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METAMATHEMATIQUE 81

III. — Le théordme de Godel concernant les démonstrations
de non-contradiction.

A la fin de la conférence précédente, il a été dit qu'on n’a pas
réussi & démontrer, par la méthode se rattachant a 'axiome du e,
la non-contradiction de la théorie axiomatique des nombres (&
moins qu’on ne fasse des restrictions). Plus généralement, il se
trouve qu’aucune des méthodes établies dans le cadre des
raisonnements élémentaires combinatoires, prescrit par le pro-
gramme primordial de la métamathématique de M. HILBERT,
ne nous livre cette démonstration cherchée de non-contradiction.

Ce n’est pas faute d’une découverte, que nous nous trouvons
dans cette situation. Un théoréeme de M. GODEL nous montre,
au contraire (comme je I’ai déja mentionné), qu'il y a ici un
obstacle essentiel. Le raisonnement de M. Godel, qui conduit &
ce théoréme, est inspiré de I'idée qui conduit & ’antinomie de
RicHARD.

Les divers énoncés de cette antinomie forment un deuxiéme
groupe de paradoxes se distinguant du paradoxe de RuUSSELL-
ZERMELO.

Il y a une correspondance entre les deux sortes de paradoxes
et deux conceptions philosophiques: celle de PraTon du monde
des idées et celle de LEiBn1z d’une langue universelle scientifique.

Le paradoxe de Russell-Zermelo exclut le platonisme absolu,
le paradoxe de Richard exclut la réalisation parfaite de l'idée
de Leibniz; son sens est environ le suivant: Chaque langue exacte
devient sujet & une considération mathématique de ses moyens
d’expression. Les éléments dont se constituent les expressions
de la langue et les formes de leurs combinaisons engendrent un
formalisme dénombrable, et la pensée mathématique dépasse ce
formalisme. De la il dérive qu’en joignant les exigences d’une
langue exacte & celles d’une langue universelle on rencontre des
contradictions. D’autre part, la langue usuelle semble suffire aux
deux exigences pourvu qu’on s’en serve d’une maniére appro-
priée. C’est ainsi qu’apparait le caractére suggestif de 1'anti-
nomie.

Dans les formes originaires de cette antinomie, il §’agit

L’Enseignement mathém., 34me année, 1935. 6



82 P. BERNAYS

toujours des possibilités de définitions. M. Finsler a remarqué
qu'on peut transformer I’antinomie de Richard en une autre
concernant les démonstrations. Pour cette antinomie modifiée
comme pour l'antinomie primitive de Richard, il est encore
possible de présenter certaines objections plus ou moins subtiles.
Aussi c¢’était une opinion répandue que I'antinomie de Richard
n’avait d’autre signification que celle d’un sophisme reposant
sur des inexactitudes de langage, et qu’il suffirait de préciser la
langue pour que le paradoxe disparaisse 1.

Il est vrai qu’en précisant la langue, nous faisons disparaitre
les contradictions résultant du raisonnement de Richard; mais
alors on obtient des résultats qui restreignent la possibilité de
constituer dans sa totalité une langue universelle, dans le sens
méme indiqué déja par 'antinomie de Richard.

(C’est ce qui a été mis en évidence par l'argumentation de
Godel qu’il s’agit maintenant d’exposer.

L’argumentation commence par remplacer les prémisses de
I’antinomie de Richard par d’autres d’une nature proprement
mathématique.

Au lieu de la langue usuelle on considere un formalisme rigou-
reux 3, comme ceux que la métamathématique a pour objet,
c’est-a-dire un formalisme qui traduit les raisonnements d’un
certain domaine de la mathématique dans des suites de formules,
nommeées déductions, et qui sont formées d’aprés certaines régles;
les régles sont supposées telles qu’il soit possible de controler
machinallement les déductions; cela veut dire que pour une
suite donnée de formules on peut décider, par une série d’épreuves
se faisant par des comparaisons de figures, s1 ¢’est une déduction
selon les régles du formalisme ou non.

Quant au domaine de la mathématique représenté par le
formalisme %, nous supposons seulement qu’il contienne la
théorie des nombres. Ou plus en détail:

1. La relation d’égalité entre nombres doit étre exprimable
dans ¥, et chaque équation numérique vraie, de méme que
chaque inégalité numérique juste, doit étre déductible dans F.

1 JI se trouve cependant quelques mathématiciens pour reconnaitre dés 1’abord,
comme L. CHWISTEX, le sérieux de I’antinomie de Richard.
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2. Les définitions par récurrence d’une fonction ¢(n) ou

o(n, ¢) d’aprés 'un des schéma que voici *:

a | ?(0, ¢ == i (e
b(n, o(n)) e+ 1,¢)="0b(n,c, ¢, c))

¢ (0)
® Y2

|
I

(ot a et b sont des exioressions introduites plus tot) doivent étre
représentées dans ¥ de la fagon suivante: A chaque équation

ou Y est une fonction définie par des schéma de la dite structure
et par des substitutions, il correspond dans § une expression
B (a, b), dont on obtient une formule déductible en substituant
a la variable a le signe représentant un nombre naturel f, et
a b le signe représentant la valeur de { (f).

