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LA REPRÉSENTATION CONFORME DES AIRES

MULTIPLEMENT CONNEXES 1

PAR

G. Julia, Membre de l'Institut (Paris).

En réponse aux paroles qui viennent d'être prononcées, je
dirai que nous avons peut-être trop tendance en mathématiques
à nous isoler dans une espèce de tour d'ivoire et à fermer les

yeux sur les travaux des autres. Il faut, au contraire, être averti
de ce que fait le voisin, de manière que les recherches faites
dans un domaine puissent être utilisées par ceux qui poursuivent
leurs investigations dans d'autres branches de la science. Les

mathématiques ne peuvent pas se diviser en compartiments
étanches. Les idées directrices sont les mêmes partout, lorsqu'on
les dégage du vêtement particulier qui les revêt, et la culture
mathématique générale est absolument nécessaire; c'est un
point sur lequel j'ai insisté dans ma conférence de Zurich (1932).
Nous devons être des hommes de métier, mais des hommes
avertis de ce qui se passe autour de nous et bien souvent les

sujets de nos études sont empruntés aux autres sciences. Il ne
faut donc pas non plus de cloisons qui séparent les mathématiques
d'aucune autre branche de la science et la culture générale est
nécessaire à ceux qui ne veulent pas se borner à être une moitié
d'homme.

Un second point sur lequel je voudrais insister est le suivant:
si utiles que soient les constructions didactiques précises, il y a

1 Leçon faite, le 3 mai 1934, dans la série des Conférences internationales des Sciences
mathématiques organisées par l'Université de Genève et rédigée par MM. R. Wavre
el G. DE Ream.
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138 GASTON JULIA
une chose qu'il ne faut pas négliger non plus, c'est la culture de
1 intuition. C'est cette dernière qui nous fàit saisir les rapports
profonds des différentes branches des mathématiques et qui
permet de les faire progresser parallèlement.

Ceci dit, j'aborde le sujet de ma conférence.

1. — Le problème de Riemann.

Le problème que je veux traiter est déjà ancien. Rappelons
brièvement en quoi consiste une représentation conforme.

Envisageons deux aires, l'une dans le plan de la variable
complexe z,1 autre D dans le plan Z, limitées par deux courbes
cet C régulières, simples et fermées. Représenter conformément

les domaines d et D l'un sur l'autre, c'est établir entre leurs
points une correspondance bi-univoque, conservant les angles
et respectant leur sens. Cette correspondance ne peut être
réalisée, comme on le sait, que par des fonctions holomorphes
inverses l'une de l'autre

Z f(z) z <p(Z)

telles que z parcourant d,Z passe par tous les points de D et
une seule fois par chacun et réciproquement. Riemann fut le
premier à se poser ce problème. Il a montré que la fonction /
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dépendait de trois paramètres réels arbitraires dont on peut

disposer pour que deux points donnés et deux directions données

issues de ces points se correspondent.

Il est évident que la correspondance entre d et D sera établie

si bon peut représenter conformément chacun des deux domaines

sur une aire canonique particulière, un cercle par exemple, et

c'est ce que fait Riemann. Cette méthode de réduction du

problème est générale en mathématique, elle intervient dans l'étude

des transformations les plus générales, en géométrie, en algèbre

et en arithmétique.
Postérieurement à Riemann, on s'est aperçu qu'il y avait lieu

d'étudier des domaines pour lesquels la frontière n'était pas une

courbe régulière. Le dernier en date des résultats importants
obtenus dans cette direction est le suivant:

Toute aire simplement connexe dont la frontière contient plus

d'un point peut être représentée conformément sur le cercle

unité et l'on dispose encore, comme dans le cas précédent, de

trois paramètres arbitraires.

2. —- La connexion d'ordre n.

Mais pour aller plus loin, il importe de définir Tordre de

connexion d'un domaine. Je supposerai connu le langage de la
théorie des ensembles.

Un domaine est un ensemble de points, tous intérieurs tels

que deux quelconques d'entre eux puissent être reliés par une
courbe de Jordan contenue elle-même dans le domaine.

La frontière peut se composer de n continus séparés. Dans ce

cas, Vordre de connexion est n. Un continu frontière peut, dans

certains cas, se réduire à un seul point. On dira alors qu'il est

dégénéré. Si un domaine n'a pas de point frontière, son ordre de

connexion est nul. S'il est limité par une seule courbe fermée, il
est dit simplement connexe. C'est le cas envisagé par Riemann.
Un cercle dont on retranche le centre forme un domaine d'ordre 2,

dont une frontière, à savoir le centre, est dégénérée; un cercle
dont on retranche p cercles intérieurs sans point commun, est

un domaine d'ordre p {• t. L'ordre peut être infini. A côté de
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cette notion d'ordre n,nous avons le c'est le nombre n — 1.
Au point de vue topologique, le genre s'interprète directement
comme suit: c'est le nombre maximum de coupures que l'on
peut pratiquer dans le domaine sans le morceler. Ces coupures
sont des courbes joignant un point frontière à un autre et dont
tous les points sont intérieurs au domaine. Un cercle est de

Fig. 2.

Domaine de genre 2, d'ordre de connexion 3.

genre 0, car toute coupure le morcellerait. Un cercle moins le
centre est de genre 1, car un rayon ne le morcelle pas. Donc, si
je puis faire n coupures qui ne morcellent pas un domaine,
tandis que n-j-1 coupures le morcelleraient quelles qu'elles
soient, son genre est n. Le genre ainsi défini est en rapport,
comme nous le verrons, avec le genre d'une courbe algébrique.

Dans un domaine d'ordre 1, toute courbe fermée peut être
réduite à un point par déformation continue et sans sortir du
domaine. C'est impossible si la connexion est d'ordre supérieur.
Si l'on effectue n coupures convenables dans un domaine d'ordre
n + 1, ce domaine devient simplement connexe.

Deux aires ne pourront être mises en correspondance conforme
que si leur ordre de connexion est le même. En effet, les
fonctions / et 9 qui effectuent la correspondance étant holomorphes
et jouissant de la propriété de continuité jusque sur les frontières,
à un point frontière de l'un des domaines correspond un point
frontière de l'autre et le nombre des continus séparés dont elles
se composent est forcément le même. Mais cette condition n'est
pas suffisante et un domaine limité par deux courbes fermées,
dont l'une est intérieure à l'autre, n'est pas toujours représen-
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table sur un anneau circulaire déterminé; il faut pour cela que
le rapport des rayons des circonférences soit convenable.

C'est là une différence essentielle, dans la théorie de la
représentation conforme, entre les domaines d'ordre 1 et ceux d'ordre

supérieur.

3. — Description des domaines canoniques.

Schottey 1, inspiré par l'idée des domaines canoniques,
introduit des aires d'un type simple et de connexion n. Ainsi
on pourra classer les domaines d'ordre p suivant les propriétés
des aires canoniques qui leur servent d'images. Deux domaines
seront de la même classe s'ils peuvent être représentés sur le

même domaine canonique et dans ce cas, comme on l'a vu, ils

peuvent être représentés conformément Tun sur l'autre. Les

aires canoniques multiplement connexes jouent ici un rôle encore
plus fondamental que le cercle pour le problème de Riemann,
puisque leur détermination complète permet de répartir en
classes distinctes les domaines qui peuvent être mis en
correspondance conforme.

