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SUR UNE DEMONSTRATION CLASSIQUE'!
DE LA TRANSCENDANCE DU NOMBRE e

PAR

F. Fiara et J. BEsseE (Zurich).

1. — Dans ses recherches sur la fonction exponentielle,
HerMITE 2 donne deux démonstrations de la transcendance de e,
a savoir qu'une expression de la forme

N + Nye* + Nyeb + ... + N_¢" (1)

ne peut pas étre égale a zéro, a, b, ..., h, étant des nombres en-
tiers, 0 <a < b <..<h, et N, N;, N,, ..., N, des nombres
entiers, non tous nuls.

Le but de ce travail est de rendre plus rigoureuse la premiére
de ces démonstrations tout en la simplifiant (§ 4 et 5).

no

2. — Rappelons-en sommairement le début et posons

fla) = z(z —a)(z—b) ... (5—h), (2)
f(z)]"

F(z) = %,—J ; (3)

F(z) = F(z) + F'(z) + F"(z) + ... . (4)

On vérifie aisément en intégrant par parties que

L Ce travail a été présenté au séminaire mathématique de I’Ecole polytechnique
fédérale, & Zurich, semestre d’été 1935. ‘

2 Ch. HERMITE, (BFuvres, publiées par E. Picard, t. IIT, 1912, p. 150-181.
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On prend succcessivement ¢t = 0, a, b, ..., A.
En multipliant la premieére égalité par N, la deuxieme par
Ny, ..., la (n + 1) iéme par N, et en additionnant, on obtient :

Flo) (N 4+ Nye® 4+ Npeb  + .. 4+ N,
= NF(0) + Ny F(a) + N, F(b) + ... + N, F(h) (6)
+ Nye, + Npgp  + ... + Npgp .

I1 est facile de voir que

10 F(o), F(a), ..., F'(k) sont entiers et avec eux la premiere ligne
du second membre,

20 ¢,, &, ..., g, sont arbitrairement petits et avec eux la
deuxieme ligne du second membre, dés que w est suffi-
samment grand.

La démonstration sera achevée si nous montrons que la pre-
miére ligne du second membre est différente de 0, pour certains
v suffisamment grands. En effet, la somme d’un nombre entier
différent de O et d'un nombre arbitrairement petit est diffé-
rente de 0.

3. — Pour mettre en évidence l'exposant w qui apparait
dans (3), nous remplacons F(z) par F,(z) et F(z) par &F,(2)
en posant

et

Prenons pour wles n 41 valeurs g, o +1, ¢ +2, ..., o0 +n
| et considérons le systéme des n + 1 équations linéaires homo-
genes
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Une au moins de ces relations sera impossible, s1 nous pouvons
montrer que le déterminant

Fl0)  F(a) .. T,
o | Tt ) @) e T
* . .
Fognlo)  Fypnla) . g'z*-l-n(k)

n’est pas nul, le systéme ne possédant alors que la solution
triviale N =N; = ... =N, =0, que nous avons exclue par
hypotheése. ‘

On calcule la valeur de &, (c) en intégrant de ¢ & oo la relation

[e75,(2)] = —¢*F,(3)
F,l) = ¢ [¢FF, (s . (=0, a, b, .,
Cc

. 1 1 1

En mettant dans Chaque hgne de'A‘ y a, G—L—:T)T’ ceny —(E——%_-—T’L)_'
en evidence et dans chaque colonne ’exponentielle correspon-
dante, puis en soustrayant de chaque colonne la suivante,

on est conduit au déterminant

a b h o
fe”z]“"dz /e_zf“dz v [ €7fdz fe_z]““dz
b & g h
a b h o
A f el gy f U3 Cany P f et g f el
* 0 a g h
a b h -
Jertra ferprran . ferptras [t
0 E g h

C’est ce déterminant que nous allons montrer &tre différent
de 0.

4. — Hermite en évalue asymptotiquement les termes (pour w
trés grand) & 'aide de la méthode de Laplace. Plus simplement
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et tout a fait rigoureusement, nous nous servirons du théoreme
suivant 1:

o(x) et f(x) étant deux fonctions continues, dont aucune ne
change de signe a l'intérieur de 'intervalle fini ou infini (a, b)
et o(x)[f(x)]" y étant intégrable pour tout n > ny, on a

b
S ol [f )]+ do
lim “ =M,

ou M est la borne supérieure ou inférieure de f(x) dans l'in-
tervalle (a, b), selon que f(x) y est positif ou négatif.

