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LA REPRESENTATION CONFORME DES AIRES
MULTIPLEMENT CONNEXES'!?

PAR

G. Juria, Membre de Plnstitut (Paris).

En réponse aux paroles qui viennent d’étre prononcées, je
dirai que nous avons peut-&tre trop tendance en mathématiques
4 nous isoler dans une espéce de tour d’ivoire et & fermer les
yeux sur les travaux des autres. Il faut, au contraire, étre averti
de ce que fait le voisin, de maniére que les recherches faites
dans un domaine puissent &tre utilisées par ceux qui poursuivent
leurs investigations dans d’autres branches de la science. Les
mathématiques ne peuvent pas se diviser en compartiments
étanches. Les idées directrices sont les mémes partout, lorsqu’on
les dégage du vétement particulier qui les revét, et la culture
mathématique générale est absolument nécessaire; c¢’est un
point sur lequel j’ai insisté dans ma conférence de Zurich (1932).
Nous devons étre des hommes de métier, mais des hommes
avertis de ce qui se passe autour de nous et bien souvent les
sujets de nos études sont empruntés aux autres sciences. 1l ne
faut donc pas non plus de cloisons qui séparent les mathématiques
d’aucune autre branche de la science et la culture générale est
nécessaire a ceux qui ne veulent pas se borner & étre une moitié
d’homme. |

Un second point sur lequel je voudrais insister est le suivant:
si utiles que soient les constructions didactiques précises, il y a

1 Lecon faite, le 3 mai 1934, dans la série des Conjférences internationales des Sciences
mathématiques organisées par ’Université de Genéve et rédigée par MM. R. WAVRE
el G. pE RumaM.

I’ EKnseignement mathém., 33me année, 1934. 10




138 GASTON JULIA

une chose qu'’il ne faut pas négliger non plus, c’est la culture de
Vintuition. C’est cette derniére qui nous fait saisir les rapports
profonds des différentes branches des mathématiques et qui
permet de les faire progresser parallélement.

Ceci dit, j’aborde le sujet de ma conférence.

1. — L PRroBLEME DE RiEmaNN.

Le probléme que je veux traiter est déja ancien. Rappelons
briévement en quoi consiste une représentation conforme.

Fig. 1.

Envisageons deux aires, I'une d dans le plan de la variable
complexe z, 'autre D dans le plan Z, limitées par deux courbes
¢ et C réguliéres, simples et fermées. Représenter conformément
les domaines & et D 1'un sur Pautre, c’est établir entre leurs
points une correspondance bi-univoque, conservant les angles
et respectant leur sens. Cette correspondance ne peut étre
réalisée, comme on le sait, que par des fonctions holomorphes
inverses 'une de P’autre o

telles que z parcourant d, Z passe par tous les points de D et
- une seule fois par chacun et réciproquement. RiEMANN fut le
premier & se poser ce probléme. Il a montré que la fonction f
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dépendait de trois parametres réels arbitraires dont on peut
disposer pour que deux points donnés et deux directions données
issues de ces points se correspondent.

11 est évident que la correspondance entre d et D sera établie
si ’on peut représenter conformément chacun des deux domaines
sur une aire canonique particuliére, un cercle par exemple, et
¢’est ce que fait Riemann. Cette méthode de réduction du pro-
bléme est générale en mathématique, elle intervient dans I’étude
des transformations les plus générales, en géométrie, en algebre
el en arithmétique.

Postérieurement a4 Riemann, on s’est apercu qu’il y avait lieu
d’étudier des domaines pour lesquels la frontiere n’était pas une
courbe réguliére. Le dernier en date des résultats importants
obtenus dans cette direction est le suivant:

Toute aire simplement connexe dont la frontiére contient plus
’un point peut &tre représentée conformément sur le cercle
unité et Pon dispose encore, comme dans le cas précédent, de
trois parametres arbitraires.

2. — LA CONNEXION D’ORDRE n.

Mais pour aller plus loin, il importe de définir Vordre de
connexion d’un domaine. Je supposerai connu le langage de la
théorie des ensembles.

Un domaine est un ensemble de points, tous intérieurs tels
que deux quelconques d’entre eux puissent étre reliés par une
courbe de Jordan contenue elle-méme dans le domaine.

La frontiére peut se composer de n continus séparés. Dans ce
cas, l'ordre de connexion est n. Un continu frontiére peut, dans
certains cas, se réduire & un seul point. On dira alors qu’il est
dégénéré. Si un domaine n’a pas de point frontiére, son ordre de
connexion est nul. S’il est limité par une seule courbe fermée, 1l
ost dit simplement connexe. Cest le cas envisagé par Riemann.
Un cercle dont on retranche le centre forme un domaine d’ordre 2,
dont une frontiere, a savoir le centre, est dégénérée; un cercle
dont on retranche p cercles intérieurs sans point commun, est
un domaine d’ordre p + 1. L’ordre peut étre infini. A c6té de
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cette notion d’ordre n, nous avons le genre, ¢’est le nombre n — 1.
Au point de vue topologique, le genre s’interpréte directement
comme suit: c’est le nombre maximum de coupures que I’on
peut pratiquer dans le domaine sans le morceler. Ces coupures
sont des courbes joignant un point frontiére & un autre et dont
tous les points sont intérieurs au domaine. Un cercle est de

Fig. 2.

Domaine de genre 2, d’ordre de connexion 3.

genre 0, car toute coupure le miorcellerait. Un cercle moins le
centre est de genre 1, car un rayon ne le morcelle pas. Dong, si
je puis faire n coupures qui ne morcellent pas un domaine,
tandis que n + 1 coupures le morcelleraient quelles qu’elles
soient, son genre est n. Le genre ainsi défini est en rapport,
comme nous le verrons, avec le genre d’une courbe algébrique.

Dans un domaine d’ordre 1, toute courbe fermée peut étre
réduite & un point par deformatlon continue et sans sortir du
domaine. C’est impossible si la connexion est d’ordre supérieur.
Si 'on effectue n coupures convenables dans un domaine d’ordre
n + 1, ce domaine devient simplement connexe.

Deux aires ne pourront étre mises en correspondance conforme
que si leur ordre de connexion est le méme. En effet, les fonc-
tions f et ¢ qui effectuent la correspondance étant ‘holomorphes
et jouissant de la propriété de continuité jusque sur les frontiéres,
4 un point frontiére de I'un des domaines correspond un point
frontiére de I'autre et le nombre des continus séparés dont elles
se composent est forcément le méme. Mais cette condition n’est
pas suffisante et un domaine limité par deux courbes fermées,
dont l’une est mterleure & Iautre, n’est pas toujours represen-
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table sur un anneau circulaire déterminé; il faut pour cela que
le rapport des rayons des circonférences soit convenable.

(est 14 une différence essentielle, dans la théorie de la repré-
sentation conforme, entre les domaines d’ordre 1 et ceux d’ordre
supérieur.

3. —— DESCRIPTION DES DOMAINES CANONIQUES.

ScuoTTKY !, inspiré par l'idée des domaines canoniques,
introduit des aires d’un type simple et de connexion n. Ainsi
on pourra classer les domaines d’ordre p suivant les propriétes
des aires canoniques qui leur servent d’images. Deux domaines
seront de la méme classe s’ils peuvent étre représentés sur le
méme domaine canonique et dans ce cas, comme on 'a vu, ils
peuvent étre représentés conformément l'un sur Pautre. Les
aires canoniques multiplement connexes jouent ict un role encore
plus fondamental que le cercle pour le probléeme de Riemann,
puisque leur détermination ccempléte permet de répartir en
classes distinctes les domaines qui peuvent étre mis en corres-
pondance conforme.