Pour simplifier, nous supposerons les frontières non dégénérées
et le domaine donné tout entier à distance finie.

Dans ces conditions, M. Koebe, poursuivant une idée de

Schottky, a montré qu'un domaine limité par p -f- 1 contours
fermés c0, c2, c,p se laisse représenter sur une aire limitée
par deux circonférences concentriques et p — 1 arcs de circonférence

situés dans la couronne limitée par les deux courbes
précédentes et de même centre; ces arcs seront parcourus une
fois dans chaque sens lorsque l'on décrit les courbes ci qui leur
correspondent. La circonférence extérieure correspond à la
courbe qui contient toutes les autres et la circonférence intérieure
à l'une quelconque des autres courbes. Cette dernière condition,
comme celle d'être à distance finie, n'a rien d'essentiel car on
sait qu'une substitution

1 Cour la bibliographie, voir G. Julia, Leçons sur la représentation conforme des
n-es multiplement connexes, Gauthier-Villars, 1934.
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permet de ramener le domaine à distance, finie ou d'intervertir
le contour extérieur avec n'importe lequel des autres. Les
propriétés essentielles du problème de la représentation ne sont

pas altérées par cette substitution. Par conséquent un point Z0
du domaine D peut correspondre au point à l'infini du domaine d,
la fonction z <p(Z) admettant un pôle en Z0.

1

De combien de paramètres dépend le domaine canonique de
M. Koebe Il y a les rayons des deux circonférences, les rayons
des p— 1 arcs de circonférence, puis les angles des extrémités
de ces arcs au nombre de 2 (p — 1), donc autota!2 + 3 — 1)

3 p— 1. Mais un domaine canonique correspond évidemment
à une infinité d'autres de même classe obtenus par la similitude

« étant un nombre complexe arbitraire. Il faut donc retrancher
deux paramètres réels. Les domaines canoniques de M. Koebe
forment une famille à 3p — 3 paramètres réels. Nous verrons
que c'est là une propriété générale.

Donc pour écrire que deux domaines d et d'sont représentables
conformément l'un sur l'autre, il faut écrire — 3 relations
qui reviennent à identifier leurs domaines canoniques/Ceci est

Fig. 3,

Z aZ*
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valable pour p >1. Si p 1, il y a, comme nous l'avons vu,

une condition à satisfaire, le rapport des rayons des deux

circonférences du domaine canonique devant être convenable.

Schottky avait pris comme aire canonique de représentation

d'un domaine de genre p,l'airelimitée par p + 1 arcs de

circonférences concentriques, le centre et le point à l'infini

correspondant respectivement à deux points arbitraires et z1 du

domaine donné.

En tenant compte de la similitude toujours possible et de la

correspondance des deux points arbitraires et z} avec Z 0

2 -f oo qui permet de retrancher quatre paramètres

réels, on trouvera encore 3 p— 3 paramètres.
Je me dispense de vous donner la démonstration de la possibilité

de la correspondance conforme avec les domainesc anomques

envisagés. Vous la trouverez dans mon livre: Leçons sur la

représentation conforme des aires multiple,ment je ne

veux pas entrer dans des détails que vous pourrez facilement

trouver dans cet ouvrage et d'une manière générale, je devrai,

étant donné le temps dont je dispose, supposer acquises certaines

démonstrations d'existence des solutions des problèmes

envisagés et je m'en tiendrai davantage à l'étude des propriétés

caractéristiques de ces solutions.
M. Hilbert montre qu'un domaine d'ordre supérieur à 2

est représentable sur le plan complexe muni de coupures recti-

lignes parallèles à l'axe réel et en nombre égal à l'ordre p -f 1,

naturellement. A un point z0 il fait correspondre le point à

l'infini du plan Z et à une direction issue de z0 une direction

asymptotique du plan Z. La représentation est unique dans ces

conditions. Si l'on fait le compte des paramètres, on retrouve
3 p— 3. La méthode de Hilbert, toute inspirée de calcul des

variations, sera caractérisée au sujet des aires de connexion

infinie car elle s'applique encore à ce cas.

Enfin, M. Koebe montre que l'on peut choisir pour domaine

canonique le domaine limité par + 1 cercles non sécants. Ils

sont caractérisés par 3 p4-3 paramètres réels, mais une
transformation homographique

r/* aZ + è
Z
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conserve le caractère des domaines canoniques. C'est la seule,
d'ailleurs, qui jouisse dë cette propriété; elle dépend de trois
paramètres complexes, donc six réels, ce qui donne de nouveau
3p - 3 paramètres réels et le même nombre de conditions pour
que deux domaines soient représentables l'un sur l'autre.

Ce nombre évoque à lui seul la théorie des courbes algébriques.

L'analogie avec les courbes algébriques.

L'analogie entre les domaines de genre p et les courbes
algébriques de genre p fut aperçue par Schottky dans son mémoire
fondamental paru au tome 83 du Journal de Crelle. Cette analogie
est très profonde. A cette époque, on savait seulement, par des
exemples relatifs aux domaines de genre 1, qu'il n'était pas
toujours possible, comme nous l'avons dit, d'effectuer la représentation

sur un anneau circulaire donné. Il fallait que le rapport des
rayons fût convenable et dans la discussion intervenait le
module K2 des fonctions elliptiques. (On sait, d'autre part, que
les fonctions elliptiques permettent d'exprimer les coordonnées
des courbes de genre 1 en fonctions uniformes d'un
paramètre.)

v

Appelons alors classe de courbes algébriques l'ensemble des
courbes algébriques dont les points peuvent être mis en
correspondance rationnelle bi-univoque. Les courbes et les transformations

envisagées ici sont celles définies seulement par des
équations à coefficients réels. Si les courbes sont de genre p, une
telle classe, dite de genre p, dépend de 3p — 3 paramètres, dès
que p > 1. Schottky montre alors qu'à toute aire de genre p,
donc limitée par p -)-1 contours, est associée une classe de genre p.
Réciproquement, à toute classe réelle de genre p correspondent
des domaines d de genre p. Et pour que deux domaines soient
représentables l'un sur l'autre, il faut et il suffit que les classes
de courbes algébriques qui leur correspondent soient
identiques.

