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SUR LA MESURE DES GRANDEURS 1

PAR

Henri Lebesgue, Membre de l'Institut (Paris).

y Longueurs des courbes. Aires des surfaces.

62. — Les traités de Géométrie élémentaire se bornent à

l'évaluation de la limite des longueurs de certains polygones
inscrits ou circonscrits à une circonférence, à l'évaluation de
la limite des aires de prismes et de pyramides inscrites dans

un cylindre ou un cône de révolution, et des aires des frontières
de certains corps voisins d'une sphère. Il n'y a aucune définition
générale donnée, de sorte que les objections des § 42 et 53 peuvent
être opposées, par exemple, aux évaluations des aires des
surfaces les plus simples, constituées par des parties de sphères, de

cylindres et de cônes, dès qu'elles ne sont pas exactement celles
considérées dans les manuels et pour lesquelles une convention de
définition a été faite explicitement ou implicitement.

Tout cela est donc à peu près inexistant; si on l'a conservé,
c'est que les notions de longueur d'une courbe, d'aire d'une
surface sont parmi les plus anciennes et que les évaluations de
longueurs et d'aires ont été fort étudiées par les géomètres et ont
préparé la découverte du calcul infinitésimal.

L'importance pratique de ces notions, le rôle historique qu'elles
ont joué dans le développement de la science obligent donc à
conserver ce chapitre, mais il est à constituer et non plus seulement

à améliorer comme c'était le cas pour les chapitres précé-

1 Voir L'Enseignement mathématique, XXXIe année, p. 173-206. —• XXXIIe année,
p. 73-51. XXXIIIe année, p. 22-48.
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dents. De ceux-ci, le contenu était fixé par la tradition, on n'avait
à s'occuper que des modes de démonstration et de présentation;
maintenant, le contenu menue du chapitre est à déterminer.
Or ce contenu dépend nécessairement de l'importance donnée
aux mathématiques dans les classes comme aussi des programmes
d examen. Il ne saurait donc être question d'écrire ici un chapitre
pour l'enseignement moyen; mais il est possible d'y traiter des
longueurs et des aires car ce qu'il convient de dire à ce sujet
est à déterminer tout aussi bien pour l'enseignement supérieur
que pour l'enseignement secondaire. Dans beaucoup de cours
d'enseignement supérieur, en effet, à l'occasion des longueurs
et des aires on calcule des intégrales, simples et doubles, en
coordonnées rectilignes ou polaires, mais les questions de définition,

tout ce qui est géométrique, est volontiers escamoté.
En France, il arrive que dans certains enseignements on se

borne à dire: on appelle longueur d'une courbe donnée en
coordonnées rectangulaires par x(t), y(t), z(t), la fonction s(t)
définie par la relation:

s'2 — x'2 + y'2 + z'2 ;

et le tour est joué
Je vais donc étudier la question sans me préoccuper de

délimiter ce qu'on en pourrait dire dans l'enseignement moyen et ce
qu il faudrait réserver à des élèves plus âgés. Je me bornerai
d'ailleurs à élucider les notions.

63. — Auparavant, un court résumé historique nous renseignera

sur les difficultés à éviter et fera comprendre la nécessité
de certaines précautions.

Pour les Anciens, les notions de longueur, d'aire, de volume
étaient des notions premières, claires par elles-mêmes sans
définitions logiques. Les axiomes, presque tous implicites, qu'ils
utilisaient pour les évaluations n'étaient pas, à leurs yeux, des
définitions de ces notions. Il s'agissait toujours pour eux de la
place occupée par la ligne, la surface ou le corps dans l'espace.
La difficulté ne commençait que lorsqu'il s'agissait de mesurer
cette place,, de lui attacher un nombre et cette difficulté est
uniquement l'existence des incommensurables. D'où l'aversion
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pour les nombres, les efforts faits pour ne les utiliser que le plus
tardivement possible, les habiletés étranges de présentation
employées, qui ont déjà été signalées, par exemple aux § 14
et 20.

Cauehy, le premier, fournit une définition logique de ces

notions; il le fit incidemment et en quelque sorte sans le vouloir.
On a vu dans les deux chapitres précédents comment on peut

élucider les notions d'aire d'un domaine plan et de volume d'un
corps en les dépouillant de leur sens métaphysique, en les
considérant comme des nombres et en construisant ces nombres
par la répétition indéfinie des opérations mêmes qui étaient
considérées auparavant comme fournissant approximativement
les mesures des aires et volumes à cause d'axiomes, de postulats
non énoncés explicitement et dont l'énonciation explicite, ou la
démonstration, fournit la définition logique cherchée. On sait
que Cauehy construisit, par un procédé analogue, l'intégrale
définie des fonctions continues et démontra ainsi l'existence des
fonctions primitives.

Ce faisant, Cauehy définissait logiquement non seulement
I aire d un domaine plan, le volume d'un corps, mais, puisqu'il
donnait la définition logique de fyV2 + y'2 -f z^dt et de

J fVi + p2+ cf dxdy,ilinaugurait le mode de définition de
la longueur que je signalais tout à l'heure, § 62, et suggérait
une définition analogue pour l'aire.

Du point de vue logique la question est entièrement traitée;
fixons bien ce qui a été atteint.

On dit souvent que Descartes il conviendrait au moins
d'ajouter au nom de Descartes celui de Fermât — a ramené la
Géométrie à l'Algèbre; ceci pourtant n'était pas vrai tant qu'il
fallait faire appel aux notions géométriques: longueurs, aires,
volumes. Ce n'est qu'après Cauehy que le rattachement des
notions géométriques à des opérations de calcul a été effectué.
Alors la Géométrie a bien été réduite à l'Algèbre, c'est-à-dire,
puisque le nombre en général résulte de la mesure des longueurs
(chapitre II), que la géométrie du plan et celle de Vespace ont été
ramenées à la géométrie de la droite.

Pour arriver à ce qu'on appelle Varithmétisation de la géomé-
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trie, il ne restait plus qu'à définir le nombre en général à partir
des entiers sans parler de mesures, d'opérations effectuées sur la
droite et c'est ce que permet l'emploi d'une coupure, c'est-à-dire
ce qu'on obtient en utilisant une fois de plus le procédé de Cauchy
consistant à prendre comme définition les opérations mêmes qui
permettent l'évaluation approchée du nombre à définir. Car la
donnée d'une coupure n'est pas autre chose, cela a déjà été

dit, que l'exposé en termes abstraits du résultat d'une mesure
de longueur.

64.— Nous voici donc parvenus à la forme la plus abstraite,
la plus purement logique d'exposition par l'emploi constant de

cette sorte de renversement qui servit d'abord à Cauchy. Et
pourtant, ni le Géomètre, qui voudrait comprendre quels liens

géométriques unissent les lignes, surfaces ou corps à leurs

longueurs, aires et volumes, ni le Physicien, qui voudrait savoir
pourquoi il faut assimiler les longueurs, aires et volumes
physiques à telles intégrales plutôt qu'à d'autres, ne sont satisfaits.
Des études s'imposaient.

Les premiers résultats relatifs aux courbes et surfaces ont
tqus été obtenus comme conséquences de cette opinion qu'une
courbe est une ligne polygonale à une infinité de côtés, qu'une
surface est une figure polyédrale à une infinité de faces. Les

lignes polygonales approchées d'une courbe qui se présentent
les premières à l'esprit sont les lignes inscrites et circonscrites.

D'après Peano les postulats admis par Archimède équivalent à la
définition suivante: La longueur d'un arc de courbe plane
convexe est la valeur commune de la limite supérieure des

longueurs des lignes polygonales inscrites et de la limite
inférieure des circonscrites. Archimède utilisait donc de la même

manière la droite et le point, ces éléments également primordiaux
de la géométrie des Anciens; il envisageait la courbe sous ses

deux aspects dualistiques : lieu de points et enveloppe de

droites.
On sait que, peu à peu, la notion de droite est devenue une

notion secondaire; elle n'a reconquis quelque peu de son
autonomie que lorsque l'on eut créé les coordonnées de droite à

l'image des coordonnées de point et introduit l'idée de dualité.
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Pour la question qui nous occupe, cette évolution s'est manifestée

par l'élargissement de la notion de courbe en celle de

trajectoire: la courbe est encore un lieu de points, mais n'est

plus nécessairement une enveloppe de droites; on peut encore
considérer les polygones inscrits, mais il n'y a plus nécessairement
de polygones circonscrits. Bref, dans l'étude des longueurs, on
n'a plus considéré que les lignes polygonales inscrites, oubliant
d'ailleurs qu'on les avait choisies de préférence seulement à

cause de leur simplicité et qu'elles ne possèdent aucune vertu
spéciale qui les imposent plus à notre attention que les autres
lignes polygonales approchées.

Tous les mathématiciens ont alors admis que la longueur d'une
courbe (l'aire d'une surface) est la limite de la longueur d'une
ligne polygonale inscrite (de l'aire d'une surface polyédrale
inscrite) quand on en fait varier les éléments de façon qu'ils
tendent tous vers zéro. Et quand l'étude de ces définitions a

révélé des difficultés, les mathématiciens ont été assez désemparés.

