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PRy

QUELQUES POINTS ESSENTIELS
DE LA METAMATHEMATIQUE

PAR

P. BErNAYS (Zurich).

1. — Une application du théoréme fondamental
de Herbrand & I’axiomatique.

L’axiomatique usuelle s’appuie sur Darithmétique qu’elle
envisage comme appartenant, pour ainsi dire, & la logique.

Les démonstrations de non-contradiction que I'on a données
pour les systémes axiomatiques de la géométrie et de la physique
consistent & montrer qu'une contradiction dans I'un de ces
systemes devrait entrainer une contradiction dans [I’arith-
meétique.

Cette réduction a I'arithmétique ayant été déja faite,
M. HiLBERT concentrait, dans la théorie de la démonstration,
son effort & démontrer, de son point de vue fini, la non-contra-
diction de I’arithmétique.

Mais puisque pour le moment ce probléme n’est pas encore
résolu, la question se pose s’il est nécessaire pour I'axiomatique,
en particulier celle de la géométrie élémentaire, de démontrer la
non-contradiction de 'arithmétique, soit dans le sens de ’analyse
infinitésimale ou du moins dans le sens de la théorie axiomatique
des nombres.

La question se pose d’autant plus que le modele arithmétique
de la géométrie euclidienne peut étre donné dans le cadre de la
théorie des nombres algébriques, — du moins quand on fait abs-
traction du deuxiéme axiome de continuité quin’est pas employé
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dans la géométrie élémentaire. On peut méme se restreindre a ces
nombres qu’on obtient en adjoignant aux quatre opérations élé-
mentaires du calcul celle de prendre la racine carrée d’'un nombre
positif. |

Cette partie de l'arithmétique peut étre traitée directement
selon les exigences du point de vue fini.

En constatant ce fait, on est tenté de croire que le probleme
de la non-contradiction de la géométrie élémentaire axiomatique
est déja résolu, puisque le modeéle arithmétique appartient au
domaine de la mathématique intuitive.

Mais il faut considérer que, de P'interprétation intuitive des
axiomes, il ne dérive pas sans autre une interprétation pareille
des démonstrations. En effet, les démonstrations de la géométrie
axiomatique s’appuient sur la supposition que les points, de
méme que les droites et les plans, forment des ensembles
complets fermés. En vertu de cette supposition, les affirmations
concernant ’existence d’un point (d’une droite, d’un plan)
d’une certaine propriété ont un sens immédiat, et le tertium
non datur est généralement valable; on peut donc appliquer
les raisonnements de la logique classique formalisés par le calcul
logique ordinaire. .

Cette supposition de la totalité, que la géométrie axiomatique
fait pour les domaines d’individus, n’est pas contenue dans 'inter-
prétation arithmétique intuitive. Aussi cette interprétation ne
nous permet pas de vérifier toutes les démonstrations de la
géométrie axiomatique, et nous ne pouvons donc pas au moyen
d’elle nous assurer immédiatement que la géométrie axiomatique
est non-contradictoire.

Cependant on peut surmonter cette difficulté & 1'aide d’un
théoréme logique de J. HERBRAND.

Pour expliquer cette méthode, nous considérons, au lieu des
axiomes de la géométrie, un systéme d’axiomes plus simple se
rapportant & un seul domaine d’individus et un seul prédicat @

a deux sujets (fonction logique binaire). Les axiomes sont les
suivants:

1) @ (x, z) n’est valable pour aucun z.
2) Si @ (z,y) et Dy, z), alors @ (z, z).
3) Pour chaque z il existe au moins un y tel que ® (z, y).
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On voit d’abord que ces axiomes ne peuvent étre remplis
pour un domaine fini d’individus. D’autre part, on obtient une
iterprétation des axiomes pour le domaine des nombres entiers
en prenant pour @ (z, y) le prédicat x <<y. C’est une interpré-
tation intuitive; en particulier Paffirmation existentielle peut
étre précisée en la remplacant par I'inégalité x <z + 1, valable
pour tous les x.

De cette interprétation ne découle pas immédiatement
I'impossibilité d’une contradiction déduite des trois axiomes
par les raisonnements de la logique classique. Nous allons mon-
trer comment cette impossibilité, du moins pour la logique du
premier ordre, résulte du dit théoréme de Herbrand 1.

Pour cela il faut introduire les symboles logiques:

& «et», signe de la conjonction.
T~ «non, » » » négation.
—>=  «si— alors» » » Pimplication.
V «ou bien », » » la disjonction.
(x)  « pour chaque x », » » » généralité.
(Ez) «pour quelque x» » » Dexistence.

Au moyen de ces signes on représente les trois axiomes consi-
dérés par les formules

1) () @ (x, x).
2) (x) (y) (2) (DP(x,y) & Py, zs) —> D(x,2)).
3) (z) (Ey) @ (=, y).

En joignant les trois formules par la conjonction, nous obte-
nons une seule formule A (®P) représentant le systéme des
axiomes 1), 2), 3).

S1 ce systeme d’axiomes entrainait une contradiction par
les raisonnements de la logique classique s’exprimant dans

le calcul logique ordinaire, alors la formule 9 (®) (négation de
I (D)) serait déductible par le calcul logique, sans I’emploi d’un
axiome; de la méme maniere on pourrait déduire la formule

A(P) avec une variable P & deux arguments représentant un
prédicat quelconque a deux sujets.