Schottky procède par un moyen qui paraît tout d'abord
détourné. Il envisage la classe des fonctions K (z) méromorphes
dans le domaine donné d et sur sa frontière, réelles sur cette
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frontière. Toutes ces K(z) sont alors des fonctions rationnelles
à coefficients réels de deux d'entre elles r(z) et s(z)

K ep(r, s)

Les deux fonctions r et ,9 sont alors liées par une équation
algébrique à coefficients réels de genre p : A(r, s) 0. (On sait que p
est le nombre des intégrales abéliennes de première espèce
associées à la courbe algébrique envisagée.) Ce résultat est-il
surprenant Non

Soit en effet r (z) l'une des fonctions K (z). Lorsque 5 décrit d,

r (z) décrit une surface de Riemann R0 limitée par p + 1 contours
situés sur Faxe réel (puisque ces contours correspondent aux
contours limitant d, sur lesquels r est réel). La surface R0

symétrique de R0 par rapport à l'axe réel (surface décrite par r(z)
— imaginaire conjuguée de r (z) — lorsque r décrit d) peut être
soudée à R0 le long de ces p + 1 courbes et l'on obtient ainsi
une surface de Riemann fermée de genre p. Cette surface R
est l'image du domaine d pris avec ses deux faces: R0
correspondant à l'une des faces, Rq à l'autre; le domaine d ainsi
considéré est bien une surface fermée de genre p: on peut en
effet l'obtenir en aplatissant une surface fermée à p trous. A la
classe des fonctions K (z) correspond alors la classe des fonctions
de r uniformes et méromorpbes sur R et réelles sur les lignes de
soudure de R0 avec Ro et grâce à cette correspondance, les
résultats de Schottky se rattachent directement aux théorèmes
de Riemann sur les fonctions algébriques.

5. — La représentation conforme non biunivoque
ET L'UNIFORMISATION SUIVANT PoiNCARÉ.

Soit F (z) une fonction définie dans un domaine d de genre p
fini ou non. Elle sera supposée holomorphe ou au plus méro-
morphe dans d, mais elle sera, en général, multiforme, ce qui
est fort possible puisque ce domaine est à connexions multiples.
Considérons alors un point z de d et joignons-le à un point 0
quelconque par un chemin tout entier dans d. Deux chemins
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réductibles l'un à l'autre sans sortir de d seront considérés comme
identiques. Un point auquel est ainsi associé un chemin sera
dit un point analytique z. Un point géométrique z est donc la
projection d'une infinité de points analytiques zl7 z2, Les
différents points zl7 %,... peuvent être conçus comme appartenant
à une infinité de feuillets distincts formant une surface de
Riemann 2 recouvrant le domaine donné. C'est la surface de

recouvrement de l'aire multiplement connexe. On passe d'un
feuillet à l'autre par soudure le long des coupures pratiquées
dans l'aire donnée pour la rendre simplement connexe. C'est
un procédé bien connu. Par exemple, si d est l'anneau 1 < \z\ < 2,

la surface 2 serait la portion d'un hélicoïde qui se projette sur
l'anneau précédent, et un chemin qui fait m fois le tour de

l'anneau parcourt m feuillets de l'hélicoïde. La fonction F (z)
considérée comme dépendant des points analytiques ne peut être
qu'uniforme sur la surface simplement connexe 2.

Le problème que résout Poincaré consiste alors en ceci :

effectuer -la représentation conforme biunivoque de la surface
de Riemann 2 sur le cercle C de rayon unité. C'était là une idée
extrêmement féconde en même temps que hardie. Cette
correspondance

*=ç(Ç), (1) C *=/(*), (2)

fera donc correspondre à tout point géométrique Ç de C un point
analytique 2 de 2 et un seul et réciproquement. Mais à un point
géométrique z de d correspondra en général une infinité de points
analytiques de 2: zlf ,z2, •••? donc une infinité de points géométriques

Ci, c» ••• de C. Ceci étant, la fonction F (z) uniforme de

point analytique 2 devient une fonction uniforme du point
géométrique Ç

©(Ç) F [9(q] (3)

et si l'on àssocie à (3) la relation (1), on a une représentation de 2

et de F au moyen de deux fonctions uniformes dans le cercle unité

Kl <!•
C'est par la résolution du problème de Dirichlet, méthode du

balayage, que Poincaré établit l'existence de la fonction
uniformisante 9 (Ç); aujourd'hui le procédé d'osculation de Koebe
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(Sclimiegungsverfahren) conduit au même but par une voie plus

directe et plus élémentaire exposée dans mes Leçons sur la

représentation conforme (Cahiers scientifiques, fascicules VIII
et XIV) et je n'y insiste pas.

Soient

^ M*) et Ç2=*/aM

deux fonctions établissant la correspondance demandée entre S

et C. On en déduit une relation, holomorphe elle aussi,

ï2 - (Q

qui transforme le cercle en lui-même. Mais une telle transformation

est forcément homographique. Elle se réduit à l'identité
Ç2 £, si l'on s'impose que le centre du cercle corresponde à

un point donné de la surface 2 et que deux directions données

issues de ces points se correspondent également. La transformation

est donc unique dans ces conditions-là.
Demandons-nous maintenant quelles sont les conditions pour

que deux domaines d et d' puissent être mis en correspondance
conforme.

Pour cela, une analyse plus approfondie de la relation entre S

et C est nécessaire.
Le domaine d peut être rendu simplement connexe par p

coupures joignant C0 à Cx... Cp. (Il s'agit ici de domaines de genre p
fini.) Soit d0 le domaine dont les coupures et les courbes C-

forment la frontière.
Chaque branche de la fonction f(z) est uniforme dans d0.

Soit f,L(z) l'une de ces branches. Il lui correspond un domaine Di
du cercle C. Di est en correspondance conforme et biunivoque
avec d0. Ces domaines dits domaines de discontinuité, sont
en nombre infini. Ils n'empiètent pas les uns sur les autres et
remplissent le cercle C. L'on aboutit ainsi à un pavage de C au
moyen des domaines D -, pavage bien connu dans la théorie des

fonctions fuchsiennes. Les D{ correspondent aux différents
feuillets de la surface de recouvrement 21 de d. Envisageons deux
branches

Si - A to et Ç. ffiz)
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de la fonction multiforme / {z). L'on aura encore

*h

étant holomorphe dans C. Cette transformation du cercle en
lui-même est de nouveau homographique. Nous la représenterons
par Ci SCj. Ainsi deux branches quelconques de / sont liées
par une substitution rationnelle et linéaire ^ » S Ces
substitutions laissent invariante la fonction z cp (C) qui reprend la
même valeur aux deux points et

Ces substitutions S forment un groupe, c'est-à-dire un ensemble
tel que tout produit de substitutions de l'ensemble et les
substitutions inverses appartiennent à l'ensemble.

Si l'on étudie la structure de ce groupe G, on s'aperçoit que le
pavage précédent peut être obtenu, ainsi que toutes les
substitutions du groupe, au moyen de p substitutions fondamentales,
dépendant chacune de trois paramètres réels. 3 p constantes
réelles suffisent donc pour définir le groupe G en question.

Maintenant, supposons que deux domaines d et d' puissent
être mis en correspondance conforme biunivoque l'un avec
l'autre

2 — z(z') et z' z'(z) (4)

et soient
£=»/(*) et £'=/'«) (5)

les représentations sur le cercle unité des surfaces de recouvrement

2 et S', attachées à d et d\ puis G et G' les groupes qui
leur sont attachés. On déduit de (4) et (5) l'existence d'une
substitution

C Ç(C)

homographique qui dépend de trois paramètres.
Nous aurions donc deux transformations de 2 sur C:

Ç~/W et C =/'[*'(*)]
admettant respectivement pour groupes G et G'. Or on sait
qu'elles sont identiques, à une substitution homographique près.
Donc G et G' sont aussi identiques à une substitution homographique

près.
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Réciproquement, si ces groupes sont identiques, à un point z

de d correspond une infinité de points Ci de C, qui résultent de

l'un d'eux par G. Cette suite Z>i est aussi une suite d'homologues
d'un point z7 de d'. Associons ce point au point z et nous

aurons la correspondance biunivoque et conforme cherchée.

