Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 33 (1934)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: SUR LA MESURE DES GRANDEURS
Autor: Lebesgue, Henri

DOl: https://doi.org/10.5169/seals-25994

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-25994
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

SUR LA MESURE DES GRANDEURS'!

PAR

Henri LeEBEscUE, Membre de I'Institut (Paris).

V. — LLONGUEURS DES COURBES. AIRES DES SURFACES.

62. — Les traités de Géométrie élémentaire se bornent &
Pévaluation de la limite des longueurs de certains polygones
mscrits ou circonscrits & une circonférence, & I’évaluation de
la limite des aires de prismes et de pyramides inscrites dans
un cylindre ou un cone de révolution, et des aires des frontiéres
de certains corps voisins d’une sphére. Il n’y a aucune définition
générale donnée, de sorte que les objections des § 42 et 53 peuvent
¢tre opposées, par exemple, aux évaluations des aires des sur-
faces les plus simples, constituées par des parties de spheres, de
cylindres et de cones, dés qu’elles ne sont pas exactement celles
considérées dans les manuels et pour lesquelles une convention de
définition a été faite explicitement ou implicitement.

Tout cela est donc & peu prés inexistant; si on I’a conservé,
¢’est que les notions de longueur d’une courbe, d’aire d’une sur-
face sont parmi les plus anciennes et que les évaluations de
longueurs et d’aires ont été fort étudiées par les géomeétres et ont
préparé la découverte du calcul infinitésimal.

L’importance pratique de ces notions, le role historique qu’elles
ont joué dans le développement de la science obligent donc &
conserver ce chapitre, mais il est a constituer et non plus seule-
ment a améliorer comme c’était le cas pour les chapitres précé-

I Voir L’Enseignement malhématique, X X X1Ie année, p. 173-206. — XXXIIc année,
p.23-01. — X XXIIIe année, p. 22-48.
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dents. De ceux-ci, le contenu était fixé par la tradition, on n’avait
a s’occuper que des modes de démonstration et de présentation ;
maintenant, le contenu méme du chapitre est & déterminer.
Or ce contenu dépend nécessairement de Iimportance donnée
aux mathématiques dans les classes comme aussi des programmes
d’examen. Il ne saurait donc étre question'd’écrire ici un chapitre
pour P'enseignement moyen; mais il est possible d’y traiter des
longueurs et des aires car ce qu’il convient de dire & ce sujet
est a déterminer tout aussi bien pour I’enseignement supérieur
que pour l'enseignement secondaire. Dans beaucoup de cours
d’enseignement supérieur, en effet, 4 I'occasion des longueurs
et des aires on calcule des intégrales, simples et doubles, en coor-
données rectilignes ou polaires, mais les questions de défini-
tion, tout ce qui est géométrique, est volontiers escamoté.

En France, il arrive que dans certains enseignements on se
borne & dire: on appelle longueur d’une courbe donnée en coor-
données rectangulaires par z(t), y(t), z(f), la fonction s (t)
définie par la relation: |

8,2 — xl? + y/2 2 z/2 :

et le tour est joué! )

Je vais donc étudier la question sans me préoccuper de déli-
miter ce qu’on en pourrait dire dans 1’enseignement moyen et ce
qu’il faudrait réserver a des éléves plus &gés. Je me bornerai
d’ailleurs a élucider les notions.

63. — Auparavant, un court résumé historique nous rensei-
gnera sur les difficultés & éviter et fera comprendre la nécessité
de certaines précautions. |

Pour les Anciens, les notions de longueur, d’aire, de volume
étaient des notions premiéres, claires par elles- -memes sans
définitions loglques Les axiomes, presque tous implicites, qu’ils
utilisaient pour les évaluations n’étaient pas, & leurs yeux, des
définitions de ces notions. Il s’agissait toujours pour eux de la
place occupée par la ligne, la surface ou le corps dans I’espace.
La difficulté ne commencait que lorsqu’il s’agissait de mesurer
cette place, de lui attacher un nombre et cette difficulté est
uniquement l'existence des incommensurables. D’out 'aversion
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pour les nombres, les efforts faits pour ne les utiliser que le plus
tardivement possible, les habiletés étranges de présentation
employées, qui ont déja été signalées, par exemple aux § 14
et 20.

Cauchy, le premier, fournit une définition logique de ces
notions; 1l le fit incidemment et en quelque sorte sans le vouloir.

On a vu dans les deux chapitres précédents comment on peut
élucider les notions d’aire d’un domaine plan et de volume d’un
corps en les dépouillant de leur sens métaphysique, en les
considérant comme des nombres et en construisant ces nombres
par la répétition indéfinie des opérations mémes qui 6taient
considérées auparavant comme fournissant approximativement
les mesures des aires et volumes & cause d’axiomes, de postulats
non énonceés explicitement et dont 1’énonciation explicite, ou la
démonstration, fournit la définition logique cherchée. On sait
que Cauchy construisit, par un procédé analogue, Pintégrale
definie des fonctions continues et démontra ainsi Iexistence des
fonctions primitives.

Ce faisant, Cauchy définissait logiquement non seulement
Paire d’un domaine plan, le volume d’un corps, mais, puisqu’il

donnait la définition logique de /.\/x’2 + y'% 4 z2dt et de

f(/kﬁ[ + p? + ¢*dady, 1l inaugurait le mode de définition de
la longueur que je signalais tout a "heure, § 62, et suggérait
une définition analogue pour 1’aire.

Du point de vue logique la question est entiérement traitée;
fixons bien ce qui a été atteint.

On dit souvent que Descartes — il conviendrait au moins
d’ajouter au nom de Descartes celui de Fermat — a ramené la
Géométrie a ’Algebre; ceci pourtant n’était pas vrai tant qu’il
fallait faire appel aux notions geomeétriques: longueurs, aires,
volumes. Ce n’est qu’apres Cauchy que le rattachement des
notions géométriques & des opérations de calcul a 666 effectus,
Alors la Géométrie a bien été réduite a I’Algebre, ¢’est-a-dire,
puisque le nombre en général résulte de la mesure des longueurs
(chapitre 11), que la géoméirie du plan et celle de Despace ont été
ramenées a la géométrie de la droite.

Pour arriver & ce qu’on appelle Varithmétisation de la géomé-
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trie, il ne restait plus qu’a définir le nombre en général a partir
des entiers sans parler de mesures, d’opérations effectuées sur la
droite et c’est ce que permet ’emploi d’une coupure, c¢’est-a-dire
ce qu'on obtient en utilisant une fois de plusle procédé de Cauchy
consistant & prendre comme définition les opérations mémes qui
permettent I’évaluation approchée du nombre & définir. Car la
donnée d’une coupure n’est pas autre chose, cela a déja été
dit, que I’exposé en termes abstraits du reSultat d’une mesure
de longueur. A

64.— Nous voici donc parvenus & la forme la plus abstraite,
la plus purement logique d’exposition par I’emploi constant de
cette sorte de renversement qui servit d’abord & Cauchy. Et
pourtant, ni le Géomeétre, qui voudrait comprendre quels liens
géométriques unissent les lignes, surfaces ou corps a leurs lon-
gueurs, aires et volumes, ni le Physicien, qui voudrait savoir
pourquoi il faut assimiler les longueurs, aires et volumes phy-
siques & telles intégrales plutot qu’a d’autres, ne sont satisfaits.
Des études s’imposaient.

Les premiers résultats relatifs aux courbes et surfaces ont
tous été obtenus comme conséquences de cette opinion qu’une
courbe est une ligne polygonale & une infinité de cotés, qu'une
surface est une figure polyédrale & une infinité de faces. Les
lignes polygonales approchées d’une courbe qui se présentent
les premiéres a Pesprit sont les lignes inscrites et circonscrites.
D’aprés Peano les postulats admis par Archiméde équivalent & la
définition suivante: La longueur d’un arc de courbe plane
convexe est la valeur commune de la limite supérieure des
longueurs des lignes polygonales inscrites et de la limite infé-
rieure des circonscrites. Archimeéde utilisait donc de la méme
maniére la droite et le point, ces éléments également prlmordlaux
de la géométrie des Anciens; il envisageait la courbe sous ses
deux aspects dualistiques: lieu de points et enveloppe de
droites.
~ On sait que, peu a peu, la notion de droite est devenue une
“notion secondaire; elle n’a reconquis quelque peu de son auto-
nomie que lorsque 'on eut créé les coordonnées de droite a
I'image des coordonnées de point et introduit 'idée de dualité.
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Pour la question qui nous occupe, cette évolution s’est mani-
festée par D'élargissement de la notion de courbe en celle de
trajectoire: la courbe est encore un lieu de points, mais n’est
plus nécessairement une enveloppe de droites; on peut encore
considérer les polygones inscrits, mais il n’y a plus nécessairement
de polygones circonscrits. Bref, dans I’étude des longueurs, on
n’a plus considéré que les lignes polygonales inscrites, oubliant
d’ailleurs qu’on les avait choisies de préférence seulement a
cause de leur simplicité et qu’elles ne possedent aucune vertu
spéciale qui les imposent plus a notre attention que les autres
lignes polygonales approchées.

Tous les mathématiciens ont alors admis que la longueur d’une
courbe (I'aire d’une surface) est la limite de la longueur d’une
ligne polygonale inscrite (de l'aire d’une surface polyédrale
inserite) quand on en fait varier les éléments de fagon qu’ils
tendent tous vers zéro. Et quand I’étude de ces définitions a
révélé des difficultés, les mathématiciens ont été assez désem-
parés.