1 Dans ce cas simple, qui nous sert ici seulement d’exemple, on pourrait aboutir au
méme résultat par une méthode plus directe.
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Or A (P) étant la formule

(z) Pz,2) & (2)(y)(s)(P(z,9) & Ply,s) —= Pz, 2))
& (z) (Ey) P (z,9)

sa négation se transforme, d’aprés les régles du calcul logique,
en

(Bz) P(z,2) V (Ez)(By)(Es)(P(z,y) & Ply,3) & Plz,3))
vV (Ez) (y) Pz, y)

et encore en
(Ez) (By) (Bz) w){Pz,z) V (P(z,y) & Ply,3)
& PEd) v el
Cette formule, que nous dénoterons d’une maniére abrégée par
(Bz) (Ey) (Ez) (v) B(z,y,z,u),

devrait donc étre déductible par le calcul logique ordinaire, si

on pouvait déduire une contradiction des axiomes 1), 2), 3).
A cette conséquence s’adjoint I'application du théoréme de

Herbrand. Ce théoréme nous apprend que d’une déduction de

la formule
(Ez) (By) (Ez) (u) ®B(z,y,z,u)

on obtiendrait (par un certain procédé qu’il n’importe d’indiquer
icl) une disjonction

%(ad,blacl)dl) \/ %(a’272727027d2) \/ v %W/‘,bracr,dr)

ayant les propriétés suivantes:
1. Les arguments dénotés par

ay, by, c,dy, ... ap, by, cp, dp

sont des variables, entre lesquelles des égalités peuvent avoir
lieu; cependant d; doit étre différent de a;, b;, ¢; et aussi de
&, by, ¢, d, pour h <i.

2. Appelons les diverses expressions P (a, b), desquelles la
formule est composée (au moyen de la conjonction, de la dis-
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jonction et de la négation), les « composants» de la formule;
attribuons & chaque composant d’une maniére quelconque une
des valeurs ¢ («vrai»), f («faux»); de plus donnons

a ¢ la valeur f,

a f la valeur ¢,

av &f,f &o, f & fla valeur f,
ay & ¢ la valeur o,

av VooV fVelavaleuro,
afV fla valeur f.

Nous obtenons alors la valeur ¢.

Mais une telle disjonction ne peut pas exister. Cela découle
de notre modele intuitif. En effet, étant donné une formule

%(a’lab],,(:l;dl) \/ V %(QI'?br,Cf'vdI')

des dites propriétés 1., 2., nous pourrions remplacer chacune
des wvariables
a, bl: €1, d17 <o > Qp, b"’ Cr, di‘)

en conservant les égalités, par des numéros de telle sorte que
(pour 1 =1, 2, ..., r) a;, d; solent remplacés par des numéros
consécutifs (ce qui est possible en vertu de la propriété 1.);
attribuons ensuite & chacun des composants ainsi modifiés
P (&, 1) la valeur ¢ pour k£ <1 et la valeur f pour I < k; alors
on aurait pour chaque membre de la disjonction — comme
on le voit aisément — la valeur f, et 1l en serait de méme pour
la disjonction entiére.

Nous reconnaissons ainsi que la formule 2 (P) ne peut étre
déduite par le calcul logique ordinaire et qu’il est par conséquent
impossible de déduire des axiomes 1), 2), 3) une contradiction
par des raisonnements de la logique classique.

La méthode exposée ici s’applique & des systémes d’axiomes
quelconques pourvu que ce soient des axiomes « propres », ¢’est-
a-dire qu’ils ne contiennent d’autres généralités ni d’autres
formes existentielles que celles qui se rapportent aux domaines
d’individus pris pour base de la théorie.

Donc pour de tels systémes d’axiomes la méthode des modeles
tirés de la théorie intuitive des nombres est généralement recon-
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nue suffisante pour démontrer la non-contradiction sans qu’il
faille pour cela démontrer la non-contradiction de 1’arithmétique.

En particulier, nous reconnaissons de cette maniére la non-
contradiction de la géométrie axiomatique, & I'exception des
axiomes de la continuité, tous les autres axiomes étant des
axiomes propres. (Quant & Paxiome d’Archiméde, c’est une
affirmation existentielle se rapportant aux nombres entiers, alors
que les nombres ne font pas partie d'un domaine d’individus
de la géométrie axiomatique; ce n’est donc pas un axiome
propre.) La méthode s’applique aussi a4 la géométrie non-
euclidienne.

Cependant il faut se rendre compte que cette maniere de
traiter la question de la non-contradiction ne regarde que les
raisonnements exprimables par le calcul logique ordinaire, ¢’est-
a-dire ceux de la logique du premier ordre, o n’interviennent
pas des notions générales comme celle d’'un nombre quelconque,
celle d’une fonction quelconque ou celle d’un ensemble quel-
conque. Ce n’est donc que dans un sens restreint que la non-
contradiction est démontrée par cette méthode.

II. — Les démonstrations de non-contradiction se rattachant
a Paxiome du .

Les recherches tendant & la démonstration de la non-contra-
diction de I'arithmétique se faisant par étapes, le formalisme
arithmétique qui s’offre comme le premier objet de la recherche
est celui de la théorie axiomatique des nombres.

Ce formalisme est constitué des éléments suivants:

1o le calcul logique ordinaire;
20 le signe de I’égalité avec les axiomes

a = b—= (Af@) —> A (b))

3° le symbole 0 et le symbole ’ représentant le passage d’un
nombre au suivant, pour lesquels on a les axiomes de Peano
a" == 0
a' =b — a=15
A(0) & (z) (Afz) —= Af2')) —= A(a) ,

le dernier représentant le principe de 'induction compléte;
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40 les symboles de la somme et du produit -+, -

, avec les
équations récurrentes

a-+ 0=a a-0=
a+ b = (a+ b) a- b =

A propos de cette énumération faisons quelques remarques:
o) L’axiome
a=">b— (A(a) —> A (D))

peut étre remplacé par les deux axiomes plus spéciaux

a=5bb — (a=c¢c —> b=r¢),
a=5b—=a =b".

B) Le principe de l'induction compléte peut étre formalisé
aussi par le schéma
% (0)
A(n) —= A(n)
Ala)

v) On peut généralement éviter les variables de propositions
et de prédicats en remplacant chaque formule initiale contenant

une telle variable par un schéma correspondant. Par exemple
la formule

a=b—> (Aa) —= A (b))
peut étre remplacée par le schéma
@=b— (A(a) —> AW)) ,
indiquant des formules d’une certaine forme qui peuvent servir

de formules initiales 1.

d) Au lieu des variables libres d’individus, comme a, b, on

pourrait dans les axiomes mettre des variables liées par des
signes de généralité. Par exemple la formule

1 La lettre A () indique une formule quelconque (du formalisme considéré) contenant

un argument, tandis que A (.) est une variable de prédicat appartenant elle-méme au
formalisme.
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e) Les équations récurrentes sont appelées ordinairement
définitions récurrentes; mais il faut se rendre compte que ce ne
sont pas des définitions nominales.

