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QUELQUES THEOREMES SUR LA STABILITE
DES MOUVEMENTS

PAR

Nicolas BocoriouBorr (Kieff).

1. — Envisageons un systéme dynamique quelconque, isolé
des influences extérieures.

D’accord avec les conventions généralement adoptées, nous
allons entendre par la phase la totalité des grandeurs variables
caractérisant complétement 1’état dynamique instantané de ce
systéme et afin d’utiliser Pintuition géométrique, nous allons
regarder ’ensemble de toutes les phases possibles du systéme
oscillant comme un certain espace dont les points sont ces
phases.

Vu que nous allons étudier les systémes dynamiques les plus
généraux, nous ne pouvons pas préciser la nature des « points »
de 'espace des phases et, pour cette raison, nous I’allons regarder
comme un espace abstrait au sens de M. Fréchet. Nous supposons
que cet espace (que nous désignerons désormais par la lettre Q)
est un espace distancié et compact.

Supposons encore que les mouvements du systéme dynamique
considéré soient régis par des lois strictement causales en ce sens
que I’état dynamique du systéme, & un instant quelconque du
temps, détermine complétement tous les états dynamiques
assumeés par notre systeme a des instants soit antécédents soit
ultérieurs.

Soit P la phase du systéme & un instant du temps et soit P,
la phase qui sera assumée par ce systéme aprés ’écoulement du
temps ¢ & partir de cet instant. D’aprés ce qui vient d’étre
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admis, P; est une fonction bien définie du temps t et de la
phase P.

Nous écrirons done
P, = T,(P) . (1)

Supposons que T,(P) est une fonction continue du temps ¢ et
du point P quelles que soient les valeurs réelles de t et quelles
que solent les positions de P intérieures a Q.

Remarquons ceci en passant que toutes les conditions restric-
tives que nous venons d’imposer, se trouvent vérifiées par
exemple quand il s’agit des mouvements, sur une variété
n-dimensionnelle fermée, régis par les équations

dxh

P Xy {2y, oons xn) ; k=1, ..,n (2)

ou X, (%4, ..., z,) sont les fonctions vérifiant les conditions de
Lipschitz sur cette variété.

Cela étant, remarquons qu’en vertu de la relation (1) nous
pouvons écrire a la fois:

Pt+s -

P, = T,(P) = T,(P),

t+s
d’ou 1l swit 'identité fondamentale

T,,,(P) = T,(T,(P)) = T (T,(P))

t+s(

que Pon présente ordinairement sous la forme symbolique d’une
relation du groupe:

T,,, = T,T, = T,T,. (3)

t+s S

Ainsi le probléeme de I’étude des mouvements du systeme
dynamique considéré est ramené au probléme de I’étude d’un
groupe T,, & un parametre, d’automorphismes de €.

2. — Considérons maintenant les fonctions /() d’une variable ¢
définies sur tout axe réel en supposant que «les valeurs» de
ces fonctions, au lieu d’étre les grandeurs numériques, solent
les points d’un espace distancié et compact Q.
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Nous dirons qu’une fonction continue f(¢) est presque pério-
dique ! si & tout nombre positif € on peut faire correspondre un
ensemble €. relativement dense? sur l'axe réel de fagon que

o{flt+1, f}se, si 76, —o<t<+ o (4

ou p(P, Q) désigne la distance entre les points P et Q de I'espace
considéré €. o

Comme on le voit bien, la condition de la presque périodicité
est présentée ici sous la forme d’une condition bilatérale dans
ce sens que l'imégalité (4) doit avoir lieu également pour les
valeurs positives et négatives de t.

Or, 1l serait tres facile de la remplacer par une condition
unilatérale 3.

Nous pouvons affirmer par exemple que:

Si 4 tout nombre positif ¢ on peut faire correspondre un
ensemble ©. relativement dense sur tout axe réel de fagcon que

o{flt+7), f0}

{7
®

) TC@:

pour

v
o

alors la fonction continue f(f) est presque périodique.
Pour démontrer cette proposition d’ailleurs tout a fait élé-
mentaire, supposons le contraire.