Pour les courbes, cette étude a été faite surtout par L. Scheefïer
et par C. Jordan î..; la limite qui sert à la définition de la longueur
existe bien toujours, en quelque sorte, mais elle peut être infinie:
il y a des courbes dont tout arc, si petit soit-il, n'a pas de longueur
ou, si l'on veut, a une longueur infinie. Résultat paradoxal en
ce qu'il est contraire à l'emploi usuel du mot « petit » et qui,
par cela même, a obligé à préciser et à discerner des notions
jusque là confondues, mais résultat qui ne pouvait être une
catastrophe comme l'avait été, au jugement des géomètres
pythagoriciens pour qui les fractions étaient les seuls nombres,
la découverte analogue d'un segment n'ayant pas pour eux de

longueur. La difficulté, si difficulté il y a, ne se présente en effet
pas avec les courbes simples, on pouvait donc toujours, suivant
un procédé pas très recommandable mais souvent employé,
déclarer que les courbes sans longueur n'étaient pas de vraies
courbes, les mettre, au moins momentanément, en dehors des

mathématiques, c'est-à-dire remettre leur étude à plus tard,
alors qu'il avait été impossible de mettre la diagonale du carré
en dehors des mathématiques.

1 K1I('S on(< conduit celui-ci à la notion capitale de l'onction à variation bornée,
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Pour les surfaces, on arriva à un résultat plus troublant.
Schwarz avait eu l'occasion de réfléchir à la notion d'aire d'une
surface pour ses recherches sur le corps de volume maximum
parmi tous ceux d'aire donnée; dans une lettre à Genocchi, il
montra que les aires des surfaces polyédrales inscrites dans une
surface donnée n'ont aucune limite. Et cela quelle que simple

que soit la surface, même quand il s'agit d'un cylindre de

révolution. L'exemple de Schwarz se présente si naturellement, quand
on réfléchit à la question, que Peano l'obtenait de son côté à peu
près simultanément et qu'il a été retrouvé et publié depuis par
d'autres Géomètres: Divisons la surface latérale d'un cylindre
de révolution en m parties égales par des plans de section droite ;

dans chaque circonférence section inscrivons un polygone
régulier convexe de n côtés, les demi-plans passant par l'axe

et les sommets d'un de ces polygones tournant de quand on

passe d'une section droite à la suivante. Puis, considérons la
surface polyédrale inscrite formée des triangles isocèles dont les

bases sont les côtés de ces polygones et dont les sommets sont
sommets des polygones inscrits dans les sections droites voisines.

Il est clair qu'on a là une surface aussi approchée qu'on le veut du

cylindre dès que n augmente indéfiniment; il est clair aussi que
la limite de l'aire de cette surface polyédrale dépend, elle, de la

limite de —. On peut donc faire en sorte que cette limite d'aire
m 1

n'existe pas, on peut aussi faire en sorte qu'elle existe et ait une
valeur ou une autre.

65. — La définition géométrique de l'aire des surfaces s'écroulait;

ce n'était pas une catastrophe puisque tout le monde était

d'accord sur ce point: l'aire est JJ\/i -f- p2 -f q2dxdy, au

moins dans les cas simples. On avait là une définition analytique,,

il n'y avait qu'à en donner des interprétations géométriques et

même on possédait déjà de telles interprétations. Avant que soit

connu l'exemple de Schwarz qui montra l'impossibilité de

conserver la définition alors admise, les difficultés de cette
définition s'étaient révélées à tous ceux qui avaient essayé de la

mettre en oeuvre rigoureusement; certains avaient imagine de
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restreindre la famille des polyèdres inscrits de façon à pouvoir
prouver l'existence d'une limite de leurs aires. Ainsi: l'aire d'une
surface est la limite des aires de surfaces polyédrales inscrites
dans la surface, quand leurs faces deviennent infiniment petites
dans toutes les dimensions et de façon que les angles de ces faces ne

tendent pas vers zéro, disaient les uns, de façon que les angles que

font les faces avec la surface tendent vers zéro, disaient d'autres.
Seulement ces restrictions sont artificielles ; rien ne prouve que

d'autres restrictions simples ne donneraient pas une autre
limite; on ne sait laquelle de toutes ces limites correspond le

mieux à la notion physique d'aire. De plus, les mathématiciens
désiraient une définition de l'aire ayant une étendue d'application
quelque peu comparable à celle de la définition de la longueur
étudiée par Scheeffer et Jordan. On imagina donc, Peano et
H ermite en particulier, d'autres définitions, mais si éloignées de

la forme primitive que l'aire n'y apparaît même plus comme une
limite d'aires de polyèdres

Je montrerai dans un moment qu'on avait, en réalité, tous les

faits mathématiques qui permettaient de comprendre l'accord
entre la notion physique d'aire et l'expression analytique et
d'autre part de satisfaire au besoin de généralité des Géomètres;
cela ne fut compris que peu à peu.

66« — Si l'on n'avait pas été hypnotisé par le mot inscrit, si
l'on n'avait pas oublié qu'inscrit n'avait été choisi que comme
l'un des moyens d'arriver à approché on se serait aperçu que la
difficulté rencontrée pour les aires existait également pour les

courbes; or la différence entre courbes et surfaces était précisément

ce qui choquait le plus. On me permettra de faire appel
ici à mes souvenirs.

Quant j'étais écolier on admettait, en France, je l'ai déjà dit,
que l'on pouvait évaluer longueurs, aires et volumes par des

passages à la limite. Bientôt des doutes allaient se manifester
dans les manuels; c'est que les étudiants auxquels II er mite
avait, dans son cours d'Analyse, fait connaître l'objection de
Schwarz étaient devenus des maîtres à leur tour. Au reste, tout
prédisposait alors chez nous à l'analyse critique des notions: les
recherches sur les fonctions de variable réelle et sur les ensembles
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qu'on commençait à prendre en considération, l'enseignement
de Tannery qui avait éveillé chez beaucoup de ses élèves des

soucis de compréhension complète ou tout au moins de précision
verbale. Alors on se mit à douter, parfois sans bien savoir de quoi
on doutait; on confondit, par exemple, avec un raisonnement

sur les limites, la détermination de l'aire du cercle à l'aide de

celles des polygones qu'il contient ou qui le contiennent, §42.
Mais, auparavant, quand j'étais écolier, maîtres et élèves étaient
satisfaits du raisonnement par passage à la limite.

Pourtant ce raisonnement cessa de me satisfaire quand des

camarades m'apprirent, vers ma quinzième année, que dans un
triangle un côté est égal à la somme des deux autres et que n 2.

Soit ABC un triangle, soient D, E, F les milieux de BA, BC, CÂ,
la ligne brisée BDEFC a pour longueur AB + AC; en
recommençant de même sur les triangles DBE, FEC on arrive à une

ligne brisée de même longueur à huit côtés, etc. Or ces lignes
brisées ont BC pour limite, donc la limite de leurs longueurs,
c'est-à-dire leur longueur commune AB + AC est égale à BC.

Le raisonnement relatif à n est analogue.
Rien, absolument rien ne distingue ceci des raisonnements

qu'on nous faisait pour évaluer la longueur et l'aire d'une
circonférence, la surface et le volume du cylindre, du cône et de la

sphère. Cette constatation a été pour moi pleine d'enseignements.

Au reste, tout paradoxe est particulièrement instructif; l'examen

critique de paradoxes, le redressement de raisonnements
erronés devraient, à mon avis, être des exercices normaux, et

fréquemment répétés, dans les classes de l'Enseignement
secondaire.

L'exemple précédent montre que les passages à la limite dans

les questions de longueur, d'aire, de volume ne peuvent être faits
sans légitimation et il suffit, tout aussi bien que celui de Schwarz,

pour éveiller tous les soupçons.

67. — Regardons mieux cet exemple; nos lignes brisées en
dents de scie, qui tendent vers BC ont pour mesure AB +AC,
c'est-à-dire n'importe quel nombre supérieur à BC. Donc, si l'on
a une suite de lignes polygonales tendant vers une courbe C et



SUR LA MESURE DES GRANDEURS 185

dont les longueurs ont une limite en opérant sur chaque côté
de ces lignes comme sur BC on en déduit de nouvelles lignes dont
le limite des longueurs sera tel nombre qui nous plaira, supérieur
à C. Les limites des longueurs de lignes polygonales tendant vers une
courbe £ sont tous les nombres supérieurs à un nombre £0 et ce
nombre C0. C'est pourquoi, quand j'ai eu besoin d'une définition
à large champ d'application de la longueur et de l'aire, j'ai
proposé de prendre C0 pour la longueur et le nombre analogue
pour l'aire; j'y étais même en quelque sorte obligé, puisque £0
est le seul nombre qui se distingue des autres, au premier abord
du moins, parmi toutes les limites de longueurs. Il suffit à déterminer

l'ensemble des limites de longueurs, il est le compte
rendu complet des résultats de la recherche de ces limites.

Je n'ai pas ici à examiner ces définitions générales, elles ne
viennent qu après que les notions physiques de longueur et
d aire ont été raccordées avec les définitions analytiques et c'est
ce raccord qui doit nous occuper, puisqu'ici notre but est
pédagogique.

6^* ' La longueur d'une courbe matérielle se détermine
expéi imentalement. Pour qu'un nombre soit déterminable
expérimentalement il faut que, si les données varient peu, le
nombre lui-même varie peu, car on ne sait jamais utiliser
exactement les données mais seulement des données voisines.
Il faut donc que le nombre soit en quelque manière déterminé de
façon continue par les données.