La condition nécessaire et suffisante pour que les deux
domaines d et d7 puissent être mis en correspondance conforme est

donc que les groupes G et G7 soient identiques, à une substitution
homographique près. Cela fait encore 3p — 3 relations comme on
le vérifie facilement d'après ce qui précède (p > 1).

En passant, signalons d'autres applications.
Dans une telle représentation de d sur C, les frontières se

correspondent évidemment; à chaque cn de d correspondent une
infinité d'arcs sur la frontière F de C. La réunion de ces arcs
relatifs à tous les cn recouvre la circonférence entière à un
ensemble de mesure nulle près.

La résolution du problème de Dirichlet pour le domaine d

se ramène, par la fonction uniformisante de Poincaré % 9 (£),
au même problème pour le cercle. La fonction cherchée devra
prendre en les points de F les mêmes valeurs qu'aux points
homologues des courbes cn. L'intégrale de Poisson, dans laquelle
un ensemble de mesure nulle situé sur F n'a aucune influence,
d'après la théorie de M. Lebesgue, résoudra le problème.

Les domaines de discontinuité sont limités par 2p arcs de la
circonférence F (correspondant aux arcs délimités sur les

contours cn par les extrémités des p coupures pratiquées dans le
domaine d), et, en outre, par 2p arcs de courbes intérieurs au
cercle fondamental G, correspondant aux deux bords des

coupures. Ceux qui correspondent aux deux bords d'une même

coupure se correspondent par une substitution de G, et si les

coupures sont pratiquées d'une manière convenable, ce sont des

arcs de circonférences orthogonales à P.

Adjoignons à D.- son symétrique D - par rapport à F: on obtient
un domaine limité par 2p circonférences orthogonales à T,
deux à deux homologues; en les raccordant convenablement,

devient une surface de Riemann orthosymétrique fermée
de genre p, à laquelle est attachée une classe de courbes
algébriques réelles : celle de Schottky que nous retrouvons ainsi.
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Grâce à la fonction uniformisante jz q>(£) de Poincaré,

toutes les fonctions K(^) de Schottky envisagées précédemment,
deviennent des fonctions uniformes de Ç dans G et admettant
le groupe G. Elles sont réelles sur T et peuvent par suite être
prolongées analytiquement à l'extérieur de C par le principe
de symétrie. Les coordonnées r et s de la courbe algébrique
réelle A (r, s) 0 deviennent ainsi des fonctions uniformes de Ç,

définies dans tout le plan x, réelles sur T, invariantes par les
substitutions de G: on retrouve ainsi une représentation
paramétrique de la courbe A(r, s) — 0 par des fonctions fuchsiennes.
Les domaines de discontinuité sont les chacun d'eux représente

la surface de Riemann R envisagée plus haut, et D-
correspondant respectivement à R0 et R^.

6. — Les représentations de MM. de la Vallée Poussin
et Julia.

En 1930, dans un beau mémoire des Annales de VEcole Normale
Supérieure, M. de la Vallée Poussin introduisit de nouveaux
domaines canoniques formés par des cassiniennes, c'est-à-dire
par des courbes d'égal module d'un polynôme:

Nous dirons que la cassinienne est de degré p si le degré du
polynôme est p.

Les domaines de genre un se laissant représenter sur un anneau
circulaire convenable

Il y avait lieu de se demander si un domaine de genre p pouvait
être représenté sur des aires limitées par p + 1 cassiniennes
de degré p

P (u) | f= constante

(X0 — 0 Xi < X0)

i Excepté sur un ensemble de mesure nulle situé sur F.
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Sous cette forme, le résultat ne serait pas général et M. Julia

qui entreprit ses recherches sur ce sujet, à la demande de M. de

la Vallée Poussin, a indiqué ultérieurement des domaines de

genre p > 1 où ce résultat serait en défaut. Ce que M. de la
Vallée Poussin a établi, c'est ceci: tout domaine de genre p

peut être mis en correspondance conforme biunivoque avec une
aire limitée par des cassiniennes de degré égal ou supérieur à p
fournies par un polynôme P ayant seulement p racines distinctes.
Ce degré peut être pris égal à p si la dérivée F' (z) d'une fonction
F (z), que nous dirons « principale », dont le module est constant

sur les frontières, ne s'annule pas sur ces frontières.

Frappé par l'élégance du résultat de M. de la Vallée Poussin

où le degré des cassiniennes égale le genre de l'aire à représenter,
M. Julia a cherché une solution qui sauvegardât ce caractère,
à son avis essentiel, pour tous les cas possibles, c'est-à-dire même
si la dérivée F' (z) s'annule sur les frontières. Il parvint à montrer
que tout domaine de genre p peut être représenté sur une aire
dont les frontières appartiennent à des cassiniennes de degré p.
Chaque frontière est soit une cassinienne fermée sans point
multiple, soit une partie d'une cassinienne comprenant au moins
one boucle. Il montra en plus que les polynômes P(w) pouvaient
être remplacés par des fonctions rationnelles R(^) de degré p
a cercles fondamentaux, les cassiniennes généralisées :

R(u) | ~ constante, ayant même caractère que précédemment.
M. de la Vallée Poussin avait introduit également d'autres

aires canoniques, limitées en particulier par des courbes de la
forme

i l1
{u — ap711 (u — ap)nP «5

f e "*4

dont l'une est un ovale simple et la seconde se décompose en p
avales simples intérieurs au précédent. Les ni sont positifs mais
généralement irrationnels.

Soit d un domaine du plan 2 limité par un contour extérieur c0

A p contours intérieurs c1... cp. On peut sans restriction supposer
es contours analytiques. M. de la Vallée Poussin construit la

; onction
F {z) eu+iv
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holomorphe dans d et sur les ^ et dont le module eu prend sur
les ci des valeurs constantes qu'on peut supposer réparties
comme suit

1 > e*1 > e"2 > > elP

L'argument V augmente de — 2n lorsque z décrit une des

ci ••• cpi dans le sens positif par rapport à l'aire, et de p 2tz

lorsque z décrit c0.

Fig. 4.

Cette construction se ferait au moyen de p fonctions
fondamentales Ui, Up harmoniques et uniformes dans d et telles que
l'on ait

^ o
u.

1 sur ci

0 sur les autres contours.

