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QUELQUES POINTS ESSENTIELS
DE LA MÉTAMATHÉMATIQUE

PAR

P. Bernays (Zurich).

1. — Une application du théorème fondamental
de Herbrand à l'axiomatique.

L'axiomatique usuelle s'appuie sur l'arithmétique qu'elle
envisage comme appartenant, pour ainsi dire, à la logique.

Les démonstrations de non-contradiction que l'on a données

pour les systèmes axiomatiques de la géométrie et de la physique
consistent à montrer qu'une contradiction dans l'un de ces

systèmes devrait entraîner une contradiction dans
l'arithmétique.

Cette réduction à l'arithmétique ayant été déjà faite,
M. Hilbert concentrait, dans la théorie de la démonstration,
son effort à démontrer, de son point de vue fini, la non-contradiction

de l'arithmétique.
Mais puisque pour le moment ce problème n'est pas encore

résolu, la question se pose s'il est nécessaire pour l'axiomatique,
en particulier celle de la géométrie élémentaire, de démontrer la
non-contradiction de l'arithmétique, soit dans le sens de l'analyse
infinitésimale ou du moins dans le sens de la théorie axiomatique
des nombres.

La question se pose d'autant plus que le modèle arithmétique
de la géométrie euclidienne peut être donné dans le cadre de la
théorie des nombres algébriques, —du moins quand on fait
abstraction du deuxième axiome de continuité qui n'est pas employé
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dans la géométrie élémentaire. On peut même se restreindre à ces

nombres qu'on obtient en adjoignant aux quatre opérations
élémentaires du calcul celle de prendre la racine carrée d'un nombre

positif.
Cette partie de l'arithmétique peut être traitée directement

selon les exigences du point de vue fini.
En constatant ce fait, on est tenté de croire que le problème

de la non-contradiction de la géométrie élémentaire axiomatique
est déjà résolu, puisque le modèle arithmétique appartient au
domaine de la mathématique intuitive.

Mais il faut considérer que, de l'interprétation intuitive des

axiomes, il ne dérive pas sans autre une interprétation pareille
des démonstrations. En effet, les démonstrations de la géométrie
axiomatique s'appuient sur la supposition que les points, de

même que les droites et les plans, forment des ensembles

complets fermés. En vertu de cette supposition, les affirmations
concernant l'existence d'un point (d'une droite, d'un plan)
d'une certaine propriété ont un sens immédiat, et le tertium
non datur est généralement valable; on peut donc appliquer
les raisonnements de la logique classique formalisés par le calcul
logique ordinaire.

Cette supposition de la totalité, que la géométrie axiomatique
fait pour les domaines d'individus, n'est pas contenue dans
l'interprétation arithmétique intuitive. Aussi cette interprétation ne
nous permet pas de vérifier toutes les démonstrations de la
géométrie axiomatique, et nous ne pouvons donc pas au moyen
d'elle nous assurer immédiatement que la géométrie axiomatique
est non-contradictoire.

Cependant on peut surmonter cette difficulté à l'aide d'un
théorème logique de J. Herbrand.

Pour expliquer cette méthode, nous considérons, au lieu des
axiomes de la géométrie, un système d'axiomes plus simple se

rapportant à un seul domaine d'individus et un seul prédicat <ï>

à deux sujets (fonction logique binaire). Les axiomes sont les
suivants :

1) <D (#, x) n'est valable pour aucun x.
2) Si <I>(x, y) et z), alors ®(x, z).
3) Pour chaque x il existe au moins un y tel que <D (x, y).
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On voit d'abord que ces axiomes ne peuvent être remplis
pour un domaine fini d'individus. D'autre part, on obtient une
interprétation des axiomes pour le domaine des nombres entiers
en prenant pour O (x, y) le prédicat x < y. C'est une interprétation

intuitive; en particulier l'affirmation existentielle peut
être précisée en la remplaçant par l'inégalité x < x +1, valable

pour tous les x.
De cette interprétation ne découle pas immédiatement

l'impossibilité d'une contradiction déduite des trois axiomes

par les raisonnements de la logique classique. Nous allons montrer

comment cette impossibilité, du moins pour la logique du
premier ordre, résulte du dit théorème de Herbrand 1.

Pour cela il faut introduire les symboles logiques:

& « et », signe de la conjonction.

Au moyen de ces signes on représente les trois axiomes considérés

par les formules

1) (x) <D (x, x)
2) (x) (y) (z) (<ï>(x, y) & 0(y, z) >- <&(x, z)

3) (x) (Ey) <1> (x, y)

En joignant les trois formules par la conjonction, nous obtenons

une seule formule 3f(0) représentant le système des

axiomes 1), 2), 3).
Si ce système d'axiomes entraînait une contradiction par

les raisonnements de la logique classique s'exprimant dans

le calcul logique ordinaire, alors la formule 31(0) (négation de
31 (O)) serait déductible par le calcul logique, sans l'emploi d'un
axiome; de la même manière on pourrait déduire la formule
31 (P) avec une variable P à deux arguments représentant un
prédicat quelconque à deux sujets.

—« si — alors »

V « ou bien »,

(x) « pour chaque x »,

(Ex) « pour quelque x »,

« non », » » négation.
» l'implication.
» la disjonction,
» » généralité.
» l'existence.

i Dans ce cas simple, qui nous sert ici seulement d'exemple, on pourrait aboutir au
même résultat par une méthode plus directe.