3. & contient le calcul ordinaire logique (du premier ordre) 2.

4. Le principe de l'induction compléte est représenté dans §,
soit par une régle ou une formule initiale, ou aussi par un procédé
de déduction.

Pour exprimer briévement les conditions faites, nous dirons
que § doit étre un formalisme rlgoureux et suffisant pour la
théorie des nombres.

De ces propriétés on peut d’abord conclure que les relations
métamathématiques concernant le formalisme § peuvent étre
exprimées dans § par des formules. D’abord les symboles et les
variables 3 peuvent étre numérotés. A partir de cette numérota-
tion on en obtient une autre pour les expressions; et ceci par
le procédé suivant. A la suite composée de symboles et variables
ayant successivement les numéros

Ny, «vo Ny,

1 Le cas de plusieurs paramétres fixes peut étre réduit & celui d’un seul paramétre.

2 On peut affaiblir cette condition. Par exemple il suffirait d’exiger a sa place que
§ contienne le calcul logique de M. HEYTING.

3 Le formalisme peut contenir plusieurs genres de variables, et de plus les variables
libres peuvent étre séparées des variables liées.
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on attribue le numéro m, dont la décomposition en nombres
premiers est donnée par

ny

Py

(ou p, dénote le riéme nombre premier).

De la méme maniére on passe de la numérotation des expres-
sions & la numérotation des suites d’expressions !

Pour tout n qui appartient & une expression, nous dési-
gnons par A, 'expression, dont n est le numéro, et de méme,
si n appartient & une suite d’expressions, par Jt, la suite ayant
le numéro n.

Parmi les expressions il y a les « formules» de §§, et parmi
les suites d’expressions il y a les déductions de .

Puisque § est un formalisme rigoureux, les affirmations méta-
mathématiques sur § se transforment, au moyen des numérota-
tions faites en des propositions arithmétiques élémentaires. En
particulier, I’énoncé « m est le numéro d’une suite d’expressions,
n celui d'une expression et R, une déduction, dont la formule
finale est A, » peut étre exprimé par une équation

b(m,n) =0,

¢ (.,.) étant une fonction arithmétique définissable au moyen
de récurrences d’apres les schéma (R) et de substitutions.

En vertu de notre supposition que le formalisme § est suffisant
pour la théorie des nombres, a I’équation

b{m, n) =0

il correspond dans § une formule contenant m, n, mais pas
d’autres variables libres. Dénotons cette formule pour rappeler
Pinterprétation métamathématique (« R, est déduction de QI )
par Déd (m, n) ou aussi par Déd,, (2,) 2.

Afin d’arriver au point essentiel du raisonnement de M. Godel,
il suffit d’ajouter un petit corrolaire au dernier résultat. Consi-

1 A un nombre donné il ne correspond pas toujours une expression, mais seulement

‘4 chaque expression appartient un numéro et un seul. Kt le méme vaul pour les

suites d’expressions.
2 Pour bien comprendre cette forme d’indication, il faut observer que A, n’est

pas une partie constituante de la formule Ded,, (U,)-
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dérons Pénoncé « R, est une déduction, dont la formule
finale s’obtient de 9, en substituant pour la variable libre a,
a chaque place ou elle intervient dans U, , le chiffre dénotant
le numéro n».

Cet énoncé, de méme que celui considéré tout a I’heure,
s’exprime par une équation

x(m,n) =20,

ou y (m, n) est une fonction du méme caractere élémentaire que
¢ (m, n). Et dans le formalisme § 1’équation y (m, n) = 0 est
aussi représentée par une formule que nous dénotons par

Déd * (m, n) .

Pour des chiffres donnés m, 1, on peut évaluer y (m, n), et
décider si I’équation y (m, n) = O est vraie ou fausse.
Dans le premier cas, d’aprés nos suppositions sur le formalisme

%, la formule
Déd* (m, n),

dans l'autre la négation

Déd * (m, n)

est déductible par le formalisme §. De plus, dans le premier cas,
nous pouvons construire la suite d’expressions %R, , et celle-ci
est une déduction (dans ) de la formule qui s’obtient de I’expres-
sion 9, en substituant le chiffre n & la variable «.

Soit maintenant f le numéro de la formule

(x) Déd* (z, a) .
Supposé que pour un chiffre donné m 1’équation
Lm, 8 =0
soit vraie, alors la formule
Déd* (m, ¥)

serait deéductible dans §; de plus, la suite d’expressions R
serait une déduction de la formule

(z) Déd* (x., f)
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(qu'on obtient de A;, en substituant f pour a); et de cette
formule découlerait |

Déd* (m, 1) ;

mais alors le formalisme § serait contradictoire. Donc, si le
formalisme §¥ n’implique pas de contradictions, il faut que pour
chaque chiffre m ’équation

v (m, f):O\

soit fausse, et que la formule

Déd* (m, t)
soit déductible dans $¥.
D’autre part, sous la méme supposition de la non-contradic-
tion de %, la formule
(x) Déd* (z, )

ne peut pas étre déductible dans §. Car cette formule s’obtient
de A; en substituant f pour a. Done, si nous avions pour elle
une déduction, dont le numéro (dans la numérotation des suites
d’expressions) était m, alors la formule

Déd* (m, ¥

serait déductible, et il y aurait une contradiction dans .