Le formalisme indiqué suffit pour représenter et déduire les
relations de la théorie des nombres. Mais il y a encore une lacune
en ceci qu’on ne peut pas représenter directement les fonctions
arithmétiques, mais seulement les prédicats correspondants. Par
exemple on n’obtient pas une expression pour le plus grand
diviseur commun de @ et b (fonction de deux arguments), mais
seulement pour le prédicat correspondant « le plus grand diviseur
commun de a et b est égal & ¢ » (prédicat de trois sujets).

Pour exprimer les fonctions arithmétiques, il faut ajouter au
symbolisme du calcul logique un symbole ¢, % (x), représentant
la notion « celui qui», avec la régle suivante (« régle du ¢ »):

Si pour une formule A (c) on a déduit

(Ez) A (x) (1)
et
() (y) (U (x) & Aly) —> 2 =1y), (2)

alors on peut introduire I’expression
o A (z)

(représentant I'individu unique &, pour lequel A (&) est valable);
et on a
A, U (x)) .

Cette régle comprend aussi le cas ou la formule 9 (¢) contient
outre la variable ¢ d’autres variables comme paramétres; ’expres-
sion ¢, A (z) représente alors une fonction de ces parametres.

A Vaide de la régle du ¢ et du principe de Pinduction compléte
on parvient & introduire, par une définition nominale, un sym-
bole, écrivons-le p A (z), contenant un prédicat variable, repré-,
sentant ou le plus petit nombre n, pour lequel A(n) est vrai
il y a un tel nombre, ou autrement le nombre nul. Au moyen
de ce symbole nous obtenons les expressions des fonctions
arithmétiques.

La question de la non-contradiction posée pour notre forma-
lisme complété par introduction de la régle du : peut étre rame-
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née a celle concernant le formalisme antérieur. La réduction se fait
en démontrant que application de la régle du : peut étre éliminée.
Cette démonstration part de la remarque suivante faite déja par
Russell et Whitehead: Si pour un prédicat représenté par une
formule A (c) les conditions (1), (2) sont remplies, alors une
affirmation B(,, A(x)) («Pindividu qui a la propriété A(.), a
aussi la propriété B (.)») peut étre remplacée par

(z) (U (x) —= B(2)),
et aussi par
(Bz) (A (z) & B(z)) .

I1 ’agit ensuite de prouver que par ce remplacement, éloignant
les expressions de la forme ¢, A (x), une déduction ne change
que d’une maniere telle qu'on en puisse regagner une déduction
en ajoutant certains passages, dans lesquels la régle du ¢ n’inter-
vient pas. On peut le démontrer, bien que la preuve en soit
un peu pénible.

Mais ce n’est pas de cette maniére que M. Hilbert a procédé.
M. Hilbert a introduit des le commencement le symbole ¢, A (2)

‘avec 'axiome
Afa) — A, A(x)) («axiome du ¢»)

Cela revient & une généralisation du symbole p, A (x) au dela
de la théorie des nombres.

Je veux montrer ici, comment on peut passer de la régle du :
a axiome du e. Le passage se fait en deux pas. D’abord nous
omettons de la régle du ¢ la deuxiéme des conditions (1), (2)
de lintroduction du symbole ¢ % (r). La régle ainsi modi-
fite permet d’introduire pour chaque prédicat U (c), valable
pour au moins un individu, un symbole représentant « un certain
z, pour lequel U (z)». Soit 7, U (x) ce symbole, alors la réegle
nouvelle peut étre indiquée briévement par le schéma

(Bx) A (x)
A (e A ()

De ce schéma nous faisons maintenant une application spé-
ciale. Prenons pour o (¢) I'expression

(Ey) A(y) —> Ao ;
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alors (Ez) oA (x) devient
(Bz) ((Ey) Afy) — Afz)) .

Cette formule peut étre déduite par le calcul logique ordinaire;
donc nous pouvons introduire

7, (By) Aly) — A=) ,

et en nous servant de l'abréviation e, A(x) définie par I'équa-
tion
ey Alx) = 0, (By) Aly) —= Afz)) ,

nous obtenons suivant notre schéma la formule
(By) A (y) — AleAlx)) ;
or celle-ci est équivalente, d’apres le calcul logique, a

Afa) —> Al A(z)) ,

ce qui est 'axiome du .
De cette réduction résulte aussi les formules

(Ba) A (z) === A ey A(a))
A ey Afa))

() Alr) === Al(e
(A === B indique le couple des deux formules
A—> B, B—> A .

Par ces formules, un changement du formalisme nous est
suggéré; en effet, on peut les regarder comme des définitions
exprimant l'existence et la généralité au moyen du symbole .
De plus il se montre que si nous acceptons ce point de vue, tout
le calcul concernant la généralité et ’existence se fait par appli-
cation de axiome du ¢ et de la regle qu’une expression ¢, % (x)
peut étre substituée & une variable d’individus.

On peut donc éliminer du tout les signes (z), (Ex) et on ne
retient aucun autre schéma logique que celui du «modus

ponens »

G
S — %
Ry
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le reste du calcul logique se faisant par des formules initiales,
des répétitions et des substitutions.

(Quant & 'axiome de 'induction compléte, il peut étre rem-
placé, au moyen du symbole ¢, par la formule suivante

e A(z) = b —= A(b) ;
celle-ci exprime que, pour un prédicat 3 (c) quelconque, le nombre
représenté par ¢, A (x) ou bien est égal a zéro ou bien succéde
a un nombre b pour lequel A (b) est faux.)

Il est vrai que cette facon de manier le calcul logique n’est
pas avantageuse pour les déductions effectives, mais pour les
considérations métamathématiques elle apporte une certaine
simplification.

