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QUELQUES POINTS ESSENTIELS
DE LA MÉTAMATHÉMATIQUE

PAR

P. Bernays (Zurich).

1. — Une application du théorème fondamental
de Herbrand à l'axiomatique.

L'axiomatique usuelle s'appuie sur l'arithmétique qu'elle
envisage comme appartenant, pour ainsi dire, à la logique.

Les démonstrations de non-contradiction que l'on a données

pour les systèmes axiomatiques de la géométrie et de la physique
consistent à montrer qu'une contradiction dans l'un de ces

systèmes devrait entraîner une contradiction dans
l'arithmétique.

Cette réduction à l'arithmétique ayant été déjà faite,
M. Hilbert concentrait, dans la théorie de la démonstration,
son effort à démontrer, de son point de vue fini, la non-contradiction

de l'arithmétique.
Mais puisque pour le moment ce problème n'est pas encore

résolu, la question se pose s'il est nécessaire pour l'axiomatique,
en particulier celle de la géométrie élémentaire, de démontrer la
non-contradiction de l'arithmétique, soit dans le sens de l'analyse
infinitésimale ou du moins dans le sens de la théorie axiomatique
des nombres.

La question se pose d'autant plus que le modèle arithmétique
de la géométrie euclidienne peut être donné dans le cadre de la
théorie des nombres algébriques, —du moins quand on fait
abstraction du deuxième axiome de continuité qui n'est pas employé
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dans la géométrie élémentaire. On peut même se restreindre à ces

nombres qu'on obtient en adjoignant aux quatre opérations
élémentaires du calcul celle de prendre la racine carrée d'un nombre

positif.
Cette partie de l'arithmétique peut être traitée directement

selon les exigences du point de vue fini.
En constatant ce fait, on est tenté de croire que le problème

de la non-contradiction de la géométrie élémentaire axiomatique
est déjà résolu, puisque le modèle arithmétique appartient au
domaine de la mathématique intuitive.

Mais il faut considérer que, de l'interprétation intuitive des

axiomes, il ne dérive pas sans autre une interprétation pareille
des démonstrations. En effet, les démonstrations de la géométrie
axiomatique s'appuient sur la supposition que les points, de

même que les droites et les plans, forment des ensembles

complets fermés. En vertu de cette supposition, les affirmations
concernant l'existence d'un point (d'une droite, d'un plan)
d'une certaine propriété ont un sens immédiat, et le tertium
non datur est généralement valable; on peut donc appliquer
les raisonnements de la logique classique formalisés par le calcul
logique ordinaire.

Cette supposition de la totalité, que la géométrie axiomatique
fait pour les domaines d'individus, n'est pas contenue dans
l'interprétation arithmétique intuitive. Aussi cette interprétation ne
nous permet pas de vérifier toutes les démonstrations de la
géométrie axiomatique, et nous ne pouvons donc pas au moyen
d'elle nous assurer immédiatement que la géométrie axiomatique
est non-contradictoire.

Cependant on peut surmonter cette difficulté à l'aide d'un
théorème logique de J. Herbrand.

Pour expliquer cette méthode, nous considérons, au lieu des
axiomes de la géométrie, un système d'axiomes plus simple se

rapportant à un seul domaine d'individus et un seul prédicat <ï>

à deux sujets (fonction logique binaire). Les axiomes sont les
suivants :

1) <D (#, x) n'est valable pour aucun x.
2) Si <I>(x, y) et z), alors ®(x, z).
3) Pour chaque x il existe au moins un y tel que <D (x, y).
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On voit d'abord que ces axiomes ne peuvent être remplis
pour un domaine fini d'individus. D'autre part, on obtient une
interprétation des axiomes pour le domaine des nombres entiers
en prenant pour O (x, y) le prédicat x < y. C'est une interprétation

intuitive; en particulier l'affirmation existentielle peut
être précisée en la remplaçant par l'inégalité x < x +1, valable

pour tous les x.
De cette interprétation ne découle pas immédiatement

l'impossibilité d'une contradiction déduite des trois axiomes

par les raisonnements de la logique classique. Nous allons montrer

comment cette impossibilité, du moins pour la logique du
premier ordre, résulte du dit théorème de Herbrand 1.

Pour cela il faut introduire les symboles logiques:

& « et », signe de la conjonction.

Au moyen de ces signes on représente les trois axiomes considérés

par les formules

1) (x) <D (x, x)
2) (x) (y) (z) (<ï>(x, y) & 0(y, z) >- <&(x, z)

3) (x) (Ey) <1> (x, y)

En joignant les trois formules par la conjonction, nous obtenons

une seule formule 3f(0) représentant le système des

axiomes 1), 2), 3).
Si ce système d'axiomes entraînait une contradiction par

les raisonnements de la logique classique s'exprimant dans

le calcul logique ordinaire, alors la formule 31(0) (négation de
31 (O)) serait déductible par le calcul logique, sans l'emploi d'un
axiome; de la même manière on pourrait déduire la formule
31 (P) avec une variable P à deux arguments représentant un
prédicat quelconque à deux sujets.