Ces fonctions existent et sont uniques. Soient alors V1? Vp
les p fonctions conjuguées; elles ne sont pas uniformes: à chaque
ck correspond une période tùik pour Vi et le déterminant de ces

périodes
i l
^ 1,

est différent de zéro, comme Schottky et M. Koebe l'ont établi
antérieurement. En posant

\\J1 + + xpUpU

v \1Y1 +
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on aura la fonction F (z) de M. de la Vallée Poussin. U prendra
la valeuf Xi sur Les \ sont déterminés d^une façon unique par
les conditions de périodes relatives à c{ et le savant belge les appelle
les indices de l'aire d. (Voir Cahiers scientifiques, fasc. XIV.)
La fonction F (z) est donc holomorphe et uniforme dans d et
satisfait aux conditions demandées. F (z) est, bien entendu,
déterminée à un facteur près de module unité. On démontre
facilement que tous les \ sont négatifs, autrement dit U atteint
son maximum sur c0 et seulement sur c0. En posant :

F (z) ** P (w.) ou F (z) R (u)

au contour ci correspondra une cassinienne Ti: ou une cassinienne

généralisée :

| P (u) | e'i ou | R (u) | •

Chaque cassinienne entourera au moins un zéro ou un pôle des

fonctions en u; dans l'hypothèse contraire, les fonctions

L | P (u) | ou L | R (u) |

que l'on sait être harmoniques, seraient constantes sur les Ff,
régulières à l'intérieur de Ti et par suite constantes identiquement,

ce qui ne peut pas être.
M. de la Vallée Poussin montre qu'il existe effectivement un

polynôme P de degré p à racines simples, tel que la
correspondance (z — >- u) de l'aire donnée d et de l'aire D limitée aux Fi
soit biunivoque, dans le cas où F'(2) ne s'annule pas sur les
frontières de D. C'est par des considérations tirées de la théorie
des lacets que le savant belge achève ainsi sa démonstration.

Si élégante et simple que soit la méthode précédente, M. Julia
préfère, pour surmonter les difficultés du cas où la dérivée
s'annulerait sur les frontières, prendre comme élément central
la surface de Riemann er que décrit le point Ç

ç - F [z)

lorsque z décrit le domaine d. Remarquons que, F (z) étant
uniforme dans d, cette surface de Riemann a est en correspondance

biunivoque avec le domaine d balayé par z. a est donc

L'Enseignement: mathém., Sà«e année, 1934. H



154 GASTON JULIA
à la fois le domaine d'existence et d'uniformité de la fonction
inverse, multiforme

et le « domaine des valeurs » de F dans d.
A deux points zx et z2 de d peut correspondre un même point

géométrique « Ç2. Nous conviendrons que Ci et Ç2 ne sont
pas sur le même feuillet et ne coïncident qu'en projection.

M. Julia avait déjà, à diverses reprises, attiré l'attention des
chercheurs sur cette construction, en quelque sorte inverse de
celle de Riemann, à partir d'une fonction uniforme F(z). Cette
surface de Riemann a jouit de propriétés générales: frontières,
nombre des feuillets, relation entre le nombre des points de
ramification intérieurs et celui des points de ramification sur
la frontière, connexion, et l'on démontre que ces propriétés sont
caractéristiques de la surfacè envisagée. Cette surface
canonique a met en lumière la nature des difficultés qu'avait rencontrées

M. de la Vallée Poussin et la manière de les éviter par des
cassiniennes tronquées au lieu d'élever le degré des polynômes
P (u).

La construction de la surface a. — Chaque points, oùF'(z) =^0,
peut être entouré d'une aire (S) à laquelle correspond biuni-
voquement par Ç F(z) une aire (À) circulaire. Chaque point zr
de d où F'(z') 0 peut être entouré d'une aire (8') à laquelle
correspond biunivoquement un élément (A') de surface de
Riemann présentant au point Ç' F(z') un point de ramification
autour duquel se permutent k feuillets de (A'), la frontière
de (A') étant d'ailleurs constituée par un cercle de centre C

parcouru k fois de suite.
En vertu du lemme de Borel-Lebesgue, on peut recouvrir d

avec un nombre fini d'aires (S) et (8') auquel correspondent sur
le plan Ç un nombre fini d'aires (A) et (A'). Les domaines (8) et
(8') empiètent les uns sur les autres et il en est de même des (A)
et (A'). Partant d'une aire (80), nous ferons le prolongement de

F(z) dans tout d et relierons les domaines (A) et (A') comme
l'étaient les 8, c'est-à-dire en respectant les connexions. Un
nombre fini d'opérations permettra ainsi d'engendrer l'aire de
Riemann a, transformée conforme et biunivoque de d parF (z).
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La surface g- est limitée par des courbes yi? sur lesquelles
|Ç| e\, qui correspondent aux contours c-t de d. Les yi se

projettent donc sur des circonférencss yx du plan Quand z

décrit ch Ç décrit yi toujours dans le même sens si F' 0 sur

ch ou avec des rebroussements aux points où cette dérivée serait
nulle. Pour cette raison, nous appellerons les y{ des courbes
circulaires.

A tout point z' intérieur à d tel que F'(A) — 0 correspond un
point de ramification de a, mais si z' est sur une des frontières
de d, le point XJ correspondant ne peut être regardé comme un
point de ramification de cr. Il serait point de ramification pour
un prolongement a* de or correspondant à un prolongement de d

par des bandes convenables entourant les c}, et les points de

rebroussement précédemment mentionnés sont évidemment les

traces de ce que seraient ces points de ramification. On s'assure
d'ailleurs (par des propriétés de maximum) que F' ne peut
s'annuler sur c0 et cp. En plus, chaque zéro de F' étant pris avec
son ordre de multiplicité, l'on peut montrer que sur les autres
contours les racines de F' sont forcément en nombre pair (par la
variation des arguments). Enfin, par des raisonnements que nous
ne reproduirons pas ici, M. Julia aboutit à la relation
fondamentale suivante:

2a + b 2p — 2

a étant le nombre des zéros intérieurs k d, b le nombre des zéros

sur la frontière de d et p comme toujours le genre de l'aire.
Plaçons-nous alors dans des circonstances simples afin de pouvoir

décrire la surface a sans complications superflues de langage.
Supposons b 0 (donc aucune racine sur la frontière et
a • p - 1), les racines intérieures simples et les Xt tous
différents: Xp < Xp_{ < <X1 <0.

Alors, il y a p feuillets de cr limités extérieurement par y0 et
intérieurement par l'une des circonférences y3, yp. Ces feuillets
sont unis par p — t points de ramification simples. Ils se
traversent suivant les lignes de croisement issues des points de
ramification et s'étendant jusqu'à y0. Ces résultats s'obtiendraient
en recherchant le nombre n(a) des racines de l'équation
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nombre évidemment égal à celui des feuillets situés au-dessus
du point a du plan Ç. Ce nombre est, en vertu d'un théorème
de Cauchy,

i\ 1 C F'M ^n(a) ïï-ijF(si • .«rfs'
Co- "Op

et l'on peut écrire aussi, comme on sait,

1
72(a) — var. totale de l'arg de (Ç — a)

L 72

Le calcul de cette variation totale montrera l'existence d'un
feuillet entre yp et yp_l5 de deux feuillets entre et yp_2,
enfin de p feuillets entre yx et y0.