1 On peut donner encore une autre définition de la presque périodicité; a savoir on
pourrait dire qu’une fonction f(t) est presque périodique si I’expression F{f)d
est une fonction presque périodique au sens classique de M. BoHR et cela quelle que
soit la fonction numérique F (P) du point P, continue dans Q. D’ailleurs il serait facile
de mettre en évidence ’équivalence parfaite de ces deux définitions.

2 On dit qu'un ensemble € est relativement dense sur ’axe réel si I’on peut fixer
un nombre positif L. de facon que dans chaque intervalle de longueur L se trouve au
moins un point de €.

3 Il est curieux de constater que dans son article « Stabilitit im Liapounoffschen
Sinne und Fastperiodizitat » (Math. Zeitschr., pp. 708-738, Bd. 36) en étudiant la con-
nexion entre les notions de stabilité et celles de la presque périodicité, A. MARKOFF
écrit « Allen diesen Problemen kommt die Gemeinsame Eigentiimlichkeit zu. Es wird
allemal verlangt aus gewissen inbezug auf die Variation in der Zeit « einseitigen »
Stabilitatseigenschaften der Bewegung eine « zweiseitige » Bigenschaft die Fastperio-
dizitat logisch abzuleiten ».

A. Markoff ignore donc que la propriété de la presque-periodicité elle aussi peut-étre
regardée comme «einseitige Eigenschaft ». '
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Nous pouvons indiquer alors un nombre négatif ¢, <O et

un t, C €. de facon que

o{flto+ %), fl)}=e¢+8, ou 8>0. (3

Or, I’ensemble €. étant relativement dense sur axe réel,
nous pouvons toujours trouver un nombre positif z tel que

ty + 23>0, to + T +2>0, —zC@y. (6)
3

Nous avons alors

o{flto + 7o) » Flto) }< o{flto + w4+ 2), flto+2)}+

+ o{flto+2) , flt)}+ e{flto+ 2+ ), flto+ 2},

d’ou, en vertu de (6) et en remarquant que
to + 7o = (to + 7 +2) —z, to = (to +2) — 2z,

on trouve

o{fllo+ %), W} et 23,

ce qui est en contradiction avec (5).

Cela étant établi, attirons ’attention sur un théoréme démon-
tré par H. Bohr dans le cas des fonctions numériques.

Tout d’abord introduisons la définition de la stabilité uniforme
(bilatérale).

Nous dirons qu’une fonction f(t) est uniformément stable si,
4 chaque nombre positif ¢, on peut faire correspondre un nombre
positif o tel que I'inégalité

o{ft”) . f1)} <8
entraine 'inégalité
p{flt+1), Je+t)}p<e
valable pour toutes les valeurs réelles de ¢.

Suivant le théoréme de M. Bohr, toute fonction continue
uniformément stable est presque périodique.
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11 serait tres facile d’étendre la démonstration de H. Bohr au
cas considéré des fonctions abstraites.
En effet, vu que I’espace Q est distancié et compact, nous

- pouvons trouver pour chaque nombre positif 8 un certain nombre

de sphéroides S;, Sy, ..., Sy de diamétre inférieur & 3 et cela de

facon que

e
AR

Q=8 + Sy 4 o + 8

Soient S;, S;, ..., Sy ceux des sphéroides Sy, S,, ..., S, dans
chacun desquels il y a au moins un point f (¢). Nous pouvons
donc indiquer N; nombres ¢, ..., t, de fagon que

flt) © 8,3 k=1, .., Ng.

Solent maintenant n un entier positif ou négatif. On voit bien
qua cet entier nous pouvons faire correspondre un entier
k, =1, ..., Ny tel que
f(n) C S};n .
Par conséquent

e{fin), fly)}<3

d’ol, en vertu de la stabilité uniforme,

e{flt+In—g1), fl0f<e, —o<ti<+o.

En remarquant que ’ensemble des grandeurs

"1t n=0,+1, +2, ..
n

est relativement dense sur I'axe réel, on s’assure définitivement
que f(t) est, en effet, une fonction presque périodique.

Cela étant, introduisons la notion de la stabilité uniforme
unilatérale. |

Nous dirons par exemple qu’une fonction f(¢) est uniformé-
ment stable dans la direction positive si & tout nombre positif
on peut faire correspondre un nombre positif 5 tel que 'inégalité

o{ f(t), fN)} <8

I’Enseignement mathém., 34me année, 1935. 22
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entraine I'inégalité
p{flt+ 1), J+1}<e

valable pour ¢ = 0.

