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nue suffisante pour démontrer la non-contradiction sans qu’il
faille pour cela démontrer la non-contradiction de 1’arithmétique.

En particulier, nous reconnaissons de cette maniére la non-
contradiction de la géométrie axiomatique, & I'exception des
axiomes de la continuité, tous les autres axiomes étant des
axiomes propres. (Quant & Paxiome d’Archiméde, c’est une
affirmation existentielle se rapportant aux nombres entiers, alors
que les nombres ne font pas partie d'un domaine d’individus
de la géométrie axiomatique; ce n’est donc pas un axiome
propre.) La méthode s’applique aussi a4 la géométrie non-
euclidienne.

Cependant il faut se rendre compte que cette maniere de
traiter la question de la non-contradiction ne regarde que les
raisonnements exprimables par le calcul logique ordinaire, ¢’est-
a-dire ceux de la logique du premier ordre, o n’interviennent
pas des notions générales comme celle d’'un nombre quelconque,
celle d’une fonction quelconque ou celle d’un ensemble quel-
conque. Ce n’est donc que dans un sens restreint que la non-
contradiction est démontrée par cette méthode.

II. — Les démonstrations de non-contradiction se rattachant
a Paxiome du .

Les recherches tendant & la démonstration de la non-contra-
diction de I'arithmétique se faisant par étapes, le formalisme
arithmétique qui s’offre comme le premier objet de la recherche
est celui de la théorie axiomatique des nombres.

Ce formalisme est constitué des éléments suivants:

1o le calcul logique ordinaire;
20 le signe de I’égalité avec les axiomes

a = b—= (Af@) —> A (b))

3° le symbole 0 et le symbole ’ représentant le passage d’un
nombre au suivant, pour lesquels on a les axiomes de Peano
a" == 0
a' =b — a=15
A(0) & (z) (Afz) —= Af2')) —= A(a) ,

le dernier représentant le principe de 'induction compléte;
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40 les symboles de la somme et du produit -+, -

, avec les
équations récurrentes

a-+ 0=a a-0=
a+ b = (a+ b) a- b =

A propos de cette énumération faisons quelques remarques:
o) L’axiome
a=">b— (A(a) —> A (D))

peut étre remplacé par les deux axiomes plus spéciaux

a=5bb — (a=c¢c —> b=r¢),
a=5b—=a =b".

B) Le principe de l'induction compléte peut étre formalisé
aussi par le schéma
% (0)
A(n) —= A(n)
Ala)

v) On peut généralement éviter les variables de propositions
et de prédicats en remplacant chaque formule initiale contenant

une telle variable par un schéma correspondant. Par exemple
la formule

a=b—> (Aa) —= A (b))
peut étre remplacée par le schéma
@=b— (A(a) —> AW)) ,
indiquant des formules d’une certaine forme qui peuvent servir

de formules initiales 1.

d) Au lieu des variables libres d’individus, comme a, b, on

pourrait dans les axiomes mettre des variables liées par des
signes de généralité. Par exemple la formule

1 La lettre A () indique une formule quelconque (du formalisme considéré) contenant

un argument, tandis que A (.) est une variable de prédicat appartenant elle-méme au
formalisme.
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e) Les équations récurrentes sont appelées ordinairement
définitions récurrentes; mais il faut se rendre compte que ce ne
sont pas des définitions nominales.

Le formalisme indiqué suffit pour représenter et déduire les
relations de la théorie des nombres. Mais il y a encore une lacune
en ceci qu’on ne peut pas représenter directement les fonctions
arithmétiques, mais seulement les prédicats correspondants. Par
exemple on n’obtient pas une expression pour le plus grand
diviseur commun de @ et b (fonction de deux arguments), mais
seulement pour le prédicat correspondant « le plus grand diviseur
commun de a et b est égal & ¢ » (prédicat de trois sujets).

Pour exprimer les fonctions arithmétiques, il faut ajouter au
symbolisme du calcul logique un symbole ¢, % (x), représentant
la notion « celui qui», avec la régle suivante (« régle du ¢ »):

Si pour une formule A (c) on a déduit

(Ez) A (x) (1)
et
() (y) (U (x) & Aly) —> 2 =1y), (2)

alors on peut introduire I’expression
o A (z)

(représentant I'individu unique &, pour lequel A (&) est valable);
et on a
A, U (x)) .

Cette régle comprend aussi le cas ou la formule 9 (¢) contient
outre la variable ¢ d’autres variables comme paramétres; ’expres-
sion ¢, A (z) représente alors une fonction de ces parametres.

A Vaide de la régle du ¢ et du principe de Pinduction compléte
on parvient & introduire, par une définition nominale, un sym-
bole, écrivons-le p A (z), contenant un prédicat variable, repré-,
sentant ou le plus petit nombre n, pour lequel A(n) est vrai
il y a un tel nombre, ou autrement le nombre nul. Au moyen
de ce symbole nous obtenons les expressions des fonctions
arithmétiques.

La question de la non-contradiction posée pour notre forma-
lisme complété par introduction de la régle du : peut étre rame-
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née a celle concernant le formalisme antérieur. La réduction se fait
en démontrant que application de la régle du : peut étre éliminée.
Cette démonstration part de la remarque suivante faite déja par
Russell et Whitehead: Si pour un prédicat représenté par une
formule A (c) les conditions (1), (2) sont remplies, alors une
affirmation B(,, A(x)) («Pindividu qui a la propriété A(.), a
aussi la propriété B (.)») peut étre remplacée par

(z) (U (x) —= B(2)),
et aussi par
(Bz) (A (z) & B(z)) .