MÉTAMATHÉMATIQUE 73

Or 31 (P) étant la formule

(x) P (x, x) & (x) (y) (z) (P (x, y) & P (y, z) P(x, z))

& (x) (Ey) P (x, y)

sa négation se transforme, d'après les règles du calcul logique,
en

(Ex) P (x, x) V (Eas) {Ey) (Ejs) (P (x, y) & P (y,z) & P (x,z))

V (Ex) (y)P(x,y)
et encore en

(Ex) (Ey) (Ez) (u){P(^, x) V (P (x, y) & P (y, z)

& P (#,£)) V (P (x, u)^

Cette formule, que nous dénoterons d'une manière abrégée par

(E#) (E?/) (Ez) (u) 33 (x,y, z, u)

devrait donc être déductible par le calcul logique ordinaire, si

on pouvait déduire une contradiction des axiomes 1), 2), 3).
A cette conséquence s'adjoint l'application du théorème de

Herbrand. Ce théorème nous apprend que d'une déduction de

la formule
(E#) (Et/) (Ez) (u) 33 (x, y, z, u)

on obtiendrait (par un certain procédé qu'il n'importe d'indiquer
ici) une disjonction

33 (cii : bi 5 Ci, eh) V 33 (a2 ; &2, c2, <i2) V ••• V 33 (ar, br, cr, dr

ayant les propriétés suivantes:

1. Les arguments dénotés par

ßj 5 J ^1 3 ^1 3 • • • dj' y bf y Cp dp

sont des variables, entre lesquelles des égalités peuvent avoir
lieu; cependant di doit être différent de bu ci et aussi de

ahy h, ch, 4 pour h < i.

2. Appelons les diverses expressions P (a, b), desquelles la
formule est composée (au moyen de la conjonction, de la dis-
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jonction et de la négation), les «composants» de la formule;
attribuons à chaque composant d'une manière quelconque une
des valeurs ç («vrai»), / («faux»); de plus donnons

à ç la valeur /,
à / la valeur ç,
à p & /, / & ç, f & / la valeur /,
à ç & p la valeur p,

à p V V p V /, / V p la valeur p,

à f V / la valeur /.

Nous obtenons alors la valeur v.

Mais une telle disjonction ne peut pas exister. Gela découle
de notre modèle intuitif. En effet, étant donné une formule

33 («i, Ci, dx) V ••• V 33 (ar, br, cr, dr)

des dites propriétés 1., 2., nous pourrions remplacer chacune
des variables

ai) ••• > ar,br,cr,dr,

en conservant les égalités, par des numéros de telle sorte que
(pour i 1, 2, r) d{ soient remplacés par des numéros
consécutifs (ce qui est possible en vertu de la propriété 1.);
attribuons ensuite à chacun des composants ainsi modifiés
P (&, ï) la valeur e pour k < l et la valeur / pour alors
on aurait pour chaque membre de la disjonction — comme
on le voit aisément — la valeur /, et il en serait de même pour
la disjonction entière.

Nous reconnaissons ainsi que la formule 21 (P) ne peut être
déduite par le calcul logique ordinaire et qu'il est par conséquent
impossible de déduire des axiomes 1), 2), 3) une contradiction
par des raisonnements de la logique classique.

La méthode exposée ici s'applique à des systèmes d'axiomes
quelconques pourvu que ce soient des axiomes « propres », c'est-
à-dire qu'ils ne contiennent d'autres généralités ni d'autres
formes existentielles que celles qui se rapportent aux domaines
d'individus pris pour base de la théorie.

Donc pour de tels systèmes d'axiomes la méthode des modèles
tirés de la théorie intuitive des nombres est généralement recon-
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nue suffisante pour démontrer la non-contradiction sans qu'il
faille pour cela démontrer la non-contradiction de l'arithmétique.

En particulier, nous reconnaissons de cette manière la non-
contradiction de la géométrie axiomatique, à l'exception des

axiomes de la continuité, tous les autres axiomes étant des

axiomes propres. (Quant à l'axiome d'Archimède, c'est une
affirmation existentielle se rapportant aux nombres entiers, alors

que les nombres ne font pas partie d'un domaine d'individus
de la géométrie axiomatique; ce n'est donc pas un axiome
propre.) La méthode s'applique aussi à la géométrie non-
euclidienne.

Cependant il faut se rendre compte que cette manière de

traiter la question de la non-contradiction ne regarde que les

raisonnements exprimables par le calcul logique ordinaire, c'est-
à-dire ceux de la logique du premier ordre, où n'interviennent
pas des notions générales comme celle d'un nombre quelconque,
celle d'une fonction quelconque ou celle d'un ensemble

quelconque. Ce n'est donc que dans un sens restreint que la non-
contradiction est démontrée par cette méthode.

II. — Les démonstrations de non-contradiction se rattachant
à l'axiome du s.

Les recherches tendant à la démonstration de la non-contradiction

de l'arithmétique se faisant par étapes, le formalisme
arithmétique qui s'offre comme le premier objet de la recherche
est celui de la théorie axiomatique des nombres.

Ce formalisme est constitué des éléments suivants:
1° le calcul logique ordinaire;
2° le signe de l'égalité avec les axiomes

a — a

a b >- (A (a) >- A (b) ;

3° le symbole 0 et le symbole ' représentant le passage d'un
nombre au suivant, pour lesquels on a les axiomes de Peano

af 0

a — b' >- a b

A (0) & (x) (A (x) >- A (x) >- A (a)

le dernier représentant le principe de l'induction complète;
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4° les symboles de la somme et du produit +, -, avec les

équations récurrentes

a -}- 0 a a.0=0
a + b' (a -f- b)' a • b' a • b + a

A propos de cette énumération faisons quelques remarques:

a) L'axiome
a b >- (A (a) •>- A (b)

peut être remplacé par les deux axiomes plus spéciaux

a b ——(a c b — c)

a — b a b'

ß) Le principe de l'induction complète peut être formalisé
aussi par le schéma

51 (0)

%(n) >- 51 jn')
51 (a)

y) On peut généralement éviter les variables de propositions
et de prédicats en remplaçant chaque formule initiale contenant
une telle variable par un schéma correspondant. Par exemple
la formule

a — b >- (A (a) A (b)

peut être remplacée par le schéma

a b >- (51(a) 51 (b))

indiquant des formules d'une certaine forme qui peuvent servir
de formules initiales 1.

