Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 33 (1934)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LA REPRÉSENTATION CONFORME DES AIRES MULTIPLEMENT

CONNEXES

Autor: Julia, G.

Kapitel: 8. — Cas ou F' a des zéros sur la frontière.

DOI: https://doi.org/10.5169/seals-25992

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

8. -- Cas ou F' a des zéros sur la frontière.

Nous savons que les représentations de MM. de la Vallée Poussin et Julia sont possibles si F' ne s'annule pas sur la frontière de d. Les cassiniennes du plan des u sont alors des courbes analytiques et régulières et n'ont pas de point multiple. Elles ne sont d'autre part régulières que dans ce cas là car, l'annulation de la dérivée introduirait des points multiples des cassiniennes envisagées. Par conséquent, la condition nécessaire et suffisante pour que les représentations précédentes soient possibles est que F' ne s'annule pas sur les c_i .

M. de la Vallée Poussin évitait la difficulté en augmentant le degré du polynôme: P(u). M. Julia montre qu'il est encore possible de représenter le domaine donné de connexion p+1 sur une aire limitée par p+1 courbes

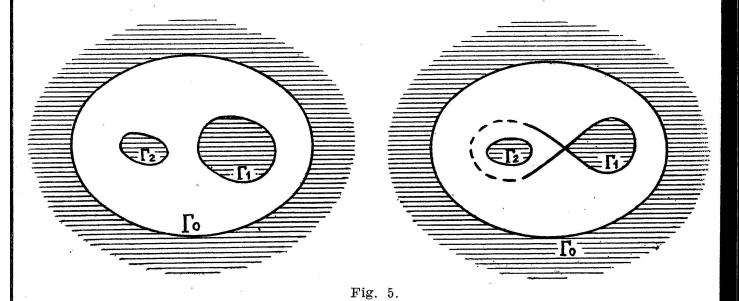
$$| P(u) | = e^{i_i}, \qquad i = 0, 1, \dots p$$

étant toujours de degré p. Portons notre attention pour fixer les idées, sur le cas p=2. Nous avons ici 2a + b = 2p - 2 = 2, ce qui exige a = 0 et b = 2. Il n'y a plus de point de ramification sur la surface o elle-même, mais il y a, sur le contour c_1 intermédiaire, deux racines simples ou une racine double. Envisageons le cas de deux racines simples z_1 et z_2 et supposons en plus les λ différents. Alors, lorsque le point zpasse par z_1 ou z_2 en décrivant c_1 , le point $\zeta = F(z)$ rebrousse chemin sur γ_1 : il y a ainsi deux points de rebroussement $\zeta_1 = \mathrm{F}(z_1)$ et $\zeta_2 = \mathrm{F}(z_2)$. La surface σ' , correspondant par $\zeta = \mathrm{F}(z)$ à un domaine du plan z débordant sur l'intérieur de c_1 , admettrait les deux points ζ_1 et ζ_2 , correspondant à z_1 et z_2 , comme points de ramification. Il n'y a toujours, dans ce cas, qu'un seul feuillet entre γ_2 et γ_1 et deux entre γ_1 et γ_0 . L'anneau du feuillet projeté entre γ_2 et γ_1 est limité extérieurement (outre γ_2) par un arc $\zeta_1\zeta_2$ qui appartient à γ_1 et par un arc depassage qui unit les deux anneaux $[\gamma_2, \gamma_1]$ et $[\gamma_1, \gamma_0]$. On trouvera dans un article récent paru en Suisse (Commentarii Mathematici Helvetici, volume 4, 1932, p. 106) une étude détaillée de ce cas.

Revenons au cas général de p quelconque et contentons-nous de décrire la disposition des cassiniennes. L'on aurait, en partant de Σ_1 ,

$$F(z) = \zeta = P(u) = (u - u_1) \dots (u - u_p)$$
.

Alors, le domaine canonique est limité: extérieurement, par la cassinienne Γ_0 : |P(u)|=1 qui est régulière et entoure les p zéros de P; intérieurement, par p cassiniennes, tronquées ou non, $\Gamma_1 \dots \Gamma_p$. Γ_p est un ovale (courbe régulière) entourant u_p seul. Les Γ_i intermédiaires se composent d'une boucle fermée entourant un seul zéro de P et de ν_i boucles tronquées suivant



Disposition des cassiniennes pour p = 2.

des arcs qui correspondent aux arcs de passage, s'il y a $2\nu_i$ zéros de F'(z) sur c_i ; Γ_i a ν_i points doubles à tangentes rectangulaires. Topologiquement, les cassiniennes tronquées sont des courbes fermées, adjacentes à un ou plusieurs arbres extérieurs.

Partant de Σ_2 et de la relation F(z) = R(u), les mêmes remarques subsisteront.

9. — RETOUR AU POINT DE VUE ALGÉBRIQUE.

Nous voudrions montrer enfin que ces résultats nouveaux peuvent être rattachés fortement aux recherches algébriques anciennes et notamment aux travaux de Schottky.