Pour les courbes, cette étude a été faite surtout par L. Scheeffer
et par C. Jordan ; la limite qui sert & la définition de la longueur
existe bien toujours, en quelque sorte, mais elle peut étre infinie:
il'y a des courbes dont tout are, si petit soit-il, n’a pas de longueur
ou, st 'on veut, a une longueur infinie. Résultat paradoxal en
ce qu’il est contraire a I’emploi usuel du mot « petit» et qui,
par cela méme, a obligé & préciser et & discerner des notions
jusque la confondues, mais résultat qui ne pouvait étre une
catastrophe comme Davait été, au jugement des géométres
pythagoriciens pour qui les fractions étaient les seuls nombres,
la découverte analogue d’un segment n’ayant pas pour eux de
longueur. La difficulté, si difficulté il y a, ne se présente en effet
pas avec les courbes simples, on pouvait donc toujours, suivant
un procédé pas trés recommandable mais souvent employé,
déclarer que les courbes sans longueur n’étaient pas de vraies
courbes, les mettre, au moins momentanément, en dehors des
mathématiques, c’est-a-dire remettre leur étude a plus tard,
alors qu’il avait été impossible de mettre la diagonale du carré
en dehors des mathématiques.

L Elles ont conduit celui-ci & la notion capitale de fonetion A variation bornée.
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Pour les surfaces, on arriva & un résultat plus troublant.
Schwarz avait. eu I'occasion de réfléchir a la notion d’aire d’une
surface pour ses recherches sur le corps de volume maximum
parmi tous ceux d’aire donnée; dans une lettre & Genocchi, il
montra que les aires des surfaces polyédrales inscrites dans une
surface donnée n’ont aucune limite. Et cela quelle que simple
que soit la surface, méme quand il s’agit d’un cylindre de révo-
lution. L’exemple de Schwarz se présente si naturellement, quand
on réfléchit a la question, que Peano I’obtenait de son cdté a peu
prés simultanément et qu’il a été retrouvé et publié depuis par
d’autres Géometres: Divisons la surface latérale d’'un cylindre
de révolution en m parties égales par des plans de section droite;
dans chaque circonférence section inscrivons un polygone
régulier convexe de n cOtés, les demi-plans passant par 'axe

et les sommets d’un de ces polygones tournant de —;; quand on

passe d’une section droite & la suivante. Puis, considérons la
surface polyédrale inscrite formée des triangles isoceles dont les
bases sont les c6tés de ces polygones et dont les sommets sont
sommets des polygones inscrits dans les sections droites voisines.
I1 est clair qu’on a 14 une surface aussi approchée qu’on le veut du
cylindre dés que n augmente indéfiniment; il est clair aussi que
la limite de I’aire de cette surface polyédrale dépend, elle, de la

limite de n% On peut donc faire en sorte que cette limite d’aire

n’existe pas, on peut aussi faire en sorte qu’elle existe et ait une
valeur ou une autre.

65. — La définition géométrique de I’aire des surfaces s’ écrou-
lait; ce n’était pas une catastrophe puisque tout le monde était

d’accord sur ce point: I'aire est f f V1 + p? + ¢drdy, au

moins dans les cas simples. On avait 14 une définition analytique,
il n’y avait qu’a en donner des interprétations géométriques et
méme on possédait déja de telles interprétations. Avant que soit
connu lexemple de Schwarz qui montra l'impossibilité de
conserver la définition alors admise, les difficultés de cette
définition s’étaient révélées a tous ceux qui avaient essayé de la
mettre en ceuvre rigoureusement; certains avaient imaginé de
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restreindre la famille des polyédres inscrits de facon a pouvoir
prouver I’existence d’une limite de leurs aires. Ainsi: 'aire d’une
surface est la limite des aires de surfaces polyédrales inscrites
dans la surface, quand leurs faces deviennent infiniment petites
dans toutes les dimensions et de facon que les angles de ces faces ne
tendent pas vers zéro, disaient les uns, de facon que les angles que
font les faces avec la surface tendent vers zéro, disaient d’autres.

Seulement ces restrictions sont artificielles; rien ne prouve que
d’autres restrictions simples ne donneraient pas une autre
limite; on ne sait laquelle de toutes ces limites correspond le
mieux a la notion physique d’aire. De plus, les mathématiciens
désiraient une définition de ’aire ayant une étendue d’application
quelque peu comparable & celle de la définition de la longueur
étudiée par Scheeffer et Jordan. On imagina donc, Peano et
Hermite en particulier, d’autres définitions, mais si éloignées de
la forme primitive que 'aire n’y apparait mén:e plus comme une
limite d’aires de polyedres !

Je montrerai dans un moment qu’on avait, en réalité, tous les
faits mathématiques qui permettaient de comprendre 1’accord
entre la notion physique d’aire et ’expression analytique et
d’autre part de satisfaire au besoin de généralité des Géometres;
cela ne fut compris que peu a peu.

66. — S1 on n’avait pas été hypnotisé par le mot inscrit, si
Pon n’avait pas oublié qu’inscrit n’avait été choisi que comme
un des moyens d’arriver & approché on se serait apercu que la
difficulté rencontrée pour les aires existait également pour les
courbes; or la différence entre courbes et surfaces était précisé-
ment ce qui choquait le plus. On me permettra de faire appel
Ic1 & mes souvenirs.

Quant j’étais écolier on admettait, en France, je I’al déja dit,
que 'on pouvait évaluer longueurs, aires et volumes par des
passages & la limite. Bientot des doutes allaient se manifester
dans les manuels; c’est que les étudiants auxquels Hermite
avait, dans son cours d’Analyse, fait connaitre 1’objection de
Schwarz étaient devenus des maitres a leur tour. Au reste, tout
prédisposait alors chez nous a I'analyse critique des notions: les
recherches sur les fonctions de variable réelle et sur les ensembles
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quon commencait & prendre en considération, I’enseignement
de Tannery qui a'vait éveillé chez beaucoup de ses éléves des
soucis de compréhension compléte ou tout au moins de précision
verbale. Alors on se mit a douter, parfois sans bien savoir de quoi
on doutait; on confondit, par exemple, avec un raisonnement
sur les limites, la détermination de l’aire du cercle & I'aide de
celles des polygones qu’il contient ou qui le contiennent, § 42.
Mais, auparavant, quand j’étais écolier, maitres et éléves étaient
satisfaits du raisonnement par passage a la limite.

Pourtant ce raisonnement cessa de me satisfaire quand des
camarades m’apprirent, vers ma quinziéme année, que dans un
triangle un coté est égal 4 la somme des deux autres et que © = 2.
Soit ABC un triangle, soient D, E, F les milieux de BA, BC, CA,
la ligne brisée BDEFC a pour longueur AB 4 AC; en recom-
mencant de méme sur les triangles DBE, FEC on arrive & une
ligne brisée de méme longueur & huit cotés, etc. Or ces lignes
brisées ont BC pour limite, donc la limite de leurs longueurs,
¢’est-a-dire leur longueur commune AB ++ AC est égale a BC.
Le raisonnement relatif a = est analogue.

Rien, absolument rien ne distingue ceci des raisonnements
qu’on nous faisait pour évaluer la longueur et ’aire d’une circon-
férence, la surface et le volume du cylindre, du cone et de la
sphére. Cette constatation a été pour moi pleine d’enseigne-
ments. |

Au reste, tout paradoxe est particulierement instructif; 1’exa-
men critique de paradoxes, le redressement de raisonnements
erronés devraient, & mon avis, étre des exercices normaux, et
fréquemment répétés, dans les classes de I’Enseignement
secondaire. |

L’exemple précédent montre que les passages a la limite dans
les questions de longueur, d’aire, de volume ne peuvent étre faits
sans légitimation et il suffit, tout aussi bien que celui de Schwarz,
pour éveiller tous les soupg¢ons. |

67. — Regardons mieux cet exemple; nos lignes brisées en
dents de scie, qui tendent vers BC ont pour mesure AB + AC,
¢’est-a-dire n’importe quel nombre supérieur & BC. Donc, si 'on
a une suite de lignes polygonales tendant vers une courbe C et
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dont les longueurs ont une limite £, en opérant sur chaque coté
de ces lignes comme sur BC on en déduit de nouvelles lignes dont
le Iimite des longueurs sera tel nombre qui nous plaira, supérieur
a L’ Les limiles des longueurs de lignes polygonales tendant vers une
courbe C sont tous les nombres supérieurs @ un nombre £, el ce
nombre 7). C’est pourquoi, quand j’ai eu besoin d’une définition
a large champ d’application de la longueur et de I'aire, j’ai
proposé de prendre £, pour la longueur et le nombre analogue
pour Daire; j’y étais méme en quelque sorte obligé, puisque 2o
est le seul nombre qui se distingue des autres, au premier abord
du moins, parmi toutes les limites de longueurs. Il suffit & déter-
miner Pensemble des limites de longueurs, il est le compte
rendu complet des résultats de la recherche de ces limites.

Je n’al pas ici & examiner ces définitions générales, elles ne
viennent qu’aprés que les notions physiques de longueur et
d’aire ont été raccordées avec les définitions analytiques et ¢’est

ce raccord qui doit nous occuper, puisqu’ici notre but est péda-
gogique,

68. — La longueur d’une courbe matérielle se détermine
expérimentalement. Pour qu’un nombre soit déterminable
expérimentalement il faut que, si les données varient peu, le
nombre lui-méme varie peu, car on ne sait jamais utiliser
exactement les données mais seulement des données voisines.
Il faut donc que le nombre soit en quelque maniére déterminé de
fagon continue par les données.

