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162 GASTON JULIA

Revenons au cas général de p quelconque et contentons-nous
de décrire la disposition des cassiniennes. L’on aurait, en partant
de %,,

Fla) =C=Pu) = (u—u) ... (u—up) -

Alors, le domaine canonique est limité: extérieurement, par la
cassinienne I': lP(u)I = 1 qui est réguliére et entoure les p
zéros de P; intérieurement, par p cassiniennes, tronquées ou
non, I'y ... I'). ') est un ovale (courbe réguliére) entourant u,
seul. Les I'; intermédiaires se composent d’une boucle fermée
entourant un seul zéro de P et de v, boucles tronquées suivant

Fig. 5.

Disposition des cassiniennes pour p = 2.

des arcs qui correspondent aux arcs de passage, s'ily a 2v, zéros
de F'(z) sur ¢;; I'; a v; points doubles a tangentes rectangulaires.
Topologiquement, les cassiniennes tronquées sont des courbes
fermées, adjacentes a un ou plusieurs arbres extérieurs. ,

Partant de X, et de la relation F(z) = R(u), les mémes
remarques subsisteront.

9. — RETOUR AU POINT DE VUE ALGEBRIQUE.

Nous voudrions montrer enfin que ces résultats nouveaux
peuvent étre rattachés fortement aux recherches algébriques
anciennes et notamment aux travaux de Schottky.
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Fig. 6.

Disposition des cassiniennes pour p = 3.
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Tout d’abord le probléme de trouver les aires invariantes par
des transformations biunivoques (directement ou inversement
conformes) se raméne & la recherche des aires canoniques D
invariantes par des déplacements ou des symétries non eucli-
diennes. Ce probléme est identique au fond a celui de la déter-
mination des courbes algébriques A(r, s) = 0 invariantes par
des transformations birationnelles, probléme completement
résolu par Hurwirz.

Envisageons la fonction f(z) = LF(z) = U +iV. Elle est
analytique dans d, non uniforme, mais sa dérivée f'(z) est
uniforme, comme on le vérifie d’aprés la construction de V.
F’(z) et f'(z) ont les mémes zéros avec le méme ordre de multipli-
cité. f'(z) est donc holomorphe et uniforme dans d et sur les
contours. |

Sur ces derniers U reste constant, g% = 0, o étant I'arc de ¢,

et 'on a
dz .dV .dU

s = "4 = " 'in

quantité purement imaginaire sur les frontieres de d. La fonc-
tion f est donc forcément liée aux fonctions r(z) et s(z) de
ScHOTTKY, introduites précédemment. r(z) étant méromorphe
dans d et réelle sur ¢;, il en sera de méme pour

ar _ /o )iz_
e | ¥Wids
Le rapport Li ,((ZZ)) sera réel sur les ¢;; il est uniforme et mero-

morphe dans d et sur sa frontiére. C’est donc une fonction de la
classe K(z), c’est-a-dire une fonction rationnelle R & coefficients
réels des deux fonctions fondamentales r(z) et s(z) et I'on a

11 en résulte que f(z) est une intégrale abélienne attachée a la
courbe algébrique A(r, s) =

7@ = i[R(r, s)dr. |
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Elle est de premiére espéce, parce que [ reste fini d’apres la
construction de U et de V.

Soient o la transformée biunivoque de d par = I (z) et ¢
sa symétrique par rapport & v, et décrite, comme on sait, par
le point

F(z) est une fonction analytique du point qui déerit la face du
disque d située en dessous du plan z. Donc o + o est ic1 'image
conforme du disque d a deux faces. Au point de vue topologique,
on peut raccorder les points frontieres symétriques par rapport a
Yo, et o + o' devient une surface de Riemann orthosymétrique
fermée de genre p, homéomorphe aux deux faces d’un disque a
p trous. C’est la surface de Riemaxwn-Crirrorp-Kreix de la
classe des courbes algébriques A(r, s) = 0 associées par Schottky
a la classe d’aire d.

10. — LES DOMAINES A CONNEXION INFINIE.

Nous devrons nous contenter de quelques indications sur ce
sujet et nous renvoyons pour le reste a la bibliographie. Les
méthodes employées ici se rattachent presque toutes au travail
de M. Hilbert publié en 1909 dans les Goit. Nach., p. 314.
M. Hilbert ne se restreint pas au terrain de la théorie des fonc-
tions mais revient au calcul des variations. Il se rapproche ainsi
de la méthode primitive de Riemann qui tentait de résoudre le
probléme de Dirichlet par la recherche d’une fonction o rendant
minimum I'intégrale

£ D 2 A e
/ / [ *—(3> + (Lﬁo—):‘daxdy :
J J LT 0y ‘

Il est intéressant de remarquer que les premiers pas faits dans le
terrain des connexions infinies s’inspirent des considérations de
minimum qui guidérent Riemann dans le probléme de Dirichlet
et dans Pétude qui s’y rattache de la représentation conforme
des aires simplement connexes.
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