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LE RÔLE DES FAMILLES NORMALES 1

PAR

Paul Montel (Paris).

La théorie des familles normales a maintenant vingt années
d'existence. Le moment est venu d'examiner le rôle qu'elle a
joué, les résultats qu'elle a permis d'obtenir, les directions dans
lesquelles elle s'est ramifiée et développée.

Cette théorie doit peut-être son existence à l'erreur célèbre
de Riemann dans le principe de Dirichlet. On sait que la fonction
harmonique qui passe par un contour donné rend minimum
l'intégrale du carré de la longueur de son gradient. Riemann
considérait comme évidente l'existence d'une fonction qui donne
à cette intégrale sa valeur minimum. Pour obtenir cette fonction,
on peut utiliser des fonctions auxiliaires donnant à l'intégrale
des valeurs de plus en plus voisines de son minimum. Si cette
suite de fonctions auxiliaires admet une fonction limite, cette
dernière pourra être la fonction cherchée. Mais cette suite
admet-elle toujours une fonction limite

Un ensemble infini de points possède toujours un point
d accumulation ou point limite, c'est-à-dire qu'on peut extraire
de cet ensemble une suite infinie de points admettant un point
limite unique. Pour un ensemble infini de fonctions, il n'en est
pas toujours de même. Dès le début, apparaît ainsi la différence
profonde qui sépare l'Analyse proprement dite, celle qui
s'occupe des fonctions de points, du Calcul fonctionnel qui s'occupe
des fonctions de lignes ou de surfaces.

^ PrintemPS ^ * S°Ciété suisse,
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Les travaux d'Ascoli et d'Arzelà sur l'égale continuité, les

études directes du problème de Dirichlet faites par Arzelà et
par M. Hilbert, celles de M. Lebesgue sur le même sujet et sur
le problème de Plateau ont eu longtemps le caractère de
recherches isolées et de curiosités mathématiques. Mais ces recherches

faisaient intervenir des suites de fonctions admettant une
fonction limite, et il est apparu comme naturel et utile de savoir
reconnaître d'une manière générale si une famille de fonctions
possède la propriété des ensembles de points: toute infinie
d'éléments appartenant à la famille admet au moins un élément
limite. Une famille possédant cette propriété est appelée une
famille normale.

Ainsi posé, le problème paraissait ne pouvoir conduire qu'à
la détermination de critères permettant d'affirmer qu'une
famille est normale. On eût ainsi obtenu des instruments de
travail commodes qui n'auraient pas débordé le cadre dans lequel
on les plaçait. Au contraire, la théorie des familles normales
s'est surtout montrée féconde en dehors du domaine fonctionnel
pour lequel elle avait été créée. Essayons d'en discerner les
raisons.

Une de ces raisons est que la théorie ne pouvait avoir pour but
unique la recherche des critères de normalité. Ce serait en méconnaître

singulièrement le caractère et la portée que de la limiter
à ce qui est une partie, importante sans doute, mais une partie
seulement de sa tâche. Elle devait nécessairement s'attacher à
l'étude des propriétés résultant de la solidarité qui unit les
fonctions d'une famille normale. Cette solidarité s'est révélée
particulièrement remarquable dans le cas des fonctions de
variables complexes. La théorie proprement dite est formée par
la réunion des propriétés résultant du fait que toute suite infinie
a un élément d accumulation et de ce fait seulement. Il en
résulte que, chaque fois que l'on découvre un critère nouveau,
il entraîne toujours les mêmes conséquences: des théorèmes
d Analyse, qui paraissaient dériver d'hypothèses particulières,
découlent en réalité du seul fait que la famille est normale. Il
en est ainsi par exemple pour les théorèmes de MM. Picard,
Landau, Schottky sur les valeurs des fonctions analytiques
autour d'un point essentiel isolé. La théorie permet donc le
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groupement de théorèmes d'abord épars qui deviennent des cas

particuliers d'une proposition générale.
Une autre raison de l'utilité de cette théorie réside dans le fait,

connu depuis le début, que la propriété de normalité est une

propriété locale. Si une famille est normale dans un domaine,
elle est normale en chaque point de ce domaine, c'est-à-dire
dans un petit cercle ayant ce point pour centre, et réciproquement.

