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III. — Le théorème de Gödel concernant les démonstrations
de non-contradiction.

A la fin de la conférence précédente, il a été dit qu'on n'a pas
réussi à démontrer, par la méthode se rattachant à l'axiome du s,

la non-contradiction de la théorie axiomatique des nombres (à

moins qu'on ne fasse des restrictions). Plus généralement, il se

trouve qu'aucune des méthodes établies dans le cadre des

raisonnements élémentaires combinatoires, prescrit par le

programme primordial de la métamathématique de M. Hilbert,
ne nous livre cette démonstration cherchée de non-contradiction.

Ce n'est pas faute d'une découverte, que nous nous trouvons
dans cette situation. Un théorème de M. Gödel nous montre,
au contraire (comme je l'ai déjà mentionné), qu'il y a ici un
obstacle essentiel. Le raisonnement de M. Gödel, qui conduit à

ce théorème, est inspiré de l'idée qui conduit à l'antinomie de

Richard.
Les divers énoncés de cette antinomie forment un deuxième

groupe de paradoxes se distinguant du paradoxe de Russell-
Zermelo.

Il y a une correspondance entre les deux sortes de paradoxes
et deux conceptions philosophiques: celle de Platon du monde
des idées et celle de Leibniz d'une langue universelle scientifique.

Le paradoxe de Russell-Zermelo exclut le platonisme absolu,
le paradoxe de Richard exclut la réalisation parfaite de l'idée
de Leibniz ; son sens est environ le suivant : Chaque langue exacte
devient sujet à une considération mathématique de ses moyens
d'expression. Les éléments dont se constituent les expressions
de la langue et les formes de leurs combinaisons engendrent un
formalisme dénombrable, et la pensée mathématique dépasse ce
formalisme. De là il dérive qu'en joignant les exigences d'une
langue exacte à celles d'une langue universelle on rencontre des

contradictions. D'autre part, la langue usuelle semble suffire aux
deux exigences pourvu qu'on s'en serve d'une manière appropriée.

C'est ainsi qu'apparaît le caractère suggestif de
l'antinomie.

Dans les formes originaires de cette antinomie, il s'agit
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toujours des possibilités de définitions. M. Finsler a remarqué
qu'on peut transformer l'antinomie de Richard en une autre
concernant les démonstrations. Pour cette antinomie modifiée
comme pour l'antinomie primitive de Richard, il est encore
possible de présenter certaines objections plus ou moins subtiles.
Aussi c'était une opinion répandue que l'antinomie de Richard
n'avait d'autre signification que celle d'un sophisme reposant
sur des inexactitudes de langage, et qu'il suffirait de préciser la
langue pour que le paradoxe disparaisse 1.

Il est vrai qu'en précisant la langue, nous faisons disparaître
les contradictions résultant du raisonnement de Richard; mais
alors on obtient des résultats qui restreignent la possibilité de
constituer dans sa totalité une langue universelle, dans le sens
même indiqué déjà par l'antinomie de Richard.

C'est ce qui a été mis en évidence par l'argumentation de
Gödel qu'il s'agit maintenant d'exposer.

L'argumentation commence par remplacer les prémisses de

l'antinomie de Richard par d'autres d'une nature proprement
mathématique.

Au lieu de la langue usuelle on considère un formalisme rigoureux

g, comme ceux que la métamathématique a pour objet,
c'est-à-dire un formalisme qui traduit les raisonnements d'un
certain domaine de la mathématique dans des suites de formules,
nommées déductions, et qui sont formées d'après certaines règles;
les règles sont supposées telles qu'il soit possible de contrôler
machinallement les déductions; cela veut dire que pour une
suite donnée de formules on peut décider, par une série d'épreuves
se faisant par des comparaisons de figures, si c'est une déduction
selon les règles du formalisme ou non.

Quant au domaine de la mathématique représenté par le
formalisme g, nous supposons seulement qu'il contienne la
théorie des nombres. Ou plus en détail:

1. La relation d'égalité entre nombres doit être exprimable
dans g, et chaque équation numérique vraie, de même que
chaque inégalité numérique juste, doit être déductible dans %.

i II se trouve cependant quelques mathématiciens pour reconnaître dès l'abord,
comme L. Chwistek, le sérieux de l'antinomie de Richard.
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2. Les définitions par récurrence d'une fonction <p(n) ou
cp(ft, c) d'après l'un des schéma que voici1:

i <p (0) a 9(0, c) a(c)

9 (ra -f 1) 6 (71, 9 (n) 9 [n + 1, c) fc (n, c, 9 (n c)

i (où a et b sont des expressions introduites plus tôt) doivent être

représentées dans % de la façon suivante: A chaque équation

^ (a) b

où ^ est une fonction définie par des schéma de la dite structure
et par des substitutions, il correspond dans % une expression
35 (a, è), dont on obtient une formule déductible en substituant
à la variable a le signe représentant un nombre naturel et
à b le signe représentant la valeur de ^(î).