De la le résultat : S’il peut étre montré que le forma-
lisme % est non-contradictoire, alors il y a une proposition élé-
mentaire arithmétique démontrable qui peut étre exprimée,
mais pas déduite de §. En effet, on démontre alors que pour
chaque chiffre m 'équation x (m, f) = 0 est fausse, tandis que
la formule exprimant ce théoréme dans le formalisme ¥, savoir

(x) Déd* (z, f)

n’est pas déductible dans .

Voila un résultat fort et remarquable. Mais ce n’est pas celui
des résultats de M. Godel, auquel j’ai fait allusion au commen-
cement de cette conférence. Pour y parvenir, il faut renforcer
le raisonnement, moyennant la supposition que le formalisme
contient le calcul logique et le principe de I'induction compléte.
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Je me contente ici d’indiquer en peu de mots le cours du
raisonnement.
En vertu de la relation entre les fonctions §(m, n) et x(m, n),
la formule
Déd* (m, f) —> Dédm ((x) Déd* (z, 1)) ,

(o m est une variable de nombre), peut étre déduite dans .
De cette formule on tire par le calcul logique

(Bz) Déd* (z, ¥) — (By) Dédy ( (z) Ded* (z, 1)) . (1)

D’autre part, puisque la fonction y(m, n) est définie par
récurrence selon les schéma (R ), on peut déduire dans § une

formule
Déd* (m, f) — (Ey) Déd (y, &(m)) ,

ou m est de nouveau une variable de nombre et {(m) est une
fonction arithmétique définie par récurrence, dont la valeur
pour un chiffre donné a est le numéro de I’expression Déd* (a, f).
De cette formule découle

(Ez) Déd* (z, ¥) — (Ey) Dédy ((z) Déd* (z, 1)) . (2)
Les formules (1), (2) donnent
(Ezx) Ded* (x, t) —= (By) Dédy (0 7 0) ,

et de cette formule on déduit par le calcul logique

(x) Dédy (0 5= 0) — (z) Déd* (z, 1) .

A Taide de cette formule déductible dans ¥ on peut passer
de Pantécédent au conséquent. Mais ’antécédent est la formule
exprimant la non-contradiction du formalisme §§; et quant au
conséquent, nous avons constaté tantot qu’il n’est pas déductible
par le formalisme ¥, & moins que celui-ci ne soit contradictoire.

Nous sommes donc conduits a ’énoncé suivant: Si le forma-
lisme F est non-contradictoire, alors la formule exprimant la
non-contradiction de ¥ ne peut pas étre déduite dans le forma-
lisme § méme.

Ce résultat s’applique a chaque formalisme rigoureux et
suffisant pour la théorie des nombres, c’est-a-dire satisfaisant
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aux conditions 1. — 4. indiquées tout & 'heure. Déja le forma-
lisme de la théorie axiomatique des nombres posséde les dites
propriétés. En effet on peut montrer que les définitions récur-
rentes se faisant d’apres les schéma (R) ont leur représenta-
tion dans ce formalisme; et quant aux autres conditions, il est
évident qu’elles y sont remplies.

A fortiori nos suppositions se trouvent réalisées par les for-
malismes plus étendus, desquels la théorie axiomatique des
nombres peut étre déduite, comme celui de I’analyse infinitési-
male, ceux de la théorie axiomatique des ensembles, et celui des
« Principia Mathematica », soit dans la forme originaire (avec
Paxiome de la réductibilité) ou dans la forme simplifiée.

Aucun de ces formalismes, pourvu qu’il soit non-contradic-
toire, ne permet de déduire le théoréme arithmétique équivalent
a laffirmation métamathématique de sa non-contradiction.

En particulier, un raisonnement démontrant la non-contra-
diction de la théorie axiomatique des nombres ne peut pas
étre traduit dans cette théorie la.

Ce résultat explique le fait, qui nous a étonnés, que tous les
essais de démontrer la non-contradiction de la théorie axioma-
tique des nombres par les méthodes élémentaires combinatoires
n’ont pas réussi.

En effet, il faudrait, pour atteindre ce but, trouver un raison-
nement élémentaire combinatoire qui ne puisse étre formalisé dans
la théorie axiomatique des nombres. Mais, a ce qu’il semble, il
n’y a pas de tels raisonnements.

Selon toute apparence, le cadre dans lequel M. Hilbert enfer-
mait les méthodes inspirées du « point de vue fini» n’est pas
assez large pour une théorie de la démonstration. La question
est donc de savoir si ce cadre peut étre élargi sans abandon du
but que poursuit la métamathématique. Nous verrons que c¢’est
bien le cas.

IV. — La relation entre la théorie axiomatique des nombres
et Parithmétique intuitionniste.

Le théoréme général de Gidel sur les démonstrations de non-
contradiction s’applique en particulier, comme nous l’avons
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