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32 A. FRAENKEL

tion et à apprécier son rôle dans cet ensemble x, essais facilités
par les travaux précieux de Heyting 2.

Et je voudrais terminer par le souhait que des travaux de
cette tendance continuent à paraître et contribuent à l'entente
mutuelle dans ce domaine de la Logique mathématique.

SUR L'AXIOME DU CHOIX 3

PAR

A. Fraenkel (Jérusalem).

Les discussions sur l'axiome du choix durent depuis plus de

30 ans, son énoncé ayant été formulé pour la première fois sous
forme d'un principe spécial par M. Beppo Levi en 1902 4 et
utilisé en 1904 par M. Ernst Zermelo (d'après une suggestion
de M. Erh. Schmidt) comme base de démonstration du théorème

sur le bon ordre. Les uns contestent en général la possibilité

d'attribuer un sens à cet énoncé, comme je l'ai expliqué
hier dans ma conférence sur la notion d'existence en
mathématique. Un second groupe voit dans ce principe une proposition

ayant un sens mais indémontrée et même indémontrable.
Cette proposition ne peut servir comme moyen de démonstra-

1 Voir entre autres Menöer, loc. cit.; V. G-liyenko dans Acad. R. Belgique, Bull.
Cl. Se. (5) 14, 225-228, et 15, 183-188 (1928/9); A. Kolmogorofe dans Math. Ztschr.
35, 58-65 (1932); K. Gödel dans Anzeiger Akad. Wiss. Wien, Math.-Nat. Kl., 1932,
65-66, et Ergebn. Math. Kolloq. (Menger) 4, 9-10 et 39-40 (1933); puis les travaux de
Lukasiewicz et d'autres traitant de la logique plurivalente.

2 Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., 1930, 42-71 et 158-169; voir
aussi Erkenntnis 2, 106-115 et 135-151 (1931) et Verh. Intern. Math. Kongress Zurich
1932, II, 344-345 (1933).

3 Conférences faites les 20 et 21 juin 1934 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Genève; série consacrée à

la Logique mathématique.
J'exprime mes vifs remerciements à M. B. Amira (Jérusalem) qui a bien voulu se

charger de la rédaction française de ce mémoire.
4 Pour les écrits parus jusqu'à 1928, voir la troisième édition de mon «Einleitung

in die Mengenlehre » (Berlin, 1928).
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tion de théorèmes mathématiques mais tout au plus comme

hypothèse de travail qui facilite la recherche de théorèmes

vrais. Car ce groupe, et même le premier groupe, admet qu'il est

impossible de démontrer un théorème dont le contraire peut
être déduit au moyen du principe du choix. Le troisième groupe
enfin attribue au principe du choix une valeur égale à celle des

autres principes de nature mathématique qui sont nécessaires

au développement des sciences mathématiques. J'appelle ici
« principes de nature mathématique » les principes comme celui
de l'induction complète ou l'axiome de l'infini de Russell et non
les axiomes purement logiques; et la question reste ouverte si

le « caractère tautologique » (dans le sens de Wittgenstein et
de l'école de Vienne x) ne lui revient pas. Mais la grande majorité
de ce troisième groupe même admet que nous avons ici un
axiome « sui generis » et que par suite il y a un intérêt
mathématique essentiel de mener les démonstrations autant que
possible sans le principe du choix et de caractériser comme tels
les théorèmes qui ne sont démontrables qu'à l'aide de ce principe.
On peut citer comme représentants de ces groupes: pour le

premier, M. Brouwer; pour le second, MM. Borel, Lebesgue
et Lusin; pour le troisième, M. Sierpinski. Les limites entre
ces groupes (surtout entre le premier et le second) ne sont
d'ailleurs pas très précises.

Pour terminer ces remarques disons, qu'en 1890 déjà Giuseppe
Peano dans un mémoire publié dans les Math. Annalen, Vol. 37,
et concernant l'intégration des équations différentielles dit ceci :

« Mais comme on ne peut pas appliquer une infinité de fois une
loi arbitraire par laquelle à une classe a on fait correspondre un
individu de cette classe, on a formé ici (c'est à dire Peano dans la
démonstration en question) une loi déterminée par laquelle à chaque
classe a, sous des hypothèses convenables, on fait correspondre un
individu de cette classe ».

En langage moderne: Pour éviter le principe du choix on
adopte une loi pour le choix.

i Ou bien dans le sens (un peu différent) de F. P. Ramsey, voir Proceed. London
Math. Soc. (2) 25, p. 338-384, et Mathematical Gazette 13 (1928), p. 185-194. Cf. encore
E. Husserl, Formale und transzendentale Logik (Halle, 1929), surtout la contribution

de O. Becker, et H. Scholz, Deutsche Literaturzeitung, 1932, p. 1912-1913.

L'Enseignement mathém., 34me année, 1935. 3



34 A. FRAENKEL

Pour un principe, qui a été si souvent mal compris, la forme
de l'énoncé est essentielle. Pour en donner une, qui soit à l'abri
de tout malentendu, considérons les principes suivants pour
la formation des ensembles:

1. Formation de paires, c'est-à-dire formation d'un
ensemble, qui contient deux éléments différents donnés;

2. Sommation, c'est-à-dire formation de l'ensemble-somme
©m, qui contient tous les éléments des éléments de m;

3. Elévation en puissance, c'est-à-dire formation de

l'ensemble-puissance Urn, qui contient comme éléments tous les
sous-ensembles d'un ensemble donné m;

4. Triage, c'est-à-dire formation du sous-ensemble mp d'un
ensemble donné m, qui contient tous les éléments de m ayant
une propriété donnée P.

