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AIRES MULTIPLEMENT CONNEXES 159

faire d’une maniére plus naturelle, comme suit. On prendra la
symétrique G; de o, par rapport a la frontiere ~o
¢ =,
g

les points homologues étant toujours pris sur le méme feuillet.
La réunion %, de s, et de o-; est une surface a p feuillets dont,
chacun recouvre tout le plan. Elle a p — 1 points de ramification
de oy et p —-1 points de ramification symétriques de ci qui
établissent la connexion entre les mémes feuillets. X, est de
«genre zero » et elle est encore homéomorphe au plan complet.
En vertn du théoréme déja utilisé de Scawarz, X, se laisse
représenter conformément et biunivoquement sur un plan
complet.

Sotent u = u({) cette correspondance et { = R(u) la corres-
pondance inverse. Un raisonnement semblable a celui déja fait
au pardgraphe précédent, permet d’affirmer que R(u) est une
fonction rationnelle de degré p a cercle fondamental. Donc o se
transforme en une aire D du plan u biunivoquement et confor-
mément. Comme la correspondance entre d et o jouissait de la
méme propriété, la transformation (z — u) donnée par

Fz) = R(uw

est une représentation conforme, biunivoque du domaine ¢ sur
un domaine D du plan w. Au contour ¢, correspond ainsi le
cercle fondamental de rayon unité et aux contours ¢; COTTes-
pondent p cassiniennes généralisées sans point commun, chacune
entourant un des zéros de R(u). Ce sont les représentations
que M. Julia a fait connaitre récemment.

7. — SUR LES CORRESPONDANCES TRANSFORMEES.

Les polynomes P(u) de M. de la Vallée Poussin ne sont pas
enticrement déterminés, mais il est facile de voir que tous ceux
qui dérivent d’une méme surface %, se déduisent de 'un d’entre
eux par la relation

Plu) = Pylau + b) .
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- Nous pourrons toujours normaliser cette classe en imposant
aux polyndémes P(u) d’avoir un coefficient de u™ égal & un en
module. II est clair qu’alors on doit avoir 'a[ = 1 pour que P(u)
satisfasse & cette condition en méme temps que Py(u). L’aire
canonlque D sur laquelle on représente d n’est donec determmee
qu’a une transformatlon pres de la forme

(u — ueM + b)

qui n’est qu’un déplacement euclidien.

Concevons, alors, deux domaines @ et d’ qui puissent étre mis
en correspondance conforme, puis passons aux aires D et D’
correspondantes et canoniques de M. de la Vallée Poussin. Le
passage du plan z de d et d’ au plan u de D et D’ a donc pour
effet de linéariser la correspondance conforme entre D et D’.

De méme, les fonctions R(u) appartiennent a une famille
dépendant de trois constantes réelles

R lu )_R[ - ”].
1 —au
Une correspondance conforme entre deux aires de méme classe d
et d’ du plan z est transformée par F(z) = R(u) en la substitution

] u—a X -
. . et l
1 —au

qui correspond, comme on le sait depuis Poincaré, & un dépla-
cement non euclidien du plan de Lobatchewsky. L’effet de
la. projection sur le domaine canonique de M. Julia est donc
encore de linéariser au sens non euclidien la correspondance
entre les deux domaines primitivement donnés d et d'.

Nous avons déja vu que la surface ¢ dépend de 3p — 3 para-
 métres réels. Il en est de méme évidemment des domaines
canoniques de M. de la Vallee Poussin: p pour A, ... A, 2p pour
fixer les zéros de P(u) et enfin trois a soustraire, un pour 6 et
deux pour b & cause de l'indétermination due au déplacement
euclidien précédent. I’on retrouverait exactement le méme
nombre de parametres pour la représentation de M. Julia. Mais
icl ces parametres ne sont pas entiérement arbitraires, car nous
avons supposé que F’ ne s’annulait pas sur la frontiére de d.
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