Ainsi, lorsqu'une famille de fonctions n'est pas normale
dans un domaine, celui-ci contient des points irréguliers en
lesquels elle n'est pas normale. L'ensemble de ces points, d'abord
étudié pour les suites convergentes de fonctions, a été introduit
systématiquement par Fatou dans la théorie de l'itération.
M. Julia les a mis en évidence en montrant leur rôle dans l'étude
des fonctions entières et M. Ostrowski a fait de ces points une
étude très pénétrante.

Un caractère remarquable de ces points irréguliers est qu'ils
possèdent, par rapport à l'ensemble des fonctions de la famille,
bien des propriétés que possèdent les points singuliers d'une
fonction unique. Ce sont en quelque sorte des points singuliers
collectifs; il semble que les caractères de leur singularité soient
partagés entre les fonctions de la famille.

** *

Rappelons la définition, par exemple dans le cas d'une famille
de fonctions continues de deux variables réelles, / (x, y), définies
dans un même domaine (D): une telle famille est dite normale
dans Vintérieur de (D) lorsque toute suite infinie de fonctions /
de la famille contient une suite partielle convergeant uniformément

vers une fonction limite dans tout domaine (D7) complètement

intérieur à (D). La fonction limite peut être une constante
finie ou infinie. Remarquons tout de suite que la convergence
n'est pas nécessairement uniforme dans le domaine ouvert (D);
lorsqu'il en est ainsi, nous disons que la famille est normale dans
le domaine (D), et non plus seulement dans l'intérieur de (D).

Pour les fonctions continues de variables réelles, bornées en
un point, la notion de normalité se confond avec celle d'égale
continuité. A chaque fonction continue, / (x, y) par exemple,
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correspond un nombre S (s), appelé module de continuité, tel
que la différence des valeurs de la fonction en deux points du
domaine dont la distance ne dépasse pas S (e) soit, en valeur
absolue, inférieure ou égale à s, et tel que tout nombre plus
grand ne remplisse pas cette condition. Le nombre S (s) dépend
en général de la fonction / choisie; si, pour chaque valeur de zr
on peut adopter un même nombre S (s) convenant à toutes les
fonctions de la famille, c'est-à-dire si, pour chaque valeur de s,
S (s) a une borne inférieure positive, on dit que les fonctions
sont également continues. Ici encore, il faut distinguer l'égale
continuité dans l'intérieur de (D) et l'égale continuité dans le
domaine (D).

Les familles normales de fonctions de variables réelles ont
montré leur utilité dans les problèmes du calcul des variations^
en particulier, dans le problème des lignes géodésiques, celui de
Dirichlet et celui de Plateau. Je signalerai par exemple la
famille normale introduite par M. Lebesgue, formée par des
fonctions monotones dans un domaine dont l'intégrale de
Riemann est bornée, qu'il a utilisée pour la démonstration du
principe de Dirichlet dans des cas très généraux.

La théorie a permis de donner une forme intuitive aux
théorèmes d'existence des solutions des équations différentielles ou
aux dérivées partielles. Prenons par exemple l'équation

y' /(s .y),

dans laquelle f(x, y) désigne une fonction continue du point
Or,.y). L'une des méthodes de Gauchy consiste à s'approcher de
la courbe intégrale issue d'un point 0 par des lignes polygonales
passant par ce point 0 dont chacun des côtés a une pente égale
à la valeur de / en un des sommets qui limitent ce côté. Cette
famille de lignes polygonales est normale et l'ensemble des
solutions issues de 0 se confond avec l'ensemble des courbes
d'accumulation de la famille obtenues en faisant croître
indéfiniment le nombre des côtés tandis que leurs longueurs tendent
vers zéro. On retrouve ainsi et on complète les résultats de
M. Peano établissant l'existence d'une infinité d'intégrales issues
de 0 qui remplissent la région limitée par deux intégrales
tangentes en 0, l'intégrale supérieure et l'intégrale inférieure.
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C'est surtout dans la théorie des fonctions presque
périodiques créée par M. H. Bohr que la notion de familles normales de

fonctions de variables réelles a joué un rôle utile. Soit f(x) une

fonction, réelle ou complexe, de la variable réelle x, définie et

continue pour toute valeur de la variable. On dit que f(x) est

presque périodique si, à chaque nombre s, correspondent des

presque-périodes t telles que, en deux points dont les abscisses

diffèrent de t, les valeurs de la fonction diffèrent, en module, de s

au plus. Il faut en outre que tout intervalle de longueur 1(e)