S) Au lieu des variables libres d'individus, comme a, è, on

pourrait dans les axiomes mettre des variables liées par des

signes de généralité. Par exemple la formule

a a

pourrait être remplacée par
(x) (x x)

i La lettre 21 indique une formule quelconque (du formalisme considéré) contenant
un argument, tandis que A est une variable de prédicat appartenant elle-même au
formalisme.
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z) Les équations récurrentes sont appelées ordinairement
définitions récurrentes; mais il faut se rendre compte que ce ne

sont pas des définitions nominales.
Le formalisme indiqué suffit pour représenter et déduire les

relations de la théorie des nombres. Mais il y a encore une lacune
en ceci qu'on ne peut pas représenter directement les fonctions
arithmétiques, mais seulement les prédicats correspondants. Par
exemple on n'obtient pas une expression pour le plus grand
diviseur commun de a et b (fonction de deux arguments), mais
.seulement pour le prédicat correspondant « le plus grand diviseur
commun de a et b est égal à c » (prédicat de trois sujets).

Pour exprimer les fonctions arithmétiques, il faut ajouter au
symbolisme du calcul logique un symbole tx 31 (x), représentant
la notion « celui qui », avec la règle suivante (« règle du t ») :

Si pour une formule 31(c) on a déduit

(E#) % (x) (1)

et
(x) (;y) (51 (x) & 21 (y) >- x y) (2)

alors on peut introduire l'expression

ix%{x)

(représentant l'individu unique Ç, pour lequel 3l(£) est valable);
et on a

*('*«(*)) •

Cette règle comprend aussi le cas où la formule 31 (c) contient
outre la variable c d'autres variables comme paramètres; l'expres-
sion ix 3Ï (x) représente alors une fonction de ces paramètres.

A l'aide de la règle du i et du principe de l'induction complète
on parvient à introduire, par une définition nominale, un symbole,

écrivons-le [xxA(x), contenant un prédicat variable, repré-,
sentant ou le plus petit nombre n, pour lequel A(n) est vrai
s'il y a un tel nombre, ou autrement le nombre nul. Au moyen
de ce symbole nous obtenons les expressions des fonctions
arithmétiques.

La question de la non-contradiction posée pour notre formalisme

complété par l'introduction de la règle du i peut être rame-
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née à celle concernant le formalisme antérieur. La réduction se fait
en démontrant que l'application de la règle du t peut être éliminée.
Cette démonstration part de la remarque suivante faite déjà par
Russell et Whitehead: Si pour un prédicat représenté par une
formule 31(c) les conditions (1), (2) sont remplies, alors une
affirmation 33 (^ 3t (#) («l'individu qui a la propriété 3f(.), a
aussi la propriété 33(.) ») peut être remplacée par

(x) (31 (x) >- 33 (x)

et aussi par
(Ex) (31 (x) & 33 (x))

Il s'agit ensuite de prouver que par ce remplacement, éloignant
les expressions de la forme ix 31 (x), une déduction ne change

que d'une manière telle qu'on en puisse regagner une déduction
en ajoutant certains passages, dans lesquels la règle du i n'intervient

pas. On peut le démontrer, bien que la preuve en soit
un peu pénible.

Mais ce n'est pas de cette manière que M. Hilbert a procédé.
M. Hilbert a introduit dès le commencement le symbole zx%(x)
avec l'axiome

A (a) A (ex A (x) (« axiome du s »)

Cela revient à une généralisation du symbole A {x) au delà
de la théorie des nombres.

Je veux montrer ici, comment on peut passer de la règle du <

à l'axiome du s. Le passage se fait en deux pas. D'abord nous
omettons de la règle du t la deuxième des conditions (1), (2)
de l'introduction du symbole ix 31 (x). La règle ainsi modifiée

permet d'introduire pour chaque prédicat 31 (c), valable

pour au moins un individu, un symbole représentant « un certain

x, pour lequel 31 (x) ». Soit r)x 31 (x) ce symbole, alors la règle
nouvelle peut être indiquée brièvement par le schéma

(Ex) 31 (x)
31 (%3l(;r))

*

De ce schéma nous faisons maintenant une application
spéciale. Prenons pour 31(c) l'expression

(Ey) A(y) — A (c) ;
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alors (Ex) 31 (x) devient

(Ex) ((Ey) A (y) — A(x))

Cette formule peut être déduite par le calcul logique ordinaire ;

donc nous pouvons introduire

r]x((Ey)A (y) — A (x)

et en nous servant de l'abréviation A(x) définie par l'équation

exA(x) 7]x((Ey}A(y) >- A (x)

nous obtenons suivant notre schéma la formule

(Ey)A(y) >- A(exA(x)) ;

or celle-ci est équivalente, d'après le calcul logique, à

A (a) A (ex A (x)

ce qui est l'axiome du s.
De cette réduction résulte aussi les formules

(Ex) A (x) A (exA (x)

(x) A (x) -<—— A (sx A (x)

(31 35 indique le couple des deux formules

31 >- 35 33 >- 31)

Par ces formules, un changement du formalisme nous est

suggéré; en effet, on peut les regarder comme des définitions
exprimant l'existence et la généralité au moyen du symbole s.

De plus il se montre que si nous acceptons ce point de vue, tout
le calcul concernant la généralité et l'existence se fait par l'application

de l'axiome du s et de la règle qu'une expression sx3l(;r)
peut être substituée à une variable d'individus.

On peut donc éliminer du tout les signes (x), (E#) et on ne
retient aucun autre schéma logique que celui du « modus
ponens »

© —- £
X
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le reste du calcul logique se faisant par des formules initiales,
des répétitions et des substitutions.

(Quant à l'axiome de l'induction complète, il peut être
remplacé, au moyen du symbole s, par la formule suivante

zxN(x) b' >- A (b) ;

celle-ci exprime que, pour un prédicat 31(c) quelconque, le nombre
représenté par 21 (x) ou bien est égal à zéro ou bien succède
à un nombre b pour lequel 31 (b) est faux.)

Il est vrai que cette façon de manier le calcul logique n'est
pas avantageuse pour les déductions effectives, mais pour les

considérations métamathématiques elle apporte une certaine
simplification.

