défini par les

fonctions lagrangiennes respectives

eh dih + a, + Ah) (i)

De plus Ah, d'après (27) et (25'), s'écrit

A, j9l%h + 7 Wl- + ^ + 2ßft+1 - 4ßh X ßh+l) +

— I
'

2 h+i

A* - (»I

+ ("I

étant posé, pour abréger,

de sorte que les constantes Z0, l± sont des (petites) longueurs.
Il s'agirait évidemment d'expliciter les six équations

d Ô à L h

dx° ö ö
[h 0, 1 ; i s* 1, 2, 3) (III)

définissant le mouvement (absolu) des deux corps, pour passer
ensuite à leur intégration dûment illustrée au point de vue
géométrique et astronomique. Mais il n'est pas possible de le faire
dans le cadre de cette conférence. Je dois donc me borner à

quelques indications de méthode et de résultats.
Je viens de dire que les équations (III) définissent le mouvement

absolu des points P0, P1# Cet appellatif « absolu » doit être
interprété d'après le n° 5, en se rapportant par la pensée aux
préliminaires de l'admission Ax). On a introduit alors des va-
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riables xl(i 0, 1, 2, 3) très proches d'un quadruple quasi-cartésien,

ou de Lorentz: exactement lorentzien serait impossible,
puisque l'espace-temps n'est plus quasi-euclidien. Mouvement
absolu est tout mouvement dans un tel espace (x1, x2, x3), la
variable temporelle étant x°. Pour fixer les xl, on peut toutefois
partir d'un quadruple lorentzien quelconque. On profitera (comme
en mécanique ordinaire) de cette indétermination préalable pour
supposer que le centre de gravité G du système des deux corps
soit fixe, bien entendu en première approximation, ce qui signifie
que, si l'on introduit la vitesse absolue a (vectorielle et röme-
rienne) de G, moyennant la position

m a w0ß0 + m1ß1 (31)

OÙ

m — m0 + m1 (32)

la valeur absolue de a est nulle en première approximation, et

précisément de l'ordre de ß3„ Il s'en suit que dans les Ah il est

permis de négliger oc sans plus, c'ést-à-dire de retenir

m0ß0 + miß± 0 (33)

Comme dans l'exposé traditionnel du problème des deux corps,
il convient d'envisager d'abord le mouvement relatif, en étudiant,
comme fonction de x°, les différences

xi 4 - xl (34)

et leurs dérivées par rapport à x°, qui sont les composantes du
vecteur

ß ßi — ß0 » <35)

vitesse (römerienne) de Pj par rapport à P0.

En introduisant aussi les rapports numériques

~ \0, 1) (36)

on tire de (33) et (35)

ßo=* — Mß ßt x0ß (37)

ou, si l'on préfère, en une seule formule,

ßh Ä (-1)h+1^+lP (A «=* 0, — 1) (37')
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ce qui permet de faire disparaître les vitesses absolues dans

tout terme d'ordre supérieur. Bien entendu, il faut faire attention,
lorsqu'il s'agit d'expressions telles que A0, qu'on doit, pour
expliciter les équations du mouvement, soumettre encore à la
dérivation partielle. Evidemment, dans ces cas, les substitutions
susdites peuvent être effectuées seulement après dérivation.

Une fois formées correctement les équations lagrangiennes
provenant des on en tire, par simple soustraction des formules

homologues, les équations du mouvement relatif, contenant
exclusivement les trois inconnues x1, x2, x3 (et leurs dérivées).
Ces équations — on peut le prévoir a priori et le confirmer par
la simple inspection des (I) — sont bien celles de Newton avec
force perturbatrice einsteinienne. L'analyse de cette dernière, en
s'aidant d'une propriété remarquable d'équivalence mécanique,
conduit à l'envisager comme une force centrale, qui produit
Yeffet bien connu du déplacement du périhélie. On peut espérer

que l'expression quantitative de ce déplacement soit susceptible
de vérification astronomique par les observations des étoiles
doubles. Il s'agirait notamment de déceler la correction (vis-à-
vis de la valeur einsteinienne) fournie par le calcul, lorsque la
masse de la planète n'est plus négligeable par rapport à la
masse du corps central.

Le résultat est, comme on le voit, très simple ; les calculs sont
élémentaires, mais exigent d'assez longs développements. Je me

propose d'en rendre compte ailleurs. Ici je voudrais encore ajouter
que, une fois intégrées les équations du mouvement relatif, on
peut revenir à la vitesse absolue du centre de gravité G, qui est
nulle seulement en première approximation, et dont il est bien
intéressant de déterminer la seconde. On parvient de la sorte à

reconnaître que le centre de gravité subit des petites fluctuations
par rapport au repère des x1, x2, x3, repère qui correspond à un
trièdre galiléen de l'ancienne Mécanique. Ces fluctuations se
laissent évaluer par de simples quadratures. De telles
quadratures introduisent des termes séculaires, sur lesquels on
devra surtout fixer l'attention en vue des chances de possible
contrôle astronomique.
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