Essayons de préciser cela. La détermination expérimentale se
fait suivant une certaine technique qui, s’il s’agit de notions qui
peuvent étre précisées en notions géométriques, comportera la
mise en place d’appareils, la mesure de telles distances, de tels
angles, etc.; il faudra que de petites erreurs sur ces positions et
ces mesures n’entrainent qu’une faible variation du résultat. La
définition géométrique s’obtiendra alors en enoncant la tech-
nique, mais en donnant aux opérations qu’elle utilise le
caractere précis et absolu de la géométrie. Si une définition
geométrique ne fournit pas un nombre variant continiment avec
les données, c’est qu'elle n’est pas en accord avec le procédé
expérimental de mesure: elle donnera peut-8tre, dans certains cas,

I Enscignement mathém., 3gme année, 1934, 13
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la traductlon de la notion pratique, mais il faudra le prouver.
(C’est une mauvaise définition. \

Examinons de ce point de vue la définition classique de la
lengueur; elle ordonne de prendre un polygone inscrit dans la
courbe et d’en augmenter indéfiniment le nombre des cotés,
c’est-d-dire de prendre des points sur la courbe en nombre
croissant. Or, si 'on essaie d’appliquer a une courbe, ou & un
segment BC, cette technique, on aura des lignes polygonales en
dents de scie & sommets voisins de la courbe, ou de BC. Plus on
augmentera le nombre des points, plus l’erreur commise
s’accroitra; la technique expérimentale comporte certainement
des prescriptions, peut-étre transmises seulement par une
tradition non exprimée, limitant le nombre des sommets des
polygones d’apres la limite supérieure de I’erreur qu’on peut com-
mettre sur la position de ces sommets. La définition classique est
donc mauvaise, c’est-a-dire que ce ne peut étre elle qui traduise
vraiment la technique et qui rende évident I’accord entre la’
théorie et la pratique; pour obtenir une bonne définition il nous
faut examiner mieux la technique expérimentale.

La difficulté ¢’est que les physiciens n’ont jamais eu & effectuer,
directement du moins, des mesures précises de longueurs de
courbes et que la technique est restée grossiere. On ne trouve de
mesures précises qu’en géodésie, mais il s’agit alors de longueurs
de segments; les mesures de route sont peut-étre ce qui est le
moins imprécis ensuite. Examinons le travail d’un arpenteur
mesurant une route; s’il mettait les deux extrémités de sa
chaine sur les deux bords différents de la route nous serions tous
d’accord pour dire qu’il n’opére pas correctement. Pourquoi ?

A cette question nous commencerions trés probablement par
répondre qu’il s’agit d’epérer non pas sur la bande qu’est la
route, mais sur la courbe, axe de la route. Quel est cet axe,
comment I’obtenir ? Si, par exemple, il faut prendre les milieux
des perpendiculaires aux deux bords, il s’agit 14 d’une opération
_qui présuppose que ’on connait pratiquement la direction de la
route; la technique sera basée sur la connaissance pratique de la
route en position et direction. De quelque fagon que I'on cherche
a préciser quelle est la bonne maniére d’opérer pour un arpen-

teur, on arrive a cette méme conclusion.
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Comment opére un géodésien pour mesurer le segment BC ?
Il s’efforce de préciser au mieux les points B et C; puis, s'il veut
diviser BG par un point D il s’assure que D est sur BC par
I'accord des directions BD et DC. Ainsi, sauf en ce qui concerne
B et G, les géodésiens obtiennent les positions des points par des
déterminations de directions de facon précisément i éviter de
considérer BC comme la limite de polygones en dents de scie.

Retenons de tout cela qu’on mesure pratiquement une courbe
en utilisant la connaissance de ses points et de ses tangentes et
qu’on le fait a I’aide de polygones dont les points sont approchés
de ceux de la courbe et dont les cotés sont approchés des tan-
gentes a la courbe. Le mode pratique de mesure d’une courbe
sera_expliqué si on démontre que ces polygones, approchés en
position et en direction, ont des longueurs tendant vers une
limite quand I"approximation croit indéfiniment ; la longueur sera
alors définie de facon logique comme la valeur de cette limite.

Or, cette démonstration est immédiate, de méme que celle
analogue relative aux aires, d’ou les définitions des longueurs
et des aires que nous adopterons. Nous voici donc revenus & la
conception initiale d’Archimede qui utilisait les courbes et
surfaces sous leur double aspect dualistique et & des définitions
qui avaient été proposées, § 65, avant méme qu’on ait reconnu
que les polygones ( ou polyédres) approchés ont des longueurs
(ou des aires) qui ne tendent vers aucune limite. La longueur
que nous définissons varie infiniment peu quand la courbe
mesurée varie infiniment peu en position et direction. Positions
des points de la courbe, directions de ses tangentes sont les
données dont la longueur dépend de facon continue.

69. — Les considérations qui viennent de nous conduire & ces
conclusions ne sont pas celles par lesquelles les Géométres v sont.
parvenus; meéme, les idées qui nous ont guidés semblent en
contradiction avec celles qui sont habituelles; nous admettons
qu'une définition est assujettie a des conditions, qu’il y a des
définitions bonnes et des définitions mauvaises, alors qu’on
répéte couramment «les définitions sont libres ». Je n’al jamais
compris cette phrase; je ne sais ni de quelle liberté il s’agit, ni
dans quel sens on prend le mot définition. S'il a le sens de déno-
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mination, chacun, en effet, est libre d’adopter le langage qui lui
plait, au risque parfois de rester incompris. S’il a le sens de
détermination et si I’on prétend seulement que chacun peut
prendre pour sujet de ses méditations ce qui lui plait, certes;
mais sous peine, peut-étre, d’étre seul a s’intéresser a ce sujet
et de faire un effort inutile au développement de la science.
Quoiqu’il en soit, pour nous qui regardons les mathématiques
comme une science appliquée, les définitions ne sont pas libres;
tout au moins certaines ne sont pas libres, celles qui doivent
préciser les notions pratiques. Pour celles-1a I’obligation de non
contradiction, qui est sous-entendue dans I’adage cité, n’est pas
la seule condition & remplir. Elle est au contraire la seule si les
mathématiques ne sont que de la logique. ‘

Le chemin qu’ont suivi les Géométres pour arriver aux défi-
nitions du § 68 est tout diftérent de celul que nous avons par-
couru. Ils ne se préoccupaient nullement de l'’accord entre les
mesures physiques et les définitions par les deux intégrales
classiques; persuadés qu’ils étaient de cet accord, au moins
dans les cas simples, ils n’en recherchaient pas les raisons, mais
ils étudiaient le nombre longueur attaché a une courbe, fonction
d’une courbe, le nombre aire attaché a une surface, fonction
d’une surface. On a naturellement cherché pour ce nouveau genre
de fonctions, pour ce nouveau genre de dépendances, ce que
devenait la notion de continuité.

Or, prenons pour simplifier le cas de la courbe plane y = f (x),
et d’un nombre attaché a cette courbe, il arrive que certains de
ces nombres varient peu dés que f(x) varie peu uniformément.
Par exemple, si on a ] f—f [ < ¢ quel que soit z, on a:

b b
| [i@ae) — [h@de)| <<lb—al

S f(z)dz est donc un tel nombre.

D’autres, par exemple

/\h” + 77 () da
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varient peu des que f(x), d'une part, et f'(x), d’autre part,
varient toutes deux uniformément peu, mais il ne suffirait pas
que la premiére condition soit seule réalisée. Pour d’autres
encore il suffit que f(z), f'(x), f"(x) varient toutes trois unifor-
mément peu. Les géometres ont ainsi été conduits a distinguer
pour les nouvelles fonctions qu’on appelle des fonctionnelles,
divers modes de continuité appelés continuité d’ordre zéro,
d’ordre 1, d’ordre 2, etec.

La longueur d’une courbe, I'aire d’une surface définies par des
intégrales ou ne figurent que des dérivées premiéres sont les
types mémes des fonctionnelles ayant la continuité d’ordre 1
et pas la continuité d’ordre zéro. Et ce fait, d’importance
capitale, expliquait ’échec de ’ancienne définition de I’aire et le
succes de la définition par polyedres inscrits et a faces peu incli-
nées sur les plans tangents de la surface. En méme temps cela
montrait 'inutilité de la considération de polyedres inscrits, il
suffit d’avoir des polyedres voisins; bref on est conduit aux
définitions du paragraphe précédent.

On s’explique aussi divers faits qu’'on a pu remarquer: La
longueur peut étre définie par la considération des polygones
mscrits, ¢’est la méthode de Scheeffer et de Jordan, on ne peut
définir Paire de facon analogue, c’est 1’objection de Schwarz.
Cest qu’en effet si C est une courbe a tangentes continues, si P
est un polygone inscrit dans G et si AB est un des cotés de P,
AB fait avec les tangentes & (i aux points de 'arc AB de C un
angle inférieur au plus grand angle que font entre elles les
tangentes aux points de ’arc AB (d’aprés le théoreme des
accroissements finis si la courbe est plane, d’aprés une consé-
quence de ce théoréme si elle est gauche). Ainsi P est indéfini-
ment approché de G, en direction comme en position, si le nombre
des sommets de P croit indéfiniment sur tout arc de C.