En utilisant les raisonnements que nous venons de détailler
on peut démontrer immeédiatement que toute fonction continue
et uniformément stable dans la direction positive est presque
périodique 1.

3. — Retournons maintenant au probléme de étude des
mouvements du systeme dynamique considéré au § 1. Avant
d’aller plus loin rappelons quelques définitions fondamentales.

Définitton I. — Nous dirons qu’un mouvement,

P, —= T,(P,)

est presque périodique si ’expression T,(P,) est une fonction
presque périodique du temps t.

Définition 11. — Nous dirons qu'un mouvement P, — T,(P,)
est récurrent si, a tout nombre positif ¢ et & chaque valeur ¢, de
la variable ¢, on peut faire correspondre un ensemble F; , relati-
vement dense sur I’axe réel de facon que

o{flto + 1), fl)} <8, si 1 CFyy,.

3

Définition I11. — Nous dirons qu’un mouvement P, — T, (P)
est stable au sens de Liapounoff par rapport & sa propre trajec-
toire si, & tout nombre positif 5, on peut faire correspondre un
nombre positif ¢ tel que I'inégalité

e{T=(Po) , Po} < 8

entraine 1'inégalité

174\
(0]

P { Tt—f—'r (Po) » Tt (Po) }

valable pour tout

t >0 .

v

1 Dans ’article cité de A. Markoff un cas bien particulier de cette simple affirmation
(justement le cas des mouvements) se trouve énoncé dans son « Satz I ».

A. Markoff n’a pas remarqué que cette propriété est vraie non seulement pour les
"mouvements mais aussi pour les fonctions absolument guelconques.

Il faut noter pourtant que dans le texte du « Satz I», il y a un théoré¢me inverse
(4 savoir que tout mouvement presque périodique est uniformément stable) ne pouvant
pas étre étendu & des fonctions générales. Or ce théoréme, vraiment intéressant, a
4té démontré longtemps avant A. Markoff par le savant américain Mr. Ph. FRANKLIN.
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Corollaire . — De ces définitions 1l suit que tout mouvement
récurrent stable au sens de Liapounoff par rapport a sa propre
trajectoire est presque périodique.

On a en effet pour tout = C F; ; (ou les définitions 11 et ILI)

{4+, fl9}<e, ou fl) =T,(P) etor >0.

En tenant compte de la remarque faite au § 2 on s’assure d’ici
que T,(P,) une fonction presque périodique de ¢.

Définition IV. — On dit quun mouvement P, — T,(P,) est
stable au sens de Liapounoff si, pour tout nombre positif ¢, il
existe un nombre positif 3(¢) tel que 'inégalité

p(P, Pp) < 8
entraine I'inégalité
p{T,(P), T,(Py) } Z <

valable pour tout ¢ = 0.
THEOREME FONDAMENTAL. — S’il existe une mesure? m(11)
invariante en 'T,, si cette mesure est positive pour tout ensemble

ouvert non vide de L et st enfin m (Q) est finie, alors tout mouvement
stable au sens de Liapounoff est presque périodique. '

Démonstration. — Envisageons un mouvement

Py — Tt(Po)

1 Cette remarque se trouve dans ’article cité de A. Markoff sous le nom de « Andro-
now-Wittsche Vermutung ».

A. Markoff n’a pas constaté la banalité de ce « Vermutung » et semble au contraire
lui attacher une importance de tout premier ordre en le placant 4 la fin de son article
comme une sorte de résultat concluant.

2 On dit qu’une fonction d’ensemble m (1) bien définie pour tout ensemble U C
est une mesure si les conditions suivantes sont remplies:

1o m @) > 0;
20 m (Uy) <m(Uy), si U;C Uy ;

o0 oo}
emW) < 2 omA,), si U= X 1, ;

n=14 n=14
dom Uy + Up) = m ;) + m (A,), si la distance entre U, U, n’est pas nulle:
9 m (W) = lim. inf. m (0), O désignant des ensembles ouverts.