Pour simplifier, nous supposerons les frontiéres non dégénérées
et le domaine donné tout entier & distance finie.

Dans ces conditions, M. KoEeBE, poursuivant une idée de
Schottky, a montré quun domaine limité par p -+ 1 contours
fermés ¢, ¢, ¢y, ..., ¢, se laisse représenter sur une aire limitée
par deux circonférences concentriques et p — 1 arcs de circonfeé-
rence situés dans la couronne limitée par les deux courbes
précédentes et de méme centre; ces arcs seront parcourus une
fois dans chaque sens lorsque 'on décrit les courbes ¢; qui leur
correspondent. La circonférence extérieure correspond a la
courbe qui contient toutes les autres et la circonférence intérieure
& Pune quelconque des autres courbes. Cette derniére condition,
comme celle d’étre a distance finie, n’a rien d’essentiel car on
sait qu’une substitution

'1 Pour la bibliographie, voir G. Jurra, Lecons sur la représentation conforme des
aires mulliplement connexes, Gauthier-Villars, 1934.
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permet de ramener le-domaine a distance finie ou d’intervertir
le contour extérieur avec n’importe lequel des autres. Les
propriétés essentielles du probléme de la représentation ne sont

Fig. 3.

pas altérées par cette substitution. Par conséquent un point Z,
du domaine D peut correspondre au point a I'infini du domaine d
la fonction z = @ (Z) admettant un pole en Z,. v

De combien de paramétres dépend le domame canonique de
M. Kozsk ? [l'y a les rayons.des deux circonférences, les rayons
des p — 1 arcs de circonférence, puis les angles des extrémités
de ces arcs au nombre de 2(p — 1), donc au totat2 4 3(p — 1)
= 3p—1. Mais un domaine canonique correspond évidemment
4 une infinité d’autres de méme classe obtenus par la similitude

7 = al* 3

a étant un nombre complexe arbitraire. Il faut donc retrancher -
deux parameétres réels. Les domaines canoniques de M. Koebe
forment une famille & 3p — 3 paramétres réels. Nous verrons
que c’est 14 une propriété générale.

Donc pour écrire que deux domaines d et d’ sont représentables
conformément I'un sur 'autre, il faut écrire 3p — 3 relations
- qui reviennent a identifier leurs domames canoniques. Ceci est
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valable pour p > 1. Si p = 1,1l y a, comme nous Pavons vu,
ane condition A satisfaire, le rapport des rayons des deux cir-
conférences du domaine canonique devant étre convenable.

Schottky avait pris comme aire canonique de représentation
d'un domaine de genre p, l'aire limitée par p + 1 ares de cir-
conférences concentriques, le centre et le point a Pinfini corres-
pondant respectivement & deux points arbitraires z, et z; du
domaine donneé.

En tenant compte de la similitude toujours possible et de la
correspondance des deux points arbitraires z, et z; avec Z = 0
et 7Z — - oo qui permet de retrancher quatre parametres
réels, on trouvera encore 3p — 3 paramétres.

Je me dispense de vous donner la démonstration de la possi-
bilité dela correspondance conforme avec les domainesc anoniques
envisagés. Vous la trouverez dans mon livre: Legons sur la
représentation conforme des aires multiplement connexes, je ne
veux pas entrer dans des détails que vous pourrez facilement
trouver dans cet ouvrage et d’une maniére générale, je devrai,
stant donné le temps dont je dispose, supposer acquises certaines
démonstrations d’existence des solutions des problemes envi-
sagés et je m’en tiendrai davantage a I’étude des propriétés
caractéristiques de ces solutions.

M. HiLeerT montre qu'un domaine d’ordre supérieur a 2
est représentable sur le plan complexe muni de coupures recti-
lignes paralléles & I’axe réel et en nombre égal a Pordre p + 1,
naturellement. A un point z, il fait correspondre le point a
infini du plan Z et & une direction issue de z, une direction
asymptotique du plan Z. La représentation est unique dans ces
conditions. Si Pon fait le compte des parametres, on retrouve
3p — 3. La méthode de Hilbert, toute inspirée de calcul des
variations, sera caractérisée au sujet des aires de connexion
infinie car elle s’applique encore a ce cas.

Enfin, M. KoesE montre que ’on peut choisir pour domaine
canonique le domaine limité par p -+ 1 cercles non sécants. Ils
sont caractérisés par 3p -+ 3 paramétres réels, mais une trans-
formation homographique

ali + b

g — 4T
cZ + d
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conserve le caractére des domaines canoniques. C’est la seule,
d’ailleurs, qui jouisse de cette propriété; elle dépend de trois
parametres complexes, donc six réels, ce qui donne de nouveau
3p — 3 paramétres réels et le méme nombre de conditions pour
que deux domaines soient représentables I'un sur ’autre.

Ce nombre évoque a lui seul la théorie des courbes algébriques.

4. — I’ANALOGIE AVEC LES COURBES ALGEBRIQUES.

L’analogie entre les domaines de genre p et les courbes algé-
briques de genre p fut apercue par ScHoTTKY dans son mémoire
fondamental paru au tome 83 du Journal de Crelle. Cette analogie
est trés profonde. A cette époque, on savait seulement, par des
exemples relatifs aux domaines de genre 1, qu’il n’était pas tou-
jours possible, comme nous I"avons dit, d’effectuer la représenta-
tion sur un anneau circulaire donné. Il fallait que le rapport des
rayons fat convenable et dans la discussion intervenait le
module K2 des fonctions elliptiques. (On sait, d’autre part, que
les fonctions elliptiques permettent d’exprimer les coordonnées
des courbes de genre 1 en fonctions uniformes d’un para-
métre.) " |

Appelons alors classe de courbes algébriques ’ensemble des
courbes algébriques dont les points peuvent étre mis en corres-
pondance rationnelle bi-univoque. Les courbes et les transfor-
mations envisagées ici sont celles définies seulement par des
équations & coefficients réels. Si les courbes sont de genre p, une
telle classe, dite de genre p, dépend de 3p — 3 paramétres, dés
que p > 1. Schottky montre alors qu’a toute aire de genre p,
donc limitée par p -1 contours, est associée une classe de genre p.
Réciproquement, & toute classe réelle de genre p correspondent
des domaines d de genre p. Et pour que deux domaines soient
représentables I'un sur V’autre, il faut et il suffit que les classes
de courbes algébriques qui leur correspondent soient iden-
tiques. S

Schottky procéde par un moyen qui parait tout d’abord dé-
tourné. Il envisage la classe des fonctions K (z) méromorphes
dans le domaine donné d et sur sa frontiére, réelles sur cette
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frontiére. Toutes ces K (z) sont alors des fonctions rationnelles
a coefficients réels de deux d’entre elles r(z) et s(z)

K = o, s) .

Les deux fonctions r et s sont alors liées par une équation algé-
brique & coefficients réels de genre p: A(r, s) = 0. (On sait que p
est le nombre des intégrales abéliennes de premiere espéce
associées a la courbe algébrique envisagée.) Ce résultat est-il
surprenant ? Non !