Essayons de préciser cela. La détermination expérimentale se
fait suivant une certaine technique qui, s'il s'agit de notions qui
peuvent être précisées en notions géométriques, comportera la
mise en place d'appareils, la mesure de telles distances, de tels
angles, etc., il faudra que de petites erreurs sur ces positions et
ces mesures n'entraînent qu'une faible variation du résultat. La
définition géométrique s'obtiendra alors en énonçant la
technique, mais

^

en donnant aux opérations qu'elle utilise le
caractère précis et absolu de la géométrie. Si une définition
géométrique ne fournit pas un nombre variant continûment avec
les données, c'est qu'elle n'est pas en accord avec le procédé
expérimental de mesure; elle donnera peut-être, dans certains cas,

I/KnseiVneinenl mafJiém., liUne année, 19;U. 0
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la traduction de là notion pratique, mais il faudra le prouver.
C'est une mauvaise définition.

Examinons de ce point de vue la définition classique de la
longueur; elle ordonne de prendre un polygone inscrit dans la
courbe et d'en augmenter indéfiniment le nombre des côtés,
c'est-à-dire de prendre des points sur la courbe en nombre
croissant. Or, si l'on essaie d'appliquer à une courbe, ou à un
segment BC, cette technique, on aura des lignes polygonales en
dents de scie à sommets voisins de la courbe, ou de BC. Plus on

augmentera le nombre des points, plus l'erreur commise

s'accroîtra; la technique expérimentale comporte certainement
des prescriptions, peut-être transmises seulement par une
tradition non exprimée, limitant le nombre des sommets des

polygones d'après la limite supérieure de l'erreur qu'on peut
commettre sur la position de ces sommets. La définition classique est
donc mauvaise, c'est-à-dire que ce ne peut être elle qui traduise
vraiment la technique et qui rende évident l'accord entre la
théorie et la pratique; pour obtenir une bonne définition il nous
faut examiner mieux la technique expérimentale.

La difficulté c'est que les physiciens n'ont jamais eu à effectuer,
directement du moins, des mesures précises de longueurs de

courbes et que la technique est restée grossière. On ne trouve de

mesures précises qu'en géodésie, mais il s'agit alors de longueurs
de segments; les mesures de route sont peut-être ce qui est le

moins imprécis ensuite. Examinons le travail d'un arpenteur
mesurant une route; s'il mettait les deux extrémités de sa

chaîne sur les deux bords différents de la route nous serions tous
d'accord pour dire qu'il n'opère pas correctement. Pourquoi

A cette question nous commencerions très probablement par
répondre qu'il s'agit d'opérer non pas sur la bande qu'est la

route, mais sur la courbe, axe de la route. Quel est cet axe,
comment l'obtenir Si, par exemple, il faut prendre les milieux
des perpendiculaires aux deux bords, il s'agit là d'une opération
qui présuppose que l'on connaît pratiquement la direction de la
route; la technique sera basée sur la connaissance pratique de la
route en position et direction. De quelque façon que l'on cherche

à préciser quelle est la bonne manière d'opérer pour un arpenteur,

on arrive à cette même conclusion.
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Comment opère un géodésien pour mesurer le segment BC
11 s'efforce de préciser au mieux les points B et C; puis, s'il veut
diviser BC par un point D il s'assure que D est sur BC par
l'accord des directions BD et DC. Ainsi, sauf en ce qui concerne
B et C, les géodésiens obtiennent les positions des points par des
déterminations de directions de façon précisément à éviter de
considérer BC comme la limite de polygones en dents de scie.

Retenons de tout cela qu'on mesure pratiquement une courbe
en utilisant la connaissance de ses points et de ses tangentes et
qu'on le fait à l'aide de polygones dont les points sont approchés
de ceux de la courbe et dont les côtés sont approchés des
tangentes à la courbe. Le mode pratique de mesure d'une courbe
sera expliqué si l'on démontre que ces polygones, approchés en
position et en direction, ont des longueurs tendant vers une
limite quand 1 approximation croit indéfiniment 5 la longueur sera
alors définie de façon logique comme la valeur de cette limite.

Or, cette démonstration est immédiate, de même que celle
analogue relative aux aires, d'où les définitions des longueurs
et des an es que nous adopterons. Nous voici donc revenus à la
conception initiale d'Archimède qui utilisait les courbes et
surfaces sous leur double aspect dualistique et à des définitions
qui avaient été proposées, § 65, avant même qu'on ait reconnu
que les polygones ou polyèdres) approchés ont des longueurs
(ou des aires) qui ne tendent vers aucune limite. La longueur
que nous définissons varie infiniment peu quand la courbe
mesurée varie infiniment peu en position et direction. Positions
des points de la courbe, directions de ses tangentes sont les
données dont la longueur dépend de façon continue.

69, — Les considérations qui viennent de nous conduire à ces
conclusions ne sont pas celles par lesquelles les Géomètres y sont,
parvenus; même, les idées qui nous ont guidés semblent en
contradiction avec celles qui sont habituelles; nous admettons
qu une définition est assujettie à des conditions, qu'il y a des
definitions bonnes et des définitions mauvaises, alors qu'on
répète couramment «les définitions sont libres». Je n'ai jamais
compris cette phrase; je ne sais ni de quelle liberté il s'agit, ni
dans quel sens on prend le mot définition. S'il a le sens de dé'no-
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mination, chacun, en effet, est libre d'adopter le langage qui lui
plaît, au risque parfois de rester incompris. S'il a le sens de

détermination et si l'on prétend seulement que chacun peut
prendre pour sujet de ses méditations ce qui lui plaît, certes;
mais sous peine, peut-être, d'être seul à s'intéresser à ce sujet
et de faire un effort inutile au développement de la science.

Quoiqu'il en soit, pour nous qui regardons les mathématiques
comme une science appliquée, les définitions ne sont pas libres;
tout au moins certaines ne sont pas libres, celles qui doivent
préciser les notions pratiques. Pour celles-là l'obligation de non
contradiction, qui est sous-entendue dans l'adage cité, n'est pas
la seule condition à remplir. Elle est au contraire la seule si les

mathématiques ne sont que de la logique.
Le chemin qu'ont suivi les Géomètres pour arriver aux

définitions du § 68 est tout différent de celui que nous avons
parcouru. Ils ne se préoccupaient nullement de l'accord entre les

mesures physiques et les définitions par les deux intégrales
classiques; persuadés qu'ils étaient de cet accord, au moins
dans les cas simples, ils n'en recherchaient pas les raisons, mais
ils étudiaient le nombre longueur attaché à une courbe, fonction
d'une courbe, le nombre aire attaché à une surface, fonction
d'une surface. On a naturellement cherché pour ce nouveau genre
de fonctions, pour ce nouveau genre de dépendances, ce que
devenait la notion de continuité.

Or, prenons pour simplifier le cas de la courbe plane y f (#),
et d'un nombre attaché à cette courbe, il arrive que certains de

ces nombres varient peu dès que f(x) varie peu uniformément.
Par exemple, si on a I / — /i I < s quel que soit x, on a:

f f(x)d(x) — J f1(x)d{x)

f f(x)dx est donc un tel nombre.
a

D'autres, par exemple

< £ I b — a |

b

f v72(®) •+ f'2(x)dx *

a
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varient peu dès que f(x), d'une part, et /'(#), d'autre part,
varient toutes deux uniformément peu, mais il ne suffirait pas
que la première condition soit seule réalisée. Pour d'autres
encore il suffit que /(#), f/(x)1 f" (x) varient toutes trois
uniformément peu. Les géomètres ont ainsi été conduits à distinguer
pour les nouvelles fonctions qu'on appelle des fonctionnelles,
divers modes de continuité appelés continuité d'ordre zéro,
d'ordre 1, d'ordre 2, etc.

La longueur d'une courbe, l'aire d'une surface définies par des

intégrales où ne figurent que des dérivées premières sont les

types mêmes des fonctionnelles ayant la continuité d'ordre 1

et pas la continuité d'ordre zéro. Et ce fait, d'importance
capitale, expliquait l'échec de l'ancienne définition de l'aire et le
succès de la définition par polyèdres inscrits et à faces peu inclinées

sur les plans tangents de la surface. En même temps cela
montrait l'inutilité de la considération de polyèdres inscrits, il
suffit d'avoir des polyèdres voisins; bref on est conduit aux
définitions du paragraphe précédent.

On s'explique aussi divers faits qu'on a pu remarquer: La
longueur peut être définie par la considération des polygones
inscrits, c'est la méthode de Scheefîer et de Jordan, on ne peut
définir l'aire de façon analogue, c'est l'objection de Schwarz.
C'est qu'en effet si C est une courbe à tangentes continues, si P
est un polygone inscrit dans C et si AB est un des côtés de P,
AB fait avec les tangentes à C aux points de l'arc AB de C un
angle inférieur au plus grand angle que font entre elles les

tangentes aux points de l'arc AB (d'après le théorème des
accroissements finis si la courbe est plane, d'après une
conséquence de ce théorème si elle est gauche). Ainsi P est indéfiniment

approché de C, en direction comme en position, si le nombre
des sommets de P croît indéfiniment sur tout arc de C.