(’est le formalisme ainsi modifié de la théorie axiomatique
des nombres dont M. Hilbert s’est appliqué a prouver la non-
contradiction. Il a saisi le probléme par deux méthodes qui
ont été poursuivies plus loin, 'une par M. Ackermann et M. von
NeumanN 1, P'autre par M. Ackermann. Mais on ne parvient
par ces méthodes & démontrer la non-contradiction que pour un
formalisme restreint. En effet, il faut faire une restriction a
I’égard de I'axiome de I'induction compléte (représenté ou par
une formule ou par le schéma). Par exemple, ¢’est une restriction
suffisante que I'induction compléte ne soit appliquée qu’a des
formules élémentaires (ne contenant pas de variables liées).

Donc les démonstrations attachées & ’axiome du ¢ ne nous
ont pas conduit a reconnaitre la non-contradiction de la théorie
axiomatique des nombres.

Cependant la deuxiéme des dites méthodes de M. Hilbert nous
fournit une démonstration assez simple et naturelle du théoréme
mentionné de Herbrand. D’autre part, de ce théoreme découle
comme Herbrand I’a montré 2, la non-contradiction du forma-
lisme restreint qui dérive de celui de la théorie axiomatique
des nombres par la restriction indiquée tantdt. (Ce résultat
n’équivaut pas a celui de Ackermann et von Neumann parce que
le formalisme du ¢ n’y est pas enfermé.)

1 Le formalisme traité par von Neumann est un peu plus général que celui de
MM. Hilbert et Ackermann; cette différence n’est pas considérable; mais il y a aussi
une différence dans la maniére de procéder entre M. Ackermann et M. von Neumann.

2 Une autre démonstration de ce fait a été donnée récemment par M. GENTZEN.
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III. — Le théordme de Godel concernant les démonstrations
de non-contradiction.

A la fin de la conférence précédente, il a été dit qu'on n’a pas
réussi & démontrer, par la méthode se rattachant a 'axiome du e,
la non-contradiction de la théorie axiomatique des nombres (&
moins qu’on ne fasse des restrictions). Plus généralement, il se
trouve qu’aucune des méthodes établies dans le cadre des
raisonnements élémentaires combinatoires, prescrit par le pro-
gramme primordial de la métamathématique de M. HILBERT,
ne nous livre cette démonstration cherchée de non-contradiction.

Ce n’est pas faute d’une découverte, que nous nous trouvons
dans cette situation. Un théoréeme de M. GODEL nous montre,
au contraire (comme je I’ai déja mentionné), qu'il y a ici un
obstacle essentiel. Le raisonnement de M. Godel, qui conduit &
ce théoréme, est inspiré de I'idée qui conduit & ’antinomie de
RicHARD.

Les divers énoncés de cette antinomie forment un deuxiéme
groupe de paradoxes se distinguant du paradoxe de RuUSSELL-
ZERMELO.

Il y a une correspondance entre les deux sortes de paradoxes
et deux conceptions philosophiques: celle de PraTon du monde
des idées et celle de LEiBn1z d’une langue universelle scientifique.

Le paradoxe de Russell-Zermelo exclut le platonisme absolu,
le paradoxe de Richard exclut la réalisation parfaite de l'idée
de Leibniz; son sens est environ le suivant: Chaque langue exacte
devient sujet & une considération mathématique de ses moyens
d’expression. Les éléments dont se constituent les expressions
de la langue et les formes de leurs combinaisons engendrent un
formalisme dénombrable, et la pensée mathématique dépasse ce
formalisme. De la il dérive qu’en joignant les exigences d’une
langue exacte & celles d’une langue universelle on rencontre des
contradictions. D’autre part, la langue usuelle semble suffire aux
deux exigences pourvu qu’on s’en serve d’une maniére appro-
priée. C’est ainsi qu’apparait le caractére suggestif de 1'anti-
nomie.

Dans les formes originaires de cette antinomie, il §’agit

L’Enseignement mathém., 34me année, 1935. 6
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toujours des possibilités de définitions. M. Finsler a remarqué
qu'on peut transformer I’antinomie de Richard en une autre
concernant les démonstrations. Pour cette antinomie modifiée
comme pour l'antinomie primitive de Richard, il est encore
possible de présenter certaines objections plus ou moins subtiles.
Aussi c¢’était une opinion répandue que I'antinomie de Richard
n’avait d’autre signification que celle d’un sophisme reposant
sur des inexactitudes de langage, et qu’il suffirait de préciser la
langue pour que le paradoxe disparaisse 1.

Il est vrai qu’en précisant la langue, nous faisons disparaitre
les contradictions résultant du raisonnement de Richard; mais
alors on obtient des résultats qui restreignent la possibilité de
constituer dans sa totalité une langue universelle, dans le sens
méme indiqué déja par 'antinomie de Richard.

(C’est ce qui a été mis en évidence par l'argumentation de
Godel qu’il s’agit maintenant d’exposer.

L’argumentation commence par remplacer les prémisses de
I’antinomie de Richard par d’autres d’une nature proprement
mathématique.

Au lieu de la langue usuelle on considere un formalisme rigou-
reux 3, comme ceux que la métamathématique a pour objet,
c’est-a-dire un formalisme qui traduit les raisonnements d’un
certain domaine de la mathématique dans des suites de formules,
nommeées déductions, et qui sont formées d’aprés certaines régles;
les régles sont supposées telles qu’il soit possible de controler
machinallement les déductions; cela veut dire que pour une
suite donnée de formules on peut décider, par une série d’épreuves
se faisant par des comparaisons de figures, s1 ¢’est une déduction
selon les régles du formalisme ou non.

Quant au domaine de la mathématique représenté par le
formalisme %, nous supposons seulement qu’il contienne la
théorie des nombres. Ou plus en détail:

1. La relation d’égalité entre nombres doit étre exprimable
dans ¥, et chaque équation numérique vraie, de méme que
chaque inégalité numérique juste, doit étre déductible dans F.

