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AIRES MULTIPLEMENT CONNEXES 159

faire d'une manière plus naturelle, comme suit. On prendra la
symétrique V de par rapport à la frontière y0

les points homologues étant toujours pris sur le même feuillet.
La réunion S2 de a1 et de V est une surface à p feuillets dont
chacun recouvre tout le plan. Elle a p — 1 points de ramification
de g1 et p — - t points de ramification symétriques de V qui
établissent la connexion entre les mêmes feuillets. est de
« genre zéro » et elle est encore homéomorphe au plan complet.
En vertu du théorème déjà utilisé de Schwarz, E2 se laisse
représenter conformément et biunivoquement sur un plan
complet.

Soient u «a u(Q cette correspondance et £ ~ R(u) la
correspondance inverse. Un raisonnement semblable à celui déjà fait
au paragraphe précédent, permet d'affirmer que R (u) est une
fonction rationnelle de degré p à cercle fondamental. Donc a se
transforme en une aire D du plan u biunivoquement et
conformément. Comme la correspondance entre d et a jouissait de la
même propriété, la transformation (z —u) donnée par

FC) « R(u)

est une représentation conforme, biunivoque du domaine d sur
un domaine D du plan. u. Au contour c0 correspond ainsi le
cercle fondamental de rayon unité et aux contours ci
correspondent p cassiniennes généralisées sans point commun, chacune
entourant un des zéros de R(w). Ce sont les représentations
que M. Julia a fait connaître récemment.

7. — Sur les correspondances transformées.

Les polynômes P (u) de M. de la Vallée Poussin ne sont pas
entièrement déterminés, mais il est facile de voir que tous ceux
qui dérivent d'une même surface se déduisent de l'un d'entre
eux par la relation

1 (u) Pq (au + b)



160 GASTON JULIA
Nous pourrons toujours normaliser cette classe en imposant

aux polynômes P(&) d'avoir un coefficient de un égal à un en
module. Il est clair qu'alors on doit avoir \a\ 1 pour que P(w)
satisfasse à cette condition en même temps que P0(&). L'aire
canonique D sur laquelle on représente d n'est donc déterminée
qu'à une transformation près de la forme

(u *- uel 0 + b)

qui n'est qu'un déplacement euclidien.
Concevons, alors, deux domaines d et d'qui puissent être mis

en correspondance conforme, puis passons aux aires D et D'
correspondantes et canoniques de M. de la Vallée Poussin. Le
passage du plan 2 de d et d' au plan « de D et D' a donc pour
effet de linéariser la correspondance conforme entre D etW.

De même, les fonctions R(&) appartiennent à une famille
dépendant de trois constantes réelles

R,(u) Ror ei(l
Ll — au J

Une correspondance conforme entre deux aires de même classe d
et d'du plan z est transformée par F(^) R(u) en la substitution

qui correspond, comme on le sait depuis Poincaré, à un
déplacement non euclidien du plan de Lobatehewsky. L'effet de
la. projection sur le domaine canonique de M. Julia est donc
encore de linéariser au sens non euclidien la correspondance
entre les deux domaines primitivement donnés d et d'.

Nous avons déjà vu que la surface a dépend de 3p — 3
paramètres réels. Il en est de même évidemment des domaines
canoniques de M. de la Vallée Poussin: p pour \ A 2p pour
fixer les zéros de P(&) et enfin trois à soustraire, un pour 0 et
deux pour b à cause de l'indétermination due au déplacement
euclidien précédent. L'on retrouverait exactement le même
nombre de paramètres pour la représentation de M. Julia. Mais
ici ces paramètres ne sont pas entièrement arbitraires, car nous
avons supposé que F' ne s'annulait pas sur la frontière de d.
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