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nue suffisante pour démontrer la non-contradiction sans qu'il
faille pour cela démontrer la non-contradiction de l'arithmétique.

En particulier, nous reconnaissons de cette manière la non-
contradiction de la géométrie axiomatique, à l'exception des

axiomes de la continuité, tous les autres axiomes étant des

axiomes propres. (Quant à l'axiome d'Archimède, c'est une
affirmation existentielle se rapportant aux nombres entiers, alors

que les nombres ne font pas partie d'un domaine d'individus
de la géométrie axiomatique; ce n'est donc pas un axiome
propre.) La méthode s'applique aussi à la géométrie non-
euclidienne.

Cependant il faut se rendre compte que cette manière de

traiter la question de la non-contradiction ne regarde que les

raisonnements exprimables par le calcul logique ordinaire, c'est-
à-dire ceux de la logique du premier ordre, où n'interviennent
pas des notions générales comme celle d'un nombre quelconque,
celle d'une fonction quelconque ou celle d'un ensemble

quelconque. Ce n'est donc que dans un sens restreint que la non-
contradiction est démontrée par cette méthode.

II. — Les démonstrations de non-contradiction se rattachant
à l'axiome du s.

Les recherches tendant à la démonstration de la non-contradiction

de l'arithmétique se faisant par étapes, le formalisme
arithmétique qui s'offre comme le premier objet de la recherche
est celui de la théorie axiomatique des nombres.

Ce formalisme est constitué des éléments suivants:
1° le calcul logique ordinaire;
2° le signe de l'égalité avec les axiomes

a — a

a b >- (A (a) >- A (b) ;

3° le symbole 0 et le symbole ' représentant le passage d'un
nombre au suivant, pour lesquels on a les axiomes de Peano

af 0

a — b' >- a b

A (0) & (x) (A (x) >- A (x) >- A (a)

le dernier représentant le principe de l'induction complète;
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4° les symboles de la somme et du produit +, -, avec les

équations récurrentes

a -}- 0 a a.0=0
a + b' (a -f- b)' a • b' a • b + a

A propos de cette énumération faisons quelques remarques:

a) L'axiome
a b >- (A (a) •>- A (b)

peut être remplacé par les deux axiomes plus spéciaux

a b ——(a c b — c)

a — b a b'

ß) Le principe de l'induction complète peut être formalisé
aussi par le schéma

51 (0)

%(n) >- 51 jn')
51 (a)

y) On peut généralement éviter les variables de propositions
et de prédicats en remplaçant chaque formule initiale contenant
une telle variable par un schéma correspondant. Par exemple
la formule

a — b >- (A (a) A (b)

peut être remplacée par le schéma

a b >- (51(a) 51 (b))

indiquant des formules d'une certaine forme qui peuvent servir
de formules initiales 1.

S) Au lieu des variables libres d'individus, comme a, è, on

pourrait dans les axiomes mettre des variables liées par des

signes de généralité. Par exemple la formule

a a

pourrait être remplacée par
(x) (x x)

i La lettre 21 indique une formule quelconque (du formalisme considéré) contenant
un argument, tandis que A est une variable de prédicat appartenant elle-même au
formalisme.
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z) Les équations récurrentes sont appelées ordinairement
définitions récurrentes; mais il faut se rendre compte que ce ne

sont pas des définitions nominales.
Le formalisme indiqué suffit pour représenter et déduire les

relations de la théorie des nombres. Mais il y a encore une lacune
en ceci qu'on ne peut pas représenter directement les fonctions
arithmétiques, mais seulement les prédicats correspondants. Par
exemple on n'obtient pas une expression pour le plus grand
diviseur commun de a et b (fonction de deux arguments), mais
.seulement pour le prédicat correspondant « le plus grand diviseur
commun de a et b est égal à c » (prédicat de trois sujets).

Pour exprimer les fonctions arithmétiques, il faut ajouter au
symbolisme du calcul logique un symbole tx 31 (x), représentant
la notion « celui qui », avec la règle suivante (« règle du t ») :

Si pour une formule 31(c) on a déduit

(E#) % (x) (1)

et
(x) (;y) (51 (x) & 21 (y) >- x y) (2)

alors on peut introduire l'expression

ix%{x)

(représentant l'individu unique Ç, pour lequel 3l(£) est valable);
et on a

*('*«(*)) •

Cette règle comprend aussi le cas où la formule 31 (c) contient
outre la variable c d'autres variables comme paramètres; l'expres-
sion ix 3Ï (x) représente alors une fonction de ces paramètres.

A l'aide de la règle du i et du principe de l'induction complète
on parvient à introduire, par une définition nominale, un symbole,

écrivons-le [xxA(x), contenant un prédicat variable, repré-,
sentant ou le plus petit nombre n, pour lequel A(n) est vrai
s'il y a un tel nombre, ou autrement le nombre nul. Au moyen
de ce symbole nous obtenons les expressions des fonctions
arithmétiques.

