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QUELQUES POINTS ESSENTIELS
DE LA METAMATHEMATIQUE

PAR

P. BErNAYS (Zurich).

1. — Une application du théoréme fondamental
de Herbrand & I’axiomatique.

L’axiomatique usuelle s’appuie sur Darithmétique qu’elle
envisage comme appartenant, pour ainsi dire, & la logique.

Les démonstrations de non-contradiction que I'on a données
pour les systémes axiomatiques de la géométrie et de la physique
consistent & montrer qu'une contradiction dans I'un de ces
systemes devrait entrainer une contradiction dans [I’arith-
meétique.

Cette réduction a I'arithmétique ayant été déja faite,
M. HiLBERT concentrait, dans la théorie de la démonstration,
son effort & démontrer, de son point de vue fini, la non-contra-
diction de I’arithmétique.

Mais puisque pour le moment ce probléme n’est pas encore
résolu, la question se pose s’il est nécessaire pour I'axiomatique,
en particulier celle de la géométrie élémentaire, de démontrer la
non-contradiction de 'arithmétique, soit dans le sens de ’analyse
infinitésimale ou du moins dans le sens de la théorie axiomatique
des nombres.

La question se pose d’autant plus que le modele arithmétique
de la géométrie euclidienne peut étre donné dans le cadre de la
théorie des nombres algébriques, — du moins quand on fait abs-
traction du deuxiéme axiome de continuité quin’est pas employé
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dans la géométrie élémentaire. On peut méme se restreindre a ces
nombres qu’on obtient en adjoignant aux quatre opérations élé-
mentaires du calcul celle de prendre la racine carrée d’'un nombre
positif. |

Cette partie de l'arithmétique peut étre traitée directement
selon les exigences du point de vue fini.

En constatant ce fait, on est tenté de croire que le probleme
de la non-contradiction de la géométrie élémentaire axiomatique
est déja résolu, puisque le modeéle arithmétique appartient au
domaine de la mathématique intuitive.

Mais il faut considérer que, de P'interprétation intuitive des
axiomes, il ne dérive pas sans autre une interprétation pareille
des démonstrations. En effet, les démonstrations de la géométrie
axiomatique s’appuient sur la supposition que les points, de
méme que les droites et les plans, forment des ensembles
complets fermés. En vertu de cette supposition, les affirmations
concernant ’existence d’un point (d’une droite, d’un plan)
d’une certaine propriété ont un sens immédiat, et le tertium
non datur est généralement valable; on peut donc appliquer
les raisonnements de la logique classique formalisés par le calcul
logique ordinaire. .

Cette supposition de la totalité, que la géométrie axiomatique
fait pour les domaines d’individus, n’est pas contenue dans 'inter-
prétation arithmétique intuitive. Aussi cette interprétation ne
nous permet pas de vérifier toutes les démonstrations de la
géométrie axiomatique, et nous ne pouvons donc pas au moyen
d’elle nous assurer immédiatement que la géométrie axiomatique
est non-contradictoire.

Cependant on peut surmonter cette difficulté & 1'aide d’un
théoréme logique de J. HERBRAND.

Pour expliquer cette méthode, nous considérons, au lieu des
axiomes de la géométrie, un systéme d’axiomes plus simple se
rapportant & un seul domaine d’individus et un seul prédicat @

a deux sujets (fonction logique binaire). Les axiomes sont les
suivants:

1) @ (x, z) n’est valable pour aucun z.
2) Si @ (z,y) et Dy, z), alors @ (z, z).
3) Pour chaque z il existe au moins un y tel que ® (z, y).
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On voit d’abord que ces axiomes ne peuvent étre remplis
pour un domaine fini d’individus. D’autre part, on obtient une
iterprétation des axiomes pour le domaine des nombres entiers
en prenant pour @ (z, y) le prédicat x <<y. C’est une interpré-
tation intuitive; en particulier Paffirmation existentielle peut
étre précisée en la remplacant par I'inégalité x <z + 1, valable
pour tous les x.

De cette interprétation ne découle pas immédiatement
I'impossibilité d’une contradiction déduite des trois axiomes
par les raisonnements de la logique classique. Nous allons mon-
trer comment cette impossibilité, du moins pour la logique du
premier ordre, résulte du dit théoréme de Herbrand 1.

Pour cela il faut introduire les symboles logiques:

& «et», signe de la conjonction.
T~ «non, » » » négation.
—>=  «si— alors» » » Pimplication.
V «ou bien », » » la disjonction.
(x)  « pour chaque x », » » » généralité.
(Ez) «pour quelque x» » » Dexistence.

Au moyen de ces signes on représente les trois axiomes consi-
dérés par les formules

1) () @ (x, x).
2) (x) (y) (2) (DP(x,y) & Py, zs) —> D(x,2)).
3) (z) (Ey) @ (=, y).

En joignant les trois formules par la conjonction, nous obte-
nons une seule formule A (®P) représentant le systéme des
axiomes 1), 2), 3).

S1 ce systeme d’axiomes entrainait une contradiction par
les raisonnements de la logique classique s’exprimant dans

le calcul logique ordinaire, alors la formule 9 (®) (négation de
I (D)) serait déductible par le calcul logique, sans I’emploi d’un
axiome; de la méme maniere on pourrait déduire la formule

A(P) avec une variable P & deux arguments représentant un
prédicat quelconque a deux sujets.