A tous ces principes s'ajoute encore comme axiome d'existence
absolu le postulat qu'il existe un ensemble en général — ceci

pour exclure la possibilité que tous ces principes ne
s'appliquent qu'à vide.

Il faut ajouter à cela, que comme éléments d'un ensemble-
puissance peuvent figurer seuls les sous-ensembles dont l'existence

est assurée à l'aide des autres principes, en particulier
aussi à l'aide du principe du triage. On déduit facilement de ces

principes (surtout de 1. et de 4.) l'existence de l'ensemble nul,
qui ne contient aucun élément, ainsi que de l'ensemble {m},
qui contient le seul élément donné m.

L'existence de l'en&emble-produit (Verbindungsmenge), que
Cantor a introduit pour former le produit des nombres cardinaux,
peut être assurée à l'aide des principes ci-dessus de la manière
suivante: Soit m un ensemble d'ensembles et admettons, pour
simplifier, que m soit disjoint, c'est-à-dire que deux quelconques
des éléments de m n'aient pas d'éléments communs. Il peut arriver
alors que l'ensemble-somme ©m contient des sous-ensembles

ayant la propriété suivante P: le sous-ensemble a un et un seul
élément commun avec tout élément de m. L'ensemble de tous
les sous-ensembles de ©m ayant cette propriété existe alors

d'après le principe de triage et est un sous-ensemble de

l'ensemble U qui contient tous les sous-ensembles possibles de

l'ensemble ©m; c'est donc un sous-ensemble de l'ensemble-
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puissance U tt ©m. Chaque élément du sous-ensemble Up

de U ainsi obtenu est appelé ensemble de choix de m, car on

peut se figurer que chacun de ces éléments (sous-ensembles
de ©m) provient d'un choix d'un élément de chaque ensemble

qui est élément de m.
La question se pose alors: dans quelles circonstances l'ensemble

Up est vide, c'est-à-dire qu'il n'y a pas d'ensemble de choix du

tout. Une condition suffisante est évidemment celle, que
l'ensemble-nul soit élément de m; car alors il est impossible de

trouver un ensemble qui ait un élément commun avec cet
élément de m. Mais est-ce que cette condition est aussi nécessaire

Autrement dit: y a-t-il au moins un ensemble de choix

pour tout ensemble disjoint m d'ensembles non-nuls On n'a pas
réussi de résoudre ce problème à l'aide des principes ci-dessus;
car la simple solution : « on choisit de chaque ensemble de m

un élément et on forme de tous les éléments ainsi choisis un
ensemble de choix » est contraire à la remarque de Peano citée

plus haut; elle est possible seulement si l'on peut donner une
loi pour le choix des éléments en question, ce qui ne semble

pas être possible en général. Nous établissons donc:
Principe du choix: L'ensemble-produit d'ensembles sans

éléments communs devient nul seulement si l'un des ensembles-
facteurs est nul. Ou bien: Un ensemble disjoint m d'ensembles
non-nuls a toujours au moins un ensemble de choix, c'est-à-dire
un ensemble, qui a un élément commun avec chaque élément
de m.

Il ne s'agit donc pas dans cet axiome d'une construction d'un
ensemble de choix — d'accord avec le fait, que notre axiome
(contrairement aux principes ci-dessus) ne fixe pas l'ensemble
en question d'une manière uniçoque. Le problème ne dit pas:
Est-il possible de donner un ensemble de choix mais plutôt:
Doit-on nier la non-existence d'ensembles de choix D'une
part la non-considération du caractère existentiel de notre
principe a provoqué une série d'erreurs et de malentendus,
même chez un chercheur profond et qui admet la théorie
classique des ensembles comme l'était Julius König; d'autre
part précisément ce moment existentiel et non-constructif
est la raison pour laquelle la majorité des intuitionnistes
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d'empreinte radicale ou conservative déclarent notre principe

sans signification ou inadmissible, l'identification de
l'existence mathématique et de la constructibilité étant une
thèse de base de l'intuitionnisme. Il est à remarquer que Henri
Poincaré, dont la tendance était en grande partie de nature
nettement intuitionniste, n'était pas contre le principe du choix;
sa critique de la démonstration du théorème sur le bon ordre
ne visait pas notre principe mais bien les définitions non-
prédicatives.

Les autres principes mentionnés permettent, comme l'a
montré Zermelo dans le volume 65 des Math. Ann., d'éliminer
de l'énoncé ci-dessus du principe du choix la condition
restrictive de la disjonctivité. On peut donc démontrer plus
généralement :

A tout ensemble m, dont les éléments sont des ensembles

non-nuls, correspond au moins une fonction uniforme f(x), dont
l'argument parcourt les éléments de m et dont la valeur y f(x)
est toujours un élément de l'ensemble x.

L'importance du principe du choix en général ne sera pas
exposée ici. Si l'on veut conserver l'analyse classique et la
théorie des ensembles ne serait-ce que dans leurs lignes essentielles,
on ne peut pas se passer du principe du choix; ainsi par exemple

pour le calcul avec les puissances. Le rôle de ce principe en analyse

a été indiqué surtout par M. Sierpinski et ses élèves,
particulièrement MM. Tarski et Lindenbaum. Mais le principe du
choix est d'une importance essentielle même en arithmétique.
Les champs d'application les plus importants sont ici d'une

part la théorie des élargissements infinis des corps et des anneaux,
pour lesquels E. Steinitz a montré le rôle de l'axiome, et d'autre
part son application à la théorie des ensembles finis, pour la
première fois indiquée par M. B. Russell, où ce principe sert
à la démonstration de l'équivalence des différentes définitions
du caractère fini, ainsi par exemple le caractère fini dans le sens

inductif et dans celui de Dedekind. Il semble qu'un théorème
aussi simple comme « l'ensemble-puissance d'un ensemble fini
est fini » ne peut pas être démontré sans l'aide du principe du
choix si l'on comprend « fini » dans le sens « non-équivalent à

aucun vrai sous-ensemble » (et d'ailleurs une démonstration
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directe présente des difficultés même avec ce principe). D'après
M. A. Tarski on peut même juger de la valeur des définitions
du fini selon leur rapport au principe du choix.