—« si — alors »

V « ou bien »,

(x) « pour chaque x »,

(Ex) « pour quelque x »,

« non », » » négation.
» l'implication.
» la disjonction,
» » généralité.
» l'existence.

i Dans ce cas simple, qui nous sert ici seulement d'exemple, on pourrait aboutir au
même résultat par une méthode plus directe.
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Or 31 (P) étant la formule

(x) P (x, x) & (x) (y) (z) (P (x, y) & P (y, z) P(x, z))

& (x) (Ey) P (x, y)

sa négation se transforme, d'après les règles du calcul logique,
en

(Ex) P (x, x) V (Eas) {Ey) (Ejs) (P (x, y) & P (y,z) & P (x,z))

V (Ex) (y)P(x,y)
et encore en

(Ex) (Ey) (Ez) (u){P(^, x) V (P (x, y) & P (y, z)

& P (#,£)) V (P (x, u)^

Cette formule, que nous dénoterons d'une manière abrégée par

(E#) (E?/) (Ez) (u) 33 (x,y, z, u)

devrait donc être déductible par le calcul logique ordinaire, si

on pouvait déduire une contradiction des axiomes 1), 2), 3).
A cette conséquence s'adjoint l'application du théorème de

Herbrand. Ce théorème nous apprend que d'une déduction de

la formule
(E#) (Et/) (Ez) (u) 33 (x, y, z, u)

on obtiendrait (par un certain procédé qu'il n'importe d'indiquer
ici) une disjonction

33 (cii : bi 5 Ci, eh) V 33 (a2 ; &2, c2, <i2) V ••• V 33 (ar, br, cr, dr

ayant les propriétés suivantes:

1. Les arguments dénotés par

ßj 5 J ^1 3 ^1 3 • • • dj' y bf y Cp dp

sont des variables, entre lesquelles des égalités peuvent avoir
lieu; cependant di doit être différent de bu ci et aussi de

ahy h, ch, 4 pour h < i.

2. Appelons les diverses expressions P (a, b), desquelles la
formule est composée (au moyen de la conjonction, de la dis-
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jonction et de la négation), les «composants» de la formule;
attribuons à chaque composant d'une manière quelconque une
des valeurs ç («vrai»), / («faux»); de plus donnons

à ç la valeur /,
à / la valeur ç,
à p & /, / & ç, f & / la valeur /,
à ç & p la valeur p,

à p V V p V /, / V p la valeur p,

à f V / la valeur /.

Nous obtenons alors la valeur v.

Mais une telle disjonction ne peut pas exister. Gela découle
de notre modèle intuitif. En effet, étant donné une formule

33 («i, Ci, dx) V ••• V 33 (ar, br, cr, dr)

des dites propriétés 1., 2., nous pourrions remplacer chacune
des variables

ai) ••• > ar,br,cr,dr,

en conservant les égalités, par des numéros de telle sorte que
(pour i 1, 2, r) d{ soient remplacés par des numéros
consécutifs (ce qui est possible en vertu de la propriété 1.);
attribuons ensuite à chacun des composants ainsi modifiés
P (&, ï) la valeur e pour k < l et la valeur / pour alors
on aurait pour chaque membre de la disjonction — comme
on le voit aisément — la valeur /, et il en serait de même pour
la disjonction entière.

Nous reconnaissons ainsi que la formule 21 (P) ne peut être
déduite par le calcul logique ordinaire et qu'il est par conséquent
impossible de déduire des axiomes 1), 2), 3) une contradiction
par des raisonnements de la logique classique.

La méthode exposée ici s'applique à des systèmes d'axiomes
quelconques pourvu que ce soient des axiomes « propres », c'est-
à-dire qu'ils ne contiennent d'autres généralités ni d'autres
formes existentielles que celles qui se rapportent aux domaines
d'individus pris pour base de la théorie.

Donc pour de tels systèmes d'axiomes la méthode des modèles
tirés de la théorie intuitive des nombres est généralement recon-
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nue suffisante pour démontrer la non-contradiction sans qu'il
faille pour cela démontrer la non-contradiction de l'arithmétique.

En particulier, nous reconnaissons de cette manière la non-
contradiction de la géométrie axiomatique, à l'exception des

axiomes de la continuité, tous les autres axiomes étant des

axiomes propres. (Quant à l'axiome d'Archimède, c'est une
affirmation existentielle se rapportant aux nombres entiers, alors

que les nombres ne font pas partie d'un domaine d'individus
de la géométrie axiomatique; ce n'est donc pas un axiome
propre.) La méthode s'applique aussi à la géométrie non-
euclidienne.

Cependant il faut se rendre compte que cette manière de

traiter la question de la non-contradiction ne regarde que les

raisonnements exprimables par le calcul logique ordinaire, c'est-
à-dire ceux de la logique du premier ordre, où n'interviennent
pas des notions générales comme celle d'un nombre quelconque,
celle d'une fonction quelconque ou celle d'un ensemble

quelconque. Ce n'est donc que dans un sens restreint que la non-
contradiction est démontrée par cette méthode.

II. — Les démonstrations de non-contradiction se rattachant
à l'axiome du s.

Les recherches tendant à la démonstration de la non-contradiction

de l'arithmétique se faisant par étapes, le formalisme
arithmétique qui s'offre comme le premier objet de la recherche
est celui de la théorie axiomatique des nombres.

Ce formalisme est constitué des éléments suivants:
1° le calcul logique ordinaire;
2° le signe de l'égalité avec les axiomes

a — a

a b >- (A (a) >- A (b) ;

3° le symbole 0 et le symbole ' représentant le passage d'un
nombre au suivant, pour lesquels on a les axiomes de Peano

af 0

a — b' >- a b

A (0) & (x) (A (x) >- A (x) >- A (a)

le dernier représentant le principe de l'induction complète;
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