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332 A. HERRMANN

La construction de la droite Tb résulte de l'équation (4)
analogiquement à la construction Ta (voir le théorème 10). Nous
aurons :

Tb (a, d,l, m) X (e, l, a, b) X (d x e) X m x (a X b) X

X (a, c, b, e) x (c x d) x b

OÙ

Z (f, b, c, d) X (a, c, b, e) x (/ x a)

m (g, b, c, d) X (a, c, b, e) X (g x a)

après (1) du théorème 7.

Si nous posons partout x au lieu b7 nous aurons la construction
que nous avions à démontrer.

Prague, janvier 1935.

REMARQUES SUR UN THÉORÈME DE SYLVESTER

PAR

Aloys Herrmann (Kothen in Anhalt).

Cette Note a pour but d'exposer une méthode qui fait voir
qu'on peut étendre les recherches de Sylvester1, Sur la solution
explicite de Véquation quadratique de Hamilton en quaternions ou
en matrices du second ordre.

Soient A, B, C et X des matrices carrées d'ordre n — 2; il est
démontré que chaque racine caractéristique d'une solution X
de l'équation en matrices AX2 + BX + C 0 est une solution
de l'équation algébrique de l'ordre 4 en X, obtenue en annulant
le déterminant | A A2 + BX + C |. En outre, on a fait2 plusieurs
tentatives pour déterminer le nombre des solutions d'une équation

en matrices d'ordre n > 2.

1 Sylvester, C. JR. Acad. Sei., Paris, vol. 99 (1884), p. 555-558 et 621-631.
2 Ibidem, p. 13-15; Phil. Mag., vol. 18 (1884), p. 454-458; Quat. J. math., vol. 20

(1885), p. 305-312.
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Il est bien connu 1
que pour une fonction holomorphe g (z)

dans une région B de connexion simple du plan des 2 et pour
une matrice A, dont les racines Zj sont intérieures à B, g (A) se

laisse exprimer par fi(A), résidus de la résolvante (ÇE — A)-1

pour les pôles Zj de cette fonction-matrice de Ç, ce qui donne

m nj~~^

s(A) 2 U <A) S vi «(,) ('il <A - ¥' • o)
j=1 v=0

On peut se servir de cette formule pour établir les résultats
sur les équations en matrices et je me contente ici de faire voir
quelle est la marche pour déterminer le nombre des solutions de

l'équation
m

2 G .Xs 0

V=1

si C0 E et Cv sont des matrices de l'ordre n, d'où résulte
immédiatement le théorème, concernant les racines caractéristiques

des solutions.
Soient Cj des matrices à éléments constants et

Y^(x) (*)]<-«

la matrice, dont les éléments y(£j) (x) sont des dérivées du
— j) ordre des éléments de la matrice Y, nous considérons que

2^x^ 0, C0 E (2)
3 0

Substituant la fonction exponentielle

Y exp x]

avec (Tik) matrice de l'ordre n, on obtient une équation algébrique
en matrices

2^X^=0, C0 E (3)
3 0

1 Voir H. Scitwerdtfeger, Sur une formule de H., Poincaré relative à la théorie
des groupes de S. Lie, L'Enseignement math., 33, 193, p. 304-319 et pour la formule (1)A. Herrmann, Proc. Amsterdam, 1935, vol. 38, p. 394-401.
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pour la matrice (rife), et nous dirons que l'équation (3) est l'équation

adjointe de l'équation (2). Réciproquement on peut adjoindre
à chaque équation de la forme (3) une équation de la forme (2).

Pour établir les matrices (Tife), il faut avoir égard au fait que
exp [(Tife)x] se présente aussi comme solution d'une équation (2)
de l'ordre cr 1. On remplace (2) par une équation équivalente

î
0 T0 E - (4)

0

où les matrices seront de l'ordre an. On déduit de (1) la solution

exp [(zik) x] de l'équation (4) et, de même, de la formule (1)

pour la fonction exponentielle les solutions de (2) en résultent;
c'est-à-dire, connaissant à cause de (4) les solutions de (2), nous

pouvons déterminer les matrices (vik). Le nombre des solutions
dépend de la multiplicité des racines de l'équation caractéristique
pour (Tife), de laquelle la possibilité de former les matrices (^ik)
résulte uniquement. Ces questions font l'objet d'une note publiée
récemment par moi (loc. cit.). Pour voir que les racines
caractéristiques d'une solution de l'équation (3) sont aussi des racines de

o

nous effectuons une décomposition de

3 0

3 0

Supposons que

et B
i=0 i=0

soient deux matrices et que [x < c; il existe une et seulement !.*

une matrice Q(X) avec R(X) tel que

A QB + R (R(X) en X de degré < pi)

Si R (X) 0, B est diviseur-droit de A. Nous voulons soumettre

R(X) à la restriction B(X) XE — X. Si cette condition est

réalisée, on a
A (X) Q (X) (XE — X) + R
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où R est une matrice, dont les éléments sont indépendants de X.

Si R s'annule, on a une décomposition A =- QB, où B est un
facteur-linéaire.

Soit A décomposé

A XX(XE — Xfe) ; (5)

k=\

tenant compte de l'arrangement des facteurs, nous aurons

A 2SiX"~{ '

i 0

et il résulte que Xx est une solution de l'équation

2r_isi o

i=0
Donc

51 — X, — (X2 + + XJ

52 Xx(X2 + + XJ + (X2X3 + + x^xj
s3 — Xx(X2X3 + + X^XJ — (X2X3X4 + + XV_2X,MXJ

Sv (— 1)VX1X2 xv.

Ces équations donnent, si l'on les multiplie respectivement à
v_2 Q

gauche par X± Xi Xi et si l'on fait la somme

2x-Si 0

i=0

Des considérations tout à fait analogues s'appliquent à Xv,
et on voit que Xv est une solution de l'équation-gauche

y^s.x-1 o

i=0
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Par exemple

X, est une solution de l'équation-gauche

fi (X) X* + X + 0

et

X-, est une solution de l'équation-droite

/2(X) X* + X -1
+ 0

h (X) (XE — Xx) (XE — X2) ;z£ (XE - X2) (XE - X,J

On conclut de ce qui précède, pour la décomposition en

facteurs-linéaires, si nous formons les déterminants en (5), que les

racines caractéristiques d'une solution de l'équation (3) sont
en effet des racines de

Eciri
3 0

0
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