Au contraire, multiplier dans toute partie d’une surface les
sommets d’un polyedre inscrit dans cette surface, n’augmente
approximation de la surface et du polyedre qu’en position et
non en direction. Tandis que si le polyédre est a faces triangulaires
et si Pon assujettit les angles de ces faces &4 ne pas descendre
au-dessous d’une certaine limite, en augmentant le nombre des
sommets on assure l'approximation en position et direction;
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cela se vérifie facilement. Ainsi s’explique une définition de
Paire signalée au § 605.

On a noté aussi qu'un géodésien, voulant mesurer BC, s’assure
de la position de B et de G, c¢’est-a-dire cherche & bien distinguer
le segment BC des segments peu différents, mais que, par la suite,
ce qu’il cherche & bien préciser, ce sont des directions. C’est
qu’en effet pour que f(z) et f,(z) différent tres peu dans (a, b),
en méme temps que f'(x) et f;(x), il suffit que cette seconde
condition soit réalisée et que f(a) differe trés peu de f,(a).

Tout nous confirme dans cette conviction que les notions phy-
siques de longueur et d’aire sont relatives & des courbes lieux de
points et enveloppes de droites, & des surfaces lieux de points
et enveloppes de plans et, comprenant mieux ces notions, nous
pouvons nous proposer de les exposer.

70. — Un premier exposé commencerait par I'indication de
quelques problémes pratiques amenant a des mesures de
longueurs et permettant par suite de concevoir que les hommes
ont été conduits & cette notion physique: longueur de la barriére
nécessaire pour entourer un champ, poids de métal nécessaire
a la fabrication d’une rampe d’escalier, nombre de tombereaux
de cailloux nécessaires au rechargement d’une route. On y join-
drait quelques remarques sur la facon dont on fait pratiquement
ces mesures et, comme conclusions, on poserait la définition
logique. Les courbes dont nous nous occuperons ont des tan-
gentes qui varient d’une fagon continue avec le point de contact;
pour une telle courbe nous dirons qu’un polygone est approché
en position de moins de ¢ et en direction de moins de = si on peut
établir entre les points de la courbe et ceux du polygone une
correspondance univoque dans les deux sens et continue telle
que la distance de deux points correspondants est inférieure a ¢
et que les tangentes en ces deux points homologues forment
entre elles un angle inférieur & v. Par angle des tangentes, nous
entendons ’angle des tangentes dirigées; par tangente en un
point d’un polygone nous entendons le cote passant par ce
point ou, s’il s’agit d’'un sommet, chacun des deux cotés qui
aboutissent 4 ce point. Nous appelons longueur de la courbe
la limite vers laquelle tendent les longueurs des polygones
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approchés de la courbe quand ¢ et 7 tendent simultanément
vVers zero. }

Cette définition exige la démonstration de lexistence de la
limite. Avant de donner cette preuve, je fais remarquer que les
précisions de langage que je viens de prendre seraient inutiles,
et méme nuisibles, §¢’il s’agissait d'un exposé pour de jeunes
éleves. Dans ce cas, on édulcorerait la définition précédente en
faisant comprendre, sans la préciser en mots, la notion de poly-
gone approché en position et direction et on admettrait I’exis-
tence de la limite, en spécifiant qu’on ’admet. Puis on applique-
rait la définition a la circonférence. Pour cela, on remarquerait
que les polygones réguliers inscrits [ou si 'on veut les polygones
réguliers circonscrits, ou les deux sortes de polygones, si 'on
veut] sont approchés en position et direction et, puisqu’entre
Paire A d’un tel polygone et la longueur L. de son périmetre on
a la relation:

1 ;
A = 3L X apotheme |,
on en déduirait:
. R ; ,
aire du cercle = _ X longueur de la circonférence .

“

Aucun changement essentiel avec ce que l'on fait habituelle-

ment, on se bornerait a préparer I’étude plus compléte a faire
ultérieurement quand les éléves seront plus miirs et auront plus
de temps & consacrer aux mathématiques.
71. — Ceci dit, démontrons Pexistence de la limite. Soit
ABC ... L un polygone P inscrit dans la courbe I' et allant de
Porigine A de cette courbe & son extrémité. I' est partagée en
arcs AB, BC, ...; soit 7, le maximum de 'angle que font deux
tangentes a I' en deux points d’un méme arc partiel AB, BC, ....
I’angle 7, tend vers zéro quand le polygone inscrit varie en se
rapprochant de I

Considérons un polygone Il approché de I' et soient o, B, ... A
les points de ce polygone correspondant & A, B, ... L. Prenons un
arc partiel de I', soit CD, par exemple, et la portion 8 corres-
pondante de I1. ~+3 est une ligne polygonale. Chaque coté fait
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avec certaines tangentes a ’arc CD un angle inférieur a 7, si II est
approché en position & moins de ¢ et en direction & moins de 7.
Donc ce coté fait avec la corde CD un angle inférieur a v + 7,.
Supposons P et IT assez approchés de I' pour que v + 7, soit

T
3
toutes de méme sens et on a, puisque les projections de v et de 3

sont & moins de ¢ des points C et D.

inférieur & — . Alors les projections des cotés de v3 sur CD sont

CD + 2¢ GD
CD — 2¢ =< longueur de yo6 = < + e .
= T cos (n + ) cos (n + "70)
D’ou _
Long de P — 2ne¢ < longueur de Il < Long de P + bne |
| €os (0 + o)

si n est le nombre des cotés de P.

Les nombres n, 7, et Long de P sont indépendants de ¢ et 7,
donc les longueurs des [1 sont bornées et celles relatives aux
mémes ¢, 7 sont toutes comprises entre les limites précédentes
qui différent de '

1
cos (1 + o)

‘Longd‘eP.l 1] + 6ne

quantité qui, pour ¢ et v tendant vers zeéro, a pour limite

Long de P [ — 1] ;
€os 7, -

ceci ne dépend que de P et, en prenant P de maniére que le
crochet soit petit, on aura pour cette expression une valeur
aussi voisine de zéro qu’on le voudra ear les polygones P sont
eux-mémes des polygones I1, § 69, et par suite la longueur de P
est bornée. |

Donc les longueurs des polygones Il different les unes des
autres d’aussi peu que I'on veut deés que € et v sont assez petits;
en d’autres termes la limite de la longueur des I existe et elle
est aussi celle de la longueur des P.

72. — La définition ayant été ainsi légitimée on la traduit, a la
facon classique, en formule du calcul intégral. Supposons que
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I' soit définie en coordonnées rectangulaires par z = x (i),
y=1y(t), z=2(t), les trois fonctions x(¢), y(f), z(¢) étant
continues et & dérivées premiéres continues dans I'intervalle
(15, T) que ’on considére. De plus on suppose que z'(t), y'(£),z" (¢)
ne s’annulent pas a la fois. Alors dans (¢,, T) on aura:

2" ()] <M, ly' ()] <M, 127 ()] <M
et

Va () +y (0 0>

[ et M étant deux nombres positifs convenablement choisis.
La longueur d’un polygone P, dont les sommets sont donnés
par ty, iy, ly, ... 1, =T, est

1

iP) == 2 ‘/[x(ti_g_i) - x(%)r + [_?/ (ti+1) — y(ti)]g =+ [Z(ti_H) MS(Q)JQ )

quantité qui s’écrit encore

1P) = N iy — W)\ FTa)* + ) + 2 ()

@, b;, ¢; étant convenablement choisis dans (¢;, ¢;.,). Or la
différence

T AR Vo 3 S N

s’écrit encore:

51, dans chaque intervalle (¢;, ¢;,.,), z'(t), y'(2), z'(t) varient
au plus de ¢, les crochets placés au numeérateur de I’expression
précédente sont chacun inférieurs & 2Me; le dénominateur est
supérieur a 2/, donc la différence considérée est majorée par

\j (2. ) « 6Me _ (T — zﬂ)f\%

Praivin s 21
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quantité qui tend vers zéro avec €. La limite de [(P) est donc celle

de ,
Dt — DV TG+ TG+ T

c’est-a-dire

73. — La seule modification apportée pour le cas des longueurs
consiste donc dans D’énonciation d’une définition et dans la
démonstration que cette définition est logiquement acceptable.
Ceci suffit pour mieux préparer ’étude des aires, étude dans
laquelle va apparaitre une nouvelle difficulté, généralisation en
quelque sorte de celle rencontrée dans I’étude de laire des
domaines plans: ce n’est qu’a certains domaines plans que nous
“avons pu attribuer une aire.

Etant donnée une surface I' ayant en chaque point un plan

tangent variant de fagcon continue avec son point de contact,
nous disons qu’un polyeédre 11 est approché en position et direc-
tion & moins de ¢ et 7 pres, si Pon peut établir entre I' et II une
correspondance ponctuelle biunivoque et bicontinue telle que
deux points correspondants de I' et de II sont distants de moins
de ¢ et que les plans tangents en ces deux points font entre eux
un angle inférieur a4 7. Par plan tangent en un point de I on
entend le ou les plans des faces de IT auxquelles appartient ce
point. _
Etant donnée une portion A de I', si I’aire de la portion corres-
pondante de II tend vers une limite A quand on fait varier II
de maniére que ¢ et v tendent vers zéro, on dit que A a une
aire égale au nombre A.

S’adressant a de jeunes éléves, on s1mphﬁeralt I’énoncé de
cette définition et on admettrait pour les surfaces I' et les do-
maines A dont on va s’occuper, 'existence des polyédres II
et de la limite A. Puis on passerait aux applications a la surface.
latérale du cylindre et du céne de révolution, de la sphére et de
la zone ou du fuseau de zone. .

Pour le cylindre ou le cone de révolution, il suffirait de faire
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remarquer que les prismes réguliers ou les pyramides réguliéres,
qui sont inscrits dans le cylindre ou le cone, sont approchés
en position et en direction.

