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SUR LA FONCTION DE NEUMANN

PAR

Georges Bouligand (Poitiers).

1- — Pour l'équation de Laplace, la variation infinitésimale
de la fonction de Neumann a été calculée par M. J. Hadamard
dans les conditions suivantes: par fonction de Neumann du
domaine Q pour le pôle P, on entend une fonction V (M, P)

singulière en P comme gp, harmonique relativement au point M

dans Q — P et dont la dérivée normale intérieure en un point Q

de la frontière S de Q vaut où S désigne l'aire de la surface 2,
à laquelle on suppose des courbures principales continues L On
ajoute que la moyenne de V le long de 2 est nulle, ce qui détermine

la constante additive et assure la symétrie en M et P.
J'ai signalé plus tard qu'on peut modifier, pour l'équation

de Laplace, la définition de la fonction de Neumann, en abaissant
l'ordre des invariants différentiels de 2 intervenant dans la
variation infinitésimale. La brièveté de ma démonstration s'est
exercée au détriment du résultat lui-même, où manque un terme
important2. Je reprends ici un exposé systématique de la
question en me plaçant, pour fixer les idées, dans l'espace
euclidien à trois dimensions.

1 .T. Hadamard. Leçons sur le Calcul des variations. Paris, Hermann, p. 307-312.2 Ce terme est a rétablir dans les publications suivantes: Bull. Sc. Math. 2me sérbI. L., 1926, p. 299-300, Journ. de VEc. Polyt, 2° série, 26 me cah., p. 20- et dans molascicule: Sur divers problèmes de dynamique des liquides, Gauthier-Villars Paris 193(n°Ml et 22). L'omission de ce terme au m 22 laisse cependant subsister mes conclusioni datives a la conduite des approximations.

L'Enseignement mathém., 33 me année, 1934. ,j o



170 GEORGES BOÜLIGAND

2. — En appelant X une constante, lorsqu'au lieu de l'équation
de Laplace, on prend l'équation

(E%) AU — XU 0

le problème de Neumann admet, pour X réel et positif, une solution

unique. La fonction de Neumann pour le domaine û et le

pôle P est alors une solution T (M, P, X) de (Ex), analytiquement

régulière dans O — P, ayant en P même singularité que

ch (MP V>0
MP

tandis que la dérivée normale de T sur la frontière s'annule.

Supposons toujours X > 0. En pareil cas, r(MP;X) ne

devient jamais négatif, car il aurait, en un point de S, un minimum

négatif, point où la dérivée normale intérieure serait

nécessairement positive 1.

Pour M et P pris sur S, ajoutons que la double intégrale

sur S de
cp(M) <p(P) P (M, P ; X) rfSM (iSp

réductible à

— 4 n ff,J J an

où U est la solution de (Ex) telle que ^ <P (P) donne en

vertu du théorème flux-divergence (appliqué à U grad U) un

résultat positif que soit 9.
Envisageons maintenant pour X l'éventualité de valeurs

négatives ou même de valeurs complexes. Alors, d après la

théorie de Fredholm, T (M, P; X) est une fonction méromorphe

de X, qui obéit à l'équation fonctionnelle des noyaux résolvants

r (M, P ; X) — r (M P ; (x)

+
X ~ f JJr(M, N ; X) r (N, P ; 0

1 Brelot. Thèse; Paris, 1931, p. 27 et 28; G. Giraud (généralisation des problèmes

sur les opérations du type elliptique, chap. V, n» 5), Bull. Sc. Math, 2 série, t. LVI,
octobre 1932; G;. Bouligand (sur un problème aux limites de la théorie du potentiel);

Bull. Ac. Roy. Sc. Belg., t. XX, 1934, p. 291.



LA FONCTION DE NEUMANN 17.1

d'où l'on déduit qu'en faisant croître X par valeurs positives,
F (M, P; X) décroit lorsque M et P restent fixes.

On démontre d'ailleurs que les pôles de T (M, P; X) sont

exclusivement fournis, outre la valeur X 0, par des valeurs
réelles négatives de X 1, ces pôles sont simples en raison de la

symétrie de P par rapport aux deux points M et P 2. Autour
de X ~ 0, on peut écrire, avec M. Sanielevici, le développement
de Laurent

F (M, P ; X) 4- y (M, P) + XTl(M, P) + X" y2 (M, P) -f
A 12

où la lettre O désigne le volume Q lui-même. Le premier terme
du second membre, qui représente la partie singulière de F
relative au pôle X 0, annule identiquement le premier membre
de l'équation fonctionnelle des noyaux résolvants, si on l'y
substitue à F. A droite de ce premier terme, dans le développement

de T (M, P; X), figure au second membre une fonction
de X, holomorphe pour X 0, valeur pour laquelle elle se réduit
à la fonction y (M, P) sur laquelle va se porter notre attention.