ACo
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stable au sens de Liapounoff et considérons un sphéroide S

décrit autour du point P, avec le rayon égal a § = 3 (Z—)

Remarquons d’abord qu’il n’existe qu’un nombre fini de
valeurs de la variable ¢ pour lesquelles T,S sont deux a deux
sans points communs.

Soit en effet (¢4, #5, ..., t5) un ensemble de valeurs de ¢ jouis-

sant de cette propriété. Nous avons alors

m(Q) Zm(T, 8 + T,8 + .. T, 8) = m(T, 8) + ...

de sorte que le nombre maximum de telles valeurs de ¢ ne peut
pas surpasser

m{Q)
m(S)
Cela étant, soit ¢, ..., t, un systéme de valeurs de ¢, tel que
T,S, ..., T, S sont deux & deux sans points communs et tel

que tout T,S doive avoir les points communs au moins avec
un de ces ensembles T, S, ..., T, S.

Vu cette propriété caractéristique a chaque entier n nous
pouvons faire correspondre un nombre k£, =1, ..., N, de facon
que ’ensemble produit

T, ST, $
ne soit pas vide.
Vu la relation du groupe (3) on conclut d’ici que ’ensemble

produit
TyS - Tinpyy+eS

lui aussi n’est pas vide et cela quelle que soit la valeur réelle
de ¢.

D’autre part, il est clair que ’ensemble dénombrable n — &, ,
n=0,+1, 4+ 2, ... est relativement dense sur ’axe réel. Ainsi
nous voyons qu'il existe un ensemble €. relativement dense sur
I’axe réel, tel que

TtS.TtJrTS, — o0 <t < + ®

ne soient pas vides quand © C C..
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Or le sphéroide S ne contenant que les points
o(P, Py S 3(F)

et le mouvement considéré P, — T,(P,) étant stable au sens
de Liapounoff on conclut que, si t>0, t+ v >0, alors les
ensembles T,S, T, .S ne contiennent que les points pour
lesquels on a respectivement

o{P, T,{Py) }

I

£
[_I: 7

e{P, T,,.(Py}

A

i
i
Les diametres de TS, T, .S ne surpassent donc pas —;— et

par suite T,S, - T, .S n’étant pas vide, la distance maximum
entre les points de ces ensembles ne surpasse pas . D’ici, vu que

T,(P) ¢ T,8 ; T, . (P)C TS
on trouve
e{Ty(Po) , Ty (Po)} < e (7)
st bien entendu
t>0, t+t>0,  1CG.. (8)

Pour démontrer complétement la presque périodicité du
mouvement Py — T,(Py), 1l ne nous faut donc qu’établir que
I'inégalité (7) reste valable, méme si les conditions

t >0, t+7=>0

ne sont pas vérifiées.
A cet effet, supposons le contraire.
Nous pouvons indiquer alors des nombres f,, =, tels que

o (T (Po), Ty ((Po)) =2e+1m, wC6, >0. (9

Or, de(7),1l sutt qu’on peut toujours trouver une suite 7, —= oo
telle que
P, = lim T, (P,)

n=>

(on pourrait prendre par exemple 7, C €1, 1, > n).
- n
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Nous avons par conséquent

T, (Po) = lim T, __ (P)

n
rn—boo

(P,) = lim T

Ty ®

Tto +70 to+=0+7, (Po)

de sorte que

4Ty (Po) s Typig(Po) } = lim o {Ty (P}, Ty oro (Po)}-

Nn=> o
Donc vu qu’a partir d’un certain n
T, T >0, T, T fo -+ T >0,

on s’assure que
o{ Ty, (Po), Ty .. (Pg)}

(I
Q]

et nous voila arrivé & une contradiction.

Notre théoreme est par conséquent démontré. Envisageons
a titre d’exemple un systéme dynamique conservatif de la
mécanique classique, & n degrés de liberté, régi par les équations
canoniques

dp,  OH dg,  oH

I oy = =1, ... .
dt oq,’ dt opy ’ b ez 1

Supposons que les variétés de 'énergie constante

. II(QI) LR qny pl, ey pn) == E

soient fermées et suffisamment régulieres.
Alors du théoréeme démontré il suit que tout mouvement
stable au sens de Liapounoff est presque périodique.

Paris, février 1936.

B e O L TS R




	QUELQUES THÉORÈMES SUR LA STABILITÉ DES MOUVEMENTS