Soit en effet r (z) I'une des fonctions K (z). Lorsque z décrit d,
r (z) déerit une surface de Riemann R, limitée par p -+ 1 contours
situés sur Paxe réel (puisque ces contours correspondent aux
contours limitant d, sur lesquels r est réel). La surface R, symé-

trique de R, par rapport a I’axe réel (surface décrite par r(z)
— 1maginaire conjuguée de r (z) — lorsque r décrit d) peut étre
soudée a R le long de ces p 4 1 courbes et ’on obtient ainsi
une surface de Riemann fermée de genre p. Cette surface R
est 'image du domaine d pris avec ses deux faces: R, corres-
pondant & Pune des faces, R, & Pautre; le domaine d ainsi
considéré est bien une surface fermée de genre p: on peut en
effet 'obtenir en aplatissant une surface fermée a p trous. A la
classe des fonctions K (z) correspond alors la classe des fonctions
de r uniformes et méromorphes sur R et réelles sur les lignes de
soudure de R, avec R; et griace & cette correspondance, les
résultats de Schottky se rattachent directement aux théoréemes
de Riemann sur les fonctions algébriques.

5. — LA REPRESENTATION CONFORME NON BIUNIVOQUE
ET L'UNIFORMISATION SUIVANT POINCARE.

Soit I (z) une fonction définie dans un domaine d de genre 2
fini ou non. Elle sera supposée holomorphe ou au plus méro-
morphe dans d, mais elle sera, en général, multiforme, ce qui
est fort possible puisque ce domaine est & connexions multiples.
Considérons alors un point z de d et joignons-le & un point O
quelconque par un chemin tout entier dans d. Deux chemins
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réductibles 'un & Pautre sans sortir de d seront considérés comme
1dentiques. Un point auquel est ainsi associé un chemin sera
dit un point analytique z. Un point géométrique z est donc la
projection d’une infinité de points analytiqués 21y Bgy ... lu€S
différents points z;, z,, ... peuvent étre congus comme appartenant
4 une infinité de feuillets distincts formant une surface de
Riemann X recouvrant le domaine donné. C’est la surface de
recouvrement de 1'aire multiplement connexe. On passe d’un_
feuillet & ’autre par soudure le long des coupures pratiquées
dans ’aire donnée pour la rendre simplement connexe. C’est
un procédé-bien connu. Par exemple, si d est ’anneau 1 < ]z‘ < 2,
la surface X serait la portion d’un hélicoide qui se projette sur
Panneau précédent, et un chemin qui fait m fois le tour de
’anneau parcourt m feuillets de I’hélicoide. La fonction F (z)
considérée comme dépendant des points analytiques ne peut étre
qu’uniforme sur la surface simplement connexe X.

Le probléme que résout Poincaré consiste alors en ceci:
effectuer la représentation conforme biunivoque de la surface
de Riemann X sur le cercle C de rayon unité. (’était 1a une idée
extrémement féconde en méme temps que hardle Cette corres-
pondance

N

fera donc correspondre a tout point géométrique € de C un point
analytique z de 2 et un seul et réciproquement. Mais & un point
géométrique z de d correspondra en général une infinité de points
analytiques de X: z, 2,, ..., donc une infinité de points géomé-
triques &;, &, ... de C. Ceci étant, la fonction F (z) uniforme de
point analytique z devient une fonctlon uniforme du pomt
geometrlque g ,
G = Fle(0], (3)
et si ’on associe a (3) la relation (1), on a une représentation de z
et de F au moyen de deux fonctions umformes dans le cercle unité
g < 1.

C’est par la résolution du probléme de Dmchlet méthode du
balayage, que PoiNcaRE établit I'existence de la fonctlon uni-
formisante ¢ ({); aujourd’hui le procédé d’osculation de Koebe
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(Schmiegungsverfahren) conduit au méme but par une voie plus
directe et plus élémentaire exposée dans mes Lecons sur la
représentation conforme (Cahiers scientifiques, fascicules VIII
et XIV) et je n'v insiste pas.
Solent
L ="z et G =l

deux fonctions établissant la correspondance demandée entre X
et C. On en déduit une relation, holomorphe elle aussi,

Cz = (Cl) ’

qui transforme le cercle en lui-méme. Mais une telle transforma-
tion est forcément homographique. Elle se réduit a l'identiteé
Z, = ¢, si l'on s’impose que le centre du cercle corresponde &
un point donné de la surface X et que deux directions données
issues de ces points se correspondent également. La transfor-
mation est donc unique dans ces conditions-la.

Demandons-nous maintenant quelles sont les conditions pour
que deux domaines d et d' puissent étre mis en correspondance
conforme.

Pour cela, une analyse plus approfondie de la relation entre X
et C est nécessaire.

Le domaine d peut étre rendu simplement connexe par p
coupures joignant Cy a C; ... C,,. (Il s’agit ici de domaines de genre p
fini.) Soit d, le domaine dont les coupures et les courbes C;
forment la frontiére.

Chaque branche de la fonction f(z) est uniforme dans d,.
Soit f;(z) 'une de ces branches. Il lui correspond un domaine D,
du cercle C. I); est en correspondance conforme et biunivoque
avec d,. Ces domaines D, dits domaines de discontinuité, sont
en nombre infini. 1ls n’empietent pas les uns sur les autres et
remplissent le cercle C. L’on aboutit ainsi a un pavage de C au
moyen des domaines D, pavage bien connu dans la théorie des
fonctions fuchsiennes. Les D, correspondent aux différents

feuillets de la surface de recouvrement 2 de d. Envisageons deux
branches

G=fil et g =f
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| de la fonction multiforme f (z). L’on aura-encore .

$ étant holomorphe dans C. Cette transformation ‘du cercle en
lui-méme est de nouveau homographique. Nous la représenterons
par §; = S{;. Ainsi deux branches quelconques de f sont liées
par une substltutlon rationnelle et linéaire {, = S¢;. Ces substi-
tutions laissent invariante la fonction z = ¢ ({) qui reprend la
méme valeur aux deux points {; et ;. '

Ces substitutions S forment un groupe, ¢’est-a-dire un ensemble
tel que tout produit de substitutions de ’ensemble et les substi-
tutions inverses appartiennent a ’ensemble.
~ Si I’on étudie la structure de ce groupe G, on s’apercoit que le
pavage précédent peut étre obtenu, ainsi que toutes les substi-
tutions du groupe, au moyen de p substitutions fondamentales,
dépendant chacune de trois paramétres réels. 3p constantes
réelles suffisent donc pour définir le groupe G en question.

Maintenant, supposons que deux domaines d et d’ puissent
étre mis en correspondance conforme biunivoque l'un avec
Pautre

z = z(z) et g = 7 iz < (&)

et soient :
C = f(3) et U = f(7) (5)

les représentations sur le cercle unité des surfaces de recouvre-
ment % et X', attachées & d et d’, puis G et G’ les groupes qui
leur sont attachés. On déduit de (4) et (5) l'existence d’une

substitution _
C = (%)

homographique qui dépend de trois parameétres.
Nous aurions donc deux transformations de Y sur C

C=1F@ et T ={f[]

admettant respectivement pour groupes G et G’. Or on sait
qu’elles sont identiques, & une substitution homographique prés.

Donc G et G’ sont aussi identiques & une substitution homogra-

phique prés.