C'est le formalisme ainsi modifié de la théorie axiomatique
des nombres dont M. Hilbert s'est appliqué à prouver la non-
contradiction. Il a saisi le problème par deux méthodes qui
ont été poursuivies plus loin, l'une par M. Ackermann et M. von
Neumann 1, l'autre par M. Ackermann. Mais on ne parvient
par ces méthodes à démontrer la non-contradiction que pour un
formalisme restreint. En effet, il faut faire une restriction à

l'égard de l'axiome de l'induction complète (représenté ou par
une formule ou par le schéma). Par exemple, c'est une restriction
suffisante que l'induction complète ne soit appliquée qu'à des

formules élémentaires (ne contenant pas de variables liées).
Donc les démonstrations attachées à l'axiome du s ne nous

ont pas conduit à reconnaître la non-contradiction de la théorie
axiomatique des nombres.

Cependant la deuxième des dites méthodes de M. Hilbert nous
fournit une démonstration assez simple et naturelle du théorème
mentionné de Herbrand. D'autre part, de ce théorème découle

comme Herbrand l'a montré 2, la non-contradiction du formalisme

restreint qui dérive de celui de la théorie axiomatique
des nombres par la restriction indiquée tantôt. (Ce résultat
n'équivaut pas à celui de Ackermann et von Neumann parce que
le formalisme du s n'y est pas enfermé.)

1 Le formalisme traité par von Neumann est un peu plus général que celui de
MM. Hilbert et Ackermann; cette différence n'est pas considérable; mais il y a aussi
une différence dans la manière de procéder entre M. Ackermann et M. yon Neumann.

2 Une autre démonstration de ce fait a été donnée récemment par M. Gentzen.
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III. — Le théorème de Gödel concernant les démonstrations
de non-contradiction.

A la fin de la conférence précédente, il a été dit qu'on n'a pas
réussi à démontrer, par la méthode se rattachant à l'axiome du s,

la non-contradiction de la théorie axiomatique des nombres (à

moins qu'on ne fasse des restrictions). Plus généralement, il se

trouve qu'aucune des méthodes établies dans le cadre des

raisonnements élémentaires combinatoires, prescrit par le

programme primordial de la métamathématique de M. Hilbert,
ne nous livre cette démonstration cherchée de non-contradiction.

Ce n'est pas faute d'une découverte, que nous nous trouvons
dans cette situation. Un théorème de M. Gödel nous montre,
au contraire (comme je l'ai déjà mentionné), qu'il y a ici un
obstacle essentiel. Le raisonnement de M. Gödel, qui conduit à

ce théorème, est inspiré de l'idée qui conduit à l'antinomie de

Richard.
Les divers énoncés de cette antinomie forment un deuxième

groupe de paradoxes se distinguant du paradoxe de Russell-
Zermelo.

Il y a une correspondance entre les deux sortes de paradoxes
et deux conceptions philosophiques: celle de Platon du monde
des idées et celle de Leibniz d'une langue universelle scientifique.

Le paradoxe de Russell-Zermelo exclut le platonisme absolu,
le paradoxe de Richard exclut la réalisation parfaite de l'idée
de Leibniz ; son sens est environ le suivant : Chaque langue exacte
devient sujet à une considération mathématique de ses moyens
d'expression. Les éléments dont se constituent les expressions
de la langue et les formes de leurs combinaisons engendrent un
formalisme dénombrable, et la pensée mathématique dépasse ce
formalisme. De là il dérive qu'en joignant les exigences d'une
langue exacte à celles d'une langue universelle on rencontre des

contradictions. D'autre part, la langue usuelle semble suffire aux
deux exigences pourvu qu'on s'en serve d'une manière appropriée.

C'est ainsi qu'apparaît le caractère suggestif de
l'antinomie.

Dans les formes originaires de cette antinomie, il s'agit

L'Enseignement mathém., 34me année, 1935. 6
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toujours des possibilités de définitions. M. Finsler a remarqué
qu'on peut transformer l'antinomie de Richard en une autre
concernant les démonstrations. Pour cette antinomie modifiée
comme pour l'antinomie primitive de Richard, il est encore
possible de présenter certaines objections plus ou moins subtiles.
Aussi c'était une opinion répandue que l'antinomie de Richard
n'avait d'autre signification que celle d'un sophisme reposant
sur des inexactitudes de langage, et qu'il suffirait de préciser la
langue pour que le paradoxe disparaisse 1.

Il est vrai qu'en précisant la langue, nous faisons disparaître
les contradictions résultant du raisonnement de Richard; mais
alors on obtient des résultats qui restreignent la possibilité de
constituer dans sa totalité une langue universelle, dans le sens
même indiqué déjà par l'antinomie de Richard.

C'est ce qui a été mis en évidence par l'argumentation de
Gödel qu'il s'agit maintenant d'exposer.

L'argumentation commence par remplacer les prémisses de

l'antinomie de Richard par d'autres d'une nature proprement
mathématique.

Au lieu de la langue usuelle on considère un formalisme rigoureux

g, comme ceux que la métamathématique a pour objet,
c'est-à-dire un formalisme qui traduit les raisonnements d'un
certain domaine de la mathématique dans des suites de formules,
nommées déductions, et qui sont formées d'après certaines règles;
les règles sont supposées telles qu'il soit possible de contrôler
machinallement les déductions; cela veut dire que pour une
suite donnée de formules on peut décider, par une série d'épreuves
se faisant par des comparaisons de figures, si c'est une déduction
selon les règles du formalisme ou non.