Au contraire, multiplier dans toute partie d'une surface les
sommets d'un polyèdre inscrit dans cette surface, n'augmente
l'approximation de la surface et du polyèdre qu'en position et
non en direction. Tandis que si le polyèdre est à faces triangulaires
et si l'on assujettit les angles de ces faces à ne pas descendre
au-dessous d'une certaine limite, en augmentant le nombre des
sommets on assure l'approximation en position et direction;
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cela se vérifie facilement. Ainsi s'explique une définition de

l'aire signalée au § 65.

On a noté aussi qu'un géodésien, voulant mesurer BC, s'assure

de la position de B et de C, c'est-à-dire cherche à bien distinguer
le segment BC des segments peu différents, mais que, par la suite,

ce qu'il cherche à bien préciser, ce sont des directions. C'est

qu'en effet pour que f(x) et f±(x) diffèrent très peu dans (a, b)r

en même temps que f{x) et /^(#), il suffit que cette seconde

condition soit réalisée et que f(a) diffère très peu de f-^a).

Tout nous confirme dans cette conviction que les notions
physiques de longueur et d'aire sont relatives à des courbes lieux de

points et enveloppes de droites, à des surfaces lieux de points
et enveloppes de plans et, comprenant mieux ces notions, nous

pouvons nous proposer de les exposer.

70. — Un premier exposé commencerait par l'indication de

quelques problèmes pratiques amenant à des mesures de

longueurs et permettant par suite de concevoir que les hommes

ont été conduits à cette notion physique: longueur de la barrière
nécessaire pour entourer un champ, poids de métal nécessaire

à la fabrication d'une rampe d'escalier, nombre de tombereaux
de cailloux nécessaires au rechargement d'une route. On y
joindrait quelques remarques sur la façon dont on fait pratiquement
ces mesures et, comme conclusions, on poserait la définition

logique. Les courbes dont nous nous occuperons ont des

tangentes qui varient d'une façon continue avec le point de contact;

pour une telle courbe nous dirons qu'un polygone est approché

en position de moins de z et en direction de moins de y) si on peut
établir entre les points de la courbe et ceux du polygone une

correspondance univoque dans les deux sens et continue telle

que la distance de deux points correspondants est inférieure à s

et que les tangentes en ces deux points homologues forment

entre elles un angle inférieur à tj. Par angle des tangentes, nous

entendons l'angle des tangentes dirigées; par tangente en un

point d'un polygone nous entendons le côté passant par ce

point ou, s'il s'agit d'un sommet, chacun des deux côtés qui
aboutissent à ce point. Nous appelons longueur de la courbe

la limite vers laquelle tendent les longueurs des polygones
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approchés de la courbe quand s et vj tendent simultanément

vers zéro.
Cette définition exige la démonstration de l'existence de la

limite. Avant de donner cette preuve, je fais remarquer que les

précisions de langage que je viens de prendre seraient inutiles,
et même nuisibles, s'il s'agissait d'un exposé pour de jeunes
élèves. Dans ce cas, on édulcorerait la définition précédente en

faisant comprendre, sans la préciser en mots, la notion de polygone

approché en position et direction et on admettrait l'existence

de la limite, en spécifiant qu'on l'admet. Puis on appliquerait

la définition à la circonférence. Pour cela, on remarquerait
que les polygones réguliers inscrits [ou si l'on veut les polygones
réguliers circonscrits, ou les deux sortes de polygones, si l'on
veut] sont approchés en position et direction et, puisqu'entre
l'aire A d'un tel polygone et la longueur L de son périmètre on
a la relation:

1
A -L x apothème

on en déduirait:

aire.du cercle — ^ X longueur de la circonférence

Aucun changement essentiel avec ce que l'on fait habituellement,

on se bornerait à préparer l'étude plus complète à faire
ultérieurement quand les élèves seront plus mûrs et auront plus
de temps à consacrer aux mathématiques.

71. — Ceci dit, démontrons l'existence de la limite. Soit
ABC L un polygone P inscrit dans la courbe T et allant de

l'origine A de cette courbe à son extrémité. V est partagée en
arcs AB, BC, ...; soit rj0 le maximum de l'angle que font deux
tangentes à T en deux points d'un même arc partiel AB, BC,
L'angle y)0 tend vers zéro quand le polygone inscrit varie en se

rapprochant de T.
Considérons un polygone 11 approché de P et soient a, ß, X

les points de ce polygone correspondant à A, B, L. Prenons un
arc partiel de T, soit CD, par exemple, et la portion y§
correspondante de B. y S est une ligne polygonale. Chaque côté fait
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avec certaines tangentes à l'are CD un angle inférieur à 73, si II est

approché en position à moins de s et en direction à moins de 73.

Donc ce côté fait avec la corde CD un angle inférieur à 73 + Vo-

Supposons P et FI assez approchés de T pour que 73 + 7)0 soit

inférieur à-^. Alors les projections des côtés de y8 sur CD sont

toutes de même sens et on a, puisque les projections de y et de 8

sont à moins de s des points C et D.

n0^1 a ^ ^ CD 4" 2 s CD
CD — 2s ^ longueur de yo ^ ——< —— p + 4s

cos (7] + 730) cos (7] + 7)0)

D'où

Long de P — 2ras ^ longueur de II < L°ng de P
ttnz

COS (7) + 7)0)

si n est le nombre des côtés de P.

Les nombres n, 7)0 et Long de P sont indépendants de s et 73,

donc les longueurs des n sont bornées et celles relatives aux
mêmes s, 73 sont toutes comprises entre les limites précédentes
qui diffèrent de

Long de P [ T^—i— il + 6rasB
L ÇOS (73 + 7}0) J

quantité qui, pour s et 73 tendant vers zéro, a pour limite

1
Long de P

[_COS 7)0

ceci ne dépend que de P et, en prenant P de manière que le

crochet soit petit, on aura pour cette expression une valeur
aussi voisine de zéro qu'on le voudra ear les polygones P sont
eux-mêmes des polygones 11, § 69, et par suite la longueur de P

est bornée.
Donc les longueurs des polygones II diffèrent les unes des

autres d'aussi peu que l'on veut dès que s et 73 sont assez petits*
en d'autres termes la limite de la longueur des ÏÏ existe et elle

est aussi celle de la longueur des P.

72. — La définition ayant été ainsi légitimée on la traduit, à la

façon classique, en formule du calcul intégral. Supposons que
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T soit définie en coordonnées rectangulaires par x x(t),
H y (/;), z — z(t\ les trois fonctions x(t), y(t), z(t) étant
continues et à dérivées premières continues dans l'intervalle
(L, T) que l'on considère. De plus on suppose que x'(t), y\t),z' (t)
ne s'annulent pas à la fois. Alors dans (t0l T) on aura:

i x' (t) I < M >
j y' (t) I < M | z (î) 1 < M

et
%/x'(t)* + y' (t)2 + z'(t)2 > l

l et M étant deux nombres positifs convenablement choisis.
La longueur d'un polygone P, dont les sommets sont donnés

par *0, t2, tn --- T, est

/(P) [x('i+i) — x(h)J+ P (h+i) — + 3 Vf >

f-0

quantité qui s'écrit encore

/(p) 2 (tf+i -y v'^Kf + 7Nf + Pv
al, bn ci étant convenablement choisis dans ti+i). Or la
différence

LP) • (h4-1 -— lj) \/L (lj) + y' (h) + z' (h)2

s'écrit encore:

W A ~ X' W]+ [TWiI2 — + f>Ty —
^Pi+i —'i) x " —- -_r±r, -

/ ~-y ~
Vx'(ai)"+ Î/'(&f) + ?Vr + v «'(y' + A + *'<yä

Si, dans chaque intervalle varient
au plus de s,lescrochets placés au numérateur de l'expression
précédente sont chacun inférieurs à 2Ms; le dénominateur est
supérieur à 21,doncla différence considérée est majorée par

"VU ,1 6MS XMe
i — y x ~~(1 — 0-y-
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quantité qui tend vers zéro avec s. La limite de l(P) est donc celle
de

2 ^ \Z*'W+ y%)" + -

c'est-à-dire
T

J Vâ/(i)2 + tfjt)2 + i2 dt
to

73. — La seule modification apportée pour le cas des longueurs
consiste donc dans l'énonciation d'une définition et dans la
démonstration que cette définition est logiquement acceptable.
Ceci suffit pour mieux préparer l'étude des aires, étude dans

laquelle va apparaître une nouvelle difficulté, généralisation en

quelque sorte de celle rencontrée dans l'étude de l'aire des

domaines plan&: ce n'est qu'à certains domaines plans que nous
avons pu attribuer une aire.

Etant donnée une surface T ayant en chaque point un plan
tangent variant de façon continue avec son point de contact,
nous disons qu'un polyèdre II est approché en position et direction

à moins de s et 73 près, si l'on peut établir entre T et II une
correspondance ponctuelle biunivoque et bicontinue telle que
deux points correspondants de V et de II sont distants de moins
de s et que les plans tangents en ces deux points font entre eux
un angle inférieur à y). Par plan tangent en un point de II on
entend le ou les plans des faces de II auxquelles appartient ce

point.
Etant donnée une portion A de T, si l'aire de la portion

correspondante de II tend vers une limite A quand on fait varier II
de manière que £ et 73 tendent vers zéro, on dit que A a une
aire égale au nombre A.