1 JI se trouve cependant quelques mathématiciens pour reconnaitre dés 1’abord,
comme L. CHWISTEX, le sérieux de I’antinomie de Richard.
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2. Les définitions par récurrence d’une fonction ¢(n) ou

o(n, ¢) d’aprés 'un des schéma que voici *:

a | ?(0, ¢ == i (e
b(n, o(n)) e+ 1,¢)="0b(n,c, ¢, c))

¢ (0)
® Y2

|
I

(ot a et b sont des exioressions introduites plus tot) doivent étre
représentées dans ¥ de la fagon suivante: A chaque équation

ou Y est une fonction définie par des schéma de la dite structure
et par des substitutions, il correspond dans § une expression
B (a, b), dont on obtient une formule déductible en substituant
a la variable a le signe représentant un nombre naturel f, et
a b le signe représentant la valeur de { (f).

3. & contient le calcul ordinaire logique (du premier ordre) 2.

4. Le principe de l'induction compléte est représenté dans §,
soit par une régle ou une formule initiale, ou aussi par un procédé
de déduction.

Pour exprimer briévement les conditions faites, nous dirons
que § doit étre un formalisme rlgoureux et suffisant pour la
théorie des nombres.

De ces propriétés on peut d’abord conclure que les relations
métamathématiques concernant le formalisme § peuvent étre
exprimées dans § par des formules. D’abord les symboles et les
variables 3 peuvent étre numérotés. A partir de cette numérota-
tion on en obtient une autre pour les expressions; et ceci par
le procédé suivant. A la suite composée de symboles et variables
ayant successivement les numéros

Ny, «vo Ny,

1 Le cas de plusieurs paramétres fixes peut étre réduit & celui d’un seul paramétre.

2 On peut affaiblir cette condition. Par exemple il suffirait d’exiger a sa place que
§ contienne le calcul logique de M. HEYTING.

3 Le formalisme peut contenir plusieurs genres de variables, et de plus les variables
libres peuvent étre séparées des variables liées.
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on attribue le numéro m, dont la décomposition en nombres
premiers est donnée par

ny

Py

(ou p, dénote le riéme nombre premier).

De la méme maniére on passe de la numérotation des expres-
sions & la numérotation des suites d’expressions !

Pour tout n qui appartient & une expression, nous dési-
gnons par A, 'expression, dont n est le numéro, et de méme,
si n appartient & une suite d’expressions, par Jt, la suite ayant
le numéro n.

Parmi les expressions il y a les « formules» de §§, et parmi
les suites d’expressions il y a les déductions de .

Puisque § est un formalisme rigoureux, les affirmations méta-
mathématiques sur § se transforment, au moyen des numérota-
tions faites en des propositions arithmétiques élémentaires. En
particulier, I’énoncé « m est le numéro d’une suite d’expressions,
n celui d'une expression et R, une déduction, dont la formule
finale est A, » peut étre exprimé par une équation

b(m,n) =0,

¢ (.,.) étant une fonction arithmétique définissable au moyen
de récurrences d’apres les schéma (R) et de substitutions.

En vertu de notre supposition que le formalisme § est suffisant
pour la théorie des nombres, a I’équation

b{m, n) =0

il correspond dans § une formule contenant m, n, mais pas
d’autres variables libres. Dénotons cette formule pour rappeler
Pinterprétation métamathématique (« R, est déduction de QI )
par Déd (m, n) ou aussi par Déd,, (2,) 2.

Afin d’arriver au point essentiel du raisonnement de M. Godel,
il suffit d’ajouter un petit corrolaire au dernier résultat. Consi-

1 A un nombre donné il ne correspond pas toujours une expression, mais seulement

‘4 chaque expression appartient un numéro et un seul. Kt le méme vaul pour les

suites d’expressions.
2 Pour bien comprendre cette forme d’indication, il faut observer que A, n’est

pas une partie constituante de la formule Ded,, (U,)-
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dérons Pénoncé « R, est une déduction, dont la formule
finale s’obtient de 9, en substituant pour la variable libre a,
a chaque place ou elle intervient dans U, , le chiffre dénotant
le numéro n».

Cet énoncé, de méme que celui considéré tout a I’heure,
s’exprime par une équation

x(m,n) =20,

ou y (m, n) est une fonction du méme caractere élémentaire que
¢ (m, n). Et dans le formalisme § 1’équation y (m, n) = 0 est
aussi représentée par une formule que nous dénotons par

Déd * (m, n) .

Pour des chiffres donnés m, 1, on peut évaluer y (m, n), et
décider si I’équation y (m, n) = O est vraie ou fausse.
Dans le premier cas, d’aprés nos suppositions sur le formalisme

%, la formule
Déd* (m, n),

dans l'autre la négation

Déd * (m, n)

est déductible par le formalisme §. De plus, dans le premier cas,
nous pouvons construire la suite d’expressions %R, , et celle-ci
est une déduction (dans ) de la formule qui s’obtient de I’expres-
sion 9, en substituant le chiffre n & la variable «.

Soit maintenant f le numéro de la formule

(x) Déd* (z, a) .
Supposé que pour un chiffre donné m 1’équation
Lm, 8 =0
soit vraie, alors la formule
Déd* (m, ¥)

serait deéductible dans §; de plus, la suite d’expressions R
serait une déduction de la formule

(z) Déd* (x., f)
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(qu'on obtient de A;, en substituant f pour a); et de cette
formule découlerait |

Déd* (m, 1) ;

mais alors le formalisme § serait contradictoire. Donc, si le
formalisme §¥ n’implique pas de contradictions, il faut que pour
chaque chiffre m ’équation

v (m, f):O\

soit fausse, et que la formule

Déd* (m, t)
soit déductible dans $¥.
D’autre part, sous la méme supposition de la non-contradic-
tion de %, la formule
(x) Déd* (z, )

ne peut pas étre déductible dans §. Car cette formule s’obtient
de A; en substituant f pour a. Done, si nous avions pour elle
une déduction, dont le numéro (dans la numérotation des suites
d’expressions) était m, alors la formule

Déd* (m, ¥

serait déductible, et il y aurait une contradiction dans .