Quant au domaine de la mathématique représenté par le
formalisme g, nous supposons seulement qu'il contienne la
théorie des nombres. Ou plus en détail:

1. La relation d'égalité entre nombres doit être exprimable
dans g, et chaque équation numérique vraie, de même que
chaque inégalité numérique juste, doit être déductible dans %.

i II se trouve cependant quelques mathématiciens pour reconnaître dès l'abord,
comme L. Chwistek, le sérieux de l'antinomie de Richard.
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2. Les définitions par récurrence d'une fonction <p(n) ou
cp(ft, c) d'après l'un des schéma que voici1:

i <p (0) a 9(0, c) a(c)

9 (ra -f 1) 6 (71, 9 (n) 9 [n + 1, c) fc (n, c, 9 (n c)

i (où a et b sont des expressions introduites plus tôt) doivent être

représentées dans % de la façon suivante: A chaque équation

^ (a) b

où ^ est une fonction définie par des schéma de la dite structure
et par des substitutions, il correspond dans % une expression
35 (a, è), dont on obtient une formule déductible en substituant
à la variable a le signe représentant un nombre naturel et
à b le signe représentant la valeur de ^(î).

3. % contient le calcul ordinaire logique (du premier ordre) 2.

4. Le principe de l'induction complète est représenté dans
soit par une règle ou une formule initiale, ou aussi par un procédé
de déduction.

Pour exprimer brièvement les conditions faites, nous dirons

que § doit être un formalisme rigoureux et suffisant pour la
théorie des nombres.

De ces propriétés on peut d'abord conclure que les relations
métamathématiques concernant le formalisme % peuvent être
exprimées dans g par des formules. D'abord les symboles et les
variables 3 peuvent être numérotés. A partir de cette numérotation

on en obtient une autre pour les expressions; et ceci par
le procédé suivant. A la suite composée de symboles et variables
ayant successivement les numéros

nlt nk,

1 Le cas de plusieurs paramètres fixes peut être réduit à celui d'un seul paramètre.
2 On peut affaiblir cette condition. Par exemple il suffirait d'exiger à sa place que

§ contienne le calcul logique de M. Heytino.
3 Le formalisme peut contenir plusieurs genres de variables, et de plus les variables

libres peuvent être séparées des variables liées.



84 P. BERNA YS

on attribue le numéro m, dont la décomposition en nombres
premiers est donnée par

(où pT dénote le rième nombre premier).
De la même manière on passe de la numérotation des expressions

à la numérotation des suites d'expressions 1.

Pour tout n qui appartient à une expression, nous
désignons par 2In l'expression, dont n est le numéro, et de même,
si n appartient à une suite d'expressions, par 9în la suite ayant
le numéro n.

Parmi les expressions il y a les « formules » de $, et parmi
les suites d'expressions il y a les déductions de g.

Puisque % est un formalisme rigoureux, les affirmations méta-
mathématiques sur % se transforment, au moyen des numérotations

faites en des propositions arithmétiques élémentaires. En
particulier, l'énoncé « m est le numéro d'une suite d'expressions,
n celui d'une expression et une déduction, dont la formule
finale est 2fn » peut être exprimé par une équation

[m, n) — 0

4 étant une fonction arithmétique définissable au moyen
de récurrences d'après les schéma (dv) et de substitutions.

En vertu de notre supposition que le formalisme % est suffisant

pour la théorie des nombres, à l'équation

4 [m, n) 0

il correspond dans g une formule contenant m, n, mais pas
d'autres variables libres. Dénotons cette formule pour rappeler
l'interprétation métamathématique (« 3îm est déduction de 2tn»)

par Déd (m, n) ou aussi par Dédm(3tn)2.
Afin d'arriver au point essentiel du raisonnement de M. Gödel,

il suffit d'ajouter un petit corrolaire au dernier résultat. Consi-

1 A un nombre donné il ne correspond pas toujours une expression, mais seulement
à chaque expression appartient un numéro et un seul. Et le même vaut pour les
suites d'expressions.

2 Pour bien comprendre cette forme d'indication, il faut observer que n'est

pas une partie constituante de la formule Dédm (21n).
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dérons l'énoncé « 9îm est une déduction, dont la formule
finale s'obtient de 3ln en substituant pour la variable libre a,
à chaque place où elle intervient dans 2tn, le chiffre dénotant
le numéro n ».

Cet énoncé, de même que celui considéré tout à l'heure,
s'exprime par une équation

X {m > n) o

où x(m-> n) es^ une fonction du même caractère élémentaire que
^ (m, n). Et dans le formalisme $ l'équation x imi n) ~ 0 est

aussi représentée par une formule que nous dénotons par

Déd * (m, n)

Pour des chiffres donnés ut, n, on peut évaluer y (m, n), et
décider si l'équation x (m? n) 0 est vraie ou fausse.

Dans le premier cas, d'après nos suppositions sur le formalisme
g, la formule

Déd * {m n)

dans l'autre la négation
Déd * (m n)

est déductible par le formalisme %. De plus, dans le premier cas,
nous pouvons construire la suite d'expressions 9îm, et celle-ci
est une déduction (dans %) de la formule qui s'obtient de l'expression

2ln en substituant le chiffre n à la variable a.

Soit maintenant le numéro de la formule

(x) Déd* (x, a)

Supposé que pour un chiffre donné m l'équation

y (m, — 0

soit vraie, alors la formule

Déd* (m, f)

serait déductible dans de plus, la suite d'expressions 9tm

serait une déduction de la formule

(x) Déd* (x f)
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(qu'on obtient de 2lf, en substituant pour a); et de cette
formule découlerait

Déd* (m, ;

mais alors le formalisme % serait contradictoire. Donc, si le

formalisme g n'implique pas de contradictions, il faut que pour
chaque chiffre m l'équation

X. (m, f) 0

soit fausse, et que la formule

Déd* (m, f)

soit déductible dans §.
D'autre part, sous la même supposition de la non-contradiction

de $, la formule
(x) Déd* {x, f)

ne peut pas être déductible dans %. Car cette formule s'obtient
de 3lf en substituant f pour a. Donc, si nous avions pour elle

une déduction, dont le numéro (dans la numérotation des suites

d'expressions) était m, alors la formule

Déd* (m, f)

serait déductible, et il y aurait une contradiction dans %.