Pour les domaines sphériques, pour un fuseau de la zone
engendrée par 'arc de circonférence AB en tournant autour de
son diameétre X’'X, par exemple, on remarquera que si on divise
AB en m parties égales parles points G, D, ... K, que sil’on consi-
dére les circonférences engendrées par A, G, D, ... K, B et que,
sur elles, on marque les points Ay, A,, ... A, Gy, Gy, ... G, ... B,
ou elles rencontrent les demi-plans passant par XX’ et divisant
le fuseau en n parties égales, on a les sommets d’un polyeédre II
approché en position et direction de la surface considérée.
Polyedre dont les faces sont des trapezes tels que C,;C,., D, D;
et éventuellement des triangles, et pour lequel ¢ et v tendent
vers zéro quand s et n augmentent indéfiniment de facon quel-
conque. Or, quand on augmente assez n, on a un nombre aussi
peu différent que I'on veut de la somme des aires engendrées
par les cotés de AC ... KB: d’ou le calcul classique.

On peut aussi, puisque le chapitre des volumes précéde celui
des aires de domaines non plans, revenir & une méthode jadis
employée en disant: soit a trouver I'aire d’un fuseau de la zone
découpée dans un cylindre ou cone de révolution par deux plans
Py, P, perpendiculaires & I'axe ou dans une sphére par deux
plans paralleles P,, P,. Décomposons cette zone en n zones égales
par des plans passant par son axe; une zone partielle est ainsi
ABB’A’. Dans le cas du cylindre ou du cone AB et A’'B’ sont
deux segments égaux de génératrices, nous menons les plans
tangents le long de ces génératrices; ces plans se coupent suivant
une droite coupée en « et 8 par P, et P,. Nous remplacerons la
petite zone ABB’A’ par les deux rectangles ou trapézes ABR«,
«8B’A’. La surface polyédrale ainsi obtenue est, quand n croit,
indéfiniment approchée en position et direction si ’on établit la
correspondance entre surface et polyédre a I’aide de rayons des
paralléles du cone ou du eylindre.

Dans le cas de la sphére; on subdivisera & nouveau la zone
ABB’A" par des plans paralleles & P;, P, et découpant AB en
n arcs égaux. S1 CDEF est une des zones partielles ainsi obtenue,
on meénera les plans tangents a la sphére en C, D, E, F puis, du
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centre O de la sphére, on projettera celle-ci sur les plans tangents
en prenant pour projection d’un point M de la sphére celui des
points de rencontre avec les plans tangents indiqués qui est le
plus voisin de O. On a ainsi une surface polyédrale qui, quand n
croit, est infiniment approchée en position et direction.

Or, dans les trois cas, si O est un point pris sur1’axe du cylindre
ou cdne ou est le centre de la sphére, les points des segments
joignant O aux points de la surface polyédrale sont ceux d’un
corps formé de pyramides et dont le volume ¢ est lié & aire s
de la surface polyédrale et a la distance R de O aux plans
tangents au cylindre, cone ou & la sphére par la formule:

p = —;«S.R :
Pour n augmentant indéfiniment, ¢ tend vers le volume V

du corps formé par les points des segments joignant O aux points
du fuseau envisagé, donc la surface S de ce fuseau est donnée par

74. — Dans cette formule V est un nombre que nous avons
appris & calculer; son calcul se présentera sous.des aspects diffé-
rents suivant ce qu’on aura dit dans le chapitre des volumes mais
il restera toujours essentiellement le méme. Pédagogiquement, il
y aurait avantage & ne faire effectivement le calcul de V (donc
du volume de la sphére) qu’aprés avoir été conduit au corps
que nous venons de considérer; le calcul du volume balayé par
un triangle en tournant deviendrait ainsi naturel et ce serait
d’ailleurs a ce calcul qu’on réduirait I’étude de ce qu’on désigne
souvent par le terme étrange de « volumes tournants ».

Si 'on abrégeait quelque peu cette partie du cours, si surtout
on soulageait la mémoire des éléves en ne les obligeant pas &-
savoir par cceur des formules qui n’ont jamais servi qu’a passer
des examens, s’il était permis aux éleves d’ignorer, comme le fait
tout mathématicien, ce que ¢’est qu'un segment sphérique et ce
que c’est qu’un anneau sphérique, on pourrait peut-étre trouver
le temps de traiter de ’aire du triangle sphérique et par suite des
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aires des parties de spheres limitées par des arcs de cercles,
grands ou petits.

Il est un peu triste de constater que des jeunes gens ayant
terminé le cycle des études leur conférant les grades nécessaires
pour enseigner dans les classes secondaires puissent ne jamais
avoir entendu parler du magnifique théoréeme d’Albert Girard.
Quand on le leur fait connaitre, ils sont toujours émerveillés de la
beauté du résultat et stupéfaits qu’on ne leur ait pas parlé
plus tot d’une propriété indispensable pour bien comprendre le
postulatum d’Euclide.

Lla marche suivie ici conduit & modifier tres légérement la
présentation habituelle du théoréme d’Albert Girard, en parlant
d’abord de volumes.

Considérons trois plans diamétraux d’une sphére ne passant
pas par un méme diametre, ils divisent la sphére en huit riédres
sphériques ayant pour bases huit triangles sphériques deux a
deux opposés par le sommet. Les volumes de ces triedres peuvent
s’obtenir a I’aide de corps, tels que celui dont au paragraphe
précédent le volume a été désigné par ¢, constitués par des
pyramides de sommets O et dont les plans de base sont tangents

: L 1 o
& la sphére. Pour de tels corpson a: ¢ = 7 8. R, donc entre 'aire S

d'un triangle sphérique et le volume V du triédre sphérique
correspondant on a:

R
V = gb.R .

Donc deux triangles sphériques symétriques par rapport au
centre de la sphere ont méme aire car les deux triédres symé-
triques correspondants sont limites de corps polyédriques symé-
triques, donc de méme volume. Ceci étant, nous avons donc
quatre volumes en général différents de triédres sphériques V,
Vi, Vy, V, et quatre aires en général différentes S, Si, Sy, Ss.
En remarquant que les triédres se groupent deux & deux pour
lormer des diédres sphériques, on a, si A, B, C sont les trois angles
diedres du triedre découpant dans la sphére le volume v,

,, A . B 4 G
I a — = : B 7 — 3 *1
VA Va=grRgt, V4V, = mReD

Ve Vy = bape RA

3 27
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d’ou .
V= RA+B+C—n),
S =R*}A +B+ C—=x).
75. — Revenons maintenant & la légitimation 1ogique de la

définition. L’exposé qui suit différe sensiblement de celui du

§ 71; c’est que maintenant intervient et la nature de la surfaceI’ §

portant le domaine A et la nature de la frontiére de A. Les
précautions a prendre, les hypothéses & faire s’expriment plus
facilement dans le langage analytique, c’est un exposé qui
pourrait convenir dans un cours de calcul intégral que nous
allons donner.

Soit une surface I' donnée en coordonnées rectangulaires par
trois fonctions z(u, ¢), y(u, ¢), z(u, ¢). Nous supposerons
z, ¥y, z fonctions continues de u et ¢ ainsi que leurs dérivées
partielles premiéres et de plus nous admettrons que la représen- -
tation paramétrique n’est singuliére en aucun point, ¢’est-a-dire
" que

(et — 2pu)’ + (Vuzo — vp5)" + (22, — 52,)°

\

ne s’annulle en aucun point. Dans ces conditions I" a en tout point
un plan tangent variant de fagon continue avec le point de
contact.

Nous supposerons le domaine A obtenu en faisant varier le
point de coordonnées rectangulaires u, ¢ dans un domaine §
appartenant & la famille de ceux auxquels nous avons appris &
attacher une aire, c’est-a-dire que la frontiére de § peut étre
enfermée dans des polygones d’aire totale aussi petite qu’on le
veut, § 28. Partageons le plan des (u, ¢) en carrés par des paral-
leles aux axes équidistantes; soit A 1’écartement de deux
paralléles contigiies. Partageons chaque carré par la diagonale
paralléle & u 4 ¢ = 0. Soit abc un triangle ainsi obtenu; a
chaque point m de abc correspond un point M de T' et ces points
forment sur I' un triangle curviligne ABC. A m faisons corres-
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pondre de plus le point M’ donné par

3 e 5
:' ox, -+ ACQ/B sy NES XYy -+ ’Yg -+ 1Y,
. A P = e
e+ B4y «-+ B+ 7
- 5 .
%3, T 3% + T2,
= . + (3 i Y ]

st les w et ¢ de m sont donnés par

- , ! (« A
au, + @ub + Yu, ,O,w“ -+ ‘”,)b, { (9

o T S )
“ 4 3+ v

o= =

i = = - + (j —l“{

Ce point décrit le triangle rectiligne ABC quand m décrit abe
et 1l est clair que la correspondance entre M et M’ ekt univoque
et continue dans les deux cas. Les points M’ décrivent ainsi une
surface polyédrale P formée de triangles et inscrite dans T

A A correspond sur P un domaine A’ qui est constitué par
des triangles ABC et par des parties de tels triangles. A’ n’est
done pas a proprement parler une surface polyédrale; il serait
facile de modifier légérement A’ de fagon a avoir une surface
polyédrale au sens strict du mot mais il vaut mieux élargir le
sens de ce mot et entendre par 1a une surface (¢’est-a-dire un lieu
de points en correspondance continue avec un domaine plan)
constituée de parties de plans.