La surface g étant transformée biunivoque de d par Ç — F(z),
aura le même ordre de connexion que d, c'est-à-dire l'ordre
p + 1. En plus, elle est de genre zéro (schlichtartig) car il est

impossible de tracer sur a une rétrosection qui ne morcellerait

pas cette surface.
On peut considérer a comme une aire de Riemann canonique

qui caractérise la classe des aires du plan 2 représentables
conformément et biunivoquement sur une aire quelconque d

donnée a priori et de genre p.
Il y a plus: la marche inverse est possible, car en vertu des

théorèmes généraux sur la représentation conforme des surfaces

de Riemann (voir Koebe, Ueber die Uniformisierung..., Gött.

Nachr., 11 juillet 1908) on peut trouver une fonction z(Q (et
même une infinité) holomorphe à l'intérieur de la surface de

Riemann et univalente, de sorte que z décrive une aire simple d

ne se recouvrant nulle part lorsque Ç décrit la surface de

Riemann a. (Dans le cas actuel, cette aire d de connexion p + 1

pourrait d'ailleurs être choisie dans un des types canoniques vus
précédemment de Schottky, de Koebe, de Hilbert.)

La fonction £(2), inverse de la précédente, aura toutes les

propriétés qui caractérisent la fonction F (z) (à un facteur
constant près). Donc les propriétés de cr auxquelles nous avons
fait allusion, sont bien caractéristiques de la classe des aires

planes de connexion p + 1.
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Constatons ici que cr dépend dans le cas le plus général de

3p 3 paramètres réels; il y a les rayons des cercles yp,
puis a points de ramification intérieurs correspondant chacun à

deux paramètres réels et bpoints de ramification sur les

frontières, ce qui l'ait bparamètres réels, enfin, il faut soustraire un

paramètre, puisque o n'était déterminée qu'à une rotation près,

ce qui fait, en vertu de l'équation fondamentale,

j 4" 2 a + b — 1 =3 p — 3

Prolongement de a; la surjace a1. — Revenons, pour simplifier,
au cas où la surface a n'a que des points de ramification intérieurs :

b 0, a p *— 1. On a vu que a était limitée dans ce cas par
Jes circonférences intérieures r1 yp et la circonférence
extérieure y0 parcourue p fois. Adoptons pour un instant le point de

vue de la topologie. Les aires d et a sont homéomorphes, c'est-à-

dire qu'elles se correspondent biunivoquement et bicontinument
[par Ç Ç(S)].

D'autre part, il est possible d'établir une correspondance

analogue entre le cercle limité par yt(i > 0) et l'intérieur de cif
qui coïncide sur les frontières avec celle définie par Ç Ç(z). En

adjoignant à g les cercles intérieurs limités aux yi} nous obtenons
donc une surface de Riemann ax, homéomorphe à l'intérieur de c0.

Elle possède p feuillets au-dessus de tout point intérieur à c0.

La surface et la représentation de M. de la Vallée Poussin. —
Adjoignons à la surface l'élément a2 de surface de Riemann
décrit par le point Ç — cop lorsque co décrit le domaine | co | >. 1.

Quand co décrit la circonférence unité, le point £ décrit p fois
!e cercle trigonométrique. On pourra raccorder les p feuillets de

a2 aux p feuillets de a-, dont les frontières extérieures se projetaient

sur y0. En soudant ainsi ct-l et a2, on obtient une surface
de Riemann E1 fermée et de « genre zéro », ce qui veut dire que
toute courbe fermée tracée dans S1 morcelle au point de vue
topologique, E5 est homéomorphe au plan complet (y compris le

point à l'infini). On peut en effet établir entre a2 et l'extérieur de

cQ une correspondance biunivoque et continue qui coïncide sur
les frontières avec celle définie par Ç t(z), ce qui montre que
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est homéomorphe au plan complet des z1 o1 correspondant à

l'intérieur de c0 et a2 à l'extérieur.
D'après un théorème de Schwarz, toute surface de cette sorte

peut être mise en correspondance conforme avec un plan u
complet, par une fonction analytique

u uCQ

Cette correspondance peut être établie d'une infinité de façons
et devient unique si l'on se donne trois couples de points
homologues. Ici nous supposerons que le point Ç oo correspond au
point u ~ .00.

La fonction u(Q a p déterminations finies en chaque point,
elle a un point critique d'ordre p — là l'infini et des points
critiques simples aux p — 1 points de ramification de a. C'est
donc une fonction algébrique de degré p en Son inverse

Ç

est holomorphe en tout u à distance finie et admet u oo

comme pôle d'ordre p. C'est un polynôme de degré p

ç P(w);

Sj est donc la surface de Riemann d'un polynôme et à a correspond

une aire D conformément et biunivoquement. D est
connexe et de genre p. Aux contours c{ correspondent les cassi-
niennes du plan u

| P(w) I e'i i 0, 1, P
%

Les polynômes P de M. de la Vallée Poussin et les représentations
conformes correspondantes (z. u), par F(z) P(u), se trouvent
ainsi rattachés à la surface de Riemann a, qui va encore nous
donner d'autres représentations au paragraphe suivant.

La surface S2 et la représentation de M. Julia sur des cassiniennes
généralisées. — Le prolongement précédent de par a2 ne
dépend en rien de la configuration intérieure de a et il peut se
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faire d'une manière plus naturelle, comme suit. On prendra la
symétrique V de par rapport à la frontière y0

les points homologues étant toujours pris sur le même feuillet.
La réunion S2 de a1 et de V est une surface à p feuillets dont
chacun recouvre tout le plan. Elle a p — 1 points de ramification
de g1 et p — - t points de ramification symétriques de V qui
établissent la connexion entre les mêmes feuillets. est de
« genre zéro » et elle est encore homéomorphe au plan complet.
En vertu du théorème déjà utilisé de Schwarz, E2 se laisse
représenter conformément et biunivoquement sur un plan
complet.

Soient u «a u(Q cette correspondance et £ ~ R(u) la
correspondance inverse. Un raisonnement semblable à celui déjà fait
au paragraphe précédent, permet d'affirmer que R (u) est une
fonction rationnelle de degré p à cercle fondamental. Donc a se
transforme en une aire D du plan u biunivoquement et
conformément. Comme la correspondance entre d et a jouissait de la
même propriété, la transformation (z —u) donnée par

FC) « R(u)

est une représentation conforme, biunivoque du domaine d sur
un domaine D du plan. u. Au contour c0 correspond ainsi le
cercle fondamental de rayon unité et aux contours ci
correspondent p cassiniennes généralisées sans point commun, chacune
entourant un des zéros de R(w). Ce sont les représentations
que M. Julia a fait connaître récemment.

7. — Sur les correspondances transformées.