De la le résultat : S’il peut étre montré que le forma-
lisme % est non-contradictoire, alors il y a une proposition élé-
mentaire arithmétique démontrable qui peut étre exprimée,
mais pas déduite de §. En effet, on démontre alors que pour
chaque chiffre m 'équation x (m, f) = 0 est fausse, tandis que
la formule exprimant ce théoréme dans le formalisme ¥, savoir

(x) Déd* (z, f)

n’est pas déductible dans .

Voila un résultat fort et remarquable. Mais ce n’est pas celui
des résultats de M. Godel, auquel j’ai fait allusion au commen-
cement de cette conférence. Pour y parvenir, il faut renforcer
le raisonnement, moyennant la supposition que le formalisme
contient le calcul logique et le principe de I'induction compléte.
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Je me contente ici d’indiquer en peu de mots le cours du
raisonnement.
En vertu de la relation entre les fonctions §(m, n) et x(m, n),
la formule
Déd* (m, f) —> Dédm ((x) Déd* (z, 1)) ,

(o m est une variable de nombre), peut étre déduite dans .
De cette formule on tire par le calcul logique

(Bz) Déd* (z, ¥) — (By) Dédy ( (z) Ded* (z, 1)) . (1)

D’autre part, puisque la fonction y(m, n) est définie par
récurrence selon les schéma (R ), on peut déduire dans § une

formule
Déd* (m, f) — (Ey) Déd (y, &(m)) ,

ou m est de nouveau une variable de nombre et {(m) est une
fonction arithmétique définie par récurrence, dont la valeur
pour un chiffre donné a est le numéro de I’expression Déd* (a, f).
De cette formule découle

(Ez) Déd* (z, ¥) — (Ey) Dédy ((z) Déd* (z, 1)) . (2)
Les formules (1), (2) donnent
(Ezx) Ded* (x, t) —= (By) Dédy (0 7 0) ,

et de cette formule on déduit par le calcul logique

(x) Dédy (0 5= 0) — (z) Déd* (z, 1) .

A Taide de cette formule déductible dans ¥ on peut passer
de Pantécédent au conséquent. Mais ’antécédent est la formule
exprimant la non-contradiction du formalisme §§; et quant au
conséquent, nous avons constaté tantot qu’il n’est pas déductible
par le formalisme ¥, & moins que celui-ci ne soit contradictoire.

Nous sommes donc conduits a ’énoncé suivant: Si le forma-
lisme F est non-contradictoire, alors la formule exprimant la
non-contradiction de ¥ ne peut pas étre déduite dans le forma-
lisme § méme.

Ce résultat s’applique a chaque formalisme rigoureux et
suffisant pour la théorie des nombres, c’est-a-dire satisfaisant
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aux conditions 1. — 4. indiquées tout & 'heure. Déja le forma-
lisme de la théorie axiomatique des nombres posséde les dites
propriétés. En effet on peut montrer que les définitions récur-
rentes se faisant d’apres les schéma (R) ont leur représenta-
tion dans ce formalisme; et quant aux autres conditions, il est
évident qu’elles y sont remplies.

A fortiori nos suppositions se trouvent réalisées par les for-
malismes plus étendus, desquels la théorie axiomatique des
nombres peut étre déduite, comme celui de I’analyse infinitési-
male, ceux de la théorie axiomatique des ensembles, et celui des
« Principia Mathematica », soit dans la forme originaire (avec
Paxiome de la réductibilité) ou dans la forme simplifiée.

Aucun de ces formalismes, pourvu qu’il soit non-contradic-
toire, ne permet de déduire le théoréme arithmétique équivalent
a laffirmation métamathématique de sa non-contradiction.

En particulier, un raisonnement démontrant la non-contra-
diction de la théorie axiomatique des nombres ne peut pas
étre traduit dans cette théorie la.

Ce résultat explique le fait, qui nous a étonnés, que tous les
essais de démontrer la non-contradiction de la théorie axioma-
tique des nombres par les méthodes élémentaires combinatoires
n’ont pas réussi.

En effet, il faudrait, pour atteindre ce but, trouver un raison-
nement élémentaire combinatoire qui ne puisse étre formalisé dans
la théorie axiomatique des nombres. Mais, a ce qu’il semble, il
n’y a pas de tels raisonnements.

Selon toute apparence, le cadre dans lequel M. Hilbert enfer-
mait les méthodes inspirées du « point de vue fini» n’est pas
assez large pour une théorie de la démonstration. La question
est donc de savoir si ce cadre peut étre élargi sans abandon du
but que poursuit la métamathématique. Nous verrons que c¢’est
bien le cas.

IV. — La relation entre la théorie axiomatique des nombres
et Parithmétique intuitionniste.

Le théoréme général de Gidel sur les démonstrations de non-
contradiction s’applique en particulier, comme nous l’avons
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constaté, & la théorie axiomatique des nombres. Dénotons
désormais, pour abréger, le formalisme de cette théorie par .

Nous avons obtenu le résultat que le théoréme arithmétique,
dans lequel ’énoncé de la non-contradiction de N est traduit au
moyen d’une numérotation des symboles et variables de N,
puis des expressions et encore des suites d’expressions de N, ne
peut étre déduit par le formalisme N.

D’autre part, nous sommes conduits, par diverses épreuves
faites, & croire que chaque démonstration d’un théoréme arith-
métique suffisant aux exigences du point de vue fini (comme il a
été caractérisé par M. Hilbert) peut étre formalisée dans .

Donc en maintenant ces exigences pour la méthode de la
métamathématique, on ne parviendra pas & démontrer la
non-contradiction de M. .

Ainsi nous sommes amenés & nous demander s’il n’y a pas la
possibilité d’élargir le « point de vue fini», tout en conservant
le but de la métamathématique.