AIRES MULTIPLEMENT CONNEXES 149

Réciproquement, si ces groupes sont identiques, & un point =
de d correspond une infinité de points ; de C, qui résultent de
'un d’eux par G. Cette suite {; est aussi une suite d’homologues
d’un point z' de d’. Associons ce point z' au point z et nous
aurons la correspondance biunivoque et conforme cherchée.

La condition nécessaire et suffisante pour que les deux do-
maines d et d’ puissent étre mis en correspondance conforme est
donc que les groupes G et G’ soient identiques, & une substitution
homographique pres. Cela fait encore 3p — 3 relations comme on
le vérifie facilement d’apres ce qui précede (p > 1).

En passant, signalons d’autres applications.

Dans une telle représentation de d sur C, les frontiéres se
correspondent évidemment; & chaque ¢, de d correspondent une
infinité d’ares sur la frontiere I' de C. La réunion de ces arcs
relatifs & tous les ¢, recouvre la circonférence entiére & un
ensemble de mesure nulle pres.

La résolution du probléme de Dirichlet pour le domaine d
se ramene, par la fonction uniformisante de Poincaré z = ¢ (0),
au méme probleme pour le cercle. La fonction cherchée devra
prendre en les points de I' les mémes valeurs qu’aux points
homologues des courbes c¢,. L’intégrale de Poisson, dans laquelle
un ensemble de mesure nulle situé sur I' n’a aucune influence,
d’apres la théorie de M. LeBESGUE, résoudra le probléeme.

Les domaines de discontinuité D; sont limités par 2p arcs de la
circonférence I' (correspondant aux arcs délimités sur les
contours ¢, par les extrémités des p coupures pratiquées dans le
domaine d), et, en outre, par 2p arcs de courbes intérieurs au
cercle fondamental C, correspondant aux deux bords des cou-
pures. Ceux qui correspondent aux deux bords d’une méme
coupure se correspondent par une substitution de G, et si les
coupures sont pratiquées d’une maniére convenable, ce sont des
arcs de circonférences orthogonales a I,

Adjoignons & D, son symétrique D; par rapport & I': on obtient
un domaine D; limité par 2p circonférences orthogonales a T,
deux & deux homologues; en les raccordant convenablement,
D; devient une surface de Riemann orthosymétrique fermée
de genre p, & laquelle est attachée une classe de courbes algé-
briques réelles: celle de Schottky que nous retrouvons ainsi.
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Grace a la fonction uniformisante z = ¢({) de Poincaré,
toutes les fonctions K (z) de Schottky envisagées précédemment,
deviennent des fonctions uniformes de ¢ dans C et admettant
le groupe G. Elles sont réelles sur I' et peuvent par suite étre
prolongées analytiquement & l’extérieur de C par le principe
de symétrie. Les coordonnées r et s de la courbe algébrique
réelle A (r, s) = 0 deviennent ainsi des fonctions uniformes de &,
définies dans tout le plan?, réelles sur I', invariantes par les
substitutions de G: on retrouve ainsi une représentation para-
métrique de la courbe A (r, s) = 0 par des fonctions fuchsiennes.

Les domaines de discontinuité sont les D,;; chacun d’eux repré-

sente la surface de Riemann R envisagée plus haut, D, et D;
correspondant respectivement & R, et R’.

0. — LES REPRESENTATIONS DE MM. DE LA VALLEE Poussin
ET JULIA. ’

En 1930, dans un beau mémoire des Annales de I’ Ecole Normale
Supérieure, M. DE LA VALLEE Poussin introduisit de nouveaux -
domaines canoniques formés par des cassiniennes, ¢ est a-dire
par des courbes d’egal module d’un polyndme: ~

| P () | = constante .

Nous dirons que la cassinienne est de degré p si le degré du
polynome est p.

Les domaines de genre un se laissant représenter sur un anneau
circulaire convenable

e’O ‘
lu[=; R =0, A <1y .
Il y avait lieu de se demander si un domaine de genre p pouvait

étre représenté sur des aires limitées par p -+ 1 cassiniennes
de degré p

T Excepté sur un ensemble de mesure nulle situé sur I.
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Sous cette forme, le résultat ne serait pas général et M. Julia
qui entreprit ses recherches sur ce sujet, & la demande de M. de
la Vallée Poussin, a indiqué ultérieurement des domaines de
genre p > 1 ou ce résultat serait en défaut. Ce que M. de la
Vallée Poussin a établi, c¢’est ceci: tout domaine de genre p
peut ¢étre mis en correspondance conforme biunivoque avec une
aire limitée par des cassiniennes de degré égal ou supérieur a p
fournies par un polynéme P ayant seulement p racines distinctes.
Ce degré peut étre pris égal a p si la dérivée F'(z) d’une fonction
F (z), que nous dirons « principale », dont le module est constant
sur les frontiéres, ne s’annule pas sur ces frontiéres.

Frappé par 1’élégance du résultat de M. de la Vallée Poussin
ou le degré des cassiniennes égale le genre de I'aire & représenter,
M. Juria a cherché une solution qui sauvegardat ce caractcre,
A4 son avis essentiel, pour tous les cas possibles, c¢’est-&-dire méme
si la dérivée F’(z) s’annule sur les frontiéres. Il parvint & montrer
que tout domaine de genre p peut étre représenté sur une aire
dont les frontiéres appartiennent a des cassiniennes de degré p.
Chaque frontiére est soit une cassinienne fermée sans point
multiple, soit une partie d’une cassinienne comprenant au moins
ane boucle. Il montra en plus que les polyndmes P (z) pouvaient
Stre remplacés par des fonctions rationnelles R (u) de degré p
@« cercles fondamentaux, les cassiniennes généralisées :
R(u) [ = constante, ayant méme caractere que précédemment.

M. de la Vallée Poussin avait introduit également d’autres
ares canoniques, limitées en particulier par des courbes de la
‘orme

l (w=—a,)™ ... (u— ap)nf) l — ? .

dont 'une est un ovale simple et la seconde se décompose en p
svales simples intérieurs au précédent. Les n; sont positifs mais
rénéralement irrationnels.

Soit ¢ un domaine du plan z limité par un contour extérieur ¢,
L p contours intérieurs ¢; ... ¢,. On peut sans restriction supposer
-es contours analytiques. M. de la Vallée Poussin construit la
‘onction

F(z) = cU+iV
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holomorphe dans d.et sur les ¢; et dont le module e” prend sur
les ¢; des valeurs constantes qu’on peut supposer réparties
comme suit |

1>e1>e2> > ep .

L’argument V augmente de — 27 lorsque z décrit une des
¢ .- €y dans le sens positif par rapport a laire, et de p . 2=
lorsque z décrit ¢,.

Fig. 4.

Cette construction se ferait au moyen de p fonctions fonda-
mentales Uy, ..., U, harmoniques et uniformes dans d et telles que
P'on ait |

| (1 sure¢ i£0

Ui — ,
[0 surles autres contours.