contienne au moins un point d'abscisse t représentant une presque-
période. Les fonctions périodiques sont des fonctions presque
périodiques particulières; il en est de même des sommes d'un nombre
fini ou infini de fonctions périodiques dont les périodes sont
différentes. Si une fonction continue f(x) est presque périodique, la
famille des fonctions f(x + A), h désignant un nombre réel

arbitraire, est une famille normale et bornée dans l'intervalle
(— go, + oo et réciproquement. Il faut bien remarquer qu'il ne

s'agit pas de normalité dans l'intérieur de l'intervalle (— oo

-(-go Dans le cas présent, la normalité n'est plus une propriété
locale et l'absence de points irréguliers n'entraîne pas la
normalité. L'égale continuité pour une famille de fonctions presque
périodiques est une condition nécessaire de normalité; mais elle

ne suffit pas et il faut y adjoindre une autre propriété. C'est ainsi

que le critère suivant a été souvent employé: Toute famille de

fonctions également continues et également presque périodiques
est une famille normale. Par « également presque périodiques », il
faut entendre que, à chaque nombre s, correspondent des presque-
périodes t et un nombre 1(e) qui conviennent indifféremment à

toute fonction de la famille.
Je laisse de côté l'étude d'autres familles normales de fonctions

de variables réelles, en particulier de fonctions harmoniques ou
sousharmoniques qui se rattachent plutôt aux fonctions
analytiques. Je me borne à signaler les familles normales de
fonctions positives d'ensembles que M. de la Vallée Poussin a
introduites dans ses travaux sur la méthode du balayage. Pour qu'une
famille de fonctions de cette nature soit normale, il faut et il
suffit que les fonctions soient bornées dans leur ensemble. C'est
un critère que nous allons bientôt rencontrer de nouveau.
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C'est dans le cas. des fonctions de variables complexes que la
théorie a conduit aux résultats les plus inattendus. Soit f(z),
une fonction d une variable complexe z, méromorphe dans un
domaine (D): nous considérerons la valeur infinie comme une
valeur ordinaire et un pôle ne sera pas pour nous un point
singulier. Nous remplacerons avec M. Ostrowski le module de
la différence de deux nombres complexes par la distance de
leurs points représentatifs sur la sphère de Riemann obtenue
par une projection stéréographique du plan complexe, cette
distance étant mesurée par la longueur du plus petit arc de grand
cercle qui se termine en ces points ou par la longueur de la corde
correspondante. On élargit ainsi les notions de limite, de convergence,

de convergence uniforme de manière à les rendre
applicables à des fonctions dont les valeurs sont finies ou infinies.
Une fonction méromorphe est continue sur la sphère de Riemann.
Pour qu'une famille de fonctions méromorphes dans un domaine
soit normale, il faut et il suffit que ces fonctions soient également
continues sur la sphère.

Les critères de normalité d'une famille des fonctions
méromorphes dans un domaine sont étroitement liés à l'existence de
régions lacunaires, c'est-à-dire de régions, situées sur le plan
complexe ou la sphère de Riemann, dans lesquelles les points
représentatifs des valeurs de la fonction ne pénètrent jamais.
Le plus ancien critère est celui qui concerne les fonctions
bornées; on en déduit que l'existence d'une calotte sphérique
lacunaire, si petite soit-elle, entraîne la normalité. Mais il y a
plus: l'existence de trois points lacunaires, c'est-à-dire de trois
valeurs exceptionnelles, a pour conséquence que la famille est
normale. Ce résultat est fondamental.

Nous sommes ainsi conduits à une classification des fonctions
analytiques qui prend -comme base les points exceptionnels.
L'étude des fonctions holomorphes dans un domaine n'est quela théorie des fonctions analytiques admettant une valeur
exceptionnelle commune que l'on peut toujours supposer être la
valeur infinie. Viennent ensuite les familles de fonctions admet-
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tant deux valeurs exceptionnelles que l'on peut supposer être