S'adressant à de jeunes élèves, on simplifierait l'énoncé de

cette définition et on admettrait pour les surfaces T et les
domaines A dont on Va s'occupçr, l'existence des polyèdres II
et de la limite A. Puis on passerait aux applications à la surface,
latérale du cylindre et du cône de révolution, de la sphère et de

la zone ou du fuseau de zone. T

Pour le cylindre ou le cône de révolution, il suffirait de faire
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remarquer que les prismes réguliers ou les pyramides régulières,
qui sont inscrits dans le cylindre ou le cône, sont approchés
en position et en direction.

Pour les domaines sphériques, pour un fuseau de la zone

engendrée par l'arc de circonférence AB en tournant autour de-

son diamètre X X, par exemple, on remarquera que si on divise
AB en m parties égales parles points G, D,... K, que si l'on considère

les circonférences engendrées par A, G, D, K, B et que,
sur elles, on marque les points Ax, A2, An, G1? C2, C>7 Bn
où elles rencontrent les demi-plans passant par XX' et divisant
le fuseau en n parties égales, on a les sommets d'un polyèdre II
approché en position et direction de la surface considérée.

Polyèdre dont les faces sont des trapèzes tels que Di+1
et éventuellement des triangles, et pour lequel s et y) tendent
vers zéro quand m et n augmentent indéfiniment de façon
quelconque. Or, quand on augmente assez ion a un nombre aussi

peu différent que l'on veut de la somme des aires engendrées

par les côtés de AG KB; d'où le calcul classique.
On peut aussi, puisque le chapitre des volumes précède celui

des aires de domaines non plans, revenir à une méthode jadis
employée en disant: soit à trouver l'aire d'un fuseau de la zone
découpée dans un cylindre ou cône de révolution par deux plans
Pi, P2 perpendiculaires à l'axe ou dans une sphère par deux
plans parallèles Pl7 P2. Décomposons cette zone en n zones égales

par des plans passant par son axe; une zone partielle est ainsi
ABB'A'. Dans le cas du cylindre ou du cône AB et A'B' sont
deux segments égaux de génératrices, nous menons les plans
tangents le long de ces génératrices; ces plans se coupent suivant
une droite coupée en a et ß par Px et P2. Nous remplacerons la
petite zone ABB'A' par les deux rectangles ou trapèzes ABßa,
aßB'A'. La surface polvédrale ainsi obtenue est, quand n croît,
indéfiniment approchée en position et direction si l'on établit la
correspondance entre surface et polyèdre à l'aide de rayons des

parallèles du cône ou du cylindre.
Dans le cas de la sphère; on subdivisera à nouveau la zone

ABB'A' par des plans parallèles à P1} P2 et découpant AB en
n arcs égaux. Si CDEF est une des zones partielles ainsi obtenue,
on mènera les plans tangents à la sphère en G, D, E, F puis, du
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centre 0 de la sphère, on projettera celle-ci sur les plans tangents
en prenant pour projection d'un point M de la sphère celui des

points de rencontre avec les plans tangents indiqués qui est le

plus voisin de 0. On a ainsi une surface polyédrale qui, quand n
croît, est infiniment approchée en position et direction.

Or, dans les trois cas, si 0 est un point pris sur l'axe du cylindre
ou cône ou est le centre de la sphère, les points des segments
joignant 0 aux points de la surface polyédrale sont ceux d'un
corps formé de pyramides et dont le volume ç est lié à l'aire s

de la surface polyédrale et à la distance R de 0 aux plans
tangents au cylindre, cône ou à la sphère par la formule :

l
v -s.R.

Pour n augmentant indéfiniment, v tend vers le volume V
du corps formé par les points des segments joignant 0 aux points
du fuseau envisagé, donc la surface S de ce fuseau est donnée par

V-JS.R.

74. — Dans cette formule V est un nombre que nous avons
appris à calculer; son calcul se présentera sous des aspects différents

suivant ce qu'on aura dit dans le chapitre des volumes mais
il restera toujours essentiellement le même. Pédagogiquement, il
y aurait avantage à ne faire effectivement le calcul de V (donc
du volume de la sphère) qu'après avoir été conduit au corps
que nous venons de considérer; le calcul du volume balayé par
un triangle en tournant deviendrait ainsi naturel et ce serait
d'ailleurs à ce calcul qu'on réduirait l'étude de ce qu'on désigne
souvent par le terme étrange de « volumes tournants ».

Si l'on abrégeait quelque peu cette partie du cours, si surtout
on soulageait la mémoire des élèves en ne les obligeant pas à

savoir par cœur des formules qui n'ont jamais servi qu'à passer
des examens, s'il était permis aux élèves d'ignorer, comme le fait
tout mathématicien, ce que c'est qu'un segment sphérique et ce

que c'est qu'un anneau sphérique, on pourrait peut-être trouver
le temps de traiter de l'aire du triangle sphérique et par suite des
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aires des parties cle sphères limitées par des arcs de cercles,

grands ou petits.
Il est un peu triste de constater que des jeunes gens avant

terminé le cycle des études leur conférant les grades nécessaires

pour enseigner dans les classes secondaires puissent ne jamais
avoir entendu parler du magnifique théorème d'Albert Girard.
Quand on le leur fait connaître, ils sont toujours émerveillés de la
beauté du résultat et stupéfaits qu'on ne leur ait pas parlé
plus tôt d'une propriété indispensable pour bien comprendre le

postulatum d'Euclide.
La marche suivie ici conduit à modifier très légèrement la

présentation habituelle du théorème d'Albert Girard, en parlant
d'abord de volumes.

Considérons trois plans diamétraux d'une sphère ne passant
pas par un même diamètre, ils divisent la sphère en huit trièdres
sphériques ayant pour bases huit triangles sphériques deux à
deux opposés par le sommet. Les volumes de ces trièdres peuvent
s'obtenir à l'aide de corps, tels que celui dont au paragraphe
précédent le volume a été désigné par e, constitués par des

pyramides de sommets 0 et dont les plans de base sont tangents
à la sphère. Pour de tels corps on a: v R, donc entre l'aire S

d'un triangle sphérique et le volume V du trièdre sphérique
correspondant on a:

V ±S.R

Donc deux triangles sphériques symétriques par rapport au
centre de la sphère ont même aire car les deux trièdres
symétriques correspondants sont limites de corps polyédriques
symétriques, donc de même volume. Ceci étant, nous avons donc
quatre volumes en général différents de trièdres sphériques V,
vn V2, V3 et quatre aires en général différentes S, Sl5 S2, S3.
En remarquant que les trièdres se groupent deux à deux pour
former des dièdres sphériques,on a, si A, B, C sont les trois angles
dièdres du trièdre découpant dans la sphère le volume Y,

y+V, V + V,_J„R..£,
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d'où

V |R3(A + B + C

S R2(A + B • + G — -)

75. — Revenons maintenant à la légitimation logique de la
définition. L'exposé qui suit diffère sensiblement de celui du
§ 71 ; c'est que maintenant intervient et la nature de là surface F
portant le domaine A et la nature de la frontière de A. Les
précautions à prendre, les hypothèses à faire s'expriment plus
facilement dans le langage analytique, c'est un exposé qui
pourrait convenir dans un cours de calcul intégral que nous
allons donner.

Soit une surface F donnée en coordonnées rectangulaires par
trois fonctions x(u, c), y(u, c), z(u, c). Nous supposerons
x, ?/, 2 fonctions continues de u et ç ainsi que leurs dérivées
partielles premières et de plus nous admettrons que la représentation

paramétrique n'est singulière en aucun point, c'est-à-dire
que

{xuVv xvVu) [yuzv Vvzu) "h (zuxv zvxu)

ne s'annulle en aucun point. Dans ces conditions F a en tout point
un plan tangent variant de façon continue avec le point de
contact.

Nous supposerons le domaine A obtenu en faisant varier le
point de coordonnées rectangulaires w, c dans un domaine S

appartenant à la famille de ceux auxquels nous avons appris à

attacher une aire, c'est-à-dire que la frontière de S peut être
enfermée dans des polygones d'aire totale aussi petite qu'on le

veut, § 28. Partageons le plan des (w, c) en carrés par des parallèles

aux axes équidistantes ; soit h l'écartement de deux
parallèles contigiies. Partageons chaque carré par la diagonale
parallèle à u + c 0. Soit abc un triangle ainsi obtenu; à

chaque point m de abc correspond un point M de F et ces points
forment sur F un triangle curviligne ABC. A m faisons Corres-
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pondre de plus le point M' donné par

199

«i + [ixs + y *yty + ß^B + yy,
x, + ß + y

X
a + ß + y

a5A + ß-"B +
a + ß +

SI les uet v de m sont donnés par

s
œ 11

a + ß«'6 + TM,
"œ + ß"+f"

a(a + ßpb + Te,

a ^ J3 jm|- y

Ce point décrit le triangle rectiligne ABC quand m décrit
et il est clair que la correspondance entre M et M' est univoque
et continue dans les deux cas. Les points M' décrivent ainsi une
surface polyédrale P formée de triangles et inscrite dans F.

A A correspond sur P un domaine A' qui est constitué par
des triangles ABC et par des parties de tels triangles. A' n'est
donc pas à proprement parler une surface polyédrale; il serait
facile de modifier légèrement A' de façon à avoir une surface
polyédrale au sens strict du mot mais il vaut mieux élargir le
sens de ce mot et entendre par là une surface (c'est-à-dire un lieu
de points en correspondance continue avec un domaine plan)
constituée de parties de plans.