Ces fonctions existent et sont uniques. Soient alors Vj, ..., vV,
les p fonctions conjuguées; elles ne sont pas uniformes: a chaque
¢, correspond une période w;, pour V, et le déterminant de ces
périodes
' 1

Il

l

k

y nuny P

: “l” Ly eouy B

]

est différent de zéro, comme ScuorTkY et M. Koese Pont établi
antérieurement. En posant

U =750 + ... +2,0,
V=Vt o 2V,
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on aura la fonction F (z) de M. pE 1.A VALLEE Poussin. U prendra
la valeur X; sur ¢;. Les &; sont déterminés d’une facon unique par
les conditions de périodes relatives a c; et le savant belge les appelle
les indices de aire d. (Voir Cahiers scientifigues, fasc. X1V.)
La fonction F(z) est donc holomorphe et uniforme dans d et
satisfait aux conditions demandées. F(z) est, bien entendu,
déterminée a un facteur prées de module unité. On démontre
facilement que tous les ; sont négatifs, autrement dit U atteint
son maximum sur ¢, et seulement sur ¢,. En posant:

F(z) = P(u) ou Flz) = R{u) ,

au contour ¢; correspondra une cassinienne I';, ou une cassinienne
généralisée:

| P(u) | = ¢ ou | R(u) | = i -
Chaque cassinienne entourera au moins un zéro ou un pdle des
fonctions en wu; dans ’hypothése contraire, les fonctions

LIPw]| ou L|R(u)|

que Pon sait étre harmoniques, seraient constantes sur les I',
régulicres a l'intérieur de I'; et par suite constantes identique-
ment, ce qui ne peut pas étre.

M. de la Vallée Poussin montre qu’il existe effectivement un
polyndme P de degré p a racines simples, tel que la corres-
pondance (z —= u) de I'aire donnée d et de I'aire D limitée aux T,
soit biunivoque, dans le cas ot F’(z) ne ¢’annule pas sur les
frontieres de D. Cest par des considérations tirées de la théorie
des lacets que le savant belge achéve ainsi sa démonstration.

Si élégante et simple que soit la méthode précédente, M. Julia
préfere, pour surmonter les difficultés du cas ou la dérivée
s’annulerait sur les frontiéres, prendre comme élément central
la surface de Riemann ¢ que décrit le point

C = F(g

lorsque z décrit le domaine d. Remarquons que, F(z) étant
uniforme dans d, cette surface de Riemann o est en correspon-
dance biunivoque avec le domaine d balayé par z. o est done

I Enseignement mathém., 33me annde, 1934. 11
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a la fois le domaine d’existence et d’uniformité de la fonction

inverse, multiforme
z = O (%)

et le « domaine des valeurs » de F dans d.

A deux points z, et z, de d peut correspondre un méme point
géométrique {; = ,. Nous conviendrons que ¢; et g, ne sont
pas sur le méme feuillet et ne coincident qu’en projection. ‘
- M. Julia avait déja, a diverses reprises, attiré ’attention des
chercheurs sur cette construction, en quelque sorte inverse de
celle de Riemann, & partir d’une fonction uniforme F(z). Cette
surface de Riemann o jouit de propriétés générales: frontiéres,
nombre des feuillets, relation entre le nombre des points de
ramification intérieurs et celui des points de ramification sur
la frontiére, connexion, et I’on démontre que ces propriétés sont
caractéristiques de la surface envisagée. Cette surface cano-
nique ¢ met en lumiére la nature des difficultés qu’avait rencon-
trées M. de la Vallée Poussin et la maniére de les éviter par des
cassiniennes tronquées au lieu d’élever le degré des polyndmes
P(u).

La construction de la surface s. — Chaque point z, ou F'(z) 520,
peut étre entouré d’une aire (3) & laquelle correspond biuni-
voquement par { = F(z) une aire (A) circulaire. Chaqueé point z’
de & ou F'(z') = 0 peut étre entouré d’une aire (3’') & laquelle
correspond biunivoquement un élément (A’) de surface de
Riemann présentant au point ' = F(z’) un point de ramification
autour duquel se permutent & feuillets de (A’), la frontiére
de (A’) étant d’ailleurs constituée par un cercle de centre {’
parcouru k fois de suite. . '

‘En vertu du lemme de BoreL-LEBESGUE, on peut recouvrir d
avec un nombre fini d’aires (3) et (3') auquel correspondent sur
le plan € un nombre fini d’aires (A) et (A’). Les domaines () et
(8’) empietent les uns sur les autres et il en est de.méme des (A),
et (A’). Partant d’une aire (8,), nous ferons le prolongement de
F(z) dans tout d et relierons les domaines (A) et (A’) comme
Iétaient les 5, c’est-a-dire en respectant les connexions. Un
nombre fini d’opérations permettra ainsi d’engendrer I’aire de
Riemann o, transformée conforme et biunivoque de d parF (z).
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La surface o est limitée par des courbes v;, sur lesquelles
!C] = ehi, qui correspondent aux contours ¢; de d. Les v; se
projettent donc sur des circonférencss v; du plan . Quand z
décrit ¢;, { déerit v, toujours dans le méme sens si F' 5= 0 sur
¢;, ou avec des rebroussements aux points ou cette dérivée serait
nulle. Pour cette raison, nous appellerons les v, des courbes
circulaires.

A tout point z" intérieur a d tel que F'(z") = 0 correspond un
point de ramification de o, mais si z" est sur une des frontieres
de d, le point T’ correspondant ne peut étre regardé comme un
point de ramification de o. Il serait point de ramification pour
un prolongement s* de o correspondant a un prolongement de &
par des bandes convenables entourant les ¢;, et les points de
rebroussement précédemment mentionnés sont évidemment les
traces de ce que seraient ces points de ramification. On s’assure
d’ailleurs (par des propriétés de maximum) que F’ ne peut
s'annuler sur ¢, et ¢,. En plus, chaque zéro de F’ étant pris avec
son ordre de multiplicité, 'on peut montrer que sur les autres
contours les racines de I’ sont forcément en nombre pair (par la
variation des arguments). Enfin, par des raisonnements que nous
ne reproduirons pas ici, M. Julia aboutit a la relation fonda-

mentale suivante:
2 + b =2p—2,

a étant le nombre des zéros intérieurs & d, b le nombre des zéros
sur la fronticre de ¢ et p comme toujours le genre de Daire.
Plagons-nous alors dans des circonstances simples afin de pou-
voir décrire la surface o sans complications superflues de langage.
Supposons b = 0 (donc aucune racine sur la frontiére et
@ = p -— 1), les racines intérieures simples et les A; tous diffé-
rents: A, <k, | <. <}i <O,

Alors, 1l y a p feuillets de o limités extérieurement par -, et
intérieurement par I'une des circonférences v, ... - Ges feuillets
sont unis par p — 1 points de ramification simples. Ils se tra-
versent suivant les lignes de croisement issues des points de
ramification et s’étendant jusqu’a ~,. Ces résultats s’obtiendraient
en recherchant le nombre n(«) des racines de Iéquation -

F(z) —a =0

2
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nombre évidemment égal a celui des feuillets situés au-dessus -
du point o du plan C Ce nombre est, en vertu d’'un theoreme
de Cauchy,

27'1,/ F(z) — o d"’

Co.. Cp

et 'on peut écrire aussi, comme on sait,

n(e) = 2%_ var. totale de I’arg de ({—«a) .
Le calcul de cette variation totale montrera ’existence d’un
feuillet entre vy, et vy, , de deux feuillets entre v, ; et (p_c,,
enfin de p feuillets entre v, et v,.