]es valeurs zéro et l'infini: ce sont les fonctions holomorphes

dépourvues de zéro. Enfin, les familles normales de fonctions

à trois valeurs exceptionnelles.
Du critère fondamental découlent aussi les propriétés principales

des points irréguliers et des points réguliers. Autour d'un

point irrégulier, les fonctions prennent dans leur ensemble une

infinité de fois toutes les valeurs, sauf peut-être deux au plus.
En d'autres termes, un point irrégulier est un point d'accumulation

des zéros des fonctions f(z) — a pour toutes les valeurs
de a sauf peut-être deux au plus. Cette propriété est celle dont
les conséquences ont été les plus intéressantes. En un point
régulier z0, il existe une infinité de suites convergentes fn(z). On

en déduit que ce point est un point d'accumulation des zéros de

fn iz) —a pour les fonctions fn (z) appartenant à la suite et

pour une valeur de a seulement: la valeur limite de la suite au

point considéré z0. Cette propriété a été signalée depuis
longtemps par Hurwitz. On en déduit aussi que, pour toute suite
de points zn admettant le point z0 comme unique point limite,
la suite des valeurs fn{zn) a pour limite la valeur a et cette
propriété que M. Carathéodory a appelée la convergence continue
lui a permis d'édifier une théorie simple et élégante des familles
normales.

Une étude du rôle joué par les valeurs exceptionnelles d'une
fonction et de ses dérivées a été entreprise, mais appelle de

nouvelles recherches. Que peut-on dire, par exemple, des familles
de fonctions holomorphes ne prenant pas la valeur zéro et dont
la dérivée première ne prend pas la valeur un

* fc

L'application des propriétés qui précèdent à la famille des

fonctions itérées d'une fonction donnée a permis d'aborder pour
la première fois le problème général de l'itération et de le résoudre
complètement dans le cas où la fonction itérée est rationnelle.
Soit f (z) /i(Q, une fonction analytique; désignons par f2(z)
la fonction /[/(y)]; par fn(z) la fonction /[/n_i(z)] que l'on appelle



12 PAUL MONTEL
la rçme itérée de f(z). L'étude de la suite fn(z) est liée à la
résolution des équations fonctionnelles d'Abel ou de Schröder

F[f{z)] sF(z) ou G[/(z)] G + a

set adésignant des constantes. L'étude locale du problème
avait conduit à l'introduction des points fixes, c'est-à-dire des
zéros de fn(z) — z. Considérons d'abord un point double oc, tel
que /(a) a. Les itérés de a coïncident avec lui; les itérés d'un
point voisin s'approchent de a si |/'(«)j <1, le point est dit
alors attractif; ils s'en éloignent si |/'(a)| > 1, le point est dit
répulsif. Si |/'(oc) | 1, le point est appelé mixte ou indifférent
et la suite des itérés se comporte moins simplement. Si « est
un zéro de fn(z) z, avec n > 1, les itérés de « forment un
cycle oq, a2, oCp et l'ensemble des voisinages de ces points
donne lieu à des cycles attractifs, répulsifs ou mixtes suivant
la valeur de \ fn{a)\. Les premiers travaux, dus à Kcenigs et à
ses successeurs, se bornaient à l'étude locale du problème autour
d'un point fixe. Une note de Fatou en 1906 appela l'attention
sur le problème général. Pour les fractions rationnelles, il a été
résolu dans des mémoires fondamentaux dus à Fatou et à M.
Julia. Fatou introduit systématiquement l'ensemble des points
irréguliers de la famille fn(z). Des propriétés générales de ces
points, on déduit que cet ensemble, qui est parfait, coïncide avec
l'ensemble dérivé des points répulsifs. Cet ensemble constitue les
frontières des domaines, en nombre fini ou en infinité dénom-
brable, où la suite converge vers des constantes: ce sont les
domaines d'attraction. Ces frontières peuvent être formées de
lignes analytiques ou d'ensembles dont aucune partie n'est
analytique, ni même ne possède de tangente, dont Fatou et
M. Julia ont donné des exemples remarquables.

Cette étude a èonduit Fatou à introduire la notion de famille
normale dans la théorie des groupes automorphes. Un des
énoncés qu'il obtient peut être exprimé de la manière suivante:
pour qu'un groupe de substitutions homographiques soit
proprement discontinu, il faut et il suffit que la famille de ces
fonctions soit normale et' que toutes ses limites soient constantes.
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Dans le problème précédent, on se trouve naturellement en

présence d'une famille de fonctions: celle des itérées de f(z). Il
n'en est plus de même lorsqu'on veut étudier l'indétermination
d'une fonction uniforme au voisinage d'un point singulier. Il est