L'application la plus célèbre du principe du choix, pour
laquelle ce principe a été expressément formulé comme nouvel

axiome, est comme l'on sait son rôle dans la démonstration du

théorème sur le bon ordre et ainsi du théorème sur la comparabilité
des puissances. Il est clair, que si l'on pose le théorème sur le

bon ordre comme axiome, le principe du choix devient démontrable,

puisqu'on peut alors, dans tout ensemble qui a été bien

ordonné, distinguer le premier élément par exemple. Hartogs
a démontré dans les Math. Ann., Vol. 76 (1915), que le théorème
du bon ordre découle de celui de la comparabilité; ainsi chacun
de ces deux théorèmes est équivalent au principe du choix,
naturellement en admettant les autres principes. A cela correspond

le fait que le théorème du bon ordre a le même caractère

purement existentiel que le principe du choix.
Moins clair est l'état du théorème de Vordre, c'est-à-dire de la

proposition, que tout ensemble peut en général être ordonné.
L'intuition permet de penser que ce cas spécial du théorème
du bon ordre est plus faible que celui-ci, donc plus faible que
le principe général du choix; car des exemples comme celui du
continu linéaire montrent, que pour bien ordonner un ensemble

qui est déjà ordonné il faut parfois encore surmonter des
difficultés extraordinaires. Il est donc probable que ce que postule
le théorème de l'ordre, et que l'on peut d'après Hessenberg
et M. C. Kuratowski formuler sans introduire une relation
d'ordre spécial (à l'aide de la relation azb seule), est plus faible
que l'axiome du choix. Dans ce cas il serait d'un grand intérêt
de chercher jusqu'où on peut aller dans un système de l'analyse

et de la théorie des ensembles en admettant outre les

principes usuels encore le théorème de Vordre comme postulat.
Il n'est pas exclu aussi que le théorème de l'ordre soit équivalent
au principe du choix lui-même (ou bien à un de ses cas
particuliers, dont il sera question tout à l'heure). Dans ce cas le
théorème de l'ordre sera seulement d* apparence une spécialisation

du théorème du bon ordre. Par contre on peut démontrer
que la troisième possibilité est à rejeter, celle où le théorème



38 A. FRAENKEL
de l'ordre ne serait pas seulement plus faible que le principe
du choix mais même dépendrait des autres principes, c'est-à-dire
serait démontrable à l'aide de ces principes. Cette démonstration

de l'indépendance sera facilement établie au cours de ce

qui suit.
Nous passons maintenant au problème qui doit nous occuper

encore aujourd'hui et demain, celui de la dépendance et de

Vindépendance du principe du choix. Autrement dit il s'agit de

savoir si le principe du choix est démontrable à partir des

autres principes, et son énoncé comme nouvel axiome serait
alors superflu, ou bien si l'on peut au contraire démontrer qu'il
n'en découle pas. La première possibilité se recommande grâce
au fait, indiqué par le savant anglais de grand talent décédé

prématurément, le regretté F. P. Ramsey (1903-1930), que
le principe du choix a apparemment le même caractère tau-
tologique que les axiomes logiques et les axiomes de relation
en mathématique, tandis que les axiomes absolus d'existence,
comme par exemple celui de l'infini, sont en tout cas sui generis
et indépendants des autres axiomes. La seconde possibilité, celle
de l'indépendance du principe du choix, est suggérée par le fait
que nous ne possédons pas même un point de départ pour la
démonstration de notre principe; aussi les nombreuses tentatives,
souvent couronnées de beaux succès, des mathématiciens
polonais surtout, d'établir des propositions équivalentes au

principe du choix ou au théorème du bon ordre, et prises dans
les différents domaines des mathématiques, n'ont jamais ouvert
une voie qui rendrait possible la démonstration de l'une de ces

propositions. Une démonstration directe du principe du choix
serait évidemment d'établir d'une manière constructive un
ensemble de choix; mais ceci donnerait une possibilité constructive

de bien ordonner un certain ensemble qui y correspond;
d'autre part l'état actuel du problème du continu montre
combien un tel résultat est improbable. (Du reste, comme
M. Lebesgue l'a montré, il n'y a pas de fonction représentable
analytiquement qui définisse un ensemble de choix, déjà au cas

de l'ensemble-puissance du continu.)
Trois remarques sont à faire avant de passer à la considération

de l'indépendance du principe du choix:
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1. On s'est beaucoup occupé de la question: comment pourrait-
on introduire au lieu de l'énoncé général ci-dessus une proposition

plus spéciale, donc plus faible que le principe du choix,
qui se rattache à un ensemble disjoint m quelconque d'ensembles

non-nuls. Une telle proposition pourrait suffire à la démonstration,

sinon de tous les résultats, au moins d'une partie de ceux

que l'on démontre à l'aide du principe général du choix. La
manière la plus simple de spécialiser ce principe est de