Les polynômes P (u) de M. de la Vallée Poussin ne sont pas
entièrement déterminés, mais il est facile de voir que tous ceux
qui dérivent d'une même surface se déduisent de l'un d'entre
eux par la relation

1 (u) Pq (au + b)
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Nous pourrons toujours normaliser cette classe en imposant

aux polynômes P(&) d'avoir un coefficient de un égal à un en
module. Il est clair qu'alors on doit avoir \a\ 1 pour que P(w)
satisfasse à cette condition en même temps que P0(&). L'aire
canonique D sur laquelle on représente d n'est donc déterminée
qu'à une transformation près de la forme

(u *- uel 0 + b)

qui n'est qu'un déplacement euclidien.
Concevons, alors, deux domaines d et d'qui puissent être mis

en correspondance conforme, puis passons aux aires D et D'
correspondantes et canoniques de M. de la Vallée Poussin. Le
passage du plan 2 de d et d' au plan « de D et D' a donc pour
effet de linéariser la correspondance conforme entre D etW.

De même, les fonctions R(&) appartiennent à une famille
dépendant de trois constantes réelles

R,(u) Ror ei(l
Ll — au J

Une correspondance conforme entre deux aires de même classe d
et d'du plan z est transformée par F(^) R(u) en la substitution

qui correspond, comme on le sait depuis Poincaré, à un
déplacement non euclidien du plan de Lobatehewsky. L'effet de
la. projection sur le domaine canonique de M. Julia est donc
encore de linéariser au sens non euclidien la correspondance
entre les deux domaines primitivement donnés d et d'.

Nous avons déjà vu que la surface a dépend de 3p — 3
paramètres réels. Il en est de même évidemment des domaines
canoniques de M. de la Vallée Poussin: p pour \ A 2p pour
fixer les zéros de P(&) et enfin trois à soustraire, un pour 0 et
deux pour b à cause de l'indétermination due au déplacement
euclidien précédent. L'on retrouverait exactement le même
nombre de paramètres pour la représentation de M. Julia. Mais
ici ces paramètres ne sont pas entièrement arbitraires, car nous
avons supposé que F' ne s'annulait pas sur la frontière de d.
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8. — Gas ou F' a des zéros sur la frontière.

Nous savons que les représentations de MM. de la Vallée
Poussin et Julia sont possibles si F' ne s'annule pas sur la frontière

de d. Les eassiniennes du plan des u sont alors des courbes
analytiques et régulières et n'ont pas de point multiple. Elles
ne sont d'autre part régulières que dans ce cas là car, l'annulation
de la dérivée introduirait des points multiples des eassiniennes
envisagées. Par conséquent, la condition nécessaire et suffisante
pour que les représentations précédentes soient possibles est

que F' ne s'annule pas sur les ct.
M. de la Vallée Poussin évitait la difficulté en augmentant le

degré du polynôme: P(w). M. Julia montre qu'il est encore
possible de représenter le domaine donné de connexion p + 1

sur une aire limitée par p + 1 courbes

| P (u) j e i — 0, 1, p

P étant toujours de degré p. Portons notre attention
pour fixer les idées, sur le cas p 2. Nous avons ici
2a + b 2p -— 2 =** 2, ce qui exige a 0 et b 2. Il n'y a
plus de point de ramification sur la surface a elle-même, mais il
y a, sur le contour c1 intermédiaire, deux racines simples ou une
racine double. Envisageons le cas de deux racines simples z± et
:2 et supposons en plus les X différents. Alors, lorsque le point £

passe par zL ou s2 en décrivant cl7 le point £ F(z) rebrousse
chemin sur yx : il y a ainsi deux points de rebroussement
--•i ^ (m) et ^2 ^(-2)- La surface V, correspondant par

'C =- F(z) à un domaine du plan z débordant sur l'intérieur de cv
admettrait les deux points ^ et correspondant à zx et
comme points de ramification. Il n'y a toujours, dans ce cas,
qu'un seul feuillet entre y2 et yx et deux entre y1 et y0. L'anneau
tu feuillet projeté entre y2 et yx est limité extérieurement
(outre y2) par un arc qui appartient à yx et par un arc de

passage qui unit les deux anneaux [y2 Tl] et [yx, y0]. On trouvera
tans un article récent paru en Suisse (Commentarii Mathematici
Helvetia, volume 4, 1932, p. 106) une étude détaillée de ce cas.
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Revenons au cas général de p quelconque et contentons-nous
de décrire la disposition des cassiniennes. L'on aurait, en partant
de S,,

F (z) — % P (u) — (u — ux) (u — up)

Alors, le domaine canonique est limité: extérieurement, par la
cassinienne T0: |P(w)| — 1 qui est régulière et entoure les p
zéros de P; intérieurement, par p cassiniennes, tronquées ou
non, Tp. Tp est un ovale (courbe régulière) entourant up
seul. Les intermédiaires se composent d'une boucle fermée
entourant un seul zéro de P et de vi boucles tronquées suivant

Fig. 5,

Disposition des cassiniennes pour p 2.

des arcs qui correspondent aux arcs de passage, s'il y a zéros
de F'(%) sur c{; Fi a v- points doubles à tangentes rectangulaires.
Topologiquement, les cassiniennes tronquées sont des courbes
fermées, adjacentes à un ou plusieurs arbres extérieurs.

Partant de S2 de la relation F(z) R(w), les mêmes

remarques subsisteront.

9. — Retour au point de vue algébrique.

Nous voudrions montrer enfin que ces résultats nouveaux
peuvent être rattachés fortement aux recherches algébriques
anciennes et notamment aux travaux de Schottky.
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Tout d'abord le problème de trouver les aires invariantes par
des transformations biunivoques (directement ou inversement
conformes) se ramène à la recherche des aires canoniques D

invariantes par des déplacements ou des symétries non
euclidiennes. Ce problème est identique au fond à. celui de la
détermination des courbes algébriques A (r, s) 0 invariantes par
des transformations birationnelles, problème complètement
résolu par Hurwitz.

Envisageons la fonction / (z) L F (z) U + &V- EUe es"k

analytique dans d, non uniforme, mais sa dérivée f{z) est

uniforme, comme on le vérifie d'après la construction de V.
F-'(z) et f{z) ont les mêmes zéros avec le même ordre de multiplicité.

f(z) est donc holomorphe et uniforme dans d et sur les

contours.
d/T-J

Sur ces derniers U reste constant, — 0, a étant l'arc de ci7 da 7

et l'on a
dz dV dU

f (z)~r i~r — l~rda da dn

quantité purement imaginaire sur les frontières de d. La fonction

f est donc forcément liée aux fonctions r(z) et s(z) de

Schottky, introduites précédemment. r(z) "étant méromorphe
dans d et réelle sur c{, il en sera de même pour

Le rapport sera r®el sur ^es c% 5 ^ es^ uniforme et

méromorphe dans d et sur sa frontière. C'est donc une fonction de la
classe K(z), c'est-à-dire une fonction rationnelle R à coefficients

réels des deux fonctions fondamentales r(z) et s(z) et l'on a

Il en résulte que f(z) est une intégrale abélienne attachée à la
courbe algébrique A(r, s) 0 :

f (z) iR(r s) r' (z)
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Elle est de première espèce, parce que / reste fini d'après la
construction de U et de V.