alors commode de substituer à cette fonction une suite de

fonctions liées à la première. On y parvient par une méthode
de morcellement du plan de la variable qui permet de répartir
entre les fonctions de la suite l'ensemble des valeurs que l'on
cherche à classer. Pour un point singulier isolé, nous ferons un
pavage du plan de la variable z autour de ce point, au moyen
de domaines (Dn), empiétant ou non les uns sur les autres, dont
le point singulier sera l'unique point extérieur à tous. Par une
représentation conforme de ces domaines (Dn) sur un domaine
fixe (D), nous distribuerons les valeurs de la fonction entre une
suite infinie de fonctions définies dans (D), de manière que la
ne fonction prenne dans (D) les mêmes valeurs que prend f(z)
aux points homologues de (Dn). On choisira généralement des

cercles concentriques ou des anneaux concentriques semblables.
Dans le cas d'une fonction entière, on peut prendre la suite
fn(z) j(2nz) définie dans le cercle \z\ < 1 ; dans le cas d'un point
singulier à l'infini, on peut prendre la même suite dans l'anneau

l<\z\<2.
Pour une fonction entière, cette famille ne peut être normale.

On en déduit aussitôt les théorèmes classiques de MM. Picard,
Landau, Schottky. Mais on aperçoit ainsi que ces théorèmes ne
sont que des représentants particuliers d'une classe générale de
propositions: à chaque critère permettant d'affirmer qu'une
famille est normale, on peut faire correspondre un théorème du
type précédent. On en a obtenu un grand nombre; donnons-en
au moins un exemple : les fonctions dont les valeurs représentées
sur la sphère de Riemann couvrent des régions dont l'aire est
bornée par un nombre inférieur à l'aire de la sphère forment une
famille normale. On en déduit des théorèmes de même forme
que les précédents.
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Somiw r drtype de ceiui d« m- Laada" »somme qu une fonction ne peut ressembler à une constante dans
ï°L77ens TT todue-s,ns être elle-même

outes les extensions introduisent toujours une hypothèse
étires Véttr let crrtes de rensembie des f°ncwetudiees. Il était naturel de penser qu'une fonction ne doit
elle même6

un l' * "" d'5"10"16 d<! degrt dom,é 5ans êt">elle-meme un polynome. Pour traiter ce problème il a éténécessaire d introduire des familles quasi normales de' fonctions
rXmrne tellU^ 0n aPPelle luasi normale,une famille telle que toute suite infinie de fonctions de la famillecontienne une suite partielle convergeant uniformément sauf enun nombre fini de points irréguliers. Il faut faire intervenir iciune precision nouvelle: celle de l'ordre d'un point irrégulierutour d un point irrégulier isolé, les fonctions de la suite
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ValeUrS fix6S 6St ^uasi normaIe dansintérieur de ce domaine. On est alors conduit à établir destheoremes correspondant aux types de ceux de MM. PicardLandau, Schottky. Le rôle de la constante est ici joué par unpolynome ou une fraction rationnelle. Par exemple: le rayonmaximum du cercle d'holomorphie d'une fonction qui ne prlnd
pas plus de p fois les valeurs zéro ou un ne dépend que des
premiers coefficients de son développement de Taylor au centre
pourvu que le dernier coefficient ne soit pas nul. Ce théorème
comporte des extensions introduisant toujours une condition
qui exclut les polynômes de degré p de l'ensemble des fonctionsconsidérées. Ici encore, les théorèmes obtenus ne sont que des
représentants d'une classe générale. A chaque critère de famille
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quasi normale correspond un groupe de propositions du même

•type. Par exemple, on peut considérer les fonctions dont les

valeurs sont représentées sur la sphère de Riemann par des

points couvrant une ou plusieurs fois des régions dont l'aire
totale ne dépasse pas un multiple donné de l'aire de la sphère.

On arrive à des propositions de même nature en remplaçant

un polynome par une fraction rationnelle et les fonctions
holomorphes par des fonctions méromorphes. Il est probable que l'on

pourrait obtenir des extensions semblables en comparant la
fonction à d'autres fonctions simples, une fonction algébrique

par exemple. Cette recherche n'a pas encore été entreprise.

