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LE CARACTERE ARBITRAIRE DE LA GEOMETRIE
DE I’UNIVERS

PAR

S. R. MiLNER (Université de Sheffield).

Le professeur E. A. Milne, dans un Mémoire de la Zeitschrift
flr Astrophysik (6. Heft. 1-2, 1933) rend compte d’une distri-
bution invariante de particules formant un univers en expansion
dans I’espace-temps plan; il expose que la géométrie adoptée
dans les théories cosmogoniques peut étre choisie arbitraire-
ment, I'expression des lois de la Nature étant relative a la
geéométrie supposée. Une maniére de voir analogue a été exposée
par moi-méme dans Proc. Roy. Soc. A. 139, p. 349, 1933. Cepen-
dant cette idée semble avoir ét6 énoncée pour la premiére fois
par H. Poincaré dans les tout Ppremiers jours de la Relativité.
Il est intéressant, sous ce rapport, de faire observer qu’il Yy a
une méthode trés simple de transformer la loi du mouvement
d’une particule, exprimée dans la géométrie de la Théorie
d’Einstein, en la loi correspondante exprimée dans toute autre
géométrie. - |

Dans la Relatiyité généralisée la ligne-d’Univers d’une parti-
cule est une géodésique, une trajectoire quadridimensionnelle
satisfaisant au principe

s fds=0, (1)
ou o
ds? = Z g:“'dxPL dz, .
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Les g sont ici fonctions de zy, ..., x,, qui lorsqu’ils sont donnés
fixent la géométrie de la multiplicité; les x étant des coordonnées
de Gauss arbitraires, peuvent étre supposés étre les mesures de
I'espace et du temps d’un observateur quelconque (d’habitude
défini spécialement). En multipliant par une constante dimen-
sionnelle et haut et bas par ’élément do, on peut écrire le prin-
cipe géodésique sous la forme

? / f’ﬁidfijzl}cj
SA/m\/Eg S o do = 0. (2)

“ de do

Mais, sous cette forme, I’équation peut étre interprétée dans
toute géométrie. Ainsi, si do est 'intervalle d’une multiplicité
quadridimensionnelle spécifiée quelconque, (2) devient un
principe d’action stationnaire dans cette multiplicité,

adeG—_—o, (3)

ou W, la fonction de do est, avec les ¢ donnés, une fonction
connue des coordonnées et des cosinus directeurs de la trajec-
toire (maintenant courbe) en chaque point. Ou si nous rempla-
¢ons dans (2) o par ¢ de 'espace-temps plan nous avons directe-
ment le principe d’Hamilton

adez —

ou la lagrangienne L est une fonction connue des cordonnées
et des composantes de la vitesse. De 14 on obtient, par le procédé
usuel, le mouvement de la particule dans I'espace ordinaire.

Les inductions philosophiques d’une telle transformation sont
considérables. Le mouvement d’une particule étant décrit
généralement comme une trajectoire d’action stationnaire
(d’un rayon de lumiére, action zéro), dans

afdA = af%édc — 0

9

Iélément invariant d’action dA peut étre factorisé de maniéres

L : . A . :
arbitraires en gradient d’action %ii? et intervalle do. Ce dernier
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fixe la geometrle et le premler la fonction W dans (3). Le physi-
cien travaillant d’aprés les directives classiques adopte natu-
rellement la géométrie la plus simple, espace-temps plat, ren-
voyant la charge d’expliquer le mouvement non uniforme & la
fonction W, qui décrit, en effet, un « champ de force ». Le rela-
tiviste, allant & Pautre extréme, renvoie toute la charge a la
géométrie. Mais bien que ces moyens extrémes soient les plus
simples, il est clair que la charge peut étre distribuée arbitraire-
‘ment entre W et do, ceux-ci étant des facteurs ajustables d’une
chose plus fondamentale: I’action. I’action elle-méme, compre-
nant les deux, dépasse les idées de géométrie. :

Dans un mémoire publié en 1928 (Proc. Roy. Soc., A., 120,
p. 483, 1928) j’ai montré que les lois électromagnétiques peuvent
egalement étre exprimées par un principe d’action stationnaire

afdA__ ———dV_O

ou dV est un élément de volume tétradimensionnel dans le
champ. Le champ électromagnétique, par conséquent, comme le
champ gravitationnel, est obtenu par une factorisation de
Paction, mais faite différemment, les cofacteurs étant ici la
densité d’action et I’élément de volume. Le premier de ces
~ facteurs spécifie effectivement le champ car, dans I'espace-
temps plat | (
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Puisque dV, comme do, peut étre employé pour définir un
type de géométrie, le caractére d’arbitraire dans la géométrie
supposée s’applique aux deux classes de champ.

(Communiqué en traduction par Eug. Nicurcka, Paris.)
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