soumettre la puissance de l'ensemble m ou bien celle des ensembles,

qui sont les éléments de m, à des conditions restrictives. Un cas

est à considérer avant tout, c'est celui où m est un ensemble

fini. En effet si m ne contient qu'un seul élément a, a étant un
ensemble non-nul, on arrive à réaliser la proposition du choix
sans l'aide du principe du choix. Car si nous voulons utiliser
un ensemble du choix correspondant, c'est-à-dire un ensemble

qui contient un seul élément oc de a, nous ne pouvons faire
usage d'aucune propriété de cet élément, excepté du fait, qu'il
est un élément quelconque de a ou bien qu'il est un élément
quelconque ayant une propriété qui correspond à l'ensemble a.
La valeur de l'introduction de l'ensemble du choix consiste
donc en cela seulement, que l'on démontre à l'aide de l'ensemble
du choix une proposition dans laquelle ne figure plus l'élément
oc qui constitue l'ensemble du choix. Des méthodes de ce genre
sont en effet souvent employées, par exemple en géométrie
élémentaire déjà. Cette méthode (d'habitude sous la forme
« Soit oc un élément quelconque de a ») est admissible sans le
principe du choix ou un autre axiome spécial. Ceci tient, d'après
une remarque de M. Bernays, à un théorème du calcul de la
logique, que l'on peut énoncer ainsi: Si à l'aide d'une formule 31

on peut établir une formule SB, et si 31 ne contient aucune variable
libre, on peut démontrer la proposition « 31 implique 33 » sans
se servir de 31. De là vient que dans notre cas on peut au lieu
de l'élément « choisi » introduire une variable indépendante
pour établir la proposition à démontrer. Ceci étant, on n'aura,
dans aucun des systèmes logiques habituels, de difficultés pour
passer de la proposition «l'ensemble a n'est pas nul» à l'expression

« un élément quelconque de a est désigné par oc ». (Tout
autre est le cas où l'on admet au lieu de la proposition
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« soit a un élément quelconque de a » la formule Dx1 introduite
récemment par M. Foster x, qui donne pour ainsi dire un
représentant de l'ensemble a ou d'une propriété correspondante.
Cette formule exige évidemment un principe, qui implique la
proposition d'existence pure, sans en être une conséquence.)
La remarque faite ici pour le cas où m contient un seul élément
peut être étendue au moyen de l'induction au cas où m possède
un nombre fini d'éléments. Dans ce cas aussi le principe du
choix n'est pas nécessaire pour établir l'existence d'un ensemble
du choix.

La plus grande spécialisation possible de notre principe quant
à la puissance de Y ensemble m serait donc que m est dénombrable.
Pour les éléments e de m nous pouvons supposer même qu'ils
sont tous finis, par exemple qu'ils sont tous des paires. La
forme la plus faible dans cette direction, et que nous appellerons
le principe du choix le plus spécial, sera donc:

A un ensemble m dénombrable et disjoint de paires (ou
d*ensembles finis non-nuls) correspond toujours au moins un ensemble

du choix.

Ceci n'exclut évidemment pas la possibilité d'établir d'autres
propositions qui seraient des spécialisations importantes du
principe du choix. Une telle proposition a déjà été mentionnée
plus haut et nous en reparlerons plus loin, c'est le théorème de

l'ordre. Une autre spécialisation, qui est toutefois utilisable pour
les ensembles de points seulement, est le « principio di appros-
simazione » de M. Beppo Levi {Math. Ann. 90), que M. T. Viola
a appliqué récemment2.

Remarquons encore que les savants de l'école intuitionniste
(ou « idéaliste ») ne sont pas d'accord sur la question si le principe
du choix ne devrait pas être accepté au moins dans le cas d'un
ensemble dénombrable. M. Borel trouve que ceci est à discuter
tandis que M. Lebesgue ne voit pas de raison pour une telle
distinction (qui est plutôt de nature psychologique).

2. Un problème, que nous n'avons pas considéré jusqu'ici,
joue un rôle important concernant la démonstration de l'indé-

1 Annals of Mathematics (2) 32 (1931), p. 407-430.
2 Bollet. Unione Mat. ltal. 10 (1931), p. 287-294, et 11 (1932), p. 74-78.
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pendance du principe du choix, à côté des principes mentionnés

au début de cette conférence (y compris l'axiome de l'infini),
que nous considérons dès maintenant comme donnés. D'après
la manière classique de donner des démonstrations d'indépendance

nous aurons à construire une pseudo-théorie des ensembles,
dans laquelle tous les principes sont valables sauf celui du choix.
Ici une question se pose, qui surgit de même à la fondation de

la théorie ordinaire des ensembles, c'est: quels sont les non-
ensembles qui peuvent être admis comme éléments d'ensembles;
autrement dit, de quels éléments primitifs se constituent les
ensembles de notre domaine M. Zermelo laisse libres dans

son important mémoire de 1908 la nature et la variété de ces

éléments, qu'il appelle plus tard « éléments primitifs » (Ur-
elemente), et il garde ce point de vue aussi dans le mémoire

qu'il publia en 19301. J'ai proposé contrairement à ceci de

réduire autant que possible ces éléments et d'admettre pour
cela seulement l'ensemble-nul, dont l'existence est démontrable
en tout cas; un tel domaine d'ensembles a le privilège d'être
délimité mathématiquement avec plus de précision, et semble tout
de même suffire dans tous les cas, y compris ceux des domaines
d'application. Toutefois dans cette restriction on n'est pas 'arrivé
jusqu'ici, à ma connaissance, à démontrer d'une manière
mathématiquement sûre quoi que ce soit sur la dépendance ou
l'indépendance du principe du choix 2. Je ne puis donc malheureusement

rien vous dire aujourd'hui là dessus et je me contenterai
pour la suite d'admettre avec Zermelo que des éléments
primitifs quelconques peuvent être adoptés. Le problème est ainsi
moins profond qu'avec la restriction à l'ensemble-nul, ce qui
semble prouver qu'au point de vue mathématique cette restriction

justement a un mérite spécial.