La surface o étant transformee biunivoque de d par { = F(z),
aura le méme ordre de connexion que d, c’est-a-dire l'ordre
p + 1. En plus, elle est de genre zéro (schlichtartig) car il est
impossible de tracer sur o une rétrosection qui ne morcellerait
pas cette surface. |

On peut considérer ¢ comme une aire de Riemann canonique
qui caractérise la classe des aires du plan z représentables
conformément et biunivoquement sur une aire quelconque d
donnée a priori et de genre p.

Il y a plus: la marche inverse est possible, car en vertu des
théorémes généraux sur la représentation conforme des surfaces
de Riemann (voir Koese, Ueber die Uniformisierung..., Goit.
Nachr., 11 juillet 1908) on peut trouver une fonction z(%) (et
méme une infinité) holomorphe a 'intérieur de la surface de
Riemann et univalente, de sorte que z décrive une aire simple d
ne se recouvrant nulle part lorsque ¢ décrit la surface de
Riemann o. (Dans le cas actuel, cette aire d de connexion p + 1
pourrait d’ailleurs étre choisie dans un des types canoniques vus
précédemment de Schottky, de Koebe, de Hilbert.)

La fonction Z(z), inverse de la précédente, aura toutes les
propriétés qui caractérisent la- fonction F(z) (& un facteur
constant prés). Donc les propriétés de ¢ auxquelles nous avons
fait allusion, sont bien caractéristiques de la classe des aires
planes de connexion p -+ 1.
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Constatons ici que o dépend dans le cas le plus général de
3p — 3 paramétres réels; il y a les p rayons des cercles vy ... Yy,
puis ¢ points de ramification intérieurs correspondant chacun a
deux paramétres réels et b points de ramification sur les fron-
tieres, ce qui fait b parameétres réels, enfin, 1l faut soustraire un
parametre, puisque o n’était déterminée qu’a une rotation pres,
ce qui fait, en vertu de Péquation fondamentale,

p+2a+ b6b—1 =3p—3 .

Prolongement de o; la surface s;. — Revenons, pour simplifier,
au cas ou la surface o n’a que des points de ramification intérieurs:
b =0,a = p—1.0n a vu que o était limitée dans ce cas par
les circonférences intérieures vy ... v, et la circonférence exteé-
rieure v, parcourue p fois. Adoptons pour un instant le point de
vue de la topologie. Les aires d et o sont homéomorphes, c’est-a-
dire qu’elles se correspondent biunivoquement et bicontinument
par { = {(3)].

D’autre part, il est possible d’établir une correspondance
analogue entre le cercle limité par ;(¢: > 0) et Pintérieur de ¢;,
qui coincide sur les frontiéres avec celle définie par { = {(z). Iin
adjoignant & s les cercles intérieurs limités aux v;, nous obtenons
donc une surface de Riemann o;, homéomorphe & I'intérieur de ¢,.

Elle possede p feuillets au-dessus de tout point intérieur & c,.

La surface Xy et la représentation de M. de la Vallée Poussin. —
Adjoignons & la surface o, 1'élément o, de surface de Riemann
décrit par le point = o” lorsque o décrit le domaine |wt = 1.
Quand « déerit la circonférence unité, le point { décrit p fois
le cercle trigonométrique. On pourra raccorder les p feuillets de
s, aux p feuillets de o, dont les frontiéres extérieures se proje-
taient sur v,. En soudant ainsi s; et o,, on obtient une surface
de Riemann 2, fermée et de « genre zéro», ce qui veut dire que
toute courbe ferniée tracée dans 2, morcelle 2;: au point de vue
topologique, X; est homéomorphe au plan complet (y compris le
point & infini). On peut en eflfet établir entre o, et 'extérieur de
¢, une correspondance biunivoque et continue qui coincide sur
les fronticres avec celle définie par T = {(z), ce qui montre que




158 GASTON JULIA

2, est homéomorphe au plan complet des z, o; correspondant a
lmtemeur de ¢; et o, & Pextérieur.

D’aprés un théoréme de Scawarz, toute surface de cette sorte
peut étre mise en correspondance conforme avec un plan u
complet, par une fonction analytique

u = u(g) .

Cette correspondance peut étre établie d’une infinité de facons
et devient unique si 'on se donne trois couples de points homo-
logues. Ici nous supposerons que le point = oo correspond au
point u = oo,

La fonction u (%) a p déterminations finies en chaque point,
elle a un point critique d’ordre p — 1 a Dinfini et des points
critiques simples aux p — 1 points de ramification de o. (Vest
donc une fonction algébrique de degré p en ¢. Son inverse

¢ = ¢(u)

est holomorphe en tout u & distance finie et admet u == oo
comme pole d’ordre p. C’est un polyndme de degré p

¢ = Plu) .

2, est donc la surface de Riemann d’un polynéme et a o corres-
pond une aire D conformément et biunivoquement. D est
connexe et de genre p. Aux contours ¢; correspondent les cassi-
niennes du plan u
[P(u)| = ¢ i =0,1,...p .
Y

Les polynémes P de M. de la Vallée Poussin et les représentations
conformes correspondantes (z — u), par F(z) = P(u), se trouvent.
ainsi rattachés a la surface de Riemann o, qui va encore nous
donner d’autres représentations au paragraphe suilvant.

La surface X, et la représentation de M. Julia sur des cassiniennes
généralisées. — Le prolongement précédent de s, par o, ne
dépend en rien de la conﬁguratlon intérieure de o et il peut se
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faire d’une maniére plus naturelle, comme suit. On prendra la
symétrique G; de o, par rapport a la frontiere ~o
¢ =,
g

les points homologues étant toujours pris sur le méme feuillet.
La réunion %, de s, et de o-; est une surface a p feuillets dont,
chacun recouvre tout le plan. Elle a p — 1 points de ramification
de oy et p —-1 points de ramification symétriques de ci qui
établissent la connexion entre les mémes feuillets. X, est de
«genre zero » et elle est encore homéomorphe au plan complet.
En vertn du théoréme déja utilisé de Scawarz, X, se laisse
représenter conformément et biunivoquement sur un plan
complet.

Sotent u = u({) cette correspondance et { = R(u) la corres-
pondance inverse. Un raisonnement semblable a celui déja fait
au pardgraphe précédent, permet d’affirmer que R(u) est une
fonction rationnelle de degré p a cercle fondamental. Donc o se
transforme en une aire D du plan u biunivoquement et confor-
mément. Comme la correspondance entre d et o jouissait de la
méme propriété, la transformation (z — u) donnée par

Fz) = R(uw

est une représentation conforme, biunivoque du domaine ¢ sur
un domaine D du plan w. Au contour ¢, correspond ainsi le
cercle fondamental de rayon unité et aux contours ¢; COTTes-
pondent p cassiniennes généralisées sans point commun, chacune
entourant un des zéros de R(u). Ce sont les représentations
que M. Julia a fait connaitre récemment.

7. — SUR LES CORRESPONDANCES TRANSFORMEES.

Les polynomes P(u) de M. de la Vallée Poussin ne sont pas
enticrement déterminés, mais il est facile de voir que tous ceux
qui dérivent d’une méme surface %, se déduisent de 'un d’entre
eux par la relation

Plu) = Pylau + b) .
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- Nous pourrons toujours normaliser cette classe en imposant
aux polyndémes P(u) d’avoir un coefficient de u™ égal & un en
module. II est clair qu’alors on doit avoir 'a[ = 1 pour que P(u)
satisfasse & cette condition en méme temps que Py(u). L’aire
canonlque D sur laquelle on représente d n’est donec determmee
qu’a une transformatlon pres de la forme

(u — ueM + b)

qui n’est qu’un déplacement euclidien.