Divisons chacune des n premieres colonnes de A, par son
premier terme et la (n + 1)iéme par son dernier terme. On
reconnait facilement qu’on peut appliquer la formule précédente
au polynome

fl2) = z(z—a)(z— b) ... (z— h)

qui, ainsi que sa dérivée, n’a que des racines réelles.
Nous aurons

1 1 1
/() flq) }s)
" _ — e [@F - e
[z I f frds - [T
’ “© " @] [f@]" - [fe)]"
ou p, ¢, ..., S désignent les abscisses dés maxima du module de

f(z) dans chacun des intervalles, O < p <a, a <g< b, ..,
g<s<h; f(z) nétant pas bornée supérieurement dans I'in-
tervalle (h, o), il apparait des zéros dans la derniére colonne.

Si cette limite est différente de 0, il y aura un p, & partir
duquel (u > y,) Ay, sera différent de O.

1 Voir PorvA et Szrad, Aufgaben aus der Analysis, tome I, 2me section, n° 199, p. 78
et 243, ol le théoréme est attribué & CSILLAG.
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5. — Cette limite est le déterminant de Vandermonde des
quantités f(p), 1 (q), ..., f(s), différent de O deés que ces quantites
sont toutes différentes entre elles, ce que nous ne saurions
affirmer a priori. Hermite prétend qu’elles le sont «en gé-
néral » 1.

Examinons par exemple le cas ot a =1, b=2, ..., h=n

(n impair) et faisons la substitution z =1 + =

flz) = z2(z—1)(z — 2) ... (3— n)
devient

f(t+ 5) =

O R [ N R ]

(C’est une fonction paire, f*(—t) = f*(f), et deux valeurs
extrémes de f*(f) symétriques par rapport a la droite ¢ =0
sont égales. ’

Ce cas échappe a Uaffirmation générale d’Hermite.

Mais nous n’avons jamais supposé les N, Ny, ..., N,,, tous
différents de 0, ce qui heureusement nous permet de ramener
le cas général au suivant: |

a =1, b= 2, . s h = 2k (k entier) .
Appliquons de nouveau la substitution z =t + k;
i) = 4+ i+ k—1) .. 0+ tt—1) ... ¢ —k+1)(t— k)

est une fonction impaire f*(—t) = — f*(¢) dont les valeurs
extrémes symétriques par rapport a la droite t = 0 sont égales
en module, mais de signe contraire. D’autre part, le module des

1 « Il en résulte qu’on ne peut, en général, admettre que le déterminant pProposé A
s’annule, car les quantités P = f(p), Q = f(q), ... fonctions entiéres semblables des
racines p, q, ... de Péquation dérivée f’(x) = 0 seront comme ces racines différentes
entre elles. » (HERMITE, Comptes rendus de lAcademze des Sciences, tome 77, p. 77,
Paris, 1873).
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valeurs extrémes de f*(¢) dans chacun des intervalles croit
avec la valeur absolue de ¢. On le voit a ’aide de la formule

e 4+1) A+ EkFNEFR) . —k+1) k41
O T k) t—k+)(—k  t—k
et pour 0 <t< k, tnon entier

IfFe+1)] k41 +1
FOT T k= o

Tous les f(p), f(q), ..., f(s) sont donc différents entre eux.
C’est ce qu’il fallait démontrer pour prouver rigoureusement
la transcendance de e par cette méthode.

6. — On reconnait d’ailleurs dans la fonction f*(¢) que nous
venons d’étudier un produit partiel, & un facteur indépendant
de t pres, du développement de sin wt en produit infini, car on
peut mettre f*(t) sous la forme

P(12— 1) (12 — 22) (12 — 32) ... (12 — K?) .

On voit donc qu'un produit partiel quelconque est formé d’os-
cillations dans chacun des intervalles — k<1<t =1 + 1=k
(i entier), oscillations dont I’amplitude croit & mesure qu’on
s’éloigne de ’origine.

C’est seulement a la limite qu’on obtient la courbe sinus a
oscillations régulieres.
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