3. Parmi les principes qui ont été mis plus haut à la base
de la construction d'ensembles, il y en a un qui n'a pas la
précision mathématique nécessaire, c'est le principe du triage. La
notion de propriété qui s'y trouve doit être précisée; on le voit

1 Fundamenta Mathem. 16, p. 29-47.
2 Les idées de M. L. Chwistek (Math. Zeitschr. 25 [1926], p. 439-473) ne sont pas.

considérées ici puisque leur point de départ est incomparable avec l'ordinaire.
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surtout lorsqu'on veut utiliser ce principe pour une démonstration

déterminée, comme dans notre cas de la démonstration
de l'indépendance. C'est pour cette raison que j'ai donné en
1922 un énoncé mathématique précis de la notion de propriété
dans le principe du triage. Cette notion a été précisée d'une
autre manière presque en même temps mais indépendamment
par M. Th. Skolem. Une délimitation différente de cette notion
de propriété a été proposée en 1929 par M. Zermelo x, mais elle
semble être moins utilisable tant au point de vue de l'axioma-
tique en général que dans le but de donner des démonstrations.
Puisque dans les démonstrations qui vont suivre nous n'irons
pas jusqu'aux derniers détails, nous pouvons nous contenter,
quant à la précision en question, de l'indication suivante: On
introduit à l'aide d'une définition une notion de fonction, et
puis, f(x) et g(x) étant deux fonctions quelconques, on postule
l'existence du sous-ensemble d'un ensemble donné m, qui
contient les éléments x de m pour lesquels f(x) est élément de

l'ensemble g(x), ou en symbole: f(x) z g(x). Dans la voie que j'ai
suivie, la définition de la notion de fonction se fait de manière
à appliquer à des ensembles variables les processus des principes
sus-mentionnés : formation de paires, de l'ensemble-somme, de

l'ensemble-puissance et enfin le triage lui-même. L'utilisation
du processus du triage, qui lui-même utilise la notion de fonction,
ne constitue pas un cercle vicieux, mais une classification en

gradation des fonctions, ceci selon le nombre de fois que l'on
utilise de suite le processus du triage.

** *

Après ces préliminaires passons enfin aux démonstrations
elles-mêmes. La première de ces démonstrations montrera que
non seulement le principe du choix, mais même le principe du
choix le plus spécial est indépendant des autres axiomes si nous
utilisons pour les éléments primitifs des ensembles la liberté
offerte par Zermelo. Cette démonstration est publiée (contrairement

à la suivante) 2
; une remarque additionnelle se trouve

dans la thèse de mon élève M. J. Merzbach 3.

i Fundam. Math. 14, p. 339-344; cf. Skolem, ibidem 15 (1930), p. 337-341.
Sitzungsber. Preuss. Math. .Akad, Phys.-Math. Kl., 1922, p. 253-257.

3 Bemerkungen zur Axiomatik der Mengenlehre. Marburg (Lahn), 1925.
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Le domaine SD de notre pseudo-théorie des ensembles, dans

laquelle tous les principes sont valables mais où le principe du

choix le plus spécial sera démontré non-valable, comprend
les objets suivants:

I) L'ensemble-nul 0 et l'ensemble N { 0, { 0 }, {{ 0 }}, }
introduit par Zermelo et qui coïncide essentiellement avec

l'ensemble des nombres naturels.

II) Un nombre infini dénombrable de couples d'objets différents

ax, al7 a2, a2, a3, a3, où les éléments ak, ak ne sont

pas des ensembles, c'est-à-dire ne contiennent pas d'éléments.

III) L'ensemble effectivement dénombrable

A dl j" {a2, Cl2 j" |^3) ^3 } • • • } ~ { -à-1
5 ^-2 5

-à-3 Î

IV) Les ensembles que l'on obtient des objets du domaine à

l'aide de la formation de paires, de somme, de puissance et par
le triage.

Le domaine © ne doit contenir aucun autre objet; nous
dirons, « un ensemble existe », s'il est un des « objets de base »

mentionnés sous I à III ou bien est construit avec ces objets de

base à l'aide des processus mentionnés sous IV, employés en
nombre fini de fois. Tous nos objets sont des ensembles à

l'exclusion de ceux introduits sous II.
La notion de nombre naturel, c'est-à-dire l'induction

complète n'est pas nécessairement employée dans l'expression « un
nombre fini de fois » de tout à l'heure, mais on s'en sert en fait
lors de l'introduction de la notion de fonction. Nous nous en
servirons donc par la suite sans crainte de l'induction. Le
problème qui a été beaucoup discuté il y a un quart de siècle, si
les nombres naturels et l'induction doivent être admis à la base
de la théorie des ensembles ou au contraire, comme le voulait
M. Zermelo, doivent ressortir de la théorie générale des ensembles,

a depuis reçu sa solution dans le premier sens (au point de

vue métamathématique et mathématique) grâce aux travaux de
l'école de Hilrert, donc dans le sens de Poincaré mais non
pas avec ses arguments. En tout cas nous n'avons pas de raisons
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pour éviter l'induction, surtout dans une démonstration
d'indépendance.