Concevons, alors, deux domaines @ et d’ qui puissent étre mis
en correspondance conforme, puis passons aux aires D et D’
correspondantes et canoniques de M. de la Vallée Poussin. Le
passage du plan z de d et d’ au plan u de D et D’ a donc pour
effet de linéariser la correspondance conforme entre D et D’.

De méme, les fonctions R(u) appartiennent a une famille
dépendant de trois constantes réelles

R lu )_R[ - ”].
1 —au
Une correspondance conforme entre deux aires de méme classe d
et d’ du plan z est transformée par F(z) = R(u) en la substitution

] u—a X -
. . et l
1 —au

qui correspond, comme on le sait depuis Poincaré, & un dépla-
cement non euclidien du plan de Lobatchewsky. L’effet de
la. projection sur le domaine canonique de M. Julia est donc
encore de linéariser au sens non euclidien la correspondance
entre les deux domaines primitivement donnés d et d'.

Nous avons déja vu que la surface ¢ dépend de 3p — 3 para-
 métres réels. Il en est de méme évidemment des domaines
canoniques de M. de la Vallee Poussin: p pour A, ... A, 2p pour
fixer les zéros de P(u) et enfin trois a soustraire, un pour 6 et
deux pour b & cause de l'indétermination due au déplacement
euclidien précédent. I’on retrouverait exactement le méme
nombre de parametres pour la représentation de M. Julia. Mais
icl ces parametres ne sont pas entiérement arbitraires, car nous
avons supposé que F’ ne s’annulait pas sur la frontiére de d.
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S. — (Cas ou F’ A DES ZEROS SUR LA FRONTIERE.

Nous savons que les représentations de MM. de la Vallée
Poussin et Julia sont possibles si I' ne s’annule pas sur la fron-
tiere de d. Les cassiniennes du plan des u sont alors des courbes
analytiques et régulieres et n’ont pas de point multiple. Elles
ne sont d’autre part réguliéres que dans ce cas la car, 'annulation
de la dérivée introduirait des points multiples des cassiniennes
envisagées. Par conséquent, la condition nécessaire et suffisante
pour que les représentations précédentes soient possibles est
que I’ ne s’annule pas sur les ¢;.

M. de la Vallée Poussin évitait la difficulté en augmentant le
degré du polyndéme: P(x). M. Julia montre qu’il est encore
possible de représenter le domaine donné de connexion p +1
sur une aire limitée par p -+ 1 courbes

|P(u) | = ¢, = 0,1, ...p

P étant toujours de degré p. Portons notre attention
pour fixer les idées, sur le cas p = 2. Nous avons ici
20 +b=12p-—2=2 ce qui exige a =0¢et b =2 Il nya
plus de point de ramification sur la surface o elle-méme, mais il
v a, sur le contour ¢; intermédiaire, deux racines simples ou une
racine double. Envisageons le cas de deux racines simples z, et
> et supposons en plus les 2 différents. Alors, lorsque le point z
passe par z; ou z, en déerivant ¢, le point = F(z) rebrousse
chemiin sur vq: il vy a ainsi deux points de rebroussement
4= F(5) et § = I'(z). La surface o', correspondant par
= F(z) & un domaine du plan z débordant sur I’intérieur de ¢y,
admettrait les deux points Z; et I, correspondant a zy et z,,
comme points de ramification. 11 n’y a toujours, dans ce cas,
qu’un seul feuillet entre v, et v, et deux entre v, et Yo. L’anneau
du feuillet projeté entre <, et <, est limité extérieurement
(outre v,) par un arc {;¢, qui appartient & v, et par un arc de
passage qui unit les deux anneaux [y, v,] et [v,, v,J. On trouvera
dans un article récent paru en Suisse (Commentarii Mathematici
Heloeticl, volume 4, 1932, p. 106) une étude détaillée de ce cas.
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Revenons au cas général de p quelconque et contentons-nous
de décrire la disposition des cassiniennes. L’on aurait, en partant
de %,,

Fla) =C=Pu) = (u—u) ... (u—up) -

Alors, le domaine canonique est limité: extérieurement, par la
cassinienne I': lP(u)I = 1 qui est réguliére et entoure les p
zéros de P; intérieurement, par p cassiniennes, tronquées ou
non, I'y ... I'). ') est un ovale (courbe réguliére) entourant u,
seul. Les I'; intermédiaires se composent d’une boucle fermée
entourant un seul zéro de P et de v, boucles tronquées suivant

Fig. 5.

Disposition des cassiniennes pour p = 2.

des arcs qui correspondent aux arcs de passage, s'ily a 2v, zéros
de F'(z) sur ¢;; I'; a v; points doubles a tangentes rectangulaires.
Topologiquement, les cassiniennes tronquées sont des courbes
fermées, adjacentes a un ou plusieurs arbres extérieurs. ,

Partant de X, et de la relation F(z) = R(u), les mémes
remarques subsisteront.

9. — RETOUR AU POINT DE VUE ALGEBRIQUE.

Nous voudrions montrer enfin que ces résultats nouveaux
peuvent étre rattachés fortement aux recherches algébriques
anciennes et notamment aux travaux de Schottky.
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Fig. 6.

Disposition des cassiniennes pour p = 3.
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Tout d’abord le probléme de trouver les aires invariantes par
des transformations biunivoques (directement ou inversement
conformes) se raméne & la recherche des aires canoniques D
invariantes par des déplacements ou des symétries non eucli-
diennes. Ce probléme est identique au fond a celui de la déter-
mination des courbes algébriques A(r, s) = 0 invariantes par
des transformations birationnelles, probléme completement
résolu par Hurwirz.

Envisageons la fonction f(z) = LF(z) = U +iV. Elle est
analytique dans d, non uniforme, mais sa dérivée f'(z) est
uniforme, comme on le vérifie d’aprés la construction de V.
F’(z) et f'(z) ont les mémes zéros avec le méme ordre de multipli-
cité. f'(z) est donc holomorphe et uniforme dans d et sur les
contours. |

Sur ces derniers U reste constant, g% = 0, o étant I'arc de ¢,

et 'on a
dz .dV .dU

s = "4 = " 'in

quantité purement imaginaire sur les frontieres de d. La fonc-
tion f est donc forcément liée aux fonctions r(z) et s(z) de
ScHOTTKY, introduites précédemment. r(z) étant méromorphe
dans d et réelle sur ¢;, il en sera de méme pour

ar _ /o )iz_
e | ¥Wids
Le rapport Li ,((ZZ)) sera réel sur les ¢;; il est uniforme et mero-

morphe dans d et sur sa frontiére. C’est donc une fonction de la
classe K(z), c’est-a-dire une fonction rationnelle R & coefficients
réels des deux fonctions fondamentales r(z) et s(z) et I'on a

11 en résulte que f(z) est une intégrale abélienne attachée a la
courbe algébrique A(r, s) =

7@ = i[R(r, s)dr. |
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Elle est de premiére espéce, parce que [ reste fini d’apres la
construction de U et de V.