La question de la non-contradiction posée pour notre formalisme

complété par l'introduction de la règle du i peut être rame-
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née à celle concernant le formalisme antérieur. La réduction se fait
en démontrant que l'application de la règle du t peut être éliminée.
Cette démonstration part de la remarque suivante faite déjà par
Russell et Whitehead: Si pour un prédicat représenté par une
formule 31(c) les conditions (1), (2) sont remplies, alors une
affirmation 33 (^ 3t (#) («l'individu qui a la propriété 3f(.), a
aussi la propriété 33(.) ») peut être remplacée par

(x) (31 (x) >- 33 (x)

et aussi par
(Ex) (31 (x) & 33 (x))

Il s'agit ensuite de prouver que par ce remplacement, éloignant
les expressions de la forme ix 31 (x), une déduction ne change

que d'une manière telle qu'on en puisse regagner une déduction
en ajoutant certains passages, dans lesquels la règle du i n'intervient

pas. On peut le démontrer, bien que la preuve en soit
un peu pénible.

Mais ce n'est pas de cette manière que M. Hilbert a procédé.
M. Hilbert a introduit dès le commencement le symbole zx%(x)
avec l'axiome

A (a) A (ex A (x) (« axiome du s »)

Cela revient à une généralisation du symbole A {x) au delà
de la théorie des nombres.

Je veux montrer ici, comment on peut passer de la règle du <

à l'axiome du s. Le passage se fait en deux pas. D'abord nous
omettons de la règle du t la deuxième des conditions (1), (2)
de l'introduction du symbole ix 31 (x). La règle ainsi modifiée

permet d'introduire pour chaque prédicat 31 (c), valable

pour au moins un individu, un symbole représentant « un certain

x, pour lequel 31 (x) ». Soit r)x 31 (x) ce symbole, alors la règle
nouvelle peut être indiquée brièvement par le schéma

(Ex) 31 (x)
31 (%3l(;r))

*

De ce schéma nous faisons maintenant une application
spéciale. Prenons pour 31(c) l'expression

(Ey) A(y) — A (c) ;
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alors (Ex) 31 (x) devient

(Ex) ((Ey) A (y) — A(x))

Cette formule peut être déduite par le calcul logique ordinaire ;

donc nous pouvons introduire

r]x((Ey)A (y) — A (x)

et en nous servant de l'abréviation A(x) définie par l'équation

exA(x) 7]x((Ey}A(y) >- A (x)

nous obtenons suivant notre schéma la formule

(Ey)A(y) >- A(exA(x)) ;

or celle-ci est équivalente, d'après le calcul logique, à

A (a) A (ex A (x)

ce qui est l'axiome du s.
De cette réduction résulte aussi les formules

(Ex) A (x) A (exA (x)

(x) A (x) -<—— A (sx A (x)

(31 35 indique le couple des deux formules

31 >- 35 33 >- 31)

Par ces formules, un changement du formalisme nous est

suggéré; en effet, on peut les regarder comme des définitions
exprimant l'existence et la généralité au moyen du symbole s.

De plus il se montre que si nous acceptons ce point de vue, tout
le calcul concernant la généralité et l'existence se fait par l'application

de l'axiome du s et de la règle qu'une expression sx3l(;r)
peut être substituée à une variable d'individus.

On peut donc éliminer du tout les signes (x), (E#) et on ne
retient aucun autre schéma logique que celui du « modus
ponens »

© —- £
X
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le reste du calcul logique se faisant par des formules initiales,
des répétitions et des substitutions.

(Quant à l'axiome de l'induction complète, il peut être
remplacé, au moyen du symbole s, par la formule suivante

zxN(x) b' >- A (b) ;

celle-ci exprime que, pour un prédicat 31(c) quelconque, le nombre
représenté par 21 (x) ou bien est égal à zéro ou bien succède
à un nombre b pour lequel 31 (b) est faux.)

Il est vrai que cette façon de manier le calcul logique n'est
pas avantageuse pour les déductions effectives, mais pour les

considérations métamathématiques elle apporte une certaine
simplification.

C'est le formalisme ainsi modifié de la théorie axiomatique
des nombres dont M. Hilbert s'est appliqué à prouver la non-
contradiction. Il a saisi le problème par deux méthodes qui
ont été poursuivies plus loin, l'une par M. Ackermann et M. von
Neumann 1, l'autre par M. Ackermann. Mais on ne parvient
par ces méthodes à démontrer la non-contradiction que pour un
formalisme restreint. En effet, il faut faire une restriction à

l'égard de l'axiome de l'induction complète (représenté ou par
une formule ou par le schéma). Par exemple, c'est une restriction
suffisante que l'induction complète ne soit appliquée qu'à des

formules élémentaires (ne contenant pas de variables liées).
Donc les démonstrations attachées à l'axiome du s ne nous

ont pas conduit à reconnaître la non-contradiction de la théorie
axiomatique des nombres.

Cependant la deuxième des dites méthodes de M. Hilbert nous
fournit une démonstration assez simple et naturelle du théorème
mentionné de Herbrand. D'autre part, de ce théorème découle

comme Herbrand l'a montré 2, la non-contradiction du formalisme

restreint qui dérive de celui de la théorie axiomatique
des nombres par la restriction indiquée tantôt. (Ce résultat
n'équivaut pas à celui de Ackermann et von Neumann parce que
le formalisme du s n'y est pas enfermé.)

1 Le formalisme traité par von Neumann est un peu plus général que celui de
MM. Hilbert et Ackermann; cette différence n'est pas considérable; mais il y a aussi
une différence dans la manière de procéder entre M. Ackermann et M. yon Neumann.

2 Une autre démonstration de ce fait a été donnée récemment par M. Gentzen.
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