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SUR UNE DÉMONSTRATION CLASSIQUE1

DE LA TRANSCENDANCE DU NOMRRE e

PAR

F. Fiala et J. Besse (Zurich).

1. — Dans ses recherches sur la fonction exponentielle,
Hermite 2 donne deux démonstrations de la transcendance de e,

à savoir qu'une expression de la forme

N + Nx ea + N2cö + + Nn^ (1)

ne peut pas être égale à zéro, a, bf..., A, étant des nombres
entiers, 0 < a < b < < A, et N, N1? N2, Nn, des nombres
entiers, non tous nuls.

Le but de ce travail est de rendre plus rigoureuse la première
de ces démonstrations tout en la simplifiant (§ 4 et 5).

2. — Rappelons-en sommairement le début et posons

f(z) z(z — a) (z — b) (z — h) (2)

-= ~r- (3)

&(z) F (z) + F' (z) + F"(z) + ; (4)

On vérifie aisément en intégrant par parties que

t

^(o)el &(t) + elJ e~&(t) + s( (5)

1 Ce travail a été présenté au séminaire mathématique de l'Ecole polytechnique
fédérale, à Zurich, semestre d'été 1935.

2 Ch. Hermite, Œuvres, publiées par E. Picard, t. III, 1912, p. 150-181.
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On prend successivement t 0, a, è, h.

En multipliant la première égalité par N, la deuxième par
N1? la (n + 1) ième par Nn et en additionnant, on obtient:

f(o) (N + Nje" + N2eb + +

N8{o) + N ^(a)+ N2 &(b) + + Nn&(h) (6)

+ Nlea + N2£6 + •" + Nnsft •

Il est facile de voir que

1° F(o), F(a), F{h) sont entiers et avec eux la première ligne
du second membre,

2° ea, eb, zn sont arbitrairement petits et avec eux la
deuxième ligne du second membre, dès que [x est
suffisamment grand.

La démonstration sera achevée si nous montrons que la
première ligne du second membre est différente de 0, pour certains

fx suffisamment grands. En effet, la somme d'un nombre entier
différent de 0 et d'un nombre arbitrairement petit est
différente de 0.

3. — Pour mettre en évidence l'exposant (x qui apparaît
dans (3), nous remplaçons F (z) par F^(z) et &*(z) par &*p(z)
en posant

et

^(z)F,» + F;<*) + F +

Prenons pour p les n+ 1 valeurs p., p. -f- 1, p. + 2, p -f~

et considérons le système des n+ 1 équations linéaires homogènes

N3\» + Nj (a)+ + N =0,
N^+1(0) + Nx "*n+l(a)+ - + Nn^+1(A) 0

NV+n(°) + Nl^+n(a) + ••• + Nn 0 •
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Une au moins de ces relations sera impossible, si nous pouvons
montrer que le déterminant

&Jo) &^(a) ^(h)

^ _ Vi (°) ®V+1 (a) ••• ^+1 W

^+n(°) VnW •» WÄ>

n'est pas nul, le système ne possédant alors que la solution
triviale N Nx Nn 0, que nous avons exclue par
hypothèse.

On calcule la valeur de (c) en intégrant de c à oo la relation

[e~z^(z)]'=~e-zF^(z)
00

&Jc) ecf Jz)dz (c 0, h)

En mettant dans chaque ligne de À*,
1

[x! ' ([a + 1) ' {[I + n)

en évidence et dans chaque colonne l'exponentielle correspondante,

puis en soustrayant de chaque colonne la suivante,
on est conduit au déterminant

/e Zfxdz Çe zfxdz J*e Zfxdz J*e zflx dz

j* e Zfx+idz y e zfx+idz J* e Zf'*+idz J e zfx+idz

^ U II QO

f e~zf+ndz Je~zf+ndzJ "f Je~zf +n dz

C'est ce déterminant que nous allons montrer être différent
de 0.

4- — Hermite en évalue asymptotiquement les termes (pour p,
très grand) à l'aide de la méthode de Làplace. Plus simplement
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et tout à fait rigoureusement, nous nous servirons du théorème
suivant1 :

y(x) et f(x) étant deux fonctions continues, dont aucune ne

change de signe à l'intérieur de l'intervalle fini ou infini (a, b)

et <p(x) \f{x)]n y étant intégrable pour tout n > nQ, on a

b

f c?(x)[f(x)]n+l dx

lim ^ M

f 9 (x)[f(x)]ndx
a

où M est la borne supérieure ou inférieure de f(x) dans
l'intervalle (a, è), selon que f(x) y est positif ou négatif.