Ces parties de plans doivent avoir une aire pour qu’on puisse
parler de I'aire de la surface polyédrale définie comme la somme
des aires de ces parties planes. Cette condition est bien réalisée
par A’ car la correspondance entre abe et le triangle rectiligne
ABC est une transformation dans laquelle chaque polygone du
plan abe et d’aire (U devient un polygone du plan ABC avyant

. aire ABC N : -
pour aire €L < "L =T dou il résulte tout  de suite
+ aire abe ’
comme au § 43, qu’a toute partie de abe ayant aire €L correspond

aire ABC
aire abe
Montrons maintenant que les nombres ¢ ot 7 qul caractérisent
le degré d’approximation de I’ par P (ou de A par A’) en position
et en direction tendent vers zéro avec .
Quand m se meut dans abe, u et ¢ varient de h au plus done

s Y, z varient d’une quantité ¢ (k) au plus, qui tend vers zéro

une partie de ABC ayant une aire et une aire égale a €U x

IE




200 HENRI LEBESGUE

avec h. Donc la distance d’un point M du triangle curviligne
ABC au point A, et la distance d’un point M’ du triangle recti-
ligne ABC au point A, sont au plus 1/3.¢(h). Et la distance
MM’ est au plus 24/3.¢(k); elle tend vers zéro avec h.

Chacune des dérivées partielles z,, x,, ..., z, reste inférieure
a un nombre fixe K dans 3 et varie de moins de ¢,(k) dans
abc, chacune des trois expressions telles que z, ., — x, ¥, Vvarie
donc au plus de 4Kg,(h) -+ 2¢4(h)? = ¢,(k) quand on y prend
les dérivées pour un point ou un autre de abe, point qui peut
différer non seulement d’une expression & une autre, mais aussi
dans chaque expression d’une dérivée & une autre. De sorte que
les divers plans d’équation

(4 4 I

X (yu Zy yv u) + Y( Zy u,) + Z( uyv x;y;) = const. ’
font entre eux des angles V tels que
S (y; 5 — Yy 7) (Vs — Vo)

cos V =
\/S yu v yv u) X S(yu Zy —yvzu>

2

d’ou

S [z — Yo%) (u o — 2%0) — (W2 — ¥p%) (520 —245,) ]
/ 4 *

S (yuzv - yzlp Z;L)Q X S (yu Zp y;\z;)2

sin?’V =

Or, dans cette expression, le dénominateur surpasse un
nombre fixe, car la représentation est réguliére, et chacun
des trois crochets figurant au numérateur est majoré par
4 .2K2. g,(h) + 2¢5(h)?, donc la borne supérieure » de V tend
vers zéro avec k. Or parmi les plans considérés se trouvent d’une
part tous les plans tangents de I' aux points du triangle curviligne
ABC et d’autre part le plan ABC, car I’équation de celui-ci est,
si ab et ac sont respectivement paralléles aux axes ¢ = 0, u =
et si a est de coordonnées u,, ¢,, d’ou pour b et ¢ respectlvement
g + h, 05 Ugy Yo £ A,

X‘—x(um ©o) Y — y(u,, Vo)\ Z — z(uy, 9
& (ug =k by 09) — (g, 90) Yo £ hy o) —y(ug, 9) Uk, Vo);‘—z(?‘o’ %)
Z (U5 90 + h) — 2 (uy, 90) y(um‘*’o + h) —y(uy, 99) z(u, Voi:k)““z(u(‘)aoo),
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ce qui, en transformant les deux derniéres lignes du déterminant
par le théoréme des accroissements finis, donne bien la forme
d’équation considérée.

Ainsi Uexistence de polyédres indéfiniment approchés en position
et direction et ayant une aire est prouvée.

76. — Reste a prouver que l'aire de la partie (@ d’un tel
polyedre II, correspondant a A, tend vers une limite quand les
nombres ¢ et v relatifs & = tendent vers zéro. Considérons 1’un
des polyedres spéciaux obtenus au paragraphe précédent, soit P,
et solent ¢, et 7, les nombres qui lui correspondent.

Le calcul de ¢, que nous avons fait est trés grossier, on peut le

préciser beaucoup. Avec les coordonnées indiquées pour a, b, ¢,
on a:

[ — o4 ' o
Ty =a A e (x, — ) - —— 2 (z g
M A o + B _}_ Y B A o + B _2_ Y G A
B — (04 / 7 o ’
! } o i
== J il I hl :‘(: o kx
A a4+ 6 + N u o+ B+ v T I

’ / , . % . .
T, et z, etant prises respectivement pour un certain point de
ab et un certain point de ac. On a aussi:

! / , " i v x
x, et x, etant prises maintenant pour un certain point du
triangle abe. D’ou:

o | = ) T o) |

)

I

d(x,) et §(x.) étant au plus la borne supérieure (%) de la

variation de P'une des six dérivées partielles z., ... z, quand u

et ¢ varient de £ au plus. Les multiplicateurs de 3 (x,) et 3(z))
sont en module au plus égaux & 1, donc

‘ Ty oy

= 21 (h) MM’ = 24/3 ho(h) = -

L’ Enscignement mathém,, 33me anndée, 1634,
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- Ainsi non seulement ¢, est infiniment petit avec h, mais il
est méme infiniment petit par rapport & &, car A(k) tend vers
zéro avec h. Cette remarque est essentielle: elle va nous per-
mettre de raisonner comme au § 72. ,

Supposons d’abord que 3 soit constitué par un certain nombre
de carrés d’un réseau de carrés de coté H et que les carrés de
cOtés h proviennent de la subdivision de ceux-ci. Alors A’ n’est
constitué que par des triangles ABC entiers. A un tel triangle
correspond sur IT une région R, laquelle est constituée de faces
entiéres de II et de parties de faces. Le plan d’une de ces faces
ou parties de faces, orienté d’aprés une orientation choisie sur T,
fait avec le plan ABC, orienté de la méme maniére, un angle
au plus égal & n + v, car ils font des angles 7 et 7, au plus avec
un méme plan tangent orienté de I'. Si v - v, est inférieur a
un droit les projections orthogonales sur ABC de ces faces et
parties de faces ne se recouvrent pas; elles couvrent tout ABC
sauf peut-étre certains des points qui sont & moins de ¢ - g, de
Pextérieur de ABC; elles sont contenues dans le triangle ABC
augmenté des points distants de moins de € -+ ¢, de P’intérieur
de ABC. On peut donc trouver dans R une région polygonale R,
telle que aire R, > aire ABC — (¢ 4 ¢,) X périm. de ABC et
on peut sur II trouver une région polygonale R, contenant R
et telle que :

. aire ABC + (¢ 4 ) X périm. de ABC + o
e (R = - cos (1 + 7o)

?

s1 petit que soit & > 0. :

Appliquons ceci & chaque région (R, en tenant compte de
ce que, §’ll n’était pas certain que 6’» avait une aire, gnous
savons, par hypotheése, que @, formé par la réunion des R, en a

une; nous trouvons

aire () = aire A’ — 2 (¢ + ¢,) X somme des long. des cotés de A

e (D) < Aire A" + 2(c + ¢} X somme des long. des cotés de A
air =
, cos (1 + mo)

Quand ¢ et 7 tendent vers zéro, ces deux limites ont une différence
qui tend vers

' | 1
2¢, X somme des long. des cotés de A X ( + 1) .
COS 7,
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Or, cette expression ne dépend que de P et on va voir qu’elle
tend vers zéro avec h. En effet, si 5 est contenu dans un carré

de coté pH, il y a au plus 2<’3]~7P-I~) triangles abc. Un coté de ce

triangle donne un arc de I'; si ab et ac sont paralléles & ¢ = 0
et u =0, les arcs AB et AC ont au plus la longueur K+/3h
puisque K majore les six dérivées partielles z,,, ..., z, ; le cOté be
donne un arc BC de longueur K+/64 au plus car les dérivées
de @, 9, z dans la direction be sont an plus égales & K4/92. Done
le périmetre du triangle rectiligne ABC est au plus 4K+/3%; ce
qui permet de majorer I’expression précédente par

2¢g, . 2<p]TH>2 A K \/‘3 h . (C~O—1- L '1> ,
quantité qui tend vers zéro avee A.

Amsi existence de la limite des aires de (D, ¢est-d-dire de Uaire
de A, est prouvée dans Uhypothése faite sur §; on reviendra sur I’ex-
tension de ce résultat & une plus large classe de domaines 3;
on va d’abord chercher expression de I’aire de A.

77. — I aire de ABC est

V(Y (B — 2 — (Y, Y, ) + 14, XF - [X, VT,
les deux derniers crochets se déduisant du premier par permuta-
tion circulaire. Or, par la transformation déja utilisée ceci
s’écrit

’ A 1 EINE rr VAN
B /7 l/ (?/ wiu T Yy Zu) + (Zu Ly 7 xu) + (xu Yp = Ty yu) ’
a condition de prendre chaque dérivée partielle pour un point

convenable de abe. En n’employant que les dérivées au point a,

cect s’écrit, encore .
aive abe | \/[D y, 21" [D (=, -ﬂr n Y }
[ D (e, ¢)|a D (w, ¢)la ) (u, ¢)la
+ 0[8 K* ¢y (h) + hq, (h)?] \/3 % :

D (x

?

f étant compris entre — 1 et L 1.
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Quand % tend vers zéro la somme des termes en 6 tend vers
zéro puisque la somme des aires abc est l'aire finie de 3, la
somme des autres termes tend, par définition méme, vers

are s = [ SV B+ (B3] + (BT f e

Ceci n’est toutefois établi que pour des domaines spéciaux 9,
que nous appellerons des sommes de carrés. Si & est seulement
supposé avoir une aire, enfermons & dans une somme de carrés 8,
et prenons a lintérieur de 3 une somme de carrés J;
nous savons que nous pouvons faire cela de maniére que
aire 3, — aire 3; soit aussi petite que nous le voudrons.