* *

Pour une fonction entière /(z), nous avons vu que la famille
des fonctions /(2nz) n'est pas normale dans le cercle-unité. Il
existe donc dans ce cercle, un point irrégulier où, d'ailleurs
distinct de l'origine. Il en résulte, comme l'a observé M. Julia,

que les fonctions prennent dans leur ensemble toutes les valeurs,
sauf peut-être une au plus, dans tout cercle (y), si petit soit-il
ayant ce point to comme centre, sinon la famille serait normale
en oo. Par conséquent, la fonction f(z) prend toutes les valeurs
sauf une au plus dans les cercles (yn) homothétiques de (y) par
rapport à l'origine avec le rapport d'homothétie 2n. Les centres
de ces cercles sont alignés sur une demi-droite J et la fonction
prend toutes les valeurs sauf une au plus dans tout angle, si

petit soit-il, ayant cette demi-droite comme bissectrice
intérieure.

Une telle demi-droite existe-t-elle toujours pour une fonction
méromorphe dans le plan M. Ostrowski a complètement résolu
ce problème par une étude profonde des familles normales de

fonctions méromorphes. Il a montré qu'il existe toujours une
demi-droite J au moins, pour toute fonction méromorphe, sauf
dans le cas exceptionnel de certaines fonctions de genre nul dont
les zéros et les pôles vérifient des conditions de régularité qu'il
a entièrement précisées.

Dans les cercles (yn), la fonction méromorphe f(z) prend toutes
les valeurs sauf deux au plus. Mais le nombre de fois que la
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fonction prend une valeur dans le cercle (yn) demeure-t-il borné

ou non lorsque n croît indéfiniment M. W. Saxer a posé et
résolu cette question par une étude approfondie des familles deliifonctions f(2nz) quasi normales dans l'anneau j <\z| < 2. Il a

ainsi établi que le nombre des zéros de f(z) — a intérieurs au
cercle (yn) augmente indéfiniment pour toute valeur a, sauf

peut-être deux valeurs au plus, lorsque la fonction f(z) n'est pas
une fonction entière ou méromorphe de genre zéro dont les zéros

et les pôles obéissent à certaines conditions de régularité
naturellement moins étroites que précédemment.

Les demi-droites J sont des droites de condensation, pour les

demi-droites qui joignent l'origine aux zéros de f(z) — a. Jusqu'à
leur introduction, on étudiait surtout la distribution des modules
de ces zéros et cette étude reposait en grande partie sur la
théorie de la croissance. La théorie des familles normales a

permis d'entreprendre l'étude des arguments de ces zéros et cette
recherche est en plein travail. Dans certains cas, notamment celui
des demi-droites de Borel, on étudie simultanément la
distribution des modules et des arguments des zéros.

Je ne suivrai pas ce travail dans ses développements relatifs
en particulier aux arguments des zéros de f(z) — g(s), g(z)
désignant un polynome, une fraction rationnelle ou une fonction
entière d'ordre inférieur à celui de f(z). J'indiquerai seulement

comment le rôle des demi-droites J est apparu sous un jour
nouveau à la suite de divers travaux auxquels a donné naissance

un mémoire fondamental de M. G. Pôlya. Pour une fonction dont
le rayon d'holomorphie est fini, considérons les demi-droites

joignant le centre du cercle d'holomorphie aux points singuliers
situés sur la circonférence. M. A. Bloch avait pressenti que, pour
les fonctions à rayon d'holomorphie infini, c'est-à-dire les

fonctions entières, les demi-droites J devraient correspondre aux
demi-droites précédentes. Cette analogie a été mise en évidence

d'une manière éclatante dans le travail de M. G. Pôlya. Il a

montré qu'un grand nombre de théorèmes relatifs à la
distribution des points singuliers sur le cercle de convergence, avaient
leurs correspondants exacts pour la distribution des demi-droites
J d'une fonction entière, au moins dans le cas d'une fonction
de genre infini.
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Des méthodes de même nature que les précédentes ont permis
de commencer l'étude des demi-droites d'indétermination
complète. Ce sont des demi-droites telles que, lorsque la variable 2

décrit l'une d'elles, le point d'argument f(z) décrit une courbe

analytique qui s'approche autant qu'on le veut de tout point
du plan. Pour la fonction elliptique de Weierstrass, par exemple,
il passe par tout point du plan, une infinité de telles demi-droites
formant un ensemble dense dans tout angle.