De là le résultat : S'il peut être montré que le formalisme

% est non-contradictoire, alors il y a une proposition
élémentaire arithmétique démontrable qui peut être exprimée,
mais pas déduite de En effet, on démontre alors que pour
chaque chiffre m l'équation x(w, ï) 0 est fausse, tandis que
la formule exprimant ce théorème dans le formalisme savoir

(x) Déd* (x, f)

n'est pas déductible dans §.
Voilà un résultat fort et remarquable. Mais ce n'est pas celui

des résultats de M. Gödel, auquel j'ai fait allusion au commencement

de cette conférence. Pour y parvenir, il faut renforcer
le raisonnement, moyennant la supposition que le formalisme %

contient le calcul logique et le principe de l'induction complète.
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Je me contente ici d'indiquer en peu de mots le cours du

raisonnement.
En vertu de la relation entre les fonctions n) x(mi n)i

la formule
Déd* (m, î) >- Dédm (x) Déd* (x,ï))

(où m est une variable de nombre), peut être déduite dans

De cette formule on tire par le calcul logique

(Ex) Déd* (x, >- (Ey) Dédy ((a;) Déd* (x, t) (1)

D'autre part, puisque la fonction n) est définie par
récurrence selon les schéma (dv), on peut déduire dans $ une
formule

Déd* (m, f) (Ey) Déd (y, Ç (m)

où m est de nouveau une variable de nombre et £,(m) est une
fonction arithmétique définie par récurrence, dont la valeur

pour un chiffre donné a est le numéro de l'expression Déd* (a, f).
De cette formule découle

(Ex) Déd* (x, f) —^ (Ey) Dédy (Jx) Déd* (x, ï) (2)

Les formules (1), (2) donnent

(Es) Déd* (x, f) *- (Ey) Déd?, (0^0),
et de cette formule on déduit par le calcul logique

{x) Dédx (0 =5* 0) >- (x) Déd* (x, f)

A l'aide de cette formule déductible dans % on peut passer
de l'antécédent au conséquent. Mais l'antécédent est la formule
exprimant la non-contradiction du formalisme et quant au
conséquent, nous avons constaté tantôt qu'il n'est pas déductible

par le formalisme §, à moins que celui-ci ne soit contradictoire.
Nous sommes donc conduits à l'énoncé suivant: Si le formalisme

$ est non-contradictoire, alors la formule exprimant la
non-contradiction de % ne peut pas être déduite dans le formalisme

% même.
Ce résultat s'applique à chaque formalisme rigoureux et

suffisant pour la théorie des nombres, c'est-à-dire satisfaisant
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aux conditions 1. — 4. indiquées tout à l'heure. Déjà le formalisme

de la théorie axiomatique des nombres possède les dites
propriétés. En effet on peut montrer que les définitions
récurrentes se faisant d'après les schéma (tfv) ont leur représentation

dans ce formalisme; et quant aux autres conditions, il est
évident qu'elles y sont remplies.

A fortiori nos suppositions se trouvent réalisées par les
formalismes plus étendus, desquels la théorie axiomatique des

nombres peut être déduite, comme celui de l'analyse infinitésimale,

ceux de la théorie axiomatique des ensembles, et celui des

« Principia Mathematica », soit dans la forme originaire (avec
l'axiome de la réductibilité) ou dans la forme simplifiée.

Aucun de ces formalismes, pourvu qu'il soit non-contradictoire,

ne permet de déduire le théorème arithmétique équivalent
à l'affirmation métamathématique de sa non-contradiction.

En particulier, un raisonnement démontrant la non-contradiction

de la théorie axiomatique des nombres ne peut pas
être traduit dans cette théorie là.

Ce résultat explique le fait, qui nous a étonnés, que tous les

essais de démontrer la non-contradiction de la théorie axiomatique

des nombres par les méthodes élémentaires combinatoires
n'ont pas réussi.

En effet, il faudrait, pour atteindre ce but, trouver un
raisonnement élémentaire combinatoire qui ne puisse être formalisé dans
la théorie axiomatique des nombres. Mais, à ce qu'il semble, il
n'y a pas de tels raisonnements.

Selon toute apparence, le cadre dans lequel M. Hilbert enfermait

les méthodes inspirées du « point de vue fini » n'est pas
assez large pour une théorie de la démonstration. La question
est donc de savoir si ce cadre peut être élargi sans abandon du
but que poursuit la métamathématique. Nous verrons que c'est
bien le cas.

IV. — La relation entre la théorie axiomatique des nombres
et l'arithmétique intuitionniste.

Le théorème général de Gödel sur les démonstrations de non-
contradiction s'applique en particulier, comme nous l'avons



MÉ TA MA THÉMA TIQ UE 89

constaté, à la théorie axiomatique des nombres. Dénotons

désormais, pour abréger, le formalisme de cette théorie par 9î.

Nous avons obtenu le résultat que le théorème arithmétique,
dans lequel l'énoncé de la non-contradiction de 9Ï est traduit au

moyen d'une numérotation des symboles et variables de 9î,

puis des expressions et encore des suites d'expressions de 91, ne

peut être déduit par le formalisme 9î.

D'autre part, nous sommes conduits, par diverses épreuves
faites, à croire que chaque démonstration d'un théorème
arithmétique suffisant aux exigences du point de vue fini (comme il a

été caractérisé par M. Hilbert) peut être formalisée dans 9t.

Donc en maintenant ces exigences pour la méthode de la

métamathématique, on ne parviendra pas à démontrer la
non-contradiction de 9Î.

Ainsi nous sommes amenés à nous demander s'il n'y a pas la
possibilité d'élargir le « point de vue fini », tout en conservant
le but de la métamathématique.

Rappelons-nous comment M. Hilbert lui-même a introduit ce

point de vue. Dans l'exposition des idées fondamentales de la
métamathématique, il présente la théorie élémentaire et intuitive

des nombres comme une méthode qui possède une pleine
sûreté, qui n'exige pas de suppositions ni d'axiomes, et qui est
libre des difficultés attachées à la notion de l'infini.