1 Dans ce cas simple, qui nous sert ici seulement d’exemple, on pourrait aboutir au
méme résultat par une méthode plus directe.
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Or A (P) étant la formule

(z) Pz,2) & (2)(y)(s)(P(z,9) & Ply,s) —= Pz, 2))
& (z) (Ey) P (z,9)

sa négation se transforme, d’aprés les régles du calcul logique,
en

(Bz) P(z,2) V (Ez)(By)(Es)(P(z,y) & Ply,3) & Plz,3))
vV (Ez) (y) Pz, y)

et encore en
(Ez) (By) (Bz) w){Pz,z) V (P(z,y) & Ply,3)
& PEd) v el
Cette formule, que nous dénoterons d’une maniére abrégée par
(Bz) (Ey) (Ez) (v) B(z,y,z,u),

devrait donc étre déductible par le calcul logique ordinaire, si

on pouvait déduire une contradiction des axiomes 1), 2), 3).
A cette conséquence s’adjoint I'application du théoréme de

Herbrand. Ce théoréme nous apprend que d’une déduction de

la formule
(Ez) (By) (Ez) (u) ®B(z,y,z,u)

on obtiendrait (par un certain procédé qu’il n’importe d’indiquer
icl) une disjonction

%(ad,blacl)dl) \/ %(a’272727027d2) \/ v %W/‘,bracr,dr)

ayant les propriétés suivantes:
1. Les arguments dénotés par

ay, by, c,dy, ... ap, by, cp, dp

sont des variables, entre lesquelles des égalités peuvent avoir
lieu; cependant d; doit étre différent de a;, b;, ¢; et aussi de
&, by, ¢, d, pour h <i.

2. Appelons les diverses expressions P (a, b), desquelles la
formule est composée (au moyen de la conjonction, de la dis-
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jonction et de la négation), les « composants» de la formule;
attribuons & chaque composant d’une maniére quelconque une
des valeurs ¢ («vrai»), f («faux»); de plus donnons

a ¢ la valeur f,

a f la valeur ¢,

av &f,f &o, f & fla valeur f,
ay & ¢ la valeur o,

av VooV fVelavaleuro,
afV fla valeur f.

Nous obtenons alors la valeur ¢.

Mais une telle disjonction ne peut pas exister. Cela découle
de notre modele intuitif. En effet, étant donné une formule

%(a’lab],,(:l;dl) \/ V %(QI'?br,Cf'vdI')

des dites propriétés 1., 2., nous pourrions remplacer chacune
des wvariables
a, bl: €1, d17 <o > Qp, b"’ Cr, di‘)

en conservant les égalités, par des numéros de telle sorte que
(pour 1 =1, 2, ..., r) a;, d; solent remplacés par des numéros
consécutifs (ce qui est possible en vertu de la propriété 1.);
attribuons ensuite & chacun des composants ainsi modifiés
P (&, 1) la valeur ¢ pour k£ <1 et la valeur f pour I < k; alors
on aurait pour chaque membre de la disjonction — comme
on le voit aisément — la valeur f, et 1l en serait de méme pour
la disjonction entiére.

Nous reconnaissons ainsi que la formule 2 (P) ne peut étre
déduite par le calcul logique ordinaire et qu’il est par conséquent
impossible de déduire des axiomes 1), 2), 3) une contradiction
par des raisonnements de la logique classique.

La méthode exposée ici s’applique & des systémes d’axiomes
quelconques pourvu que ce soient des axiomes « propres », ¢’est-
a-dire qu’ils ne contiennent d’autres généralités ni d’autres
formes existentielles que celles qui se rapportent aux domaines
d’individus pris pour base de la théorie.

Donc pour de tels systémes d’axiomes la méthode des modeles
tirés de la théorie intuitive des nombres est généralement recon-
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nue suffisante pour démontrer la non-contradiction sans qu’il
faille pour cela démontrer la non-contradiction de 1’arithmétique.

En particulier, nous reconnaissons de cette maniére la non-
contradiction de la géométrie axiomatique, & I'exception des
axiomes de la continuité, tous les autres axiomes étant des
axiomes propres. (Quant & Paxiome d’Archiméde, c’est une
affirmation existentielle se rapportant aux nombres entiers, alors
que les nombres ne font pas partie d'un domaine d’individus
de la géométrie axiomatique; ce n’est donc pas un axiome
propre.) La méthode s’applique aussi a4 la géométrie non-
euclidienne.

Cependant il faut se rendre compte que cette maniere de
traiter la question de la non-contradiction ne regarde que les
raisonnements exprimables par le calcul logique ordinaire, ¢’est-
a-dire ceux de la logique du premier ordre, o n’interviennent
pas des notions générales comme celle d’'un nombre quelconque,
celle d’une fonction quelconque ou celle d’un ensemble quel-
conque. Ce n’est donc que dans un sens restreint que la non-
contradiction est démontrée par cette méthode.

II. — Les démonstrations de non-contradiction se rattachant
a Paxiome du .

Les recherches tendant & la démonstration de la non-contra-
diction de I'arithmétique se faisant par étapes, le formalisme
arithmétique qui s’offre comme le premier objet de la recherche
est celui de la théorie axiomatique des nombres.

Ce formalisme est constitué des éléments suivants:

1o le calcul logique ordinaire;
20 le signe de I’égalité avec les axiomes

a = b—= (Af@) —> A (b))

3° le symbole 0 et le symbole ’ représentant le passage d’un
nombre au suivant, pour lesquels on a les axiomes de Peano
a" == 0
a' =b — a=15
A(0) & (z) (Afz) —= Af2')) —= A(a) ,

le dernier représentant le principe de 'induction compléte;
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