Pour faciliter la notation nous désignerons, les éléments Ak
de l'ensemble A comme cellules, les deux éléments de la cellule
Ak comme éléments de cellule conjugués. Un sous-ensemble
de A, qui contient presque tous les éléments de A (c'est-à-dire
tous sauf un nombre fini d'entre eux), s'appellera ensemble

principal. Ainsi l'intersection (partie commune, produit) d'un
nombre fini d'ensembles principaux est elle-même un ensemble

principal. L'ensemble que l'on obtient d'un ensemble quelconque
m en permutant les éléments d'une certaine cellule AÄ, sera dit
conjugué à m par rapport à Ak et sera désigné par mk• Un ensemble

conjugué à lui-même par rapport à Ak sera dit symétrique (par
rapport à Ak).

Notre but est donc de démontrer le

Théorème fondamental: A tout objet M de & correspond au
moins un ensemble principal AM tel que M soit symétrique par
rapport à toutes les cellules de AM.

Cela veut dire: On peut pour presque tous les indices k
permuter ah avec ah sans changer par là l'objet M.

La démonstration de ce théorème fondamental établira
l'indépendance du principe du choix, dans ce sens que selon lui le

principe du choix n'est pas rempli dans notre domaine ®. Car

par exemple l'ensemble A de toutes les cellules ne peut pas avoir
d'ensemble de choix d'après le théorème fondamental; tout
ensemble de choix contiendrait un seul élément de chaque
cellule et ne serait donc symétrique par rapport à aucune
cellule. L'ensemble A donne une forme mathématiquement précise

à l'idée de Poincaré et de Russell, qui disent qu'un choix
est impossible dans le cas d'un ensemble infini de paires de

chaussettes également travaillées, et ainsi même l'équivalence
de l'ensemble de toutes les chaussettes et de celui des paires
de chaussettes ne peut pas être établie. Par contre dans le cas

d'un nombre infini de paires de souliers on aura comme ensemble
de choix par exemple celui de tous les souliers gauches qui
existe à cause du principe du triage.

La démonstration du théorème fondamental se fait essentiel-



SUR L'AXIOME DU CHOIX 45

lenient par l'induction complète, d'après le nombre des processus
de construction nécessaires pour obtenir les ensembles de- S) à

partir des objets de base d'après IV. Le théorème fondamental
est en tout cas vrai pour les objets de base eux-mêmes. Car

l'ensemble-nul, l'ensemble N, ainsi que A (l'ensemble de toutes
les cellules) sont symétriques par rapport à toutes les cellules,
c'est-à-dire par rapport aux cellules de l'ensemble principal A
lui-même. Mais les objets ak et ak sont symétriques par rapport
à chacune des cellules sauf une, cela veut dire par rapport à

toutes les cellules de l'ensemble principal A—{Afe}.
La marche de la démonstration inductive est la suivante:

On a tout d'abord besoin d'un
Lemme: Soit m un objet quelconque de © et soit Ak une

cellule quelconque, il existe alors l'objet conjugué à m par
rapport à Ak.

La démonstration ne se laisse pas mener, comme on s'attendrait,

de manière à suivre la construction de m à partir des

objets de base et de passer à la voie conjuguée. Le processus
de formation de puissance et celui de triage, qui s'enlacent de

manière non-prédicative, s'y opposent. La démonstration se

base sur la notion d'une gradation des ensembles qui dépendent
des éléments de cellule aft, ak : un de ces éléments de cellule
lui-même est dit d'ordre 0, un ensemble qui contient des

éléments de cellule (la cellule Ak par exemple) est d'ordre 1,

en général un ensemble qui contient des éléments d'ordre
n — 1 (et peut-être d'ordre inférieur), est d'ordre n. Par
induction d'après cet ordre il n'est pas difficile de démontrer
le lemme.

La démonstration du théorème fondamental se fait au moyen
d'une chaîne de théorèmes comme suit:

Théorème 1. Un ensemble, que l'on obtient au moyen de
formation de paires, de somme ou de puissance à partir d'objets
(«objets de départ»), qui sont symétriques chacun par rapport
aux cellules d'un ensemble principal, est symétrique lui-même
par rapport aux cellules d'un certain ensemble principal.

Démonstration. Le couple formé de deux tels objets est
évidemment symétrique par rapport aux cellules de l'intersection
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des deux ensembles principaux en question. Quant à la somme
et à la puissance, soit l'ensemble arbitraire M symétrique par
rapport aux cellules de l'ensemble principal AM, et soit Ak une
cellule quelconque de AM ainsi que Mh M. Si alors fxsmeM,.
on aura \ikzmkeMfe; de Mk M on a ^eSM, c'est-à-dire que
©M aussi est symétrique par rapport à AM. De même pour
l'ensemble de puissance: D'après le lemme il existe pour tout
sous-ensemble de M un ensemble conjugué par rapport à Akr
et cet ensemble est un sous-ensemble de Mk M; ainsi UM
aussi est symétrique par rapport à toutes les cellules de AM.
Le théorème 1 est ainsi démontré.

Une conséquence facile du théorème 1 est le théorème suivant :

Théorème 2. Si dans les conditions du théorème 1 l'objet de

départ ou l'un des objets de départ est laissé variable, à la
fonction 9(3?) ainsi obtenue correspondra un ensemble principal
tel que pour tout objet x0 <p(x%) sera toujours conjuguée à (?(x0)

par rapport à la cellule quelconque Ak de l'ensemble principal.
Le théorème 2 fournit le moyen d'étendre le théorème 1 sur

le processus du triage. Car on a le

Théorème 3. Soient 9 et ^ deux fonctions du genre décrit au
théorème 2 et soit l'ensemble M symétrique par rapport aux
cellules d'un ensemble principal, alors ceci aura lieu aussi pour
le sous-ensemble de M déterminé par (9, ^), c'est-à-dire pour
l'ensemble des xeM. pour lesquels 9(3;) s <];(£).