Ces parties de plans doivent avoir une aire pour qu'on puisse
parler de 1 aire de la surface polyédrale définie comme la somme
des aires de ces parties planes. Cette condition est bien réalisée
par A' car la correspondance entre abc et le triangle rectiligne
ABC est une transformation dans laquelle chaque polygone du
plan abc et d'aire cl devient un polygone du plan ABC avant

o i r>p APP
pour aire cl x ahv ; d'où il résulte tout de suite,
comme au § 43, qu'à toute partie de abc ayant l'aire cl correspond
I me partie de ABC ayant une aire et une aire égale à Cl x

aire ABG

Montrons maintenant que les nombres s et qui caractérisent
le degré d'approximation de P par P (ou de A par A') en position
et en direction tendent vers zéro avec h.

Quand m se meut dans abc,u et e varient de h au plus donc
*, y, z varient d'une quantité q(auplus, qui tend vers zéro
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avec A. Donc la distance d'un point M du triangle curviligne
ABC au point A, et la distance d'un point M' du triangle recti-
ligne ABC au point A, sont au plus q (A). Et la distance
MM' est au plus 2 -y/3.q (A); elle tend vers zéro avec A.

Chacune des dérivées partielles x'u, xvl..., zv reste inférieure
à un nombre fixe K dans S et varie de moins de q^h) dans
abc, chacune des trois expressions telles que xuy'v — xvy'u varie
donc au plus de 4Kgq(A) + 2q1(h)2 q2(h) quand on y prend
les dérivées pour un point ou un autre de aAc, point qui peut
différer non seulement d'une expression à une autre, mais aussi
dans chaque expression d'une dérivée à une autre. De sorte que
les divers plans d'équation

-x(44 — 44) + Y(44 — 44) + z(44 — 44) const- -

font entre eux des angles V tels que

^ i^uzv Vvzu) (yuzv yvzu)

(vu zv yv zu) x ^ zv yv zu)

9
^\_{yuzv yvziù (zuxv zvxu) {y<uzv yvzu){zuxv

in2v — ;—; —
s (yuzv — y'vzuT x s {y'uzv — y'vzuY

Or, dans cette expression, le dénominateur surpasse un
nombre fixe, car la représentation est régulière, et chacun
des trois crochets figurant au numérateur est majoré par
4 2K2. q2(h) + 2g2(A)2, donc la borne supérieure vj de V tend
vers zéro avec A. Or parmi les plans considérés se trouvent d'une

part tous les plans tangents de T aux points du trianglç curviligne
ABC et d'autre part le plan ABC, car l'équation de celui-ci est,
si ab et ac sont respectivement parallèles aux axes ç 0, u =- 0

et si a est de coordonnées m0, c0, d'où pour b et c respectivement
u0 ± A, c0; m0, ±

cos Y

d'où

0

X — x{u0, p0)

x(u0±h, v0) — x(u0, ç0)

x{u0, c0 ± h) — x (u0, e0)

Y — y(u0, v0)

y(u0 ± A, ç0) —v(uq ç0)

y(u0, v0 ± A) — y (u0, ç0)

Z — z(u0; ç0)

z(u0± A, e0) — z(u0, Ç0)

z(u0,. e0 ± A) — z(u0, v0)
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ce qui, en transformant les deux dernières lignes du déterminant
par le théorème des accroissements finis, donne bien la forme
d'équation considérée.

Ainsi Vexistence de polyèdres indéfiniment approchés en position
et direction et ayant une aire est prouoée.

76. — Reste à prouver que l'aire de la partie CÏÏ d'un tel
polyèdre II, correspondant à A, tend vers une limite quand les
nombres s et vj relatifs à tz tendent vers zéro. Considérons l'un
des polyèdres spéciaux obtenus au paragraphe précédent, soit P,
et soient s0 et 730 les nombres qui lui correspondent.

Le calcul de s0 que nous avons fait est très grossier, on peut le
préciser beaucoup. Avec les coordonnées indiquées pour a, b7 c,
on a:

+
a + ß T T (XB~ +

a + ß + T
(X'« ~

*a ± u+ff-ps ±
a A + '

xu et xv étant prises respectivement pour un certain point de
ab et un certain point de ac. On a aussi:

ß — q r T — a \
« + ß+ ï

" ' -1"
a + ß + y

«t X^—— —— ]ix^ a
A « + ß + T " a + ß + y '

xu et xvétant prises maintenant pour un certain point du
triangle abc. D'où:

1 *« ^ ï « A
; UnmsW + Atti s L)|.

<$(xu) et S(xv) étant au plus la borne supérieure a (h) de la
variation de l'une des six dérivées partielles xu, zv quand u
et c varient de h au plus. Les multiplicateurs de ${x'u) et 8{x'v)
sont en module au plus égaux à 1, donc

I Li. — V I - 2ÄX(Ä) MM' ^-2Vsh\(h) s0

L'Kiisoitfnenicnl maOtßiff^ année.
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Ainsi non seulement s0 est infiniment petit avec h, mais il
est meme infiniment petit par rapport à A, car À (A) tend vers
zéro avec h. Cette remarque est essentielle; elle va nous
permettre de raisonner comme au § 72.

Supposons d'abord que S soit constitué par un certain nombre
de carrés d'un réseau de carrés de côté H et que les carrés de
côtés h proviennent de la subdivision de ceux-ci. Alors A' n'est
constitué que par des triangles ABC entiers. A un tel triangle
correspond sur II une région dv, laquelle est constituée de faces
entières de II et de parties de faces. Le plan d'une de ces faces
ou parties de faces, orienté d'après une orientation choisie sur T,
fait avec le plan ABC, orienté de la même manière, un angle
au plus égal à tj -f- 7j0 car ils font des angles tj et 7]0 au plus avec
un même plan tangent orienté de r. Si tj -f- t]0 est inférieur à
un droit les projections orthogonales sur ABC de ces faces et
parties de faces ne se recouvrent pas; elles couvrent tout ABC
sauf peut-être certains des points qui sont à moins de s + z0 de
l'extérieur de ABC; elles sont contenues dans le triangle ABC
augmenté des points distants de moins de s + s0 de l'intérieur
de ABC. On peut donc trouver dans CJt une région polygonale Ût1
telle que aire Ol1 > aire ABC — (s + s0) X périm. de ABC et
on peut sur II trouver une région polygonale Ûl2 contenant Ûl
et telle que

aire <Jl ^ aire AbC + (£ + so) X périm. de ABC + w
2 «/-vo I „ \ J

si petit que soit co > 0.

Appliquons ceci à chaque région tU, en tenant compte de
ce que, s'il n'était pas certain que Ûl avait une aire, |nous
savons, par hypothèse, que <®, formé par la réunion des ctl, en a
une ; nous trouvons

aire CD ^ aire A' — 2 (s + s0) x somme des long, des côtés de A

aire CD ^ aire À' + 2 (s + e0) x somme des long, des côtés de A
COS (73 + TJo)

Quand s et 73 tendent vers zéro, ces deux limites ont une différence
qui tend vers

COS (7} + TJo)

2 s0 x somme des long, des côtés de A x
\cos 7J0
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Or, cette expression ne dépend que de P et on va voir qu'elle
tend vers zéro avec A. En effet, si S est contenu dans un carré

de côté pH, il y a au plus triangles abc. Un côté de ce

triangle donne un arc de T; si ab et ac sont parallèles à v =-- 0
et il 0, les arcs AB et AC ont au plus la longueur Ky^A
puisque K majore les six dérivées partielles x.m zv ; le côté bc

donne un arc BC de longueur Ky/ßA au plus caries dérivées
de x, y, z dans la direction bc sont au plus égales à K<\/2. Donc
le périmètre du triangle rectiligne ABC est au plus 4Ky!A; ce
qui permet de majorer l'expression précédente par

'-2(f)'-iKV3k(ï°k. + ')
quantité qui tend vers zéro avec A.

Ainsi Vexistence de la limite des aires de tP, c'est-à-dire de l'aire
de A, est prouvée dans l'hypothèse faite sur S; on reviendra sur
l'extension de ce résultat à une plus large classe de domaines S;
on va d'abord chercher l'expression de l'aire de A.

77. — L'aire de ABC est

5 h[(V - Ya) (Z0- ZJ - (Yc - Ya) (Zb - ZJ]2 + [Z X]2 + [X, Y]2

les deux derniers crochets se déduisant du premier par permutation
circulaire. Or, par la transformation déjà utilisée ceci

s'écrit :

ih'V(y»3»— + (zuxv — zv+ (xuy'v ~ àv'uY >

à condition de prendre chaque dérivée partielle pour un point
convenable de abc. En n'employant que les dérivées au point a,
ceci s'écrit encore

aire abci /{ELEU+ 7 [£_(*,?/)lV|D(c, c) J ar|D(ït,e) |a + [Dp«, e)

+ 0[8 K2 q2 + 3

0 étant compris entre — 1 et -f 1.
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Quand h tend vers zéro la somme des termes en 0 tend vers
zéro puisque la somme des aires abc est l'aire finie de 8, la
somme des autres termes tend, par définition même, vers

- * - I/Vi .isfef* ein" •

H

Ceci n'est toutefois établi que pour des domaines spéciaux 8,

que nous appellerons des sommes de carrés. Si S est seulement

supposé avoir une aire, enfermons S dans une somme de carrés S2

et prenons à l'intérieur de S une somme de carrés 8X;

nous savons que nous pouvons faire cela de manière que
aire S2 — aire 81 soit aussi petite que nous le voudrons.