De la même manière il tend à faire les raisonnements méta-
mathématiques. Et la possibilité de s'en tenir à un tel cadre lui
semble être garantie par le fait que le problème de démontrer
la non-contradiction d'un formalisme rigoureux a la forme d'un
problème élémentaire concernant les nombres entiers.

Ainsi l'introduction du point de vue fini, faite par M. Hilbert,
consistait simplement à caractériser, au moyen d'un exemple,
une méthode satisfaisante pour la métamathématique. Mais ce
n'est pas une délimitation précise. Et il y avait en effet une
incertitude sur l'étendue des méthodes finies.

Quelques mathématiciens, notamment MM. v. Neumann,
Kalmar et Herbrand, ont envisagé le point de vue fini comme
non différent de la méthode intuitionniste de M. Brouwer. Ce qui
était en faveur de cette interprétation c'est que les restrictions
faites par la méthode intuitionniste sont justement celles qui
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sont nécessaires pour la métamathématique ; car cette méthode
est pleinement caractérisée par l'exigence d'éviter les suppositions

reposant sur les analogies de l'infini au fini, en particulier
celle de la totalité des nombres entiers.

Toutefois, dans les démonstrations métamathématiques, on
s'en est toujours tenu à un cadre plus étroit en raison de la
tendance naturelle à une évidence élémentaire. On est resté dans
le domaine de ces raisonnements qui peuvent être formalisés
sans l'emploi de variables liées.

C'est par cette limitation qu'on est tombé dans les dites
difficultés. En effet, notre thèse qu'on peut formaliser dans 9i

chaque démonstration d'un théorème arithmétique, laquelle est
conforme au point de vue fini, n'est valable que si le point de

vue fini est interprété dans le sens restreint.
Nous allons voir qu'il y a des démonstrations intuitionnistes

qui ne peuvent pas être formalisées dans 9Î. Pour la recherche
d'une telle démonstration faisons d'abord la réflexion suivante.

Comme nous le savons par le théorème de Gödel, la formule
exprimant, dans le formalisme 9Î, la non-contradiction de 91 n'est

pas déductible dans 9Î. Mais il se trouve qu'elle est déductible
à l'aide d'un formalisme 9?* qu'on obtient de 9Î en ajoutant
certaines définitions récurrentes non-élémentaires, comme par
exemple

Y (ft, 0) SB (Ä)

Y (ft, n + 1) (Ex) ÇV(x, n) & 93 (ft, s,*)),

où T (A, h) est la fonction propositionnelle qu'il s'agit de définir,
et 33 (A), 33 (A, x, n) sont des expressions connues 1.

De là découle que cette sorte de définitions récurrentes

dépasse le formalisme 9i. D'autre part, une telle définition récurrente

intervient aussi dans la déduction formelle du principe de

l'induction transfinie appliqué à un ordre du type ordinal lim an,
n

OÙ

a0 — 1 afe+1 (ùak{Ji 0,1.

i Qu'il y ait ici des équivalences récurrentes au lieu d'équations récurrentes, ce n'est
pas un point essentiel. Généralement les équations récurrentes peuvent être remplacées
par des équivalences récurrentes. Inversement, on pourrait ici, en introduisant le

symbole réduire les équivalences récurrentes définissant w (ft, n), à des équations

récurrentes définissant une fonction arithmétique de k et n.
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Ce type d'ordre peut être réalisé pour les nombres entiers par
un ordre

a < &

définissable par des récurrences élémentaires. Et le dit principe
s'exprime, pour cet ordre, par la formule

(x) î {y) (y < X A {y) ^ A (x) | >- (x) A {x)

dans laquelle on peut substituer pour A une formule 31

quelconque du formalisme SJÎ contenant une place d'argument.
Pour déduire cette formule, il suffit d'employer, outre les

règles du formalisme 9t, une définition récurrente de la forme

indiquée tantôt. A ce qu'il semble, une telle définition ne peut
pas être évitée ici, à moins qu'on étende le symbolisme
de 9Ï, par exemple en introduisant des variables liées de

propositions, c'est-à-dire en s'élevant au formalisme logique du
deuxième ordre.

Mais, d'autre part, on peut démontrer le principe représenté

par cette formule dans la mathématique intuitionniste.
Donc, selon toute apparence, le cas spécial considéré du principe

de l'induction transfinie est déjà un exemple d'un théorème
démontrable par la mathématique intuitionniste, mais pas
déductible dans 3Î.

Ainsi il se pourrait, en concordance avec le théorème de Gödel,
qu'on trouve une démonstration intuitionniste de la non-contradiction

du formalisme 3Î, dans laquelle la seule partie non-
formalisable dans îî serait l'application du dit principe d'induction

transfinie.
Pour le moment ce n'est qu'une possibilité. Mais d'une autre

manière on a réussi à démontrer du point de vue intuitionniste
la non-contradiction du formalisme ?J.

Cette démonstration repose sur une généralisation d'une
remarque faite par M. Glivenko. Il a comparé le calcul
ordinaire des propositions à un calcul conforme à la logique
intuitionniste des propositions, et il a constaté la relation suivante:
si une formule 31 est déductible par le calcul ordinaire des

propositions, alors % est déductible par le calcul intuitionniste; et si
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21 est déductible par le calcul ordinaire, alors elle est aussi
déductible par le calcul intuitionniste.

Si cet énoncé pouvait être étendu directement au calcul entier,
alors la non-contradiction du formalisme 2i résulterait
immédiatement du point de vue intuitionniste. Cependant la thèse
de Glivenko n'est plus valable, quand les formes de la généralité
et de l'existence se joignent.

Mais il suffit de modifier un peu l'affirmation de Glivenko pour
qu'elle puisse être étendue à toute l'arithmétique intuitionniste,
telle qu'elle a été formalisée par M. Heyting. En effet, M. Gentzen
a démontré l'énoncé suivant: Soit 21 une formule déductible par
le formalisme 21; soit de plus 21* la formule que nous obtenons
de 21 en appliquant la double négation à chaque partie de la
composition logique de 21 et aussi à la formule 21 elle-même;
alors 21* est déductible par le calcul intuitionniste de M. Heyting.