3. % contient le calcul ordinaire logique (du premier ordre) 2.

4. Le principe de l'induction complète est représenté dans
soit par une règle ou une formule initiale, ou aussi par un procédé
de déduction.

Pour exprimer brièvement les conditions faites, nous dirons

que § doit être un formalisme rigoureux et suffisant pour la
théorie des nombres.

De ces propriétés on peut d'abord conclure que les relations
métamathématiques concernant le formalisme % peuvent être
exprimées dans g par des formules. D'abord les symboles et les
variables 3 peuvent être numérotés. A partir de cette numérotation

on en obtient une autre pour les expressions; et ceci par
le procédé suivant. A la suite composée de symboles et variables
ayant successivement les numéros

nlt nk,

1 Le cas de plusieurs paramètres fixes peut être réduit à celui d'un seul paramètre.
2 On peut affaiblir cette condition. Par exemple il suffirait d'exiger à sa place que

§ contienne le calcul logique de M. Heytino.
3 Le formalisme peut contenir plusieurs genres de variables, et de plus les variables

libres peuvent être séparées des variables liées.
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on attribue le numéro m, dont la décomposition en nombres
premiers est donnée par

(où pT dénote le rième nombre premier).
De la même manière on passe de la numérotation des expressions

à la numérotation des suites d'expressions 1.

Pour tout n qui appartient à une expression, nous
désignons par 2In l'expression, dont n est le numéro, et de même,
si n appartient à une suite d'expressions, par 9în la suite ayant
le numéro n.

Parmi les expressions il y a les « formules » de $, et parmi
les suites d'expressions il y a les déductions de g.

Puisque % est un formalisme rigoureux, les affirmations méta-
mathématiques sur % se transforment, au moyen des numérotations

faites en des propositions arithmétiques élémentaires. En
particulier, l'énoncé « m est le numéro d'une suite d'expressions,
n celui d'une expression et une déduction, dont la formule
finale est 2fn » peut être exprimé par une équation

[m, n) — 0

4 étant une fonction arithmétique définissable au moyen
de récurrences d'après les schéma (dv) et de substitutions.

En vertu de notre supposition que le formalisme % est suffisant

pour la théorie des nombres, à l'équation

4 [m, n) 0

il correspond dans g une formule contenant m, n, mais pas
d'autres variables libres. Dénotons cette formule pour rappeler
l'interprétation métamathématique (« 3îm est déduction de 2tn»)

par Déd (m, n) ou aussi par Dédm(3tn)2.
Afin d'arriver au point essentiel du raisonnement de M. Gödel,

il suffit d'ajouter un petit corrolaire au dernier résultat. Consi-

1 A un nombre donné il ne correspond pas toujours une expression, mais seulement
à chaque expression appartient un numéro et un seul. Et le même vaut pour les
suites d'expressions.

2 Pour bien comprendre cette forme d'indication, il faut observer que n'est

pas une partie constituante de la formule Dédm (21n).
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dérons l'énoncé « 9îm est une déduction, dont la formule
finale s'obtient de 3ln en substituant pour la variable libre a,
à chaque place où elle intervient dans 2tn, le chiffre dénotant
le numéro n ».

Cet énoncé, de même que celui considéré tout à l'heure,
s'exprime par une équation

X {m > n) o

où x(m-> n) es^ une fonction du même caractère élémentaire que
^ (m, n). Et dans le formalisme $ l'équation x imi n) ~ 0 est

aussi représentée par une formule que nous dénotons par

Déd * (m, n)

Pour des chiffres donnés ut, n, on peut évaluer y (m, n), et
décider si l'équation x (m? n) 0 est vraie ou fausse.

Dans le premier cas, d'après nos suppositions sur le formalisme
g, la formule

Déd * {m n)

dans l'autre la négation
Déd * (m n)

est déductible par le formalisme %. De plus, dans le premier cas,
nous pouvons construire la suite d'expressions 9îm, et celle-ci
est une déduction (dans %) de la formule qui s'obtient de l'expression

2ln en substituant le chiffre n à la variable a.

Soit maintenant le numéro de la formule

(x) Déd* (x, a)

Supposé que pour un chiffre donné m l'équation

y (m, — 0

soit vraie, alors la formule

Déd* (m, f)

serait déductible dans de plus, la suite d'expressions 9tm

serait une déduction de la formule

(x) Déd* (x f)
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(qu'on obtient de 2lf, en substituant pour a); et de cette
formule découlerait

Déd* (m, ;

mais alors le formalisme % serait contradictoire. Donc, si le

formalisme g n'implique pas de contradictions, il faut que pour
chaque chiffre m l'équation

X. (m, f) 0

soit fausse, et que la formule

Déd* (m, f)

soit déductible dans §.
D'autre part, sous la même supposition de la non-contradiction

de $, la formule
(x) Déd* {x, f)

ne peut pas être déductible dans %. Car cette formule s'obtient
de 3lf en substituant f pour a. Donc, si nous avions pour elle

une déduction, dont le numéro (dans la numérotation des suites

d'expressions) était m, alors la formule

Déd* (m, f)

serait déductible, et il y aurait une contradiction dans %.