A 8, Sl7 S2 correspondent sur II des parties £0, CD^ CD2; sur T,
A, Ax, A2; sur P, A', Ai, A2; par hypothèse CD a une aire; A, Ax, A2,

A', Ai, Ag ont des aires; on ne sait si (D1 et CD2 ont des aires. On

a noté soigneusement au § 76 le moment où intervient l'hypothèse
que CD a une aire: quand, des inégalités vérifiées par aire (K1 et
aire <Ä2, on passe à celles en aire CD. Raisonnant maintenant sur

CD1 et CD2 on devra conclure que, CD1 désignant un domaine

polygonal pris sur II et contenant CDl7 on a:

aire CDX > aire — 2 (s + e0) long, totale des côtés de Ax

et que, <©2 désignant un domaine polygonal pris sur II et
contenu dans CD2l on a>

aire A2 + 2 (s + s0) long, totale des côtés de A2
aire CD» < — —

COS (7) + 7]0)

Et comme CD est à la fois un domaine CD1 et un domaine CD2,

l'aire de CD vérifie les deux inégalités ci-dessus.

On a ainsi deux limites entre lesquelles est le nombre aire CD ;

ces deux limites dépendent non seulement de CD mais des choix
de P, de Sx et de 82. Quand CD varie de façon que s et 7] tendent
vers zéro, la différence de ces limites tend vers

aire A2
aire A, 4- Ç

COS 7)o
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Ç tendant vers zéro avec h. Si donc on fait tendre h vers zéro,
la différence des limites tend vers

aire A2 — aire Ax aire (A2 —• Af

Le domaine A2 — At correspond à S2 — S1 qui est une somme
de carrés, donc on a :

aire (S,— AJ f fi/j ÈY + IXXVIX P**' l du1 JJV I.D(m, <>) I + |D(«, j + |d(«. f.)J i

'V*1

et ceci est majoré par 2K2y/3 x aire (§2 — S1); et puisque cette
dernière aire peut être prise aussi petite que l'on veut, on voit
que aire cD varie entre des limites aussi rapprochées qu'on le
veut dès qu'on prend s et y assez petits. A ire O? tend donc vers
une limite, c'est-à-dire que l'aire de A existe. D'ailleurs, avec
les choix indiqués, les deux seconds membres des inégalités
précédentes ont la même limite d'où il résulte que l'expression
de aire A par une intégrale est valable pour tous les domaines S

ayant une aire.

78. — Le premier exposé que je voulais indiquer est ainsi
achevé. On ne manquera pas de penser qu'il est bien long et déjà
fort compliqué bien que restreint à la définition déclarée la moins
générale. On pourra abréger un peu, si l'on n'a pas la préoccupation

de mettre en évidence toutes les précautions indispensables
à prendre, et simplifier, en considérant des classes un peu moins
vastes de surfaces et de domaines. Mais les modifications seront
faibles.

Or cet exposé, long et compliqué, suffisant logiquement, est
insuffisant physiquement ou si l'on peut dire humainement. Il ne
légitime en effet que les procédés de mesure par polygones ou
polyèdres approchés et nullement les utilisations pratiques des
notions de longueur et de surface. Pour expliquer que la connaissance

de la longueur d'une route permette de calculer le nombre
de tombereaux de cailloux nécessaires à son rechargement, il
laut dire comment cette longueur sert au calcul approché de la
surlace de la route, d'où le volume des cailloux, d'où le nombre
de tombereaux. Pour expliquer que la connaissance de l'aire
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d'une coupole permette de calculer le poids de cuivre nécessaire

pour sa couverture, il faut dire comment cette surface sert au
calcul approché du volume de cuivre, d'où son poids.

Il faut donc ajouter à l'exposé précédent des paragraphes
donnant ces compléments; mais ces paragraphes constituent à

eux seuls un autre exposé de la théorie des longueurs et aires plus
court et plus satisfaisant, comme on va le voir.

Ceci n'est nullement étonnant; j'ai dit, § 68, « que les physiciens

n'ont jamais eu à effectuer, directement du moins, des

mesures précises de longueurs de courbes». Dans les mesures
indirectes auxquelles je faisais allusion là, on pèse un fil ou une
plaque, image matérielle de la courbe ou de la surface à mesurer ;

on détermine donc la longueur ou l'aire par un procédé en accord
avec les applications qu'on en veut faire et qui sont, de ce fait,
légitimées. Si nous traduisons logiquement ce nouveau procédé
de mesure nous aurons une bonne définition, car en accord avec
les déterminations physiques par pesées et les applications. Et
cette définition est meilleure que la précédente puisqu'elle est

en accord avec le procédé de mesure pratique le plus employé
et le mieux relié à toutes les applications.

A l'actif du premier exposé on ne peut noter actuellement
qu'un avantage: il justifie d'emblée l'emploi des mêmes mots
longueur et aire pour les arcs de courbes et les portions de surfaces

que pour les segments de droite et les domaines plans. Mais
il est plus conforme à nos habitudes, c'est pourquoi sans doute
il a été conservé partout au lieu de l'exposé plus simple suivant,
lequel a été suggéré d'abord par des procédés de calcul
employés par Borchardt, procédés pris ensuite comme définitions
effectives par Minkowski.

79. — Supposons qu'il ait fallu 300 tombereaux de cailloux
pour recharger une route sur une épaisseur de dix centimètres;
si, plus tard, le milieu de la route a été défoncé et qu'on veuille
recharger de dix centimètres une bande centrale de la route de

largeur moitié de celle de la route, on estimera que 150 tombereaux

environ sont nécessaires. Comme les nombres de tombereaux

dépendent des volumes des cylindres occupés par les

cailloux mis en place, cylindres de même hauteur et dont les
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sections droites sont la route entière et la bande centrale de la
route, cette estimation revient à admettre que l'on a:

S
_ S'

D — D' '

S et S' étant les aires de la route et de la bande et la largeur D
de la route étant le double de la largeur D' de la bande.

Si on avait eu D 3D" 011 aurait fait une supposition
analogue et toutes ces prévisions sont en accord pratiquement suffisant

avec l'expérience. Si donc la surface L correspond à

une largeur 1, la valeur commune des rapports sera L et on
aura S-L. D, S' ~ L D', etc.

Si la route est rectiligne de longueur Z, les surfaces d'aire
S, S', sont des rectangles dont un côté est égal à Z, l'autre côté
étant D, D7, donc on a alors L Z. C'est pourquoi le nombre L
a été appelé la longueur de la route.

Les égalités dont il vient d'être parlé ne sont qu'approchées,
les explications ci-dessus n'ont donc pas une valeur logique
précise, nous allons les transformer en définitions mathématiques.

Considérons une courbe plane T ayant en chaque point une
tangente variant de façon continue avec le point de contact,
déplaçons un segment de longueur I) ----- 2r de façon que son
milieu décrive V et qu'il reste à chaque instant normal à T.
Admettons que la courbe F soit telle que, pour r assez petit, le
segment mobile ne passe pas deux fois par le même point et
appelons alors A(r) l'aire balayée par le segment, nous supposons
que A (r)existe; la limite pour r ** 0 cle si elle existe, est

appelée la longueur de T. On démontre dans des conditions très
larges l'existence de cette limite.

Si une courbe F ne vérifie pas les conditions précédentes, mais
qu'elle soit formée de plusieurs courbes T2, placées bout
à bout et remplissant ces conditions, ce qui est le cas par exemple
d une ligne brisée, on désigne par A(r) la somme des aires
analogues relatives à T2, et on applique la même définition.
Cela revient à dire que la longueur de T est la somme des
longueurs de ri5 de F2, En particulier la longueur d'une ligne
brisée est la somme des longueurs, au sens ordinaire du mot, de
ses côtés.
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Appliquons cette définition à un arc de cercle, de rayon R et
dont l'angle au centre est a. L'aire A(r) est celle du domaine
obtenu en enlevant du secteur de rayon R + r et d'ouverture oc,

un secteur de rayon R — ret de même ouverture, donc, § 41,

AM ïg(R + ')2

_ _ _
'

2 r 2 r 2 r '

un arc de cercle a donc une longueur, et donnée par la formule
L - aR.

80. — En géométrie élémentaire on peut se borner à la
considération des courbes planes, si pourtant on examine une courbe
gauche T, on supposera pour définir sa longueur qu'elle vérifie
des conditions analogues à celles ci-dessus supposées et on
remplacera le segment mobile de longueur D 2r par un cercle
mobile de rayon r dont le centre décrit V et dont le plan reste
perpendiculaire à T. Par V(r) on entendra le volume balayé et
on appellera longueur la limite de Pour r 0, lorsqu'elle
existe. On étend comme précédemment la définition aux courbes
présentant quelques points anguleux et on en déduit que pour
une ligne brisée la longueur, d'après cette définition, est la somme
des longueurs, au sens ordinaire du mot, de ses côtés.

On affirmera encore que cette définition s'applique dans des
cas étendus et, de plus, que lorsque T est plane les deux définitions

donnent le même nombre. Voici d'ailleurs comment on
peut prouver l'accord des deux définitions.