Soient o la transformée biunivoque de d par = I (z) et ¢
sa symétrique par rapport & v, et décrite, comme on sait, par
le point

F(z) est une fonction analytique du point qui déerit la face du
disque d située en dessous du plan z. Donc o + o est ic1 'image
conforme du disque d a deux faces. Au point de vue topologique,
on peut raccorder les points frontieres symétriques par rapport a
Yo, et o + o' devient une surface de Riemann orthosymétrique
fermée de genre p, homéomorphe aux deux faces d’un disque a
p trous. C’est la surface de Riemaxwn-Crirrorp-Kreix de la
classe des courbes algébriques A(r, s) = 0 associées par Schottky
a la classe d’aire d.

10. — LES DOMAINES A CONNEXION INFINIE.

Nous devrons nous contenter de quelques indications sur ce
sujet et nous renvoyons pour le reste a la bibliographie. Les
méthodes employées ici se rattachent presque toutes au travail
de M. Hilbert publié en 1909 dans les Goit. Nach., p. 314.
M. Hilbert ne se restreint pas au terrain de la théorie des fonc-
tions mais revient au calcul des variations. Il se rapproche ainsi
de la méthode primitive de Riemann qui tentait de résoudre le
probléme de Dirichlet par la recherche d’une fonction o rendant
minimum I'intégrale

£ D 2 A e
/ / [ *—(3> + (Lﬁo—):‘daxdy :
J J LT 0y ‘

Il est intéressant de remarquer que les premiers pas faits dans le
terrain des connexions infinies s’inspirent des considérations de
minimum qui guidérent Riemann dans le probléme de Dirichlet
et dans Pétude qui s’y rattache de la représentation conforme
des aires simplement connexes.
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Désignons par D, un domaine a un seul feuillet & connexion
infinie limite de domaines emboités & cohnexion finie D,.

Un élément de frontiére f de D est un continu de la frontiére
de D, qui n’est pas contenu dans un continu plus grand. (A noter
que D’ensemble des f n’est pas toujours dénombrable.)

1. Représentation conforme de deux Do Uun sur I'autre. —
Comme cas particulier du théoréme général de Puniformisation,
il faut et il suffit, pour que cette représentation soit possible,
que les deux groupes fondamentaux soient identiques. -

Mémes références que I'uniformisation (Poincare, Koebe).

11. Domaines d . fentes paralléles. — 1° Supposbns que D,
contienne le point a linfini. Soit @, la famille des fonctions
réguliéres et univalentes dans D., qui admettent a Pinfini le
développement: | |

kW(z)zz—{—%—!—... (1)

Parmi ces fonctions, il en est une et une seule dont la partie
réelle rende minimum lintégrale de Dirichlet (prise convenable-
ment pour éviter le pdle). Cette fonction représente Do sur un
domaine D, dont tous les éléments de frontiére sont des points
ou des segments paralléles & axe réel. Un tel domaine est dit
« domaine o fentes paralléles» D, est dit « domaine & fentes
paralléles minimum ». |

Si maintenant on résout ce probléme de minimum pour les
domaines D,, les solutions tendent vers la solution de ce méme
probléme pour De.

Enfin la frontiére de D a une mesure superficielle nulle, ce
qui n’a pas toujours lieu pour un domaine a fentes paralléles
non minimum. (Par exemple: le plan moins un ensemble parfait
discontinu de mesure positive: tous les éléments de frontiére
sont des points.) |

Dans le cas de la connexion finie tout domaine & fentes
paralleles est minimum.

Tout ceci se trouve démontré dans HiiBerT, Gott. Nach.,
1909, p. 314 et KoEBE, id., p. 324 et 1910, p. 59.

2 Ensuite KorBE (Gétt. Nach., 1918) émet I'hypothése que
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pour un domaine minimum, la projection de la frontiére sur un
axe perpendiculaire aux fentes a une mesure nulle. Cette hypo-
theése n’est pas exacte (GrorzscH, Leipz. Ber., 1931, p. 185, et
De Posser, These). Grotzsch donne méme un exemple ou cette
projection recouvre tout un segment.

39 Le probléme qui consiste & rendre R(a) maximum dans le
développement (1) a une solution et une seule dans @ _; elle
coincide avec la solution du probléme du minimum ci-dessus.

Plus généralement, le domaine exact de variation de a est
un cercle et @ ne se trouve sur la circonférence, a 'extrémité
du rayon qui fait I'angle 0 avec ’axe réel, que pour une fonction
représentant D., sur un domaine minimum dont les fentes sont

paralleles a la direction g

Ces deux propriétés se trouvent dans Grotzsch, Leipz. Ber.,
1932, et De Possel, Gaott. Nach., 1931; Math. Ann., 1932.

40 51 tout 'extérieur du cercle-unité appartient & D, et si
w(z) est la fonction extrémale définie ci-dessus, on a:

1
[ J(w(z) —2) ] < Klal' (K < 1000)

@ étant le coefficient du développement (1). — Voir D PossEeL,
Math. Ann., 1932.

H1. Domaines a fentes radiales et concentrigues. — 10 Koebe
¢tudie aussi le probléeme du minimum de I'intégrale de Dirichlet
pour des singularités autres que le pdle.

St on introduit deux discontinuités en log%, pour log |w(z)i
{au point z; et a linfini) la solution du probleme de minimum
conduit ¢ un domaine dont tous les éléments de frontiére sont des
fentes radiales ou des droites passant par w(z,).

Avec deux discontinuités en Arctg, en z; et & I'infini, on trouve
tes éléments de frontiére sur des cercles concentriques de centre
0(34).

Tous les résultats du cas des fentes paralléles, unicité de la
solution du probleme de minimum, non-unicité de la solution
‘du probléme de représentation conforme dans le cas d’un Do,
identité entre la solution du probléeme pour D., et la limite des
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solutions du méme probléme pour les D,, subsistent. — Voir
Koebe, Géit. Nachr., 1909, p. 314 et 1910, p. 59. |

% Ces solutions correspondent respectivement aux fonctions
qui rendent maxima et minima |W’(z1)| dans la famille ®p,,.
Plus généralement le domaine exact de variation de log w'(z,)
est un cercle dont la circonférence n’est atteinte que pour des
représentations ou les éléments de frontiére sont sur des spirales
logarithmiques de centre w(z,) (cas limite: IT 3° lorsque z; tend

vers I'infini). — Grotzsch, Leipz. Ber., 1930, 31, 32 et De Possel,
These. | : ,

IV. Autres résultats. — 10 Le domaine exact de variation de
log [w(z;) — w(2,)] est un cercle dont la circonférence n’est
atteinte que pour des représentations o les éléments de frontiére
sont sur les trajectoires isogonales des coniques homofocales de
foyers w(z,), w(z,). Ce théoréme admet comme cas-limite III
lorsque z, et z, viennent se confondre.

20 Le domaine exact de variation de w(z;) est un cercle,
dont la circonférence n’est attemte que pour des représentations
ott les éléments de frontiére sont sur des paraboles homofocales
dont le foyer est w(z;). C’est un cas-limite du IV 1° lorsque z,
tend vers I'infini. — Grotzsch, Leipz. Ber., 1932, 1933.

30 Enfin Grotzsch étudie encore quelques autres représenta-
tions: ainsi le cas de deux éléments de frontiére ou s’accumulent
des éléments de frontiére isolés. On représente ces deux éléments
sur des cercles concentriques ou des points. L’unicité est égale-
ment démontrée. — Leipz. Ber., 1929, p. 51. |
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