Rappelons-nous comment M. Hilbert lui-méme a introduit ce
point de vue. Dans 'exposition des idées fondamentales de la
métamathématique, il présente la théorie élémentaire et intui-
tive des nombres comme une méthode qui posséde une pleine
streté, qui n’exige pas de suppositions ni d’axiomes, et qui est
libre des difficultés attachées & la notion de I'infini.

De la méme maniére il tend & faire les raisonnements méta-
mathématiques. Et la possibilité de s’en tenir & un tel cadre lui
semble étre garantie par le fait que le probléme de démontrer
la non-contradiction d’un formalisme rigoureux a la forme d’un
probleme élémentaire concernant les nombres entiers.

Ainsi I'introduction du point de vue fini, faite par M. Hilbert,
consistait simplement & caractériser, au moyen d’un exemple,
une méthode satisfaisante pour la métamathématique. Mais ce
n’est pas une délimitation précise. Et il y avait en effet une
incertitude sur I’étendue des méthodes finies.

Quelques mathématiciens, notamment MM. v. Neumann,
Kalmdr et Herbrand, ont envisagé le point de vue fini comme
non différent de la méthode intuitionniste de M. Brouwer. Ce qui
etait en faveur de cette interprétation c’est que les restrictions
faites par la méthode intuitionniste sont justement celles qui
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sont nécessaires pour la métamathématique; car cette méthode
est pleinement caractérisée par l'exigence d’éviter les suppo-
sitions reposant sur les analogies de l'infini au fini, en particulier
celle de la totalité des nombres entiers.

Toutefois, dans les démonstrations métamathématiques, on
s’en est toujours tenu & un cadre plus étroit en raison de la
tendance naturelle & une évidence élémentaire. On est resté dans
le domaine de ces raisonnements qui peuvent étre formalisés
sans ’emploi de variables liées.

C’est par cette limitation qu'on est tombé dans les dites
difficultés. En effet, notre these qu’on peut formaliser dans N
chaque démonstration d’un théoreme arithmétique, laquelle est
conforme au point de vue fini, n’est valable que si le point de
vue fini est interprété dans le sens restreint.

Nous allons voir qu’il y a des démonstrations intuitionnistes
qui ne peuvent pas étre formalisées dans 9. Pour la recherche
d’une telle démonstration faisons d’abord la réflexion suivante.

Comme nous le savons par le théoreme de Godel, la formule
exprimant, dans le formalisme %, la non-contradiction de 9 n’est
pas déductible dans . Mais il se trouve qu’elle est déductible
a I'aide d’un formalisme N* qu’on obtient de N en ajoutant
certaines définitions récurrentes non-élémentaires, comme par
exemple

Y (k, 0) === Bk

¥k,n +1) === Br) W(xz,n) & B(k,z,n)),

ou ¥ (k, n) est la fonction propositionnelle qu’il s’agit de définir,
et B (k), B (k, z, n) sont des expressions connues .

De 14 découle que cette sorte de définitions récurrentes
dépasse le formalisme . D’autre part, une telle définition récur-
rente intervient aussi dans la déduction formelle du principe de
Pinduction transfinie appliqué & un ordre du type ordinal lim «,,,

n

\

ou

o, =1, ak+1:wak(k:0,1. ced)

1 Qu’il y ait ici des équivalences récurrentes au lieu d’équations récurrentes, ce n’est
pas un point essentiel. Généralement les équations récurrentes peuvent étre remplacées
par des équivalences récurrentes. Inversement, on pourrait ici, en introduisant le
symbole 1 Ax, réduire les équivalences régurrentes définissant ¥ (R, n), & des équa—
tions récurrentes définissant une fonction arithmétique de & et n.
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Ce type d’ordre peut étre réalisé pour les nombres entiers par

un ordre
a=<b

définissable par des récurrences élémentaires. Et le dit principe
s’exprime, pour cet ordre, par la formule

@ | @) <z —= Al) —= A@|— @AE,

dans laquelle on peut substituer pour A (.) une formule A (.)
quelconque du formalisme I contenant une place d’argument.

Pour déduire cette formule, il suffit d’employer, outre les
régles du formalisme N, une définition récurrente de la forme
indiquée tantdt. A ce qu’il semble, une telle définition ne peut
pas étre évitée ici, a moins qu’'on étende le symbolisme
de N, par exemple en introduisant des variables liées de propo-
sitions, c’est-a-dire en s’élevant au formalisme logique du
deuxiéme ordre.

Mais, d’autre part, on peut démontrer le principe représenté
par cette formule dans la mathématique intuitionniste.

Done, selon toute apparence, le cas spécial considéré du prin-
cipe de 'induction transfinie est déja un exemple d’un théoréme
démontrable par la mathématique intuitionniste, mais pas
déductible dans N.

Ainsi il se pourrait, en concordance avec le théoréme de Godel,
qu’on trouve une démonstration intuitionniste de la non-contra-
diction du formalisme %, dans laquelle la seule partie non-
formalisable dans 9 serait I’application du dit principe d’induc-
tion transfinie. |

Pour le moment ce n’est qu'une possibilité. Mais d’une autre
maniére on a réussi & démontrer du point de vue intuitionniste
la non-contradiction du formalisme 9.

Cette démonstration repose sur une généralisation d’une
remarque faite par M. Glivenko. Il a comparé le calcul ordi-
naire des propositions & un calcul conforme & la logique intui-
tionniste des propositions, et il a constaté la relation suivante:
s1 une formule % est déductible par le calcul ordinaire des propo-

sitions, alors 9 est déductible par le caleul intuitionniste; et si
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A est déductible par le calcul ordinaire, alors elle est aussi
déductible par le calcul intuitionniste.

S1 cet énoncé pouvait étre étendu directement au calcul entier,
alors la non-contradiction du formalisme R résulterait immé-
diatement du point de vue intuitionniste. Cependant la thése
de Glivenko n’est plus valable, quand les formes de la généralité
et de l’existence se joignent.