A 3, 3,, 3, correspondent sur Il des parties @, (D, @,;surl’,"
A, Ay, Ag;sur Py A') AL A;; par hypothése 0 a une aire; A, A, A,,
A’, A;, A, ont des aires; on ne sait si @, et @, ont des aires. On
a noté soigneusement au § 76 le moment ot intervient ’hypotheése
que (@ a une aire: quand, des inégalités vérifiées par aire R et
aire R,, on passe a celles en aire (@. Raisonnant maintenant sur

@, et D, on devra conclure que, 551 désignant un domaine
polygonal pris sur II et contenant (2, on a:

aire ED—: > aire A, — 9 (e + ¢, . long. totale des cotés de A

et que, (), désignant un domaine polygonal pris sur Il et
contenu dans (@,, on a:-

aire A; + 2 (s + ¢,) long. totale des cotés de A,
cos (1 + %) '

aire ), <

Et comme @ est & la fois un domaine ®; et un domaine ®,,
I’aire de @ vérifie les deux inégalités ci-dessus. o

On a ainsi deux limites entre lesquelles est le nombre aire @ ;
ces deux limites dépendent non seulement de (? mais des choix
de P, de 3, et de 3,. Quand @ varie de facon que cet % tendent
vers zéro, la différence de ces limites tend vers

" ’
aire A, ) , :
——— — aire & + C
COS Mo 1 C ’
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C tendant vers zéro avec h. Si donc on fait tendre % vers zéro,
la différence des limites tend vers

aire 3, — aire A, = aire (4, — 3,)

Le domaine A, — A, correspond & 8, — 3§, qui est une somme
de carrés, donc on a:

\ .

et cect est majoré par 2K24/3 X aire (3, — 3,); et puisque cette
derniere aire peut étre prise aussi petite que I'on veut, on voit
que atre () varie entre des limites aussi rapprochées qu’on le
veut dés qu’on prend e et 7 assez petits. Aire @ tend donc vers
une limite, c’est-a-dire que aire de A existe. D’ailleurs, avec
les choix indiqués, les deux seconds membres des inégalités
précédentes ont la méme limite d’ou il résulte que Pexpression
de aire A par une intégrale est valable pour tous les domaines §
ayant une aire.

78. — Le premier exposé que je voulais indiquer est ainsi
achevé. On ne manquera pas de penser qu’il est bien long et déja
fort compliqué bien que restreint a la définition déclarée la moins
générale. On pourra abréger un peu, si ’on n’a pas la préoccupa-
tion de mettre en évidence toutes les précautions indispensables
a prendre, et simplifier, en considérant des classes un peu moins
vastes de surfaces et de domaines. Mais les modifications seront
faibles.

Or cet exposé, long et compliqué, suffisant logiquement, est
insuffisant physiquement ou si I’on peut dire humainement. 11 ne
légitime en effet que les procédés de mesure par polygones ou
polvédres approchés et nullement les utilisations pratiques des
notions de longueur et de surface. Pour expliquer que la connais-
sance de la longueur d’une route permette de calculer le nombre
de tombereaux de cailloux nécessaires a son rechargement, il
faut dire comment cette longueur sert au caleul approché de la
surface de la route, d’ott le volume des cailloux, d’ou le nombre
de tombereaux. Pour expliquer que la connaissance de I’aire
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d’une coupole permette de calculer le poids de cuivre nécessaire
pour sa couverture, il faut dire comment cette surface sert au
calcul approché du volume de cuivre, d’ou son poids.

Il faut donc ajouter & I'exposé précédent des paragraphes
donnant ces compléments; mais ces paragraphes constituent a
eux seuls un autre exposé de la théorie des longueurs et aires plus
court et plus satisfaisant, comme on va le voir.

Cecl n’est nullement étonnant; j’ai dit, § 68, « que les physi-

ciens n’ont jamais eu a effectuer, directement du moins, des
mesures précises de longueurs de courbes» Dans les mesures
indirectes auxquelles je faisais allusion 13, on pése un fil ou une
plaque, image matérielle de la courbe ou de la surface & mesurer;
on détermine donc la longueur ou I’aire par un procédé en accord
avec les applications qu’on en veut faire et qui sont, de ce fait,
légitimées. Si nous traduisons logiquement ce nouveau procédé
de mesure nous aurons une bonne définition, car en accord avec
les déterminations physiques par pesées et les applications. Et
cette définition est meilleure que la précédente puisqu’elle est
en accord avec le procédé de mesure pratique le plus employé
et le mieux relié & toutes les applications.
A Tactif du premier exposé on ne peut noter actuellement
qu'un avantage: il justifie d’emblée ’emploi des mémes mots
longueur et aire pour les arcs de courbes et les portions de surfaces
que pour les segments de droite et les domaines plans. Mais
1l est plus conforme a nos habitudes, ¢’est pourquoi sans doute
il a été conservé partout au lieu de I'exposé plus simple suivant,
lequel a été suggéré d’abord par des procédés de calcul em-
ployés par Borchardt, procédés pris ensuite comme définitions
effectives par Minkowski.

79. — Supposons qu’il ait fallu 300 tombereaux de cailloux
~ pour recharger une route sur une épaisseur de dix centimétres;
si, plus tard, le milieu de la route a été défoncé et qu’'on veuille
recharger de dix centimeétres une bande centrale de la route de
largeur moitié de celle de la route, on estimera que 150 tombe-
reaux environ sont nécessaires. Comme les nombres de tombe-
reaux dépendent des volumes des cylindres occupés par les
cailloux mis en place, cylindres de méme hauteur et dont les
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sections droites sont la route entiére et la bande centrale de la
route, cette estimation revient a admettre que 'on a:

S s
D D’

S et S’ étant les aires de la route et de la bande et la largeur D
de la route étant le double de la largeur D’ de la bande.

St on avait eu D = 3D” on aurait fait une supposition ana-
logue et toutes ces prévisions sont en accord pratiquement suffi-
sant avec l'expérience. Si donc la surface L. correspond a
une largeur 1, la valeur commune des rapports sera L. et on
aura S = L. D, S" = L.’ etc.

Si la route est rectiligne de longueur [, les surfaces d’aire
S, S', ... sont des rectangles dont un coté est égal a [, Pautre coté
etant D, D', ... donc on a alors I, = [. C’est pourquoi le nombre L
a été appelé la longueur de la route. '

Les égalités dont il vient d’étre parlé ne sont qu’approchées,
les explications ci-dessus n’ont donc pas une valeur logique
précise, nous allons les transformer en définitions mathématiques.

Considérons une courbe plane I' ayant en chaque point une
tangente variant de facon continue avec le point de contact,
deplagons un segment de longueur D = 2r de facon que son
milieu décrive I' et qu’il reste a4 chaque instant normal a I.
Admettons que la courbe I' soit telle que, pour r assez petit, le
segment mobile ne passe pas deux fois par le méme point et
appelons alors A(r) P’aire balayée par le segment, nous supposons
A(r)

2r
appelée la longueur de I'. On démontre dans des conditions trés
larges 'existence de cette limite.

St une courbe I' ne vérifie pas les conditions précédentes, mais
qu’elle soit formée de plusieurs courbes I';, Ty, ... placées bout
a bout et remplissant ces conditions, ce qui est le cas par exemple
d’une ligne brisée, on désigne par A(r) la somme des aires ana-
logues relatives a I';, Ty, ... et on applique la méme définition.
Cela revient a dire que la longueur de I' est la somme des lon-
gueurs de I'y, de I',, ... En particulier la longueur d’une ligne

brisée est la somme des longueurs, au sens ordinaire du mot, de
ses cotés.

que A(r) existe; la limite pour r = 0 de , 81 elle existe, est
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Appliquons cette définition & un arc de cercle, de rayon R et
dont I'angle au centre est «. L’aire A(r) est celle du domaine
obtenu en enlevant du secteur de rayon R + r et d’ouverture o,
un secteur de rayon R — r et de méme ouverture, done, § 41,

1 , 1 , -
geBH i —galR—r 4 g

or = 2r 2 = «R 3

un arc de cercle a donc une longueur, et donnée par la formule
L = «R. c

80. — En géométrie élémentaire on peut se borner a la consi-
dération des courbes planes, si pourtant on examine une courbe
gauche I', on supposera pour définir sa longueur qu’elle vérifie
des conditions analogues & celles ci-dessus supposées et on
remplacera le segment mobile de longueur D = 2r par un cercle
mobile de rayon r dont le centre décrit T' et dont le plan reste
perpendiculaire & T'. Par V(r) on entendra le volume balayé et
on appellera longueur la limite de Ezgl pour r == 0, lorsqu’elle
existe. On étend comme précédemment la définition aux courbes
présentant quelques points anguleux et on en déduit que pour
une ligne brisée la longueur, d’apres cette définition, est la somme
des longueurs, au sens ordinaire du mot, de ses cotés.

On affirmera encore que cette définition s’applique dans des
cas étendus et, de plus, que lorsque I' est plane les deux défini-
tions donnent le méme nombre. Voici d’ailleurs comment on
peut prouver ’accord des deux définitions.