De là suit aisément qu'une contradiction se trouvant dans
le formalisme 2Î devrait entraîner une contradiction dans la
mathématique intuitionniste. Car s'il y avait une formule 21

telle que 21 et 21 seraient déductibles dans 2i, alors, d'après
l'énoncé formulé tantôt, 21* et (2l)* seraient déductibles par le

formalisme de Heyting. Mais (2l)* c'est 21*, et de 21* on déduit 21*

dans le calcul de Heyting. Donc il y aurait une contradiction
aussi dans le calcul intuitionniste.

En regardant la démonstration de M. Gentzen, on remarque
qu'on n'a pas besoin de tant de négations. Par une modification
éliminant les doubles négations on parvient au résultat suivant,
trouvé déjà un peu plus tôt par M. Gödel:

Etant donnée, dans le formalisme SJÎ, une déduction d'une
formule 21 ne contenant:

1° aucune variable de proposition,
2° aucune disjonction V,
3° aucun signe d'existence (Ex),

on peut en tirer une déduction de 2t par le calcul mtuitionniste.
En effet sous les conditions faites on peut d'abord éliminer du

tout les variables de propositions, les disjonctions et les signes

d'existence de la déduction donnée. Cela se fait:
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a) en remettant les substitutions aux formules initiales,

b) en remplaçant chaque expression S V 6 par 33 & Ê,

c) en remplaçant chaque expression (Ex) 33(:r) par (x) 33(#)-

Or le formalisme Sft ne dépasse le formalisme de Heyting que

par la formule logique
1—>- A

Cette formule a été remplacée par les opérations a), è), c), à

chaque place où elle intervient dans la déduction donnée, par
une formule 3Ï —>- 31, ne contenant ni des variables de propositions

ni les symboles V, (Ex). Dans chacune de ces formules,
31 est composé d'équations élémentaires au moyen des opérations
&, —»*, (x). Mais pour une formule 31 composée ainsi on
peut déduire

1 —>- %

dans le calcul intuitionniste.
En effet, on a d'abord

a b a — b

et généralement
1 —>- 23 ;

de plus, si on a deux formules

S >- 55 t —^ <£

on en déduit

23 & (5 >- 55 & (S 55 (5 ^ (55 >- (S) ;

et d'une formule
W(â) >- 23 (a)

on déduit
(x) 55 {x) —^ (x) 55 (x) •
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Ces déductions se font au moyen des relations

55 » i (55 —» (5) —^ (I 55)

qui sont généralement valables dans la logique intuitionniste.
Nous parvenons donc à une déduction de 31 par le calcul

intuitionniste.
A ce résultat nous pouvons donner encore une autre

forme. Observons qu'à chaque formule 2Ï de 3Î, ne contenant

pas des variables de propositions, il correspond une
formule 2T qu'on obtient de 2Ï en remplaçant chaque partie
de la forme 33 V © par 33 & Ê et chaque partie de la forme

(Ex) 33 (x) par (x) 33 (x).
Cette formule 31 ' est équivalente à la formule 3l dans la théorie

axiomatique des nombres, puisqu'on peut déduire dans 3£

% —r et r —>- 5t.

D'autre part, 2T satisfait aux suppositions du théorème
démontré tantôt; et de là découle que si cette formule est
déductible dans 3î, elle est aussi déductible par le calcul
intuitionniste.

Par conséquent si une formule 21, ne contenant pas de

variables de propositions, est déductible dans le formalisme 31,

alors la formule correspondante 31' est déductible par le calcul
intuitionniste.

On peut donc dire que le passage de la théorie axiomatique
des nombres à une partie de la mathématique intuitionniste se

fait par un simple changement de l'interprétation des
propositions.

En particulier, la non-contradiction de l'intuitionnisme
entraîne celle de la théorie axiomatique des nombres.

Ainsi le problème de démontrer la non-contradiction de la
théorie axiomatique des nombres, qui n'a pas de solution
formelle dans le cadre du formalisme 3Ï même et qui dépasse,
à ce qu'il semble, les forces des méthodes élémentaires combina-
toires, admet une solution assez simple, si on étend les méthodes
de la métamathématique en adjoignant certains raisonnements
intuitionnistes.
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Il est vrai qu'il y a peu d'espérance que la forme de la solution
trouvée puisse être généralisée de façon qu'on en tire une démonstration

de la non-contradiction de l'analyse infinitésimale. Mais
outre la méthode spéciale, par laquelle la non-contradiction du
formalisme 9Î a été démontrée, il y a encore, comme les considérations

précédentes nous le montrent, d'autres possibilités de

faire valoir le point de vue élargi de la métamathématique.
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^
SUR LA NATURE DE LA LOGIQUE,

DE SES CATÉGORIES ET DE SES VÉRITÉS 1

PAR

Paul Hertz.

Quelle est la nature de la logique, de ses catégories et de ses
vérités

Il ne faut pas croire que les lois de la logique sont surtout
des lois psychologiques de la pensée. Elles sont aussi des « lois »

au sens originaire du mot, des normes qui prescrivent comment
ont doit penser, pour être sûr d'arriver à des résultats vérifiés
par la réalité des choses. Mais de tels précepts seraient impossibles

s il n y avait pas de liaisons objectives qui y correspondent.

i Résumé de la communication présentée le 22 juin 1934 dans la série des Conférences
internationales des Sciences mathématiques organisées par l'Université de G-enève Unepublication plus complète paraîtra en allemand dans les Abhandlungen der Friesischen
Schule, Neue Folge, 6. Band, 2. Heft, Berlin., — Les pensées développées dans ladermere partie de cette conférence sont contenues dans la Note parue dans VomWesen der logischen Erkenntnis, t. II, 1932, p. 369.
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