La démonstration se fait de la manière que l'on comprend
facilement, en formant l'intersection des ensembles principaux
qui correspondent à 9 et d'après le théorème 2 etde l'ensemble

principal qui correspond à M d'après les données. Cette
intersection est de nouveau un ensemble principal, et le sous-ensemble

en question de M est symétrique par rapport aux cellules de cet
ensemble principal.

On démontre aussi un théorème analogue au théorème 2 pour
la fonction que l'on obtient d'un tel sous-ensemble en laissant
variable un élément de départ, et l'on procède par induction
en définissant:

A) Tout objet de base et tout ensemble provenant des objets
de base par formation de paires, sommation, formation de
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puissance, est dit de classe zéro. De même une fonction de classe

zéro est une fonction qui correspond à un ensemble de classe

zéro si l'on laisse variable un des objets de départ.

B) Si l'on détermine, pour un ensemble M de classe p au

plus, un sous-ensemble au moyen de deux fonctions 9 et

dont chacune est aussi de classe p au plus, le sous-ensemble en

question sera dit de classe p -f 1 au plus. De même une fonction
correspondante sera dite de classe p + 1 au plus; ici on laissera

variable l'ensemble M, ou l'une des constantes qui se trouvent
dans 9 et <];, ou bien les deux à la fois.

D'après le théorème 1 et la remarque faite au sujet de la
symétrie des objets de base, tout objet de classe 0 est symétrique
par rapport aux cellules d'un certain ensemble principal. Si l'on
considère ceci comme démontré pour tout ensemble de classe p
au plus, on démontre en analogie avec la démonstration des

théorèmes 2 et 3, que la même propriété de symétrie subsiste

pour les ensembles de classe p 1 au plus. Puisque pour tout
ensemble 011 a des nombres naturels p tels que M soit de classe p
au plus, le théorème fondamental est démontré et avec lui
l'indépendance du principe du choix le plus spécial.

La démonstration vient évidemment essentiellement de la
possibilité d'admettre l'existence d'objets aft, ak provenant pour
ainsi dire du rien et qui ne sont pas des ensembles. Si l'on
restreint le domaine de la théorie des ensembles à des ensembles

seulement, y compris l'ensemble-nul, ce qui est sûrement de
bon sens et même préférable au point de vue mathématique,
la question de l'indépendance du principe du choix reste ouverte
même après la démonstration précédente.

Notre démonstration résout du reste en même temps le
problème de l'indépendance du théorème de Vordre et ceci dans
le sens positif. Car le théorème de l'ordre implique le principe
du choix le plus spécial. Ainsi si le théorème de l'ordre est
valable, on peut, sans se servir du principe du choix, ordonner
l'ensemble de tout nos éléments de cellule, c'est-à-dire
l'ensemble ©A. Avec ceci on a en même temps et simultanément
ordonné toutes les cellules, et même bien ordonné, car les cellules
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sont des ensembles finis; les cellules deviennent des paires
ordonnées. Ceci étant, le principe du triage suffit pour former
un ensemble de choix de l'ensemble A, c'est l'ensemble qui
contient le premier élément de chaque cellule. Les autres
principes sans celui du choix ne permettant pas, d'après notre
théorème fondamental, la constitution d'un ensemble de choix
de A, le théorème de l'ordre est ainsi indépendant de ces principes.
Il implique même comme conséquence le principe du choix le

plus spécial.
On reconnaît de suite d'après ce qui a été démontré plus haut,

que cette relation reste sans changement, si l'on admet dans le

principe du choix le plus spécial des ensembles finis quelconques
au lieu des paires. Par contre la question reste ouverte, si le
théorème de l'ordre est plus faible que le principe général du
ehoix ou bien lui est équivalent.

La question se pose naturellement, si le principe du choix le

plus spécial suffit aux besoins des mathématiques, c'est-à-dire
si le principe général en découle, ou bien si le principe du choix
le plus spécial est une atténuation essentielle du principe général.
Le second cas dirait, que le principe général est indépendant
par rapport à un système d'axiomes qui comprend, outre les

principes introduits plus haut, encore le principe du choix le

plus spécial. On peut en effet répondre à cette question et dans
le sens de l'indépendance, le principe du choix le plus spécial

pouvant aussi être pris dans le sens plus général où il est valable

pour un ensemble dénombrable d'ensembles finis non-vides
quelconques, et non de paires seulement.

La démonstration de ce théorème donne même un peu plus:
On peut premièrement poser au lieu du principe général du
ehoix une forme plus spéciale, où il est question seulement d'un
ensemble dénombrable d'ensembles quelconques. Le principe du
ehoix le plus spécial se montre être une atténuation même par
rapport à ce principe plus spécial. La même chose est d'autre

part valable pour la relation qui existe entre le principe général
et l'extension du principe le plus spécial que l'on obtient en

considérant un ensemble quelconque d'ensembles finis au lieu
d'un ensemble dénombrable. Autrement dit: La réussite de la
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démonstration de l'indépendance dépend seulement du contraste

entre les ensembles finis et les ensembles infinis desquels le choix
doit être fait.