De là le résultat : S'il peut être montré que le formalisme

% est non-contradictoire, alors il y a une proposition
élémentaire arithmétique démontrable qui peut être exprimée,
mais pas déduite de En effet, on démontre alors que pour
chaque chiffre m l'équation x(w, ï) 0 est fausse, tandis que
la formule exprimant ce théorème dans le formalisme savoir

(x) Déd* (x, f)

n'est pas déductible dans §.
Voilà un résultat fort et remarquable. Mais ce n'est pas celui

des résultats de M. Gödel, auquel j'ai fait allusion au commencement

de cette conférence. Pour y parvenir, il faut renforcer
le raisonnement, moyennant la supposition que le formalisme %

contient le calcul logique et le principe de l'induction complète.
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Je me contente ici d'indiquer en peu de mots le cours du

raisonnement.
En vertu de la relation entre les fonctions n) x(mi n)i

la formule
Déd* (m, î) >- Dédm (x) Déd* (x,ï))

(où m est une variable de nombre), peut être déduite dans

De cette formule on tire par le calcul logique

(Ex) Déd* (x, >- (Ey) Dédy ((a;) Déd* (x, t) (1)

D'autre part, puisque la fonction n) est définie par
récurrence selon les schéma (dv), on peut déduire dans $ une
formule

Déd* (m, f) (Ey) Déd (y, Ç (m)

où m est de nouveau une variable de nombre et £,(m) est une
fonction arithmétique définie par récurrence, dont la valeur

pour un chiffre donné a est le numéro de l'expression Déd* (a, f).
De cette formule découle

(Ex) Déd* (x, f) —^ (Ey) Dédy (Jx) Déd* (x, ï) (2)

Les formules (1), (2) donnent

(Es) Déd* (x, f) *- (Ey) Déd?, (0^0),
et de cette formule on déduit par le calcul logique

{x) Dédx (0 =5* 0) >- (x) Déd* (x, f)

A l'aide de cette formule déductible dans % on peut passer
de l'antécédent au conséquent. Mais l'antécédent est la formule
exprimant la non-contradiction du formalisme et quant au
conséquent, nous avons constaté tantôt qu'il n'est pas déductible

par le formalisme §, à moins que celui-ci ne soit contradictoire.
Nous sommes donc conduits à l'énoncé suivant: Si le formalisme

$ est non-contradictoire, alors la formule exprimant la
non-contradiction de % ne peut pas être déduite dans le formalisme

% même.
Ce résultat s'applique à chaque formalisme rigoureux et

suffisant pour la théorie des nombres, c'est-à-dire satisfaisant
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aux conditions 1. — 4. indiquées tout à l'heure. Déjà le formalisme

de la théorie axiomatique des nombres possède les dites
propriétés. En effet on peut montrer que les définitions
récurrentes se faisant d'après les schéma (tfv) ont leur représentation

dans ce formalisme; et quant aux autres conditions, il est
évident qu'elles y sont remplies.

A fortiori nos suppositions se trouvent réalisées par les
formalismes plus étendus, desquels la théorie axiomatique des

nombres peut être déduite, comme celui de l'analyse infinitésimale,

ceux de la théorie axiomatique des ensembles, et celui des

« Principia Mathematica », soit dans la forme originaire (avec
l'axiome de la réductibilité) ou dans la forme simplifiée.

Aucun de ces formalismes, pourvu qu'il soit non-contradictoire,

ne permet de déduire le théorème arithmétique équivalent
à l'affirmation métamathématique de sa non-contradiction.

En particulier, un raisonnement démontrant la non-contradiction

de la théorie axiomatique des nombres ne peut pas
être traduit dans cette théorie là.

Ce résultat explique le fait, qui nous a étonnés, que tous les

essais de démontrer la non-contradiction de la théorie axiomatique

des nombres par les méthodes élémentaires combinatoires
n'ont pas réussi.

En effet, il faudrait, pour atteindre ce but, trouver un
raisonnement élémentaire combinatoire qui ne puisse être formalisé dans
la théorie axiomatique des nombres. Mais, à ce qu'il semble, il
n'y a pas de tels raisonnements.

Selon toute apparence, le cadre dans lequel M. Hilbert enfermait

les méthodes inspirées du « point de vue fini » n'est pas
assez large pour une théorie de la démonstration. La question
est donc de savoir si ce cadre peut être élargi sans abandon du
but que poursuit la métamathématique. Nous verrons que c'est
bien le cas.

IV. — La relation entre la théorie axiomatique des nombres
et l'arithmétique intuitionniste.

Le théorème général de Gödel sur les démonstrations de non-
contradiction s'applique en particulier, comme nous l'avons
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