3. — D'après le procédé classique permettant d'évaluer les
coefficients de la série de Laurent, nous avons

2 ÎÏÎ y (M P) J P (M, P;
c

où X désigne maintenant une variable complexe: l'intégrale au
second membre est prise le long d'une circonférence c ayant son
centre à l'origine du plan (X) et son rayon assez petit pour que
tout pôle de T autre que X =sa 0 soit en dehors de ce cercle.

La différence

1 Sanielevici. Thèse, Paris, 1909.
- Eiieciiet et IIeywooj). L'équation de Fredhohn, p. 87. (Iiermann, 191S.)
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étant une solution de Ex analytiquement régulière dans £2, nous

pouvons en conclure à l'analyticité régulière de

p> - rô/c" ("pV>'
c

D'autre part, à l'exemple de la dérivée normale de T (M, P; X)

le long de 2, s'annulera celle de y (M, P).
Quant au laplacien de y, par rapport au point M, nous l'obtiendrons

en exprimant que celui de T est xr, ce qui donne

2i7tAMY(M, P / r(M, P ; X)d\ ^ • 2 in
C

d'où

AmY(M, P) ^
C'est précisément la fonction y (M, P), de laplacien ^ et de

dérivée normale nulle sur 2 que j'ai préconisée, dans mes

tentatives citées, comme résolvante du problème de Neumann.
Une autre remarque importante consiste en ce fait que l'intégrale

de volume

àfff r<M- P;
Q

fournit la solution de l'équation

AU — XU + 1 0

ayant sa dérivée normale nulle sur 2. La valeur de cette intégrale
lest donc — D'où
à

SSS r(M>P; *)<mM t '

d'où, en intégrant dans le plan (X) le long du cercle c:

fffy(M, P0
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Gela posé, l'intégrale de volume

~LfSf 9 (M) Y (M. ' ' ' ''

fournit l'expression d'une fonction, dont le laplacien en un
point M pris dans £2 est 9 (M) -j- G, et dont la dérivée normale
s'annule sur S; la constante G est ainsi déterminée par la condition

que la moyenne de 9 (M) + C dans le domaine Q soit nulle.
Enfin, l'intégrale de surface

- ,'-// /(Q)r(Q, P)rfSQ
;

où l'on suppose nulle la moyenne de /(Q) le long de la surface S,
nous donnera l'expression de la fonction harmonique dans £2,

ayant / (Q) pour valeur de sa dérivée normale intérieure en
chaque point Q de 2, Et l'intégrale dans Q du carré du gradient
de cette fonction égalera la double intégrale sur 21 de

4^/(Q)/(P) y(Q P)dSQdSp

Cette double intégrale est donc positive pour toute fonction / de
moyenne nulle sur S.

4. — Nous disposons maintenant des éléments qui vont nous
permettre d'évaluer la variation infinitésimale de y (M, P), en
passant par l'intermédiaire de celle de P (M, P; A).

En un point quelconque Q de S, désignons par v le vecteur
unité de la normale intérieure, et envisageons une déformation
infiniment petite menant de 2, lieu du point Q, à une nouvelle
surface S', lieu du point Q' tel que

Q Q' vQ S
7iQ

I l peut être commode de considérer le cas où l'infiniment petit
''"c est positif en chaque point Q: alors S' est contenue dans Q;
'! suffira de constater après coup que les formules obtenues de la
sorte sont générales.
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La surface 2' délimite un nouveau domaine £}'; soit
r'(M, P; X) sa fonction de Neumann, relative à (Ex). Pour une
position fixe de P, cherchons la dérivée normale de

r'(M, P; X) — P(M, P; X)

au point Q' de 2', dérivée normale qui est. encore celle de

— P(M, P ; x)

Si 8nQ avait une valeur constante indépendante de Q, la
dérivée normale de T vaudrait

d*T
-tt(Q
dnQ

Mais la variabilité de S^Q entraîne en Q' une déviation du
vecteur unité de la normale, qui devient v + Sv avec