La démonstration de notre théorème d'indépendance sera

publiée à une autre occasion. Ici sera donnée seulement la ligne
générale de l'idée principale.

Nous formons de nouveau un domaine % d'objets, dans lequel
tous les principes, y compris celui du choix le plus spécial, sont

valables, et nous montrerons que le principe général du choix

n'y est pas valable, même pas avec la restriction à un ensemble

dénombrable d'ensembles infinis.
Le domaine % contiendra:

I) De nouveau 0 et l'ensemble N de Zermelo.

II) Un certain ensemble disjoint dénombrable (même
effectivement dénombrable)

Q { Qi, Q2, Q8 > • • • }

d'ensembles infinis Qfe, ainsi que les ensembles eux-mêmes
et leurs éléments. Pour les ensembles infinis QÄ, que nous appellerons

aussi des cellules, on supposera pour simplifier, que leurs
éléments ne sont pas des ensembles; on ne supposera rien de

plus sur la nature de ces éléments.

III) Les ensembles que l'on obtient à partir des objets du
domaine à l'aide des quatre principes : formation de paires,
sommation, formation de puissance et triage.

IV) Les ensembles dont l'existence est établie au moyen du
principe suivant (principe du choix le plus spécial) : Pour tout
ensemble dénombrable disjoint d'ensembles finis non-nuls qui
existe en g, il existe au moins un ensemble de choix. Puisqu'il
s'agit ici d'un axiome de pure existence, qui ne détermine
aucun ensemble spécial, on n'en pourra conclure que le fait que
le manque total de tels ensembles de choix est impossible.

D'autres objets n'existent pas dans %. % contient donc seulement

premièrement les objets de base I et II qui, à part les
éléments des cellules Qft, sont tous des ensembles ; deuxièmement

L'Enseignement mathém., 34me année, 1935. 4
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les ensembles, que l'on obtient à partir de nos objets à l'aide
de l'emploi de nos principes un nombre fini de fois. Le domaine %

n'est nullement déterminé catégoriquement, surtout à cause de
la nature de notre demande IV. Mais ceci ne joue aucun rôle

pour notre but; la démonstration faite pour un domaine
quelconque du genre considéré suffît pour démontrer l'indépendance
du principe général du choix par rapport au principe le plus
spécial.

Pour formuler le résultat essentiel introduisons ici de nouveau
une notion de symétrie en définissant: Un objet de % est dit
symétrique par rapport à la cellule Qfe, s'il est invariant par rapport
à des permutations arbitraires des éléments de entre eux.

D'après cette définition tous les objets de base par exemple
sont symétriques par rapport à toute cellule, à l'exclusion des

éléments de cellule: les éléments de Qfe sont symétriques par
rapport à toutes les cellules sauf elle-même. Ici aussi on
appelle un objet, qui provient d'un objet donné a par une
permutation quelconque de Qfe, conjugué à a par rapport à Qfe.

Il est facile de voir, que pour tout objet qui n'est pas
symétrique par rapport à Qk on a un nombre infini de conjugués
différents par rapport à Qfe, — une remarque qui joue un rôle

important pour la démonstration. On a de nouveau un théorème

analogue au précédent :

Théorème fondamental: Tout objet de % est symétrique par
rapport à presque toutes les cellules.

Ceci démontré, on aura l'indépendance voulue. Car d'après le

théorème fondamental l'ensemble Q de toutes les cellules n'aura

pas d'ensemble de choix; un tel ensemble de choix contiendrait
de chaque cellule un seul élément et ne sera donc symétrique

par rapport à aucune cellule. D'ailleurs Q est un ensemble

dénombrable, et l'indépendance sera donc démontrée, d'après
la remarque faite auparavant, même pour un cas spécial du

principe général du choix.
La démonstration du théorème fondamental se base de

nouveau sur les deux faits que les objets de base ont la
propriété de symétrie en question et que l'application des principes
mentionnés sous III et IV sur des ensembles ayant la propriété
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en question donne de nouveau des ensembles ayant cette
propriété. Nous nous dispensons de l'explication du dernier fait

par rapport aux principes mentionnés sous III; car la marche
de la démonstration est analogue à celle esquissée plus haut.
La partie principale de la démonstration consiste donc dans le
lemme suivant.

Lemme: Soit m un ensemble disjoint dénombrable d'ensembles
finis non-nuls dans §, qui est symétrique par rapport à presque
toutes les cellules; s'il existe dans % l'ensemble de choix a
de zw, alors a est symétrique du moins par rapport aux mêmes

cellules que m.
La proposition exprimée par ce lemme est évidemment

triviale dans le cas où non seulement m mais aussi les éléments
des éléments de m (c'est-à-dire les éléments de ©m) sont
symétriques tous par rapport aux cellules d'un même ensemble Q.
Car dans ce cas même tous les éléments de tout ensemble de

choix — qui est en tout cas un sous-ensemble de ©m — sont
symétriques au même sens, donc les ensembles de choix eux-
mêmes le sont aussi. Nous désignons ce cas spécial comme cas
de préférence. Le nerf de la démonstration du lemme est en
ceci, que l'emploi de IV dans g n'est nécessaire en aucun autre
cas que celui de préférence. La démonstration sera terminée
avec ça, et en cela consiste aussi la raison principale du fait
que l'indétermination de l'exigence posée par IV ne rend pas
impossible de parler du « domaine % » et d'y opérer 1.

i Aux conférences à Genève, j'ai ajouté ici une série d'explications concernant l'idée
de la démonstration, mais il semble inutile de les répéter avant la publication complète
de la démonstration, qui est assez compliquée.
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