Soit une courbe plane I' pour laquelle le rapport %(—9 tend vers

L quand r tend vers zéro. Décomposons le corps balayé par le
cercle mobile de rayon r en tranches par des plans paralléles &
celul de I' et distants de 4. Si deux plans limitant une tranche
‘coupent le cercle mobile suivant des cordes de longueur 2r; et 2r,,
~ la tranche est comprise dans un cylindre de hauteur % et dont la
baSe est d’aire A(r;) et elle comprend un cylindre de méme.hauteur
et dont la base a Paire. A(r,).
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ry et ry étant plus petits que r, on a:
Ar) = 2(L + &)ny Alrg) = 2(L + )7y ;

z, et ¢, étant en module limité par un nombre ¢ qui tend vers
zéro avec r. Les volumes des deux cylindres s’obtiennent en
multipliant par 4, donc on a:

(L—¢e)X2rh. < V() < (L 4+ X2k .

Or les deux sommes figurant dans les membres extrémes sont
des valeurs, indéfiniment approchées pour & tendant vers zéro,
de I'aire =r? du cercle mobile, 'une par défaut et I'autre par
exces. Done

¢ tendant vers zéro avec r, ceci prouve l'identité des deux
définitions 1.

On peut aussi démontrer cet accord indirectement en prouvant
que chacune des définitions de ce paragraphe est en accord avec
la définition par les polygones inserits dans des cas étendus, mais
je laisse cela de coté.

81. — Pour I'aire d’une surface, aprés une préparation ana-
logue a celle relative & la longueur d’un arc de courbe on posera
la définition par la limite pour r = 0, supposée existante, du
V()

27

rapport , V(r) étant le volume supposé existant du corps
constitué par les segm ents de longueur 2r normaux a la surface et
dont les milieux sont tous les points du domaine considéré de la
surface. On étendra cett e définition aux surfaces ayant quelques
lignes de points anguleux et on en concluera qu’un domaine plan
a une aire d’apres la nouvelle définition si, et seulement si, il en
a une d’apres la définition du chapitre 111 et que ces deux défi-
nitions sont alors en accord, qu’une surface polyédrale a pour aire
la somme des aires de ses faces.

On appliquera facilement & un fuseau de la surface latérale

L Silon avait voulu prouver I'identité¢ seulement pour la circonférence on aurait pu
appliquer le théoréme de Guldin ou seulement le cas particulier de ce théoréme relatif
au corps engendré par un domaine plan ayant un axe de symétric et tournant autour
dune droite de son plan ne le rencontrant pas et paralléle a axe de svmétrie.
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d’un cylindre ou d’un cone de révolution, & un fuseau de zone
sphérique. Tout cela est si simple, si immédiat, si semblable au
calcul relatif & la circonférence, que je n’ai rien de plus a en dire.

82. — Dans le cours de calcul intégral, aprés avoir précisé les
définitions si cela était nécessaire, on les mettrait en ccuvre en
ne craignant pas de faire des hypothéses propres a simplifier.
Par exemple: soit I' une courbe gauche dont une représentation
réguliére en coordonnées rectangulaires est donnée par les
fonctions z(t), y (t), z(t) continues dans (f,, {;) ainsi que leurs
dérivées des deux premiers ordres. On vérifie immédiatement que

2

’ 4

— A 0
\/x’2 oy Va't &y
et '
a3’ y' 5 -
VT Ry Ay R A gt Ve e T
— \/x'jqu :

\/x” + y'* + 2

sont les cosinus directeurs de deux normales a I au point z, y, z
qui sont rectangulaires 1. Donc V(r) est le volume du corps lieu
des points

yl Yy »
X =z + e ———— .+ -
x/g + ylf_) ’\/.’E'z e yrg ,\/xiz N y"’ + zr-_:
x' y’ z'
Y == Y — o oo + - - - - - 2
'\/%'2 T y/-g ,\/xrg + ym ,\/x/g + y/z + z/_g
4= g — Vv + v -

Vit gttt

quand le point de coordonnées rectangulaires u, ¢ décrit le
cercle de rayon r tracé autour de l’origine. Donc on a: B

/.//‘ PEQY Z)!d de dt .

D(u, v, t)

1 Ceci suppose toutefois z” # 0. §’ 11 n’en était pas ainsi on partagerait F en arcs sur
_chacun desquels une des dérivées x’, y’, z’ ne s’annulerait pas C’est pour pouvmr
dériver ces cosinus directeurs qu’on a admls Pexistence de x”, y”,
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Vi)

Pour avoir la limite de —= quand r tend vers zéro, il suffit
d’avoir la partie principale de linfiniment petit V(r). Or le
déterminant fonctionnel & intégrer est un polynome en u¢ dont
chaque monome ¢ (i) u*0° donne un terme de la forme
Q/}c(t)dt.t/ifuo‘oﬁdud(), le second facteur étant un monome

en r de degré o + B -~ 2. Il suffit done de prendre les termes de
moindre degré en u, ¢ du déterminant fonctionnel, ce qui donne:

r !

’ M
Y Yy x z
T i 5 e et I e e T
Va4 oy Va by et oyt
. 1y v r Lt
i \/ (];) H ’ & y Z
A = / v o r2 Jors e o e oo
rall P : Va4 oy V't Y A/’ + oyt 4 5
0
oyt 0 _ _\/a/;i yr o
/\//xlﬁ_}_ Z//_ L /ZE
ty

Par exemple encore: soit I' la surface donnée en coordonnées
rectangulaires par z (u, ¢), v (u, ¢), z (u, ¢) fonctions continues
et dont les dérivées partielles des deux premiers ordres sont
continues dans une région du plan des u, ¢ pour laquelle la
représentation paramétrique de I' est supposée réguliére et soit 3
un domaine pris dans cette partie du plan des u, ¢ et ayant une
aire. Pour le domaine A de I' correspondant a 3 les points du
corps a considérer sont donnés par trois formules telles que

G 3\ o L
D (u, V)] % [D(u, (’)J i [D (u, v)}

o variant de — r & —+ r.
Le déterminant fonctionnel de X, Y, Z par rapport & u, ¢, ¢

X:Q‘+




212 HENRI LEBESGUE

qui est a intégrer pour avoir V(r) peut étre réduit a sa partie

principale pour la recherche de la limite de —(l d’ou
/ r Dy, 3
% v D(u, ¢) _
. / r Dz, z) du dy
= | e
br ’ D(x,y) D(ua(})
o D |

83. — Notre second exposé est terminé. On ne manquera pas
de noter combien il est plus simple et plus court que le premier
et pourtant il est, sinon plus complet, du moins plus ap proprle
aux applications.

‘Quand on considére les mathématiques comme une science
purement logique, rien ne peut guider dans la recherche des
définitions de I’aire et de la longueur, ces définitions sont libres.
En considérant les mathématiques comme une science appliquée
I'examen des techniques nous a conduit a des définitions, & deux
bonnes définitions puisqu’il y a deux techniques. L’accord des
calculs des paragraphes 72 et 82, 77 et 82 explique I’accord de
ces techniques et montre qu’il y a bien une seule notion physique
de longueur et une seule notion d’aire.

Mais on aurait pu adopter une attitude en quelque sorte inter-
médiaire en disant: les mathématiques ont certes pour ougme
Pexpérience, mais elles doivent étre purement logiques. Or un
raisonnement logique est basé directement sur des propriétés
et non directement sur une construction; les constructions de la
longueur et de laire faites dans les paragraphes précédents &
I'image des techniques de mesure seraient avantageusement
remplacées par des définitions descriptives formées par 1’énon-
ciation de propriétés imposées 4 la longueur et a aire, lesquelles
seraient suggérées par l'observation physique. N’est-ce pas
d’ailleurs ce que I’on a fait aux deux chapitres precedents en
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définissant Paire des domaines plans et les volumes par les
propriétés o, B, v ?

On remarquera alors que les longueur et aire que nous avons
définies possédent encore les propriétés «, B, v mais que ces
propriétés ne suffisent plus & les caractériser, en d’autres termes
que Pon n’a plus la propriété 3 qui peut s’énoncer ainsi: le
nombre cherché est défini & un facteur constant prés par «, 8, v.
Supposons, en effet, qu’a une courbe ou une surface on attache la
courbe indicatrice des normales principales (ou des binormales)
ou la surface indicatrice des normales; la longueur de cette
courbe ou I'aire de cette surface considérée comme attachée a la
courbe ou surface primitive, vérifie encore o, B, v. Les obser-
vations que nous avons faites conduisent & énoncer cette nouvelle
condition :

e. — Lorsqu’une courbe (ou surface) IT tend uniformément
en position et direction vers une courbe ou surface fixe IyiTet T
appartenant a la classe des courbes ayant une longueur (ou des
surfaces ayant une aire), la longueur (ou aire) de TT tend vers
celle de T'.

Les propriétés «, B, v, < suffisent & entrainer § s’il est entendu
que tout segment (ou polygone) fait partie de la famille des courbes
ayant une longueur (ou des surfaces ayant une aire). Alors, en effet,
la longueur de toute ligne polygonale (ou aire de toute surface
polyédrale) s’en déduit, puis ¢ conduit a la définition de notre
premier exposé et c’est, en somme, par cette voie que nous y
avons été conduits.

Cect montre, qu’au point de vue logique comme au point de
vue de la critique des notions, les premiéres définitions ont
des avantages que nous n’avions pas mis en lumiére et qu’il ne
faudrait pas les omettre 8’il s’agissait d’un enseignement plus

’

élevé que celui des éléments du caleul intégral.

(A suivre.)
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