Mais il suffit de modifier un peu 'affirmation de Glivenko pour
qu’elle puisse étre étendue a toute 'arithmétique intuitionniste,
telle qu’elle a été formalisée par M. Heyting. En effet, M. Gentzen
a démontré I’énonceé suivant: Soit A une formule déductible par
le formalisme Ji; soit de plus A* la formule que nous obtenons
de A en appliquant la double négation a chaque partie de la
composition logique de U et aussi a la formule A elle-méme;
alors A* est déductible par le calcul intuitionniste de M. Heyting.

De la suit aisément qu’une contradiction se trouvant dans
le formalisme I devrait entrainer une contradiction dans la
mathématique intuitionniste. Car §’il y avait une formule oA
telle que A et A seraient déductibles dans N, alors, d’apres
I'énoncé formulé tantot, A* et (Y)* seraient déductibles par le

formalisme de Heyting. Mais (3()* c’est 9*, et de %* on déduit A*
dans le calcul de Heyting. Donc il y aurait une contradiction
aussi dans le calcul intuitionniste.

En regardant la démonstration de M. Gentzen, on remarque
qu’on n’a pas besoin de tant de négations. Par une modification
éliminant les doubles négations on parvient au résultat suivant,
trouvé déja un peu plus tot par M. Godel:

Etant donnée, dans le formalisme J, une déduction d’une
formule 2 ne contenant:

10 aucune variable de proposition,
20 aucune disjonction V,
3° aucun signe d’existence (Ex),

on peut en tirer une déduction de ¥ par le calcul intuitionniste.

En effet sous les conditions faites on peut d’abord éliminer du
tout les variables de propositions, les disjonctions et les signes
d’existence de la déduction donnée. Cela se fait:
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a) en remettant les substitutions aux formules initiales,

b) en remplagant chaque expression B vV € par B & 6,

¢) en remplacant chaque expression (Ex) B(z) par (x) B().

Or le formalisme % ne dépasse le formalisme de Heyting que
par la formule logique
—A .

-l

Cette formule a été remplacée par les opérétions a), b), c), a
chaque place ou elle intervient dans la déduction donnée, par

une formule % —~ 9, ne contenant ni des variables de propo-
sitions ni les symboles Vv, (Ex). Dans chacune de ces formules,
A est composé d’équations élémentaires au moyen des opérations
&, —=, 7, (). Mais pour une formule ¥ composée ainsi on
peut déduire |

U —> A

dans le calcul intuitionniste.
En effet, on a d’abord

et généralement

on en dédut

BEEE—=B&E, B—r C —> (B — @)

et d’une formule

on déduit
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Ces déductions se font au moyen des relations

B—=B, (B8—>6) —= (€—> ),

qui sont généralement valables dans la logique intuitionniste.

Nous parvenons donc & une déduction de U par le calcul
intuitionniste. |

A ce résultat nous pouvons donner encore une autre
forme. Observons qu’a chaque formule % de %, ne conte-
nant pas des variables de propositions, il correspond une
formule A’ qu’'on obtient de A en remplacant chaque partie

de la forme B vV € par B&E et chaque partie de la forme

(Ex) 8 (z) par (z) B (z).
Cette formule A’ est équivalente & la formule A dans la théorie
axiomatique des nombres, puisqu’on peut déduire dans N

U—> W of W —>UA.

D’autre part, A’ satisfait aux suppositions du théoréme
démontré tantot; et de la découle que si cette formule est
déductible dans N, elle est aussi déductible par le calcul intui-
tionniste.

Par conséquent si une formule 2, ne contenant pas de
variables de propositions, est déductible dans le formalisme X,
alors la formule correspondante A’ est déductible par le calcul
intuitionniste. ‘ |

On peut donc dire que le passage de la théorie axiomatique
des nombres & une partie de la mathématique intuitionniste se
fait par un simple changement de l'interprétation des propo-
sitions. | |

En particulier, la non-contradiction de l'intuitionnisme en-
traine celle de la théorie axiomatique des nombres.

Ainsi le probléme de démontrer la non-contradiction de la
théorie axiomatique des nombres, qui n’a pas de solution
formelle dans le cadre du formalisme % méme et qui dépasse,
a ce qu’il semble, les forces des méthodes élémentaires combina-
toires, admet une solution assez simple, si on étend les méthodes
de la métamathématique en adjoignant certains raisonnements
intuitionnistes. ‘
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I1 est vrai qu’il y a peu d’espérance que la forme de la solution
trouvée puisse étre généralisée de facon qu’on en tire une démons-
tration de la non-contradiction de I'analyse infinitésimale. Mais
outre la méthode spéciale, par laquelle la non-contradiction du
formalisme I a été démontrée, il y a encore, comme les considé-
rations précédentes nous le montrent, d’autres possibilités de
faire valoir le point de vue élargi de la métamathématique.

Je me permets d’exprimer ma reconnaissance a M. le Prof.
Wavre et M. le Prof. Gonseth de P’aimable aide qu’ils ont bien
voulu me préter quant a ’amélioration du texte de cet article.

" SUR LA NATURE DE LA LOGIQUE,
DE SES CATEGORIES ET DE SES VERITES 1

PAR

Paul Herrz.

Quelle est la nature de la logique, de ses catégories et de ses
vérités ? -

Il ne faut pas croire que les lois de la logique sont surtout
des lois psychologiques de la pensée. Elles sont aussi des « lois »
au sens originaire du mot, des normes qui prescrivent comment
ont doit penser, pour étre siir d’arriver a des résultats vérifiés
par la réalité des choses. Mais de tels précepts seraient Impos-
sibles 8’1l n’y avait pas de liaisons objectives qui y correspondent.

1 Résumé de la communication présentée le 22 juin 1934 dans 1a série des Conférences
internationales des Sciences mathématiques organisées par I’Université de Genéve. Une
publication plus compléte paraitra en allemand dans les Abhandlungen der Fries’ischen
Schule, Neue Folge, 6. Band, 2. Heft, Berlin.. — Les pensées développées dans la
derniére partie de cette conférence sont contenues dans la Note parue dans Vom
Wesen der logischen Erkenntnis, t. IT, 1932, p. 369.
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