Soit une courbe plane T pour laquelle le rapport tend vers
L quand r tend vers zéro. Décomposons le corps balayé par le
cercle mobile de rayon r en tranches par des plans parallèles à
celui de T et distants de h. Si deux plans limitant une tranche
coupent le cercle mobile suivant des cordes de longueur 21\ et 2r2,
la tranche est comprise dans un cylindre de hauteur h et dont la
base est d'aire A(rx) et elle comprend un cylindre de même hauteur
et dont la base a l'aire A(r2).
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i\ et r2 étant plus petits que r, on a:

A {?\) — 2 (L A sj ?\ A (r2) 2 (L + s2) r2 ;

et s2 étant en module limité par un nombre s qui tend vers
zéro avec r. Les volumes des deux cylindres s'obtiennent en

multipliant par A, donc on a:

(h — s) Ei 2 r%h < Y (/<) < (L +

Or les deux sommes figurant dans les membres extrêmes sont
des valeurs, indéfiniment approchées pour A tendant vers zéro,
de l'aire -r2 du cercle mobile, l'une par défaut et l'autre par
excès. Donc

(L « t)~f2 < Y (r) < (L + ;

s tendant vers zéro avec r, ceci prouve l'identité des deux
définitions L

On peut aussi démontrer cet accord indirectement en. prouvant
que chacune des définitions de ce paragraphe est en accord avec
la définition par les polygones inscrits dans des cas étendus, mais
je laisse cela de côté.

81. — Pour l'aire d'une surface, après une préparation
analogue à celle relative à la longueur d'un arc de courbe on posera
la définition par la limite pour r 0, supposée existante, du

rapport V(r) étant le volume supposé existant du corps
constitué par les segni ents de longueur 2r normaux à la surface et
dont les milieux sont tous les points du domaine considéré de la
surface. On étendra cett e définition aux surfaces ayant quelques
lignes de points anguleux et on en concluera qu'un domaine plan
a une aire d'après la nouvelle définition si, et seulement si, il en
a une d'après la définition du chapitre III et que ces deux
définitions sont alors en accord, qu'une surface polyédrale a pour aire
la somme des aires de ses faces.

On appliquera facilement cà un fuseau de la surface latérale

1 Si l'on avait voulu prouver l'identité seulement pour la circonférence on aurait pu
appliquer le théorème de Gui din ou seulement le cas particulier de ce théorème relatif
au corps engendré par un domaine plan ayant un axe de symétrie et tournant autour
d'une droite de son plan ne le rencontrant pas et parallèle à l'axe de symétrie.
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d'un cylindre ou d'un cône de révolution, à un fuseau de zone
sphérique. Tout cela est si simple, si immédiat, si semblable au
calcul relatif à la circonférence, que je n'ai rien de plus à en dire.

82. — Dans le cours de calcul intégral, après avoir précisé les

définitions si cela était nécessaire, on les mettrait en œuvre en
ne craignant pas de faire des hypothèses propres à simplifier.
Par exemple: soit T une courbe gauche dont une représentation
régulière en coordonnées rectangulaires est donnée par les
fonctions x{t), y(t), z(t) continues dans (t0, tx) ainsi que leurs
dérivées des deux premiers ordres. On vérifie immédiatement que

V'x'2 + y'2
' v^'2 + y'~

et

y *
\/x'2 + y'2 \/x'2 + y'2 + z'2 V'x'2 + y'2 y/x'2 + y'2 + z'2

— yx'2 + y'2

\/x'2 + y'2 + z'2

sont les cosinus directeurs de deux normales à F au point #, y, z

qui sont rectangulaires 1. Donc V(r) est le volume du corps lieu
des points

V yf x'z'X — X + —~ U + t —- V

y + y'2 y x'2 + y'1 Vx'2 + y'2 + z'2

x' y' z
Y y ...;/ Ç + _ ;—: : •

P

V x'2 + y'2 y x'2 + yn y x'2 + y'2 + z'-

y x'2 + y+ zn

quand le point de coordonnées rectangulaires u, v décrit le

cercle de rayon r tracé autour de l'origine. Donc on a:

V (r) f ff\'Y r f' |

w J J J I D(u, p, t) j

i Ceci suppose toutefois z' ^ 0. S'il n'en était pas ainsi on partagerait F en arcs sur
chacun desquels une des dérivées x', y', z' ne s'annulerait pas. C'est pour pouvoir
dériver ces cosinus directeurs qu'on a atimis l'existence de x", yz\
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Pour avoir la limite de quand r tend vers zéro, il suffit

d'avoir la partie principale de l'infiniment petit V(r). Or le

déterminant fonctionnel à intégrer est un polynome en uv dont

chaque monome c (t) Ea c'J donne un terme de la forme

fc (t) dt f fuaißdudv, le second facteur étant un monome

en r de degré a + ß + 2. Il suffit donc de prendre les termes de

moindre degré en e, c du déterminant fonctionnel, ce qui donne:

Y y
yV" T y'~ Vx'2 + y'2 + z'~ \

y'
\/x'~ + y'~ \/x'~ + y'- -|* z'~

yVa 4* ?/-

VxrI + y'- + z'- i

-f- y'~ Y z'~ cit

Par exemple encore: soit T la surface donnée en coordonnées

rectangulaires par x (e, c), y (e, e), z (e, ç) fonctions continues
et dont les dérivées partielles des deux premiers ordres sont
continues dans une région du plan des e, c pour laquelle la
représentation paramétrique de T est supposée régulière et soit S

un domaine pris dans cette partie du plan des e, c et ayant une
aire. Pour le domaine A de T correspondant à 8 les points du
corps à considérer sont donnés par trois formules telles que

•v =r4. &<?/, *)
Y p" D(», 0» /rD (y, *)lz [D (z, x)]2 TDJx, j/)]2

'

V [D (U,ci| + |.D(«,P)J I i » f (/, P)J

o variant de — r à + r.
Le déterminant fonctionnel de X, Y, Z par rapport à e, c, p

Y (/') /»jïi —M — /
—v o -r- J

\/xrl -r y

\/x'

V x •
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qui est à intégrer pour avoir V(r) peut être réduit à sa partie
principale pour la recherche de la limite de d'où:

2 p '

aire A lim— f
r-» 0 2p J J \

> 'D
x* D(« ^y

' ' D (z x)
Vu Vv D (u,

' i D (x y)
Zu Zv D(Ü7^)

du dv

> (u, v) D (u ç)

83. — Notre second exposé est terminé. On ne manquera pas
de noter combien il est plus simple et plus court que le premier
et pourtant il est, sinon plus complet, du moins plus approprié
aux applications.

Quand on considère les mathématiques comme une science
purement logique, rien ne peut guider dans la recherche des
définitions de l'aire et de la longueur, ces définitions sont libres.
En considérant les mathématiques comme une science appliquée
l'examen des techniques nous a conduit à des définitions, à deux
bonnes définitions puisqu'il y a deux techniques. L'accord des
calculs des paragraphes 72 et 82, 77 et 82 explique l'accord de
ces techniques et montre qu'il y a bien une seule notion physique
de longueur et une seule notion d'aire.

Mais on aurait pu adopter une attitude en quelque sorte
intermédiaire en disant: les mathématiques ont certes pour origine
l'expérience, mais elles doivent être purement logiques. Or un
raisonnement logique est basé directement sur des propriétés
et non directement sur une construction; les constructions de la,
longueur et de l'aire faites dans les paragraphes précédents ä
l'image des techniques de mesure seraient avantageusement
remplacées par des définitions descriptives formées par l'énon-
ciation de propriétés imposées à la longueur et à l'aire, lesquelles
seraient suggérées par l'observation physique. N'est-ce pas
d'ailleurs ce que l'on a fait aux deux chapitres précédents en
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définissant l'aire des domaines plans et les volumes par les

propriétés a, ß, y
On remarquera alors que les longueur et aire que nous avons

définies possèdent encore les propriétés a, ß, y mais que ces

propriétés ne suffisent plus à les caractériser, en d'autres termes
que l'on n'a plus la propriété S qui peut s'énoncer ainsi: le
nombre cherché est défini à un facteur constant près par a, ß, y.
Supposons, en effet, qu'à une courbe ou une surface on attache là
courbe indicatrice des normales principales (ou des binormales)
ou la surface indicatrice des normales; la longueur de cette
courbe ou l'aire de cette surface considérée comme attachée à la
courbe ou surface primitive, vérifie encore a, ß, y. Les
observations que nous avons faites conduisent à énoncer cette nouvelle
condition :

„ Lorsqu'une courbe (ou surface) U tend uniformément
en position et direction vers une courbe ou surface fixe T, Ü et F
appartenant à la classe des courbes ayant une longueur (ou des
surfaces ayant une aire), la longueur (ou aire) de II tend vers
celle de T.

Les propriétés a, ß, y, s suffisent à entraîner S s'il est entendu
que tout segment (ou polygone) fait partie de la famille des courbes
ayant une longueur (ou des surfaces ayant une aire). Alors, en effet,
la longueur de toute ligne polygonale (ou l'aire de toute surface
polyédrale) s'en déduit, puis s conduit à la définition de notre
premier exposé et c'est, en somme, par cette voie que nous y
avons été conduits.

Ceci montre, qu'au point de vue logique comme au point de
vue de la critique des notions, les premières définitions ont
des avantages que nous n'avions pas mis en lumière et qu'il ne
faudrait pas les omettre s'il s'agissait d'un enseignement plus
élevé que celui des éléments du calcul intégral.

(A suivre.)
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