* *

La théorie des familles de fonctions a permis aussi d'explorer
les régions de régularité d'une fonction analytique, en les
étudiant au point de vue de l'univalence ou de la multivalence.
Une fonction est dite multivalente d'ordre p dans un domaine, si
elle ne prend pas plus de p fois chacune de ses valeurs et si elle

prend p fois au moins l'une d'elles. Lorsque p est égal à l'unité,
la fonction est univalente. Les fonctions multivalentes d'ordre p
forment une famille quasi normale puisqu'elles appartiennent
à la famille des fonctions qui ne prennent pas plus de p fois trois
valeurs arbitraires fixes. Mais cette dernière proposition a un
caractère beaucoup moins élémentaire que la première. Cependant,

tandis qu'on possède une démonstration élémentaire du
fait que les fonctions univalentes forment une famille quasi
normale, on n'est pas encore parvenu a en obtenir une du même
type pour les fonctions multivalentes d'ordre supérieur à un.

Dans le cas des fonctions univalentes, la famille est quasi
normale et il en est de même de la famille des fonctions inverses.
C'est ce double fait qui conduit à une démonstration aisée de la
représentation conforme sur un cercle d'un domaine simplement
connexe arbitraire ou de la représentation conforme sur un plan,
muni de fentes parallèles, d'un domaine d'un ordre de connexion
quelconque.

On a beaucoup étudié récemment diverses familles de fonctions

univalentes à l'intérieur ou à l'extérieur d'un cercle et qui
le représentent sur des domaines bornés, ou convexes, ou étoilés,
ou spiralés. Au point de vue qualitatif, la plupart des résultats
découlent de la normalité des familles considérées. Il en est de

L'Enseignement matliém., 33me année, 1934. 2
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même pour l'étude des familles de fonctions multivalentes
d ordre donné à l'intérieur d'un cercle. Dans cette voie, les
premiers pas seulement ont été faits.

Le théorème de Weierstrass sur les suites de fonctions
holomorphes convergeant uniformément sur la frontière d'un domaine
a été étendu dans différentes directions de manière à réduire
de plus en plus la région ou l'ensemble des points en lesquels
la convergence de la suite entraîne la convergence pour tout le
domaine. Pour les fonctions bornées dans leur ensemble, Stieltjès
a montré que la convergence uniforme dans une région si petite
soit-elle, entraîne la convergence dans le domaine et plus tard,
Vitali a établi qu'il suffit que la convergence ait lieu en une
infinité de points ayant un point d'accumulation intérieur au
domaine. Ces propositions ont été étendues par MM. Carathéo-
dory et Landau aux fonctions admettant trois valeurs
exceptionnelles. Tous ces théorèmes sont des cas particuliers du
théorème général suivant: toute suite infinie de fonctions
régulières appartenant à une famille normale ne peut converger
sans converger uniformément; la convergence en une infinité
de points ayant un point d'accumulation intérieur au domaine
entraîne la convergence dans le domaine. A chaque critère
nouveau de famille normale correspond un nouveau théorème
du type Stieltjès ou Vitali.

Quand une suite de fonctions holomorphes ou méromorphes
est simplement convergente, la convergence uniforme n'en résulte
pas en général; mais, toute région en contient une autre où la
convergence est uniforme et la fonction limite est formée de
morceaux de fonctions analytiques en nombre fini ou en infinité
dénombrable. Dans le cas des fonctions holomorphes, l'ensemble
des points de convergence non uniforme, qui coïncide avec
l'ensemble des points irréguliers de la suite, forme un continu
d'un seul tenant avec la frontière du domaine. Tout récemment
MM. Hartogs et Rosenthal ont pu définir complètement la
structure de cet ensemble et celle de la fonction limite.
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** *

Je laisserai de côté la plupart des extensions des familles
normales et n'en retiendrai que deux. La première est relative
aux familles complexes dont les éléments sont formés par des

groupes de p fonctions. Elles ont permis l'étude des fonctions
algébroïdes au point de vue de leurs valeurs exceptionnelles.
Elles ont montré la nécessité d'élargir le sens de ce dernier mot
et de comprendre parmi les valeurs exceptionnelles les systèmes
de p nombres non en involution avec les différentes déterminations
en chaque point de la fonction algébroïde. Elles ont permis aussi

une étude complète des couples de fonctions méromorphes
uniformisant une relation algébrique ainsi que la théorie de certains
systèmes de fonctions, comme par exemple les groupes de

p fonctions dépourvues de zéro et dont la somme n'est jamais
égale à l'unité.