Soient a la transformée biunivoque de d par Ç --- F (z) et a'

sa symétrique par rapport à y0 et décrite, comme on sait, par
le point

r — — —
1

""
X F «

F (z) est une fonction analytique du point qui décrit la face du
disque d située en dessous du plan s. Donc a fi- a' est ici l'image
conforme du disque d à deux faces. Au point de vue topologique,
on peut raccorder les points frontières symétriques par rapport à

y(), et a fi- a' devient une surface de Riemann orthosymétrique
fermée de genre p, homéomorphe aux deux faces d'un disque à

p trous. C'est la surface de Riemann-Clifford-Klein de la
classe des courbes algébriques A(r, s) ----- 0 associées par Schottky
à la classe d'aire d.

10. — Les domaines a connexion infinie.

Nous devrons nous contenter de quelques indications sur ce

sujet et nous renvoyons pour le reste à la bibliographie. Les
méthodes employées ici se rattachent presque toutes au travail
de M. Hilbert publié en 1909 dans les Gött. Nach., p. 314.
M. Hilbert ne se restreint pas au terrain de la théorie des fonctions

mais revient au calcul des variations. Il se rapproche ainsi
de la méthode primitive de Riemann qui tentait de résoudre le

problème de Dirichlet par la recherche d'une fonction © rendant
minimum l'intégrale

(N?\ /ôçV"
NyJ

_

Il est intéressant de remarquer que les premiers pas faits dans le
terrain des connexions infinies s'inspirent des considérations de
minimum qui guidèrent Riemann dans le problème de Dirichlet
et dans l'étude qui s'y rattache de la représentation conforme
des aires simplement connexes.
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Désignons par Doo un domaine à un seul feuillet à connexion

infinie limite de domaines emboîtés a connexion finie Dn.

Un élément de frontière f de D=o est un continu de la frontière

de Doo qui n'est pas contenu dans un continu plus grand. (A noter

que l'ensemble des / n'est pas toujours dénombrable.)

I. Représentation conforme de deux Doo Vun sur Vautre.

Comme cas particulier du théorème général de l'uniformisation,

il faut et il suffit, pour que cette représentation soit possible,

que les deux groupes fondamentaux soient identiques.
Mêmes références que l'uniformisation (Poincaré, Koebe).

II. Domaines à, fentes parallèles. — 1° Supposons que DM

contienne le point à l'infini. Soit ®Doo la famille des fonctions

régulières et univalentes dans Doo, qui admettent à l'infini le

développement :

w (z) % 4 h • • • (t)
v

2

Parmi ces fonctions, il en est une et une seule dont la partie
réelle rende minimum l'intégrale de Dirichlet (prise convenablement

pour éviter le pôle). Cette fonction représente Dco sur un

domaine D^> dont tous les éléments de frontière sont des points

ou des segments parallèles à l'axe réel. Un tel domaine est dit
« domaine à fentes parallèles » Doo est dit « domaine à fentes

parallèles minimum ».

Si maintenant on résout ce problème de minimum pour les

domaines Dn, les solutions tendent vers la solution de ce meme

problème pour Dco.

Enfin la frontière de D» a une mesure superficielle nulle, ce

qui n'a pas toujours lieu pour un domaine à fentes parallèles

non minimum. (Par exemple: le plan moins un ensemble parfait
discontinu de mesure positive: tous les éléments de frontière

sont des points.)
Dans le cas de la connexion finie tout domaine à fentes

parallèles est minimum.
Tout ceci se trouve démontré dans Hilbert, Gött. Nach.,

1909, p. 314 et Koebe, id., p. 324 et 1910, p. 59.

2° Ensuite Koebe (Gött. Nach., 1918) émet l'hypothèse que
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pour un domaine minimum, la projection de la frontière sur un
axe perpendiculaire aux fentes a une mesure nulle. Cette hypothèse

n'est pas exacte (Grötzsch, Leipz. Ber., 1931, p. 185, et
De Possel, Thèse). Grötzsch donne même un exemple où cette
projection recouvre tout un segment.

3° Le problème qui consiste à rendre R(a) maximum dans le

développement (1) a une solution et une seule dans <E>Dco ; elle
coïncide avec la solution du problème du minimum ci-dessus.

Plus généralement, le domaine exact de variation de a est
un cercle et a ne se trouve sur la circonférence, à l'extrémité
du rayon qui fait l'angle 0 avec l'axe réel, que pour une fonction
représentant sur un domaine minimum dont les fentes sont

parallèles à la direction ^.
Ces deux propriétés se trouvent dans Grötzsch, Leipz. Ber.y

1932, et De Possel, Gott. Nach., 1931; Math. Ami.. 1932.
4° Si tout l'extérieur du cercle-unité appartient à D^, et si

w(z) est la fonction extrémale définie ci-dessus, on a:

L

] J {w(z) — z) | < K | m ]'' (K < 1000)

a étant le coefficient du développement (1). — Voir De Possel,
Math. Ànn.y 1932.

III. Domaines à fentes radiales et concentriques. —• 1° Koebe
étudie aussi le problème du minimum de l'intégrale de Dirichlet
pour des singularités autres que le pôle.

Si on introduit deux discontinuités en log y, pour log \w(z)\

(au point z± et à l'infini) la solution du problème de minimum
conduit à un domaine dont tous les éléments de frontière sont des
fentes radiales ou des droites passant par ie(%).

Avec deux discontinuités en Arctg, en % et à l'infini, on trouve
des éléments de frontière sur des cercles concentriques de centre
v(%).

Tous les résultats du cas des fentes parallèles, unicité de la
solution du problème de minimum, non-unicité de la solution
du problème de représentation conforme dans le cas d'un Doo,
identité entre la solution du problème pour Doo et la limite des
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solutions du même problème pour les Dn, subsistent. — Voir
Koebe, Gött. Nachr., 1909, p. 314 et 1910, p. 59.

2° Ces solutions correspondent respectivement aux fonctions

qui rendent maxima et minima j| dans la famille On».
Plus généralement le domaine exact de variation de log w' (zx)

est un cercle dont la circonférence n'est atteinte que pour des

représentations où les éléments de frontière sont sur des spirales

logarithmiques de centre w(z±) (cas limite: II 3° lorsque z1 tend

vers l'infini). — Grötzsch, Leipz. Ber., 1930, 31, 32 et De Possel,

Thèse.

IV. Autres résultats. — 1° Le domaine exact de variation de

log \w(z-ù — w(z^\ est un cercle dont la circonférence n'est
atteinte que pour des représentations où les éléments de frontière
sont sur les trajectoires isogonales des coniques homofocales de

foyers w(z^), w(z2). Ce théorème admet comme cas-limite III
lorsque z1 et z2 viennent se confondre.

2° Le domaine exact de variation de w(z-^ est un cercle,

dont la circonférence n'est atteinte que pour des représentations
où les éléments de frontière sont sur des paraboles homofocales

dont le foyer est w(z{}. C'est un cas-limite du IV 1° lorsque z2

tend vers l'infini. — Grötzsch, Leipz. Ber., 1932, 1933.

3° Enfin Grötzsch étudie encore quelques autres représentations;

ainsi le cas de deux éléments de frontière où s'accumulent
des éléments de frontière isolés. On représente ces deux éléments

sur des cercles concentriques ou des points. L'unicité est également

démontrée. — Leipz. Ber., 1929, p. 51.
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