I1 ’agit ensuite de prouver que par ce remplacement, éloignant
les expressions de la forme ¢, A (x), une déduction ne change
que d’une maniere telle qu'on en puisse regagner une déduction
en ajoutant certains passages, dans lesquels la régle du ¢ n’inter-
vient pas. On peut le démontrer, bien que la preuve en soit
un peu pénible.

Mais ce n’est pas de cette maniére que M. Hilbert a procédé.
M. Hilbert a introduit des le commencement le symbole ¢, A (2)

‘avec 'axiome
Afa) — A, A(x)) («axiome du ¢»)

Cela revient & une généralisation du symbole p, A (x) au dela
de la théorie des nombres.

Je veux montrer ici, comment on peut passer de la régle du :
a axiome du e. Le passage se fait en deux pas. D’abord nous
omettons de la régle du ¢ la deuxiéme des conditions (1), (2)
de lintroduction du symbole ¢ % (r). La régle ainsi modi-
fite permet d’introduire pour chaque prédicat U (c), valable
pour au moins un individu, un symbole représentant « un certain
z, pour lequel U (z)». Soit 7, U (x) ce symbole, alors la réegle
nouvelle peut étre indiquée briévement par le schéma

(Bx) A (x)
A (e A ()

De ce schéma nous faisons maintenant une application spé-
ciale. Prenons pour o (¢) I'expression

(Ey) A(y) —> Ao ;
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alors (Ez) oA (x) devient
(Bz) ((Ey) Afy) — Afz)) .

Cette formule peut étre déduite par le calcul logique ordinaire;
donc nous pouvons introduire

7, (By) Aly) — A=) ,

et en nous servant de l'abréviation e, A(x) définie par I'équa-
tion
ey Alx) = 0, (By) Aly) —= Afz)) ,

nous obtenons suivant notre schéma la formule
(By) A (y) — AleAlx)) ;
or celle-ci est équivalente, d’apres le calcul logique, a

Afa) —> Al A(z)) ,

ce qui est 'axiome du .
De cette réduction résulte aussi les formules

(Ba) A (z) === A ey A(a))
A ey Afa))

() Alr) === Al(e
(A === B indique le couple des deux formules
A—> B, B—> A .

Par ces formules, un changement du formalisme nous est
suggéré; en effet, on peut les regarder comme des définitions
exprimant l'existence et la généralité au moyen du symbole .
De plus il se montre que si nous acceptons ce point de vue, tout
le calcul concernant la généralité et ’existence se fait par appli-
cation de axiome du ¢ et de la regle qu’une expression ¢, % (x)
peut étre substituée & une variable d’individus.

On peut donc éliminer du tout les signes (z), (Ex) et on ne
retient aucun autre schéma logique que celui du «modus

ponens »

G
S — %
Ry
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le reste du calcul logique se faisant par des formules initiales,
des répétitions et des substitutions.

(Quant & 'axiome de 'induction compléte, il peut étre rem-
placé, au moyen du symbole ¢, par la formule suivante

e A(z) = b —= A(b) ;
celle-ci exprime que, pour un prédicat 3 (c) quelconque, le nombre
représenté par ¢, A (x) ou bien est égal a zéro ou bien succéde
a un nombre b pour lequel A (b) est faux.)

Il est vrai que cette facon de manier le calcul logique n’est
pas avantageuse pour les déductions effectives, mais pour les
considérations métamathématiques elle apporte une certaine
simplification.

(’est le formalisme ainsi modifié de la théorie axiomatique
des nombres dont M. Hilbert s’est appliqué a prouver la non-
contradiction. Il a saisi le probléme par deux méthodes qui
ont été poursuivies plus loin, 'une par M. Ackermann et M. von
NeumanN 1, P'autre par M. Ackermann. Mais on ne parvient
par ces méthodes & démontrer la non-contradiction que pour un
formalisme restreint. En effet, il faut faire une restriction a
I’égard de I'axiome de I'induction compléte (représenté ou par
une formule ou par le schéma). Par exemple, ¢’est une restriction
suffisante que I'induction compléte ne soit appliquée qu’a des
formules élémentaires (ne contenant pas de variables liées).

Donc les démonstrations attachées & ’axiome du ¢ ne nous
ont pas conduit a reconnaitre la non-contradiction de la théorie
axiomatique des nombres.

Cependant la deuxiéme des dites méthodes de M. Hilbert nous
fournit une démonstration assez simple et naturelle du théoréme
mentionné de Herbrand. D’autre part, de ce théoreme découle
comme Herbrand I’a montré 2, la non-contradiction du forma-
lisme restreint qui dérive de celui de la théorie axiomatique
des nombres par la restriction indiquée tantdt. (Ce résultat
n’équivaut pas a celui de Ackermann et von Neumann parce que
le formalisme du ¢ n’y est pas enfermé.)

1 Le formalisme traité par von Neumann est un peu plus général que celui de
MM. Hilbert et Ackermann; cette différence n’est pas considérable; mais il y a aussi
une différence dans la maniére de procéder entre M. Ackermann et M. von Neumann.

2 Une autre démonstration de ce fait a été donnée récemment par M. GENTZEN.
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