4 —f

8 v — — grad 8n 1,

l'opérateur gradient étant ici relatif à la géodésie de la surface 2 :

un champ scalaire /(Q) ayant été défini sur cette surface, on
—>-

entend par grad / le vecteur tangent dont le produit scalaire

par un déplacement infinitésimal de Q sur 2 équivaut à l'accroissement

correspondant de / (Q).
Gela posé, la dérivée normale de P au point Q' de 2' sera

gradQ, T (Q', P ; X) • (v + dv)

ce qui équivaut à

gradQ, T (Q', P ; X) • v + gradQ T (Q P ; X) • dv

c'est-à-dire à

d^r -* -+—t(QP ; X) Sn— grad0 T(Q P ; X) • gradQ (8
dn.q - u

Nous aurons donc

4tc [r'(M P ; X) — r (M P ; X)]

fJ r (M Q ; X) (Q, P ; X) SnQ — grad gradQ P (Q, P ; X) j dSQ

U1 me semble qu'en raison de sa simplicité, cette formule mérite d'être dégagée. Pour
sa démonstration, il suffit de raisonner sur deux éléments plans dSQ et c?Sq de £ et de
s7, faisant entre eux un angle infiniment petit.
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Puisque jg« est nulle, nous pouvons remplacer par

xr — A2r où A2 est l'opérateur de Beltrami, c'est-à-dire la
divergence, adaptée à la géodésie de S, du gradient de T (lequel
est d'ailleurs tangent à S en chaque point). D'où

§r* X ffr(M Q ; X) r (Q ; P ; X) §raQ dSQ

— fj r?i[A2r? S"q + grad S"Q • gradQ P£]

Le crochet peut s'écrire, compte tenu de la géodésie de S

div (8nQ grad Y®

Si bien que l'élément différentiel de la dernière intégrale
devient

div (8 ?iQ P| grad F£) — 8nQ grad T* • grad

De ces deux termes, sur toute l'étendue de Ü, le premier va
donner une contribution nulle et il reste finalement

471 SrH SS H Xrâ r? + 8d T° • grad «]

5. — 11 suffit alors de substituer, dans cette formule, le
développement de Laurent de F (M, P; X) (cf. n° 2) et d'y supposer X

infiniment petit pour trouver

SyM Ti/J Au + A H dSQ + g5d y« SnQdSQ

formule d'où s'éliminent les courbures de la frontière.

6. — Les raisonnements précédents peuvent être utilisés à
d'autres fins. Lorsqu'on étudie le mouvement commençant d'un
liquide parfait pesant dans une auge fixe, où il part du repos,
pour un choix convenable des unités, le champ des accélérations
initiales peut se déduire de la pression p en prenant l'opposé
du gradient de la fonction p -f z (l'axe des z étant orienté suivant
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la verticale ascendante)» Cette fonction, qui, dans le fluide,
vérifie l'équation de Laplace, est solution d'un problème mixte:
continue sur la surface libre S, elle y prend la valeur z, tandis
que sa dérivée normale le long de la paroi mouillée 2 est nulle.
Soit P un point intérieur au domaine Q initialement recouvert

par le fluide. La fonction de Green G(M, P) du problème mixte,
lsingulière en P comme ^ est harmonique dans Q — P. Sa

valeur s'annule sur S et celle de sa dérivée normale s'annule sur 2.
Cette fonction est d'ailleurs non négative, sinon elle présenterait
un minimum négatif en un point de 2, point où le gradient serait
non nul et porté suivant la normale à 2 (cf. n° 2), circonstance

incompatible avec l'annulation de la dérivée normale le long
de 2 L

Supposons qu'on envisage une déformation infinitésimale de

la paroi mouillée, opérant sur une portion 2X de cette paroi
qui reste à distance positive de la surface libre. Il est alors facile
de calculer, par la méthode du n° 4, l'accroissement infinitésimal
de la fonction 41 p +2, ou indifféremment celui de la fonction
de Green du problème mixte correspondant. On obtient ainsi
les formules

Hp éûJf gradGP " grad H d°Q '

Si

8G* - LfS gr"ad gm •grad G» H -

da désignant un élément d'aire de la surface 2X, seule déformée
dans les conditions actuelles (à l'exclusion de 2 — 2X et de la
surface libre S). En réitérant, sur la seconde de ces formules, la
même omission que pour la fonction de Neumann, dans les

écrits incriminés, j'aurais dû conclure que 8G était nulle, ou

que G était indépendante de 2X : ce qui me révéla nettement la
présence d'une faute.

i Le même raisonnement montre que p + z ne peut atteindre sur n, ni sa borne
inférieure, ni sa borne supérieure. Ces deux bornes sont donc atteintes sur S, la première
au point de cote maxima, la seconde au point de cote minima. Plaçons-nous dans des
conditions telles que ces points soient à distance positive de la paroi. Alors, aux premiers
l'accélération initiale sera verticale descendante, au second, elle sera verticale ascendante.
Voir mes développements sur ce point au Bulletin de la Société Royale des Sciences de

Liège (4e année, janvier'et février 1935).
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