Divisons chacune des n premières colonnes de A^ par son
premier terme et la (n + l)ième par son dernier terme. On
reconnaît facilement qu'on peut appliquer la formule précédente
au polynome

f(z) — z{z — a) {z — b) (z —- h)

qui, ainsi que sa dérivée, n'a que des racines réelles.
Nous aurons

lim
[X - oo

A

J* e Zpxdz • j* j*e Zf[xdz • Ç e zf[xJr7ldz

a g

1 1 1 0

UP) /(?) »• fis) o

[;f(p)]2 [/te)]2 - [/te)]2 0

: ô

[f(p)]n [/te)]n... [/te)]n i

où p, s désignent les abscisses des maxima du module de

f(z) dans chacun des intervalles, 0 < p < a, a < q < è,

gcsch; f(z) n'étant pas bornée supérieurement dans
l'intervalle (A, oo il apparaît des zéros dans la dernière colonne.

Si cette limite est différente de 0, il y aura un p0 à partir
duquel (p > p0) sera différent de 0.

i Voir Polya et Szegö, Aufgaben aus der Analysis, tome I, 2me section, n° 199, p. 78

et 243, où le théorème est attribué à Csillag.
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5. — Cette limite est le déterminant de Vandermonde des

quantités f{p), f(q), / (s), différent de 0 dès que ces quantités
sont toutes différentes entre elles, ce que nous ne saurions

affirmer a priori. Hermite prétend qu'elles le sont « en

général » 1.

Examinons par exemple le cas où a — 1, b — 2, h n

(in impair) et faisons la substitution z t +

f(z) z(z— 1) (z — 2) (z — n)

devient

f(t + j) rw

(î + |)(i + |-i)... (t + - (*-£ + *)('-£)

C'est une fonction paire, /*(—£) /*(£), et deux valeurs
extrêmes de /* (t) symétriques par rapport à la droite t 0

sont égales.
Ce cas échappe à l'affirmation générale d'Hermite.

Mais nous n'avons jamais supposé les N, Nx, Nn, tous
différents de 0, ce qui heureusement nous permet de ramener
le cas général au suivant:

a 1 b 2 h — 2k (k entier)

Appliquons de nouveau la substitution z t + k ;

f*(t) (t+ k)(t+ k — 1) (t + l)t(t — 1) (* — k + l)(t — k)

est une fonction impaire /* (— t) — — /* (t) dont les valeurs
extrêmes symétriques par rapport à la droite t 0 sont égales
en module, mais de signe contraire. D'autre part, le module des

i « Il en résulte qu'on ne peut, en général, admettre que le déterminant proposé à
s'annule, car les quantités P f(p), Q f(q), fonctions entières semblables des
racines p, q, de l'équation dérivée f (x) 0 seront comme ces racines différentes
entre elles. » (Hermite, Comptes rendus de l'Académie des Sciences, tome 77, p 77,
Paris, 1873).
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valeurs extremes de /* (t) dans chacun des intervalles croît
avec la valeur absolue de t. On le voit à l'aide de la formule

f*(t + 1) _ (t + k + 1) (t + k) (t — k + 1) _ t + k + 1

~~7*W ~~
(t + k) (t—k + i)(t—k) ~ t—k

et pour 0 < t < k t non entier

1/*(* + k + 1 + t

\f*(t)\ k-t ^ '

Tous les f(p), f(q), f(s) sont donc différents entre eux.
C'est ce qu'il fallait démontrer pour prouver rigoureusement

la transcendance de e par cette méthode.

6. — On reconnaît d'ailleurs dans la fonction /*(£) que nous
venons d'étudier un produit partiel, à un facteur indépendant
de t près, du développement de sin izt en produit infini, car on

peut mettre /* (t) sous la forme

l[t2 — 1) (t2 — 22) (t2 — 32) (t2 — k2)

On voit donc qu'un produit partiel quelconque est formé
d'oscillations dans chacun des intervalles — k < i <t ^ i + 1 ^ ß

(i entier), oscillations dont l'amplitude croît à mesure qu'on
s'éloigne de l'origine.

C'est seulement à la limite qu'on obtient la courbe sinus à

oscillations régulières.
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