La seconde extension que je signalerai est relative aux fonctions

analytiques de plusieurs variables. La plupart des propositions

concernant les familles de fonctions d'une variable
peuvent être aisément étendues à ce cas. Tout récemment,
M. Cacciopoli vient d'établir une proposition fondamentale:
une famille de fonctions de plusieurs variables, normale par
rapport à chacune de ces variables, est normale par rapport à
l'ensemble des variables. Mais le théorème affirmant la convergence

uniforme d'une suite de fonctions appartenant à une
famille normale dans un domaine où la suite converge en une
infinité de points s'accumulant autour d'un point intérieur,
n'est plus toujours exact dans le cas de plusieurs variables. On
peut donner divers exemples d'ensembles de points pour lesquels
la proposition demeure vraie: il suffit, par exemple, dans le cas
de deux variables, que les sécantes joignant le point d'accumulation

aux différents points de l'ensemble admettent une infinité
de directions limites distinctes. La question est liée à un
problème qui se pose au début de la théorie des fonctions de
plusieurs variables complexes: dans quels cas une fonction régulière
en un point et nulle en une infinité de points ayant le premier
comme unique point limite, est-elle identiquement nulle
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** *

Nous avons rencontré à diverses reprises les points irréguliers
en lesquels une famille n'est pas normale. Dans le cas des
fonctions analytiques, ces points ont le caractère de points singuliers
collectifs en ce sens que des propriétés appartenant aux points
singuliers d'une fonction paraissent distribuées entre les fonctions
de l'ensemble pour lequel le point est irrégulier.

On l'a vu pour le théorème de M. Picard: autour d'un point
irrégulier, la collectivité des fonctions prend toutes les valeurs
sauf deux au plus. Les recherches de M. W. Saxer ont montré
que l'on peut définir pour la collectivité un ordre analogue à

l'ordre d'une fonction autour d'un point essentiel. Un théorème
de M. Mandelbrojt a étendu aux points irréguliers, le théorème
de M. Hadamard sur la multiplication des singularités. M. Julia
et M. W. Saxer ont montré que l'ensemble des points irréguliers
d'une famille de fonctions holomorphes ou méromorphes de

plusieurs variables possédait les mêmes propriétés de structure
que l'ensemble des points singuliers d'une fonction unique.
MM. H. Cartan et Thullen ont montré que, effectivement, cet
ensemble peut être pris comme ensemble de points singuliers
d'une fonction. Un théorème de M. Hartogs affirme qu'une
fonction des variables complexes x et y, régulière pour x 0,

lorsque y a une valeur fixe voisine de 0 et pour y 0, lorsque
x a une valeur fixe voisine de 0 est régulière en (x, y) autour
du point (0, 0). Le théorème de M. Cacciopoli affirme qu'une
famille de fonctions de #, y, normale pour x 0, lorsque y a

une valeur fixe voisine de 0 et pour y 0, lorsque x a une
valeur fixe voisine de 0 est normale en (x, y) autour du point
(0, 0). Les faits de cette nature sont parmi les plus curieux que
la théorie ait mis en évidence.

** *

J'ai énoncé succintement quelques-uns des résultats que la
théorie a permis d'obtenir, choisis surtout dans des régions où
l'on aperçoit encore bien des problèmes à résoudre.
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Presque partout ces résultats ont montré que des théorèmes

de l'Analyse classique, anciens ou nouveaux, devaient être

considérés comme des échantillons d'une propriété générale qui

pouvait revêtir des formes diverses suivant le critère qui lui a

donné naissance.
Ces résultats ont en général la forme qualitative : on en discerne

aisément la raison. Une forme générale de raisonnement ne peut
permettre d'atteindre la même précision que l'étude directe des

cas particuliers. Le développement en série de Taylor, par exemple,

qui s'applique à toute fonction analytique, ne permet que
très rarement et difficilement de reconnaître les propriétés
précises de chacune d'elles. D'autre part, les démonstrations
utilisent très fréquemment le raisonnement indirect: l'explication
réside sans doute dans le fait que l'on ne connaît pas tous les

critères de normalité et qu'il faut en conséquence raisonner en

se passant de chacun d'eux.

Parmi les mathématiciens qui ont apporté des contributions
essentielles au développement de cette théorie, vous avez vu
figurer plusieurs mathématiciens de la Suisse auxquels elle doit
des progrès considérables. Je vous demande de vouloir bien
trouver dans cet exposé un hommage à leurs beaux travaux